if_iwi.c revision 1.102 1 /* $NetBSD: if_iwi.c,v 1.102 2017/02/02 10:05:35 nonaka Exp $ */
2 /* $OpenBSD: if_iwi.c,v 1.111 2010/11/15 19:11:57 damien Exp $ */
3
4 /*-
5 * Copyright (c) 2004-2008
6 * Damien Bergamini <damien.bergamini (at) free.fr>. All rights reserved.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 #include <sys/cdefs.h>
22 __KERNEL_RCSID(0, "$NetBSD: if_iwi.c,v 1.102 2017/02/02 10:05:35 nonaka Exp $");
23
24 /*-
25 * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
26 * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
27 */
28
29
30 #include <sys/param.h>
31 #include <sys/sockio.h>
32 #include <sys/sysctl.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/proc.h>
41 #include <sys/cprng.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <dev/firmload.h>
48
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pcidevs.h>
52
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_dl.h>
57 #include <net/if_ether.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_radiotap.h>
63
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68
69 #include <dev/pci/if_iwireg.h>
70 #include <dev/pci/if_iwivar.h>
71
72 #ifdef IWI_DEBUG
73 #define DPRINTF(x) if (iwi_debug > 0) printf x
74 #define DPRINTFN(n, x) if (iwi_debug >= (n)) printf x
75 int iwi_debug = 4;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 /* Permit loading the Intel firmware */
82 static int iwi_accept_eula;
83
84 static int iwi_match(device_t, cfdata_t, void *);
85 static void iwi_attach(device_t, device_t, void *);
86 static int iwi_detach(device_t, int);
87
88 static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
89 int);
90 static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
91 static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
92 static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
93 int, bus_size_t, bus_size_t);
94 static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
95 static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
96 static struct mbuf *
97 iwi_alloc_rx_buf(struct iwi_softc *sc);
98 static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
99 int);
100 static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
101 static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
102
103 static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *);
104 static void iwi_node_free(struct ieee80211_node *);
105
106 static int iwi_cvtrate(int);
107 static int iwi_media_change(struct ifnet *);
108 static void iwi_media_status(struct ifnet *, struct ifmediareq *);
109 static int iwi_wme_update(struct ieee80211com *);
110 static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
111 static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
112 static void iwi_fix_channel(struct ieee80211com *, struct mbuf *);
113 static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
114 struct iwi_frame *);
115 static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
116 static void iwi_cmd_intr(struct iwi_softc *);
117 static void iwi_rx_intr(struct iwi_softc *);
118 static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
119 static int iwi_intr(void *);
120 static void iwi_softintr(void *);
121 static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int);
122 static void iwi_write_ibssnode(struct iwi_softc *, const struct iwi_node *);
123 static int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *,
124 int);
125 static void iwi_start(struct ifnet *);
126 static void iwi_watchdog(struct ifnet *);
127
128 static int iwi_alloc_unr(struct iwi_softc *);
129 static void iwi_free_unr(struct iwi_softc *, int);
130
131 static int iwi_get_table0(struct iwi_softc *, uint32_t *);
132
133 static int iwi_ioctl(struct ifnet *, u_long, void *);
134 static void iwi_stop_master(struct iwi_softc *);
135 static int iwi_reset(struct iwi_softc *);
136 static int iwi_load_ucode(struct iwi_softc *, void *, int);
137 static int iwi_load_firmware(struct iwi_softc *, void *, int);
138 static int iwi_cache_firmware(struct iwi_softc *);
139 static void iwi_free_firmware(struct iwi_softc *);
140 static int iwi_config(struct iwi_softc *);
141 static int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *);
142 static int iwi_scan(struct iwi_softc *);
143 static int iwi_auth_and_assoc(struct iwi_softc *);
144 static int iwi_init(struct ifnet *);
145 static void iwi_stop(struct ifnet *, int);
146 static int iwi_getrfkill(struct iwi_softc *);
147 static void iwi_led_set(struct iwi_softc *, uint32_t, int);
148 static void iwi_sysctlattach(struct iwi_softc *);
149
150 /*
151 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
152 */
153 static const struct ieee80211_rateset iwi_rateset_11a =
154 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
155
156 static const struct ieee80211_rateset iwi_rateset_11b =
157 { 4, { 2, 4, 11, 22 } };
158
159 static const struct ieee80211_rateset iwi_rateset_11g =
160 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
161
162 static inline uint8_t
163 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
164 {
165 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
166 return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
167 }
168
169 static inline uint32_t
170 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
171 {
172 CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
173 return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
174 }
175
176 CFATTACH_DECL_NEW(iwi, sizeof (struct iwi_softc), iwi_match, iwi_attach,
177 iwi_detach, NULL);
178
179 static int
180 iwi_match(device_t parent, cfdata_t match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183
184 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
185 return 0;
186
187 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2200BG ||
188 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2225BG ||
189 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 ||
190 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2)
191 return 1;
192
193 return 0;
194 }
195
196 /* Base Address Register */
197 #define IWI_PCI_BAR0 0x10
198
199 static void
200 iwi_attach(device_t parent, device_t self, void *aux)
201 {
202 struct iwi_softc *sc = device_private(self);
203 struct ieee80211com *ic = &sc->sc_ic;
204 struct ifnet *ifp = &sc->sc_if;
205 struct pci_attach_args *pa = aux;
206 const char *intrstr;
207 bus_space_tag_t memt;
208 bus_space_handle_t memh;
209 pci_intr_handle_t ih;
210 pcireg_t data;
211 uint16_t val;
212 int error, i;
213 char intrbuf[PCI_INTRSTR_LEN];
214
215 sc->sc_dev = self;
216 sc->sc_pct = pa->pa_pc;
217 sc->sc_pcitag = pa->pa_tag;
218
219 pci_aprint_devinfo(pa, NULL);
220
221 /* clear unit numbers allocated to IBSS */
222 sc->sc_unr = 0;
223
224 /* power up chip */
225 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
226 NULL)) && error != EOPNOTSUPP) {
227 aprint_error_dev(self, "cannot activate %d\n", error);
228 return;
229 }
230
231 /* clear device specific PCI configuration register 0x41 */
232 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
233 data &= ~0x0000ff00;
234 pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
235
236
237 /* enable bus-mastering */
238 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
239 data |= PCI_COMMAND_MASTER_ENABLE;
240 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
241
242 /* map the register window */
243 error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
244 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
245 if (error != 0) {
246 aprint_error_dev(self, "could not map memory space\n");
247 return;
248 }
249
250 sc->sc_st = memt;
251 sc->sc_sh = memh;
252 sc->sc_dmat = pa->pa_dmat;
253
254 /* disable interrupts */
255 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
256
257 sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwi_softintr, sc);
258 if (sc->sc_soft_ih == NULL) {
259 aprint_error_dev(self, "could not establish softint\n");
260 return;
261 }
262
263 if (pci_intr_map(pa, &ih) != 0) {
264 softint_disestablish(sc->sc_soft_ih);
265 sc->sc_soft_ih = NULL;
266 aprint_error_dev(self, "could not map interrupt\n");
267 return;
268 }
269
270 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
271 sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc);
272 if (sc->sc_ih == NULL) {
273 softint_disestablish(sc->sc_soft_ih);
274 sc->sc_soft_ih = NULL;
275 aprint_error_dev(self, "could not establish interrupt");
276 if (intrstr != NULL)
277 aprint_error(" at %s", intrstr);
278 aprint_error("\n");
279 return;
280 }
281 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
282
283 if (iwi_reset(sc) != 0) {
284 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
285 softint_disestablish(sc->sc_soft_ih);
286 sc->sc_soft_ih = NULL;
287 aprint_error_dev(self, "could not reset adapter\n");
288 return;
289 }
290
291 ic->ic_ifp = ifp;
292 ic->ic_wme.wme_update = iwi_wme_update;
293 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
294 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
295 ic->ic_state = IEEE80211_S_INIT;
296
297 sc->sc_fwname = "ipw2200-bss.fw";
298
299 /* set device capabilities */
300 ic->ic_caps =
301 IEEE80211_C_IBSS | /* IBSS mode supported */
302 IEEE80211_C_MONITOR | /* monitor mode supported */
303 IEEE80211_C_TXPMGT | /* tx power management */
304 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
305 IEEE80211_C_SHSLOT | /* short slot time supported */
306 IEEE80211_C_WPA | /* 802.11i */
307 IEEE80211_C_WME; /* 802.11e */
308
309 /* read MAC address from EEPROM */
310 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
311 ic->ic_myaddr[0] = val & 0xff;
312 ic->ic_myaddr[1] = val >> 8;
313 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
314 ic->ic_myaddr[2] = val & 0xff;
315 ic->ic_myaddr[3] = val >> 8;
316 val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
317 ic->ic_myaddr[4] = val & 0xff;
318 ic->ic_myaddr[5] = val >> 8;
319
320 aprint_verbose_dev(self, "802.11 address %s\n",
321 ether_sprintf(ic->ic_myaddr));
322
323 /* read the NIC type from EEPROM */
324 val = iwi_read_prom_word(sc, IWI_EEPROM_NIC_TYPE);
325 sc->nictype = val & 0xff;
326
327 DPRINTF(("%s: NIC type %d\n", device_xname(self), sc->nictype));
328
329 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 ||
330 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2) {
331 /* set supported .11a rates (2915ABG only) */
332 ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a;
333
334 /* set supported .11a channels */
335 for (i = 36; i <= 64; i += 4) {
336 ic->ic_channels[i].ic_freq =
337 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
338 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
339 }
340 for (i = 149; i <= 165; i += 4) {
341 ic->ic_channels[i].ic_freq =
342 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
343 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
344 }
345 }
346
347 /* set supported .11b and .11g rates */
348 ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b;
349 ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g;
350
351 /* set supported .11b and .11g channels (1 through 14) */
352 for (i = 1; i <= 14; i++) {
353 ic->ic_channels[i].ic_freq =
354 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
355 ic->ic_channels[i].ic_flags =
356 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
357 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
358 }
359
360 ifp->if_softc = sc;
361 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
362 ifp->if_init = iwi_init;
363 ifp->if_stop = iwi_stop;
364 ifp->if_ioctl = iwi_ioctl;
365 ifp->if_start = iwi_start;
366 ifp->if_watchdog = iwi_watchdog;
367 IFQ_SET_READY(&ifp->if_snd);
368 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
369
370 if_initialize(ifp);
371 ieee80211_ifattach(ic);
372 /* Use common softint-based if_input */
373 ifp->if_percpuq = if_percpuq_create(ifp);
374 if_register(ifp);
375
376 /* override default methods */
377 ic->ic_node_alloc = iwi_node_alloc;
378 sc->sc_node_free = ic->ic_node_free;
379 ic->ic_node_free = iwi_node_free;
380 /* override state transition machine */
381 sc->sc_newstate = ic->ic_newstate;
382 ic->ic_newstate = iwi_newstate;
383 ieee80211_media_init(ic, iwi_media_change, iwi_media_status);
384
385 /*
386 * Allocate rings.
387 */
388 if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
389 aprint_error_dev(self, "could not allocate command ring\n");
390 goto fail;
391 }
392
393 error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT,
394 IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX);
395 if (error != 0) {
396 aprint_error_dev(self, "could not allocate Tx ring 1\n");
397 goto fail;
398 }
399
400 error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT,
401 IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX);
402 if (error != 0) {
403 aprint_error_dev(self, "could not allocate Tx ring 2\n");
404 goto fail;
405 }
406
407 error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT,
408 IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX);
409 if (error != 0) {
410 aprint_error_dev(self, "could not allocate Tx ring 3\n");
411 goto fail;
412 }
413
414 error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT,
415 IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX);
416 if (error != 0) {
417 aprint_error_dev(self, "could not allocate Tx ring 4\n");
418 goto fail;
419 }
420
421 if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
422 aprint_error_dev(self, "could not allocate Rx ring\n");
423 goto fail;
424 }
425
426 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
427 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
428
429 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
430 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
431 sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
432
433 sc->sc_txtap_len = sizeof sc->sc_txtapu;
434 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
435 sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
436
437 iwi_sysctlattach(sc);
438
439 if (pmf_device_register(self, NULL, NULL))
440 pmf_class_network_register(self, ifp);
441 else
442 aprint_error_dev(self, "couldn't establish power handler\n");
443
444 ieee80211_announce(ic);
445
446 return;
447
448 fail: iwi_detach(self, 0);
449 }
450
451 static int
452 iwi_detach(device_t self, int flags)
453 {
454 struct iwi_softc *sc = device_private(self);
455 struct ifnet *ifp = &sc->sc_if;
456
457 pmf_device_deregister(self);
458
459 if (ifp != NULL)
460 iwi_stop(ifp, 1);
461
462 iwi_free_firmware(sc);
463
464 ieee80211_ifdetach(&sc->sc_ic);
465 if (ifp != NULL)
466 if_detach(ifp);
467
468 iwi_free_cmd_ring(sc, &sc->cmdq);
469 iwi_free_tx_ring(sc, &sc->txq[0]);
470 iwi_free_tx_ring(sc, &sc->txq[1]);
471 iwi_free_tx_ring(sc, &sc->txq[2]);
472 iwi_free_tx_ring(sc, &sc->txq[3]);
473 iwi_free_rx_ring(sc, &sc->rxq);
474
475 if (sc->sc_ih != NULL) {
476 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
477 sc->sc_ih = NULL;
478 }
479
480 if (sc->sc_soft_ih != NULL) {
481 softint_disestablish(sc->sc_soft_ih);
482 sc->sc_soft_ih = NULL;
483 }
484
485 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
486
487 return 0;
488 }
489
490 static int
491 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring,
492 int count)
493 {
494 int error, nsegs;
495
496 ring->count = count;
497 ring->queued = 0;
498 ring->cur = ring->next = 0;
499
500 /*
501 * Allocate and map command ring
502 */
503 error = bus_dmamap_create(sc->sc_dmat,
504 IWI_CMD_DESC_SIZE * count, 1,
505 IWI_CMD_DESC_SIZE * count, 0,
506 BUS_DMA_NOWAIT, &ring->desc_map);
507 if (error != 0) {
508 aprint_error_dev(sc->sc_dev,
509 "could not create command ring DMA map\n");
510 ring->desc_map = NULL;
511 goto fail;
512 }
513
514 error = bus_dmamem_alloc(sc->sc_dmat,
515 IWI_CMD_DESC_SIZE * count, PAGE_SIZE, 0,
516 &sc->cmdq.desc_seg, 1, &nsegs, BUS_DMA_NOWAIT);
517 if (error != 0) {
518 aprint_error_dev(sc->sc_dev,
519 "could not allocate command ring DMA memory\n");
520 goto fail;
521 }
522
523 error = bus_dmamem_map(sc->sc_dmat, &sc->cmdq.desc_seg, nsegs,
524 IWI_CMD_DESC_SIZE * count,
525 (void **)&sc->cmdq.desc, BUS_DMA_NOWAIT);
526 if (error != 0) {
527 aprint_error_dev(sc->sc_dev,
528 "could not map command ring DMA memory\n");
529 goto fail;
530 }
531
532 error = bus_dmamap_load(sc->sc_dmat, sc->cmdq.desc_map, sc->cmdq.desc,
533 IWI_CMD_DESC_SIZE * count, NULL,
534 BUS_DMA_NOWAIT);
535 if (error != 0) {
536 aprint_error_dev(sc->sc_dev,
537 "could not load command ring DMA map\n");
538 goto fail;
539 }
540
541 memset(sc->cmdq.desc, 0,
542 IWI_CMD_DESC_SIZE * count);
543
544 return 0;
545
546 fail: return error;
547 }
548
549 static void
550 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
551 {
552 int i;
553
554 for (i = ring->next; i != ring->cur;) {
555 bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map,
556 i * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE,
557 BUS_DMASYNC_POSTWRITE);
558
559 wakeup(&ring->desc[i]);
560 i = (i + 1) % ring->count;
561 }
562
563 ring->queued = 0;
564 ring->cur = ring->next = 0;
565 }
566
567 static void
568 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
569 {
570 if (ring->desc_map != NULL) {
571 if (ring->desc != NULL) {
572 bus_dmamap_unload(sc->sc_dmat, ring->desc_map);
573 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
574 IWI_CMD_DESC_SIZE * ring->count);
575 bus_dmamem_free(sc->sc_dmat, &ring->desc_seg, 1);
576 }
577 bus_dmamap_destroy(sc->sc_dmat, ring->desc_map);
578 }
579 }
580
581 static int
582 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring,
583 int count, bus_size_t csr_ridx, bus_size_t csr_widx)
584 {
585 int i, error, nsegs;
586
587 ring->count = 0;
588 ring->queued = 0;
589 ring->cur = ring->next = 0;
590 ring->csr_ridx = csr_ridx;
591 ring->csr_widx = csr_widx;
592
593 /*
594 * Allocate and map Tx ring
595 */
596 error = bus_dmamap_create(sc->sc_dmat,
597 IWI_TX_DESC_SIZE * count, 1,
598 IWI_TX_DESC_SIZE * count, 0, BUS_DMA_NOWAIT,
599 &ring->desc_map);
600 if (error != 0) {
601 aprint_error_dev(sc->sc_dev,
602 "could not create tx ring DMA map\n");
603 ring->desc_map = NULL;
604 goto fail;
605 }
606
607 error = bus_dmamem_alloc(sc->sc_dmat,
608 IWI_TX_DESC_SIZE * count, PAGE_SIZE, 0,
609 &ring->desc_seg, 1, &nsegs, BUS_DMA_NOWAIT);
610 if (error != 0) {
611 aprint_error_dev(sc->sc_dev,
612 "could not allocate tx ring DMA memory\n");
613 goto fail;
614 }
615
616 error = bus_dmamem_map(sc->sc_dmat, &ring->desc_seg, nsegs,
617 IWI_TX_DESC_SIZE * count,
618 (void **)&ring->desc, BUS_DMA_NOWAIT);
619 if (error != 0) {
620 aprint_error_dev(sc->sc_dev,
621 "could not map tx ring DMA memory\n");
622 goto fail;
623 }
624
625 error = bus_dmamap_load(sc->sc_dmat, ring->desc_map, ring->desc,
626 IWI_TX_DESC_SIZE * count, NULL,
627 BUS_DMA_NOWAIT);
628 if (error != 0) {
629 aprint_error_dev(sc->sc_dev,
630 "could not load tx ring DMA map\n");
631 goto fail;
632 }
633
634 memset(ring->desc, 0, IWI_TX_DESC_SIZE * count);
635
636 ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
637 M_NOWAIT | M_ZERO);
638 if (ring->data == NULL) {
639 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
640 error = ENOMEM;
641 goto fail;
642 }
643 ring->count = count;
644
645 /*
646 * Allocate Tx buffers DMA maps
647 */
648 for (i = 0; i < count; i++) {
649 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWI_MAX_NSEG,
650 MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map);
651 if (error != 0) {
652 aprint_error_dev(sc->sc_dev,
653 "could not create tx buf DMA map");
654 ring->data[i].map = NULL;
655 goto fail;
656 }
657 }
658 return 0;
659
660 fail: return error;
661 }
662
663 static void
664 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
665 {
666 struct iwi_tx_data *data;
667 int i;
668
669 for (i = 0; i < ring->count; i++) {
670 data = &ring->data[i];
671
672 if (data->m != NULL) {
673 m_freem(data->m);
674 data->m = NULL;
675 }
676
677 if (data->map != NULL) {
678 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
679 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
680 bus_dmamap_unload(sc->sc_dmat, data->map);
681 }
682
683 if (data->ni != NULL) {
684 ieee80211_free_node(data->ni);
685 data->ni = NULL;
686 }
687 }
688
689 ring->queued = 0;
690 ring->cur = ring->next = 0;
691 }
692
693 static void
694 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
695 {
696 int i;
697 struct iwi_tx_data *data;
698
699 if (ring->desc_map != NULL) {
700 if (ring->desc != NULL) {
701 bus_dmamap_unload(sc->sc_dmat, ring->desc_map);
702 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
703 IWI_TX_DESC_SIZE * ring->count);
704 bus_dmamem_free(sc->sc_dmat, &ring->desc_seg, 1);
705 }
706 bus_dmamap_destroy(sc->sc_dmat, ring->desc_map);
707 }
708
709 for (i = 0; i < ring->count; i++) {
710 data = &ring->data[i];
711
712 if (data->m != NULL) {
713 m_freem(data->m);
714 }
715
716 if (data->map != NULL) {
717 bus_dmamap_unload(sc->sc_dmat, data->map);
718 bus_dmamap_destroy(sc->sc_dmat, data->map);
719 }
720 }
721 }
722
723 static int
724 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
725 {
726 int i, error;
727
728 ring->count = 0;
729 ring->cur = 0;
730
731 ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
732 M_NOWAIT | M_ZERO);
733 if (ring->data == NULL) {
734 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
735 error = ENOMEM;
736 goto fail;
737 }
738
739 ring->count = count;
740
741 /*
742 * Allocate and map Rx buffers
743 */
744 for (i = 0; i < count; i++) {
745
746 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
747 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ring->data[i].map);
748 if (error != 0) {
749 aprint_error_dev(sc->sc_dev,
750 "could not create rx buf DMA map");
751 ring->data[i].map = NULL;
752 goto fail;
753 }
754
755 if ((ring->data[i].m = iwi_alloc_rx_buf(sc)) == NULL) {
756 error = ENOMEM;
757 goto fail;
758 }
759
760 error = bus_dmamap_load_mbuf(sc->sc_dmat, ring->data[i].map,
761 ring->data[i].m, BUS_DMA_READ | BUS_DMA_NOWAIT);
762 if (error != 0) {
763 aprint_error_dev(sc->sc_dev,
764 "could not load rx buffer DMA map\n");
765 goto fail;
766 }
767
768 bus_dmamap_sync(sc->sc_dmat, ring->data[i].map, 0,
769 ring->data[i].map->dm_mapsize, BUS_DMASYNC_PREREAD);
770 }
771
772 return 0;
773
774 fail: return error;
775 }
776
777 static void
778 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
779 {
780 ring->cur = 0;
781 }
782
783 static void
784 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
785 {
786 int i;
787 struct iwi_rx_data *data;
788
789 for (i = 0; i < ring->count; i++) {
790 data = &ring->data[i];
791
792 if (data->m != NULL) {
793 m_freem(data->m);
794 }
795
796 if (data->map != NULL) {
797 bus_dmamap_unload(sc->sc_dmat, data->map);
798 bus_dmamap_destroy(sc->sc_dmat, data->map);
799 }
800
801 }
802 }
803
804 static struct ieee80211_node *
805 iwi_node_alloc(struct ieee80211_node_table *nt)
806 {
807 struct iwi_node *in;
808
809 in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
810 if (in == NULL)
811 return NULL;
812
813 in->in_station = -1;
814
815 return &in->in_node;
816 }
817
818 static int
819 iwi_alloc_unr(struct iwi_softc *sc)
820 {
821 int i;
822
823 for (i = 0; i < IWI_MAX_IBSSNODE - 1; i++)
824 if ((sc->sc_unr & (1 << i)) == 0) {
825 sc->sc_unr |= 1 << i;
826 return i;
827 }
828
829 return -1;
830 }
831
832 static void
833 iwi_free_unr(struct iwi_softc *sc, int r)
834 {
835
836 sc->sc_unr &= 1 << r;
837 }
838
839 static void
840 iwi_node_free(struct ieee80211_node *ni)
841 {
842 struct ieee80211com *ic = ni->ni_ic;
843 struct iwi_softc *sc = ic->ic_ifp->if_softc;
844 struct iwi_node *in = (struct iwi_node *)ni;
845
846 if (in->in_station != -1)
847 iwi_free_unr(sc, in->in_station);
848
849 sc->sc_node_free(ni);
850 }
851
852 static int
853 iwi_media_change(struct ifnet *ifp)
854 {
855 int error;
856
857 error = ieee80211_media_change(ifp);
858 if (error != ENETRESET)
859 return error;
860
861 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
862 iwi_init(ifp);
863
864 return 0;
865 }
866
867 /*
868 * Convert h/w rate code to IEEE rate code.
869 */
870 static int
871 iwi_cvtrate(int iwirate)
872 {
873 switch (iwirate) {
874 case IWI_RATE_DS1: return 2;
875 case IWI_RATE_DS2: return 4;
876 case IWI_RATE_DS5: return 11;
877 case IWI_RATE_DS11: return 22;
878 case IWI_RATE_OFDM6: return 12;
879 case IWI_RATE_OFDM9: return 18;
880 case IWI_RATE_OFDM12: return 24;
881 case IWI_RATE_OFDM18: return 36;
882 case IWI_RATE_OFDM24: return 48;
883 case IWI_RATE_OFDM36: return 72;
884 case IWI_RATE_OFDM48: return 96;
885 case IWI_RATE_OFDM54: return 108;
886 }
887 return 0;
888 }
889
890 /*
891 * The firmware automatically adapts the transmit speed. We report its current
892 * value here.
893 */
894 static void
895 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
896 {
897 struct iwi_softc *sc = ifp->if_softc;
898 struct ieee80211com *ic = &sc->sc_ic;
899 int rate;
900
901 imr->ifm_status = IFM_AVALID;
902 imr->ifm_active = IFM_IEEE80211;
903 if (ic->ic_state == IEEE80211_S_RUN)
904 imr->ifm_status |= IFM_ACTIVE;
905
906 /* read current transmission rate from adapter */
907 rate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
908 imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
909
910 switch (ic->ic_opmode) {
911 case IEEE80211_M_STA:
912 break;
913
914 case IEEE80211_M_IBSS:
915 imr->ifm_active |= IFM_IEEE80211_ADHOC;
916 break;
917
918 case IEEE80211_M_MONITOR:
919 imr->ifm_active |= IFM_IEEE80211_MONITOR;
920 break;
921
922 case IEEE80211_M_AHDEMO:
923 case IEEE80211_M_HOSTAP:
924 /* should not get there */
925 break;
926 }
927 }
928
929 static int
930 iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
931 {
932 struct iwi_softc *sc = ic->ic_ifp->if_softc;
933
934 DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
935 ieee80211_state_name[ic->ic_state],
936 ieee80211_state_name[nstate], sc->flags));
937
938 switch (nstate) {
939 case IEEE80211_S_SCAN:
940 if (sc->flags & IWI_FLAG_SCANNING)
941 break;
942
943 ieee80211_node_table_reset(&ic->ic_scan);
944 ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
945 sc->flags |= IWI_FLAG_SCANNING;
946 /* blink the led while scanning */
947 iwi_led_set(sc, IWI_LED_ASSOCIATED, 1);
948 iwi_scan(sc);
949 break;
950
951 case IEEE80211_S_AUTH:
952 iwi_auth_and_assoc(sc);
953 break;
954
955 case IEEE80211_S_RUN:
956 if (ic->ic_opmode == IEEE80211_M_IBSS &&
957 ic->ic_state == IEEE80211_S_SCAN)
958 iwi_auth_and_assoc(sc);
959 else if (ic->ic_opmode == IEEE80211_M_MONITOR)
960 iwi_set_chan(sc, ic->ic_ibss_chan);
961 break;
962 case IEEE80211_S_ASSOC:
963 iwi_led_set(sc, IWI_LED_ASSOCIATED, 0);
964 if (ic->ic_state == IEEE80211_S_AUTH)
965 break;
966 iwi_auth_and_assoc(sc);
967 break;
968
969 case IEEE80211_S_INIT:
970 sc->flags &= ~IWI_FLAG_SCANNING;
971 break;
972 }
973
974 return sc->sc_newstate(ic, nstate, arg);
975 }
976
977 /*
978 * WME parameters coming from IEEE 802.11e specification. These values are
979 * already declared in ieee80211_proto.c, but they are static so they can't
980 * be reused here.
981 */
982 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
983 { 0, 3, 5, 7, 0, 0, }, /* WME_AC_BE */
984 { 0, 3, 5, 10, 0, 0, }, /* WME_AC_BK */
985 { 0, 2, 4, 5, 188, 0, }, /* WME_AC_VI */
986 { 0, 2, 3, 4, 102, 0, }, /* WME_AC_VO */
987 };
988
989 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
990 { 0, 3, 4, 6, 0, 0, }, /* WME_AC_BE */
991 { 0, 3, 4, 10, 0, 0, }, /* WME_AC_BK */
992 { 0, 2, 3, 4, 94, 0, }, /* WME_AC_VI */
993 { 0, 2, 2, 3, 47, 0, }, /* WME_AC_VO */
994 };
995
996 static int
997 iwi_wme_update(struct ieee80211com *ic)
998 {
999 #define IWI_EXP2(v) htole16((1 << (v)) - 1)
1000 #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
1001 struct iwi_softc *sc = ic->ic_ifp->if_softc;
1002 struct iwi_wme_params wme[3];
1003 const struct wmeParams *wmep;
1004 int ac;
1005
1006 /*
1007 * We shall not override firmware default WME values if WME is not
1008 * actually enabled.
1009 */
1010 if (!(ic->ic_flags & IEEE80211_F_WME))
1011 return 0;
1012
1013 for (ac = 0; ac < WME_NUM_AC; ac++) {
1014 /* set WME values for current operating mode */
1015 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1016 wme[0].aifsn[ac] = wmep->wmep_aifsn;
1017 wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1018 wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1019 wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1020 wme[0].acm[ac] = wmep->wmep_acm;
1021
1022 /* set WME values for CCK modulation */
1023 wmep = &iwi_wme_cck_params[ac];
1024 wme[1].aifsn[ac] = wmep->wmep_aifsn;
1025 wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1026 wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1027 wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1028 wme[1].acm[ac] = wmep->wmep_acm;
1029
1030 /* set WME values for OFDM modulation */
1031 wmep = &iwi_wme_ofdm_params[ac];
1032 wme[2].aifsn[ac] = wmep->wmep_aifsn;
1033 wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1034 wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1035 wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1036 wme[2].acm[ac] = wmep->wmep_acm;
1037 }
1038
1039 DPRINTF(("Setting WME parameters\n"));
1040 return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, wme, sizeof wme, 1);
1041 #undef IWI_USEC
1042 #undef IWI_EXP2
1043 }
1044
1045 /*
1046 * Read 16 bits at address 'addr' from the serial EEPROM.
1047 */
1048 static uint16_t
1049 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1050 {
1051 uint32_t tmp;
1052 uint16_t val;
1053 int n;
1054
1055 /* Clock C once before the first command */
1056 IWI_EEPROM_CTL(sc, 0);
1057 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1058 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1059 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1060
1061 /* Write start bit (1) */
1062 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1063 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1064
1065 /* Write READ opcode (10) */
1066 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1067 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1068 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1069 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1070
1071 /* Write address A7-A0 */
1072 for (n = 7; n >= 0; n--) {
1073 IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1074 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1075 IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1076 (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1077 }
1078
1079 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1080
1081 /* Read data Q15-Q0 */
1082 val = 0;
1083 for (n = 15; n >= 0; n--) {
1084 IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1085 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1086 tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1087 val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1088 }
1089
1090 IWI_EEPROM_CTL(sc, 0);
1091
1092 /* Clear Chip Select and clock C */
1093 IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1094 IWI_EEPROM_CTL(sc, 0);
1095 IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1096
1097 return val;
1098 }
1099
1100 /*
1101 * XXX: Hack to set the current channel to the value advertised in beacons or
1102 * probe responses. Only used during AP detection.
1103 */
1104 static void
1105 iwi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
1106 {
1107 struct ieee80211_frame *wh;
1108 uint8_t subtype;
1109 uint8_t *frm, *efrm;
1110
1111 wh = mtod(m, struct ieee80211_frame *);
1112
1113 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
1114 return;
1115
1116 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1117
1118 if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
1119 subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1120 return;
1121
1122 frm = (uint8_t *)(wh + 1);
1123 efrm = mtod(m, uint8_t *) + m->m_len;
1124
1125 frm += 12; /* skip tstamp, bintval and capinfo fields */
1126 while (frm < efrm) {
1127 if (*frm == IEEE80211_ELEMID_DSPARMS)
1128 #if IEEE80211_CHAN_MAX < 255
1129 if (frm[2] <= IEEE80211_CHAN_MAX)
1130 #endif
1131 ic->ic_curchan = &ic->ic_channels[frm[2]];
1132
1133 frm += frm[1] + 2;
1134 }
1135 }
1136
1137 static struct mbuf *
1138 iwi_alloc_rx_buf(struct iwi_softc *sc)
1139 {
1140 struct mbuf *m;
1141
1142 MGETHDR(m, M_DONTWAIT, MT_DATA);
1143 if (m == NULL) {
1144 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
1145 return NULL;
1146 }
1147
1148 MCLGET(m, M_DONTWAIT);
1149 if (!(m->m_flags & M_EXT)) {
1150 aprint_error_dev(sc->sc_dev,
1151 "could not allocate rx mbuf cluster\n");
1152 m_freem(m);
1153 return NULL;
1154 }
1155
1156 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1157 return m;
1158 }
1159
1160 static void
1161 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1162 struct iwi_frame *frame)
1163 {
1164 struct ieee80211com *ic = &sc->sc_ic;
1165 struct ifnet *ifp = ic->ic_ifp;
1166 struct mbuf *m, *m_new;
1167 struct ieee80211_frame *wh;
1168 struct ieee80211_node *ni;
1169 int error, s;
1170
1171 DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n",
1172 le16toh(frame->len), frame->chan, frame->rssi_dbm));
1173
1174 if (le16toh(frame->len) < sizeof (struct ieee80211_frame) ||
1175 le16toh(frame->len) > MCLBYTES) {
1176 DPRINTF(("%s: bad frame length\n", device_xname(sc->sc_dev)));
1177 ifp->if_ierrors++;
1178 return;
1179 }
1180
1181 /*
1182 * Try to allocate a new mbuf for this ring element and
1183 * load it before processing the current mbuf. If the ring
1184 * element cannot be reloaded, drop the received packet
1185 * and reuse the old mbuf. In the unlikely case that
1186 * the old mbuf can't be reloaded either, explicitly panic.
1187 *
1188 * XXX Reorganize buffer by moving elements from the logical
1189 * end of the ring to the front instead of dropping.
1190 */
1191 if ((m_new = iwi_alloc_rx_buf(sc)) == NULL) {
1192 ifp->if_ierrors++;
1193 return;
1194 }
1195
1196 bus_dmamap_unload(sc->sc_dmat, data->map);
1197
1198 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m_new,
1199 BUS_DMA_READ | BUS_DMA_NOWAIT);
1200 if (error != 0) {
1201 aprint_error_dev(sc->sc_dev,
1202 "could not load rx buf DMA map\n");
1203 m_freem(m_new);
1204 ifp->if_ierrors++;
1205 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map,
1206 data->m, BUS_DMA_READ | BUS_DMA_NOWAIT);
1207 if (error)
1208 panic("%s: unable to remap rx buf",
1209 device_xname(sc->sc_dev));
1210 return;
1211 }
1212
1213 /*
1214 * New mbuf successfully loaded, update RX ring and continue
1215 * processing.
1216 */
1217 m = data->m;
1218 data->m = m_new;
1219 CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, data->map->dm_segs[0].ds_addr);
1220
1221 /* Finalize mbuf */
1222 m_set_rcvif(m, ifp);
1223 m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1224 sizeof (struct iwi_frame) + le16toh(frame->len);
1225
1226 m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1227
1228 s = splnet();
1229
1230 if (ic->ic_state == IEEE80211_S_SCAN)
1231 iwi_fix_channel(ic, m);
1232
1233 if (sc->sc_drvbpf != NULL) {
1234 struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1235
1236 tap->wr_flags = 0;
1237 tap->wr_rate = iwi_cvtrate(frame->rate);
1238 tap->wr_chan_freq =
1239 htole16(ic->ic_channels[frame->chan].ic_freq);
1240 tap->wr_chan_flags =
1241 htole16(ic->ic_channels[frame->chan].ic_flags);
1242 tap->wr_antsignal = frame->signal;
1243 tap->wr_antenna = frame->antenna;
1244
1245 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1246 }
1247 wh = mtod(m, struct ieee80211_frame *);
1248 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1249
1250 /* Send the frame to the upper layer */
1251 ieee80211_input(ic, m, ni, frame->rssi_dbm, 0);
1252
1253 /* node is no longer needed */
1254 ieee80211_free_node(ni);
1255
1256 splx(s);
1257 }
1258
1259 static void
1260 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1261 {
1262 struct ieee80211com *ic = &sc->sc_ic;
1263 struct iwi_notif_authentication *auth;
1264 struct iwi_notif_association *assoc;
1265 struct iwi_notif_beacon_state *beacon;
1266 int s;
1267
1268 switch (notif->type) {
1269 case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1270 #ifdef IWI_DEBUG
1271 {
1272 struct iwi_notif_scan_channel *chan =
1273 (struct iwi_notif_scan_channel *)(notif + 1);
1274
1275 DPRINTFN(2, ("Scan of channel %u complete (%u)\n",
1276 ic->ic_channels[chan->nchan].ic_freq, chan->nchan));
1277 }
1278 #endif
1279 break;
1280
1281 case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1282 #ifdef IWI_DEBUG
1283 {
1284 struct iwi_notif_scan_complete *scan =
1285 (struct iwi_notif_scan_complete *)(notif + 1);
1286
1287 DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1288 scan->status));
1289 }
1290 #endif
1291
1292 /* monitor mode uses scan to set the channel ... */
1293 s = splnet();
1294 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1295 sc->flags &= ~IWI_FLAG_SCANNING;
1296 ieee80211_end_scan(ic);
1297 } else
1298 iwi_set_chan(sc, ic->ic_ibss_chan);
1299 splx(s);
1300 break;
1301
1302 case IWI_NOTIF_TYPE_AUTHENTICATION:
1303 auth = (struct iwi_notif_authentication *)(notif + 1);
1304
1305 DPRINTFN(2, ("Authentication (%u)\n", auth->state));
1306
1307 switch (auth->state) {
1308 case IWI_AUTH_SUCCESS:
1309 s = splnet();
1310 ieee80211_node_authorize(ic->ic_bss);
1311 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
1312 splx(s);
1313 break;
1314
1315 case IWI_AUTH_FAIL:
1316 break;
1317
1318 case IWI_AUTH_SENT_1:
1319 case IWI_AUTH_RECV_2:
1320 case IWI_AUTH_SEQ1_PASS:
1321 break;
1322
1323 case IWI_AUTH_SEQ1_FAIL:
1324 break;
1325
1326 default:
1327 aprint_error_dev(sc->sc_dev,
1328 "unknown authentication state %u\n", auth->state);
1329 }
1330 break;
1331
1332 case IWI_NOTIF_TYPE_ASSOCIATION:
1333 assoc = (struct iwi_notif_association *)(notif + 1);
1334
1335 DPRINTFN(2, ("Association (%u, %u)\n", assoc->state,
1336 assoc->status));
1337
1338 switch (assoc->state) {
1339 case IWI_AUTH_SUCCESS:
1340 /* re-association, do nothing */
1341 break;
1342
1343 case IWI_ASSOC_SUCCESS:
1344 s = splnet();
1345 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1346 splx(s);
1347 break;
1348
1349 case IWI_ASSOC_FAIL:
1350 s = splnet();
1351 ieee80211_begin_scan(ic, 1);
1352 splx(s);
1353 break;
1354
1355 default:
1356 aprint_error_dev(sc->sc_dev,
1357 "unknown association state %u\n", assoc->state);
1358 }
1359 break;
1360
1361 case IWI_NOTIF_TYPE_BEACON:
1362 beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1363
1364 if (beacon->state == IWI_BEACON_MISS) {
1365 DPRINTFN(5, ("%s: %u beacon(s) missed\n",
1366 device_xname(sc->sc_dev), le32toh(beacon->number)));
1367 }
1368 break;
1369
1370 case IWI_NOTIF_TYPE_FRAG_LENGTH:
1371 case IWI_NOTIF_TYPE_LINK_QUALITY:
1372 case IWI_NOTIF_TYPE_TGI_TX_KEY:
1373 case IWI_NOTIF_TYPE_CALIBRATION:
1374 case IWI_NOTIF_TYPE_NOISE:
1375 DPRINTFN(5, ("Notification (%u)\n", notif->type));
1376 break;
1377
1378 default:
1379 DPRINTF(("%s: unknown notification type %u flags 0x%x len %d\n",
1380 device_xname(sc->sc_dev), notif->type, notif->flags,
1381 le16toh(notif->len)));
1382 }
1383 }
1384
1385 static void
1386 iwi_cmd_intr(struct iwi_softc *sc)
1387 {
1388
1389 (void)CSR_READ_4(sc, IWI_CSR_CMD_RIDX);
1390
1391 bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map,
1392 sc->cmdq.next * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE,
1393 BUS_DMASYNC_POSTWRITE);
1394
1395 wakeup(&sc->cmdq.desc[sc->cmdq.next]);
1396
1397 sc->cmdq.next = (sc->cmdq.next + 1) % sc->cmdq.count;
1398
1399 if (--sc->cmdq.queued > 0) {
1400 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX,
1401 (sc->cmdq.next + 1) % sc->cmdq.count);
1402 }
1403 }
1404
1405 static void
1406 iwi_rx_intr(struct iwi_softc *sc)
1407 {
1408 struct iwi_rx_data *data;
1409 struct iwi_hdr *hdr;
1410 uint32_t hw;
1411
1412 hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1413
1414 for (; sc->rxq.cur != hw;) {
1415 data = &sc->rxq.data[sc->rxq.cur];
1416
1417 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1418 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1419
1420 hdr = mtod(data->m, struct iwi_hdr *);
1421
1422 switch (hdr->type) {
1423 case IWI_HDR_TYPE_FRAME:
1424 iwi_frame_intr(sc, data, sc->rxq.cur,
1425 (struct iwi_frame *)(hdr + 1));
1426 break;
1427
1428 case IWI_HDR_TYPE_NOTIF:
1429 iwi_notification_intr(sc,
1430 (struct iwi_notif *)(hdr + 1));
1431 break;
1432
1433 default:
1434 aprint_error_dev(sc->sc_dev, "unknown hdr type %u\n",
1435 hdr->type);
1436 }
1437
1438 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1439 data->map->dm_mapsize, BUS_DMASYNC_PREREAD);
1440
1441 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1442
1443 sc->rxq.cur = (sc->rxq.cur + 1) % sc->rxq.count;
1444 }
1445
1446 /* Tell the firmware what we have processed */
1447 hw = (hw == 0) ? sc->rxq.count - 1 : hw - 1;
1448 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1449 }
1450
1451 static void
1452 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1453 {
1454 struct ifnet *ifp = &sc->sc_if;
1455 struct iwi_tx_data *data;
1456 uint32_t hw;
1457 int s;
1458
1459 s = splnet();
1460
1461 hw = CSR_READ_4(sc, txq->csr_ridx);
1462
1463 for (; txq->next != hw;) {
1464 data = &txq->data[txq->next];
1465
1466 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1467 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1468 bus_dmamap_unload(sc->sc_dmat, data->map);
1469 m_freem(data->m);
1470 data->m = NULL;
1471 ieee80211_free_node(data->ni);
1472 data->ni = NULL;
1473
1474 DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1475
1476 ifp->if_opackets++;
1477
1478 txq->queued--;
1479 txq->next = (txq->next + 1) % txq->count;
1480 }
1481
1482 sc->sc_tx_timer = 0;
1483
1484 if (txq->queued < txq->count - 8 - 8 && (ifp->if_flags & IFF_OACTIVE)) {
1485 ifp->if_flags &= ~IFF_OACTIVE;
1486
1487 /* Call start() since some buffer descriptors have been released */
1488 iwi_start(ifp);
1489 }
1490
1491 splx(s);
1492 }
1493
1494 static int
1495 iwi_intr(void *arg)
1496 {
1497 struct iwi_softc *sc = arg;
1498 uint32_t r;
1499
1500 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff)
1501 return 0;
1502
1503 /* Disable interrupts */
1504 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
1505
1506 softint_schedule(sc->sc_soft_ih);
1507 return 1;
1508 }
1509
1510 static void
1511 iwi_softintr(void *arg)
1512 {
1513 struct iwi_softc *sc = arg;
1514 uint32_t r;
1515 int s;
1516
1517 if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff)
1518 goto out;
1519
1520 /* Acknowledge interrupts */
1521 CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1522
1523 if (r & IWI_INTR_FATAL_ERROR) {
1524 aprint_error_dev(sc->sc_dev, "fatal error\n");
1525 s = splnet();
1526 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1527 iwi_stop(&sc->sc_if, 1);
1528 splx(s);
1529 return;
1530 }
1531
1532 if (r & IWI_INTR_FW_INITED) {
1533 if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1534 wakeup(sc);
1535 }
1536
1537 if (r & IWI_INTR_RADIO_OFF) {
1538 DPRINTF(("radio transmitter off\n"));
1539 s = splnet();
1540 sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
1541 iwi_stop(&sc->sc_if, 1);
1542 splx(s);
1543 return;
1544 }
1545
1546 if (r & IWI_INTR_CMD_DONE)
1547 iwi_cmd_intr(sc);
1548
1549 if (r & IWI_INTR_TX1_DONE)
1550 iwi_tx_intr(sc, &sc->txq[0]);
1551
1552 if (r & IWI_INTR_TX2_DONE)
1553 iwi_tx_intr(sc, &sc->txq[1]);
1554
1555 if (r & IWI_INTR_TX3_DONE)
1556 iwi_tx_intr(sc, &sc->txq[2]);
1557
1558 if (r & IWI_INTR_TX4_DONE)
1559 iwi_tx_intr(sc, &sc->txq[3]);
1560
1561 if (r & IWI_INTR_RX_DONE)
1562 iwi_rx_intr(sc);
1563
1564 if (r & IWI_INTR_PARITY_ERROR)
1565 aprint_error_dev(sc->sc_dev, "parity error\n");
1566
1567 out:
1568 /* Re-enable interrupts */
1569 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
1570 }
1571
1572 static int
1573 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len,
1574 int async)
1575 {
1576 struct iwi_cmd_desc *desc;
1577
1578 desc = &sc->cmdq.desc[sc->cmdq.cur];
1579
1580 desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1581 desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1582 desc->type = type;
1583 desc->len = len;
1584 memcpy(desc->data, data, len);
1585
1586 bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map,
1587 sc->cmdq.cur * IWI_CMD_DESC_SIZE,
1588 IWI_CMD_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1589
1590 DPRINTFN(2, ("sending command idx=%u type=%u len=%u async=%d\n",
1591 sc->cmdq.cur, type, len, async));
1592
1593 sc->cmdq.cur = (sc->cmdq.cur + 1) % sc->cmdq.count;
1594
1595 if (++sc->cmdq.queued == 1)
1596 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1597
1598 return async ? 0 : tsleep(desc, 0, "iwicmd", hz);
1599 }
1600
1601 static void
1602 iwi_write_ibssnode(struct iwi_softc *sc, const struct iwi_node *in)
1603 {
1604 struct iwi_ibssnode node;
1605
1606 /* write node information into NIC memory */
1607 memset(&node, 0, sizeof node);
1608 IEEE80211_ADDR_COPY(node.bssid, in->in_node.ni_macaddr);
1609
1610 CSR_WRITE_REGION_1(sc,
1611 IWI_CSR_NODE_BASE + in->in_station * sizeof node,
1612 (uint8_t *)&node, sizeof node);
1613 }
1614
1615 static int
1616 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1617 int ac)
1618 {
1619 struct iwi_softc *sc = ifp->if_softc;
1620 struct ieee80211com *ic = &sc->sc_ic;
1621 struct iwi_node *in = (struct iwi_node *)ni;
1622 struct ieee80211_frame *wh;
1623 struct ieee80211_key *k;
1624 const struct chanAccParams *cap;
1625 struct iwi_tx_ring *txq = &sc->txq[ac];
1626 struct iwi_tx_data *data;
1627 struct iwi_tx_desc *desc;
1628 struct mbuf *mnew;
1629 int error, hdrlen, i, noack = 0;
1630
1631 wh = mtod(m0, struct ieee80211_frame *);
1632
1633 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1634 hdrlen = sizeof (struct ieee80211_qosframe);
1635 cap = &ic->ic_wme.wme_chanParams;
1636 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1637 } else
1638 hdrlen = sizeof (struct ieee80211_frame);
1639
1640 /*
1641 * This is only used in IBSS mode where the firmware expect an index
1642 * in a h/w table instead of a destination address.
1643 */
1644 if (ic->ic_opmode == IEEE80211_M_IBSS && in->in_station == -1) {
1645 in->in_station = iwi_alloc_unr(sc);
1646
1647 if (in->in_station == -1) { /* h/w table is full */
1648 m_freem(m0);
1649 ieee80211_free_node(ni);
1650 ifp->if_oerrors++;
1651 return 0;
1652 }
1653 iwi_write_ibssnode(sc, in);
1654 }
1655
1656 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1657 k = ieee80211_crypto_encap(ic, ni, m0);
1658 if (k == NULL) {
1659 m_freem(m0);
1660 return ENOBUFS;
1661 }
1662
1663 /* packet header may have moved, reset our local pointer */
1664 wh = mtod(m0, struct ieee80211_frame *);
1665 }
1666
1667 if (sc->sc_drvbpf != NULL) {
1668 struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1669
1670 tap->wt_flags = 0;
1671 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1672 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1673
1674 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1675 }
1676
1677 data = &txq->data[txq->cur];
1678 desc = &txq->desc[txq->cur];
1679
1680 /* save and trim IEEE802.11 header */
1681 m_copydata(m0, 0, hdrlen, (void *)&desc->wh);
1682 m_adj(m0, hdrlen);
1683
1684 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1685 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1686 if (error != 0 && error != EFBIG) {
1687 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1688 error);
1689 m_freem(m0);
1690 return error;
1691 }
1692 if (error != 0) {
1693 /* too many fragments, linearize */
1694
1695 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1696 if (mnew == NULL) {
1697 m_freem(m0);
1698 return ENOMEM;
1699 }
1700
1701 M_COPY_PKTHDR(mnew, m0);
1702
1703 /* If the data won't fit in the header, get a cluster */
1704 if (m0->m_pkthdr.len > MHLEN) {
1705 MCLGET(mnew, M_DONTWAIT);
1706 if (!(mnew->m_flags & M_EXT)) {
1707 m_freem(m0);
1708 m_freem(mnew);
1709 return ENOMEM;
1710 }
1711 }
1712 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1713 m_freem(m0);
1714 mnew->m_len = mnew->m_pkthdr.len;
1715 m0 = mnew;
1716
1717 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1718 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1719 if (error != 0) {
1720 aprint_error_dev(sc->sc_dev,
1721 "could not map mbuf (error %d)\n", error);
1722 m_freem(m0);
1723 return error;
1724 }
1725 }
1726
1727 data->m = m0;
1728 data->ni = ni;
1729
1730 desc->hdr.type = IWI_HDR_TYPE_DATA;
1731 desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1732 desc->station =
1733 (ic->ic_opmode == IEEE80211_M_IBSS) ? in->in_station : 0;
1734 desc->cmd = IWI_DATA_CMD_TX;
1735 desc->len = htole16(m0->m_pkthdr.len);
1736 desc->flags = 0;
1737 desc->xflags = 0;
1738
1739 if (!noack && !IEEE80211_IS_MULTICAST(desc->wh.i_addr1))
1740 desc->flags |= IWI_DATA_FLAG_NEED_ACK;
1741
1742 #if 0
1743 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1744 desc->wh.i_fc[1] |= IEEE80211_FC1_WEP;
1745 desc->wep_txkey = ic->ic_crypto.cs_def_txkey;
1746 } else
1747 #endif
1748 desc->flags |= IWI_DATA_FLAG_NO_WEP;
1749
1750 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1751 desc->flags |= IWI_DATA_FLAG_SHPREAMBLE;
1752
1753 if (desc->wh.i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS)
1754 desc->xflags |= IWI_DATA_XFLAG_QOS;
1755
1756 if (ic->ic_curmode == IEEE80211_MODE_11B)
1757 desc->xflags |= IWI_DATA_XFLAG_CCK;
1758
1759 desc->nseg = htole32(data->map->dm_nsegs);
1760 for (i = 0; i < data->map->dm_nsegs; i++) {
1761 desc->seg_addr[i] = htole32(data->map->dm_segs[i].ds_addr);
1762 desc->seg_len[i] = htole16(data->map->dm_segs[i].ds_len);
1763 }
1764
1765 bus_dmamap_sync(sc->sc_dmat, txq->desc_map,
1766 txq->cur * IWI_TX_DESC_SIZE,
1767 IWI_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1768
1769 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1770 BUS_DMASYNC_PREWRITE);
1771
1772 DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1773 ac, txq->cur, le16toh(desc->len), le32toh(desc->nseg)));
1774
1775 /* Inform firmware about this new packet */
1776 txq->queued++;
1777 txq->cur = (txq->cur + 1) % txq->count;
1778 CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1779
1780 return 0;
1781 }
1782
1783 static void
1784 iwi_start(struct ifnet *ifp)
1785 {
1786 struct iwi_softc *sc = ifp->if_softc;
1787 struct ieee80211com *ic = &sc->sc_ic;
1788 struct mbuf *m0;
1789 struct ether_header *eh;
1790 struct ieee80211_node *ni;
1791 int ac;
1792
1793 if (ic->ic_state != IEEE80211_S_RUN)
1794 return;
1795
1796 for (;;) {
1797 IFQ_DEQUEUE(&ifp->if_snd, m0);
1798 if (m0 == NULL)
1799 break;
1800
1801 if (m0->m_len < sizeof (struct ether_header) &&
1802 (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) {
1803 ifp->if_oerrors++;
1804 continue;
1805 }
1806
1807 eh = mtod(m0, struct ether_header *);
1808 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1809 if (ni == NULL) {
1810 m_freem(m0);
1811 ifp->if_oerrors++;
1812 continue;
1813 }
1814
1815 /* classify mbuf so we can find which tx ring to use */
1816 if (ieee80211_classify(ic, m0, ni) != 0) {
1817 m_freem(m0);
1818 ieee80211_free_node(ni);
1819 ifp->if_oerrors++;
1820 continue;
1821 }
1822
1823 /* no QoS encapsulation for EAPOL frames */
1824 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1825 M_WME_GETAC(m0) : WME_AC_BE;
1826
1827 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
1828 /* there is no place left in this ring */
1829 IFQ_LOCK(&ifp->if_snd);
1830 IF_PREPEND(&ifp->if_snd, m0);
1831 IFQ_UNLOCK(&ifp->if_snd);
1832 ifp->if_flags |= IFF_OACTIVE;
1833 break;
1834 }
1835
1836 bpf_mtap(ifp, m0);
1837
1838 m0 = ieee80211_encap(ic, m0, ni);
1839 if (m0 == NULL) {
1840 ieee80211_free_node(ni);
1841 ifp->if_oerrors++;
1842 continue;
1843 }
1844
1845 bpf_mtap3(ic->ic_rawbpf, m0);
1846
1847 if (iwi_tx_start(ifp, m0, ni, ac) != 0) {
1848 ieee80211_free_node(ni);
1849 ifp->if_oerrors++;
1850 break;
1851 }
1852
1853 /* start watchdog timer */
1854 sc->sc_tx_timer = 5;
1855 ifp->if_timer = 1;
1856 }
1857 }
1858
1859 static void
1860 iwi_watchdog(struct ifnet *ifp)
1861 {
1862 struct iwi_softc *sc = ifp->if_softc;
1863
1864 ifp->if_timer = 0;
1865
1866 if (sc->sc_tx_timer > 0) {
1867 if (--sc->sc_tx_timer == 0) {
1868 aprint_error_dev(sc->sc_dev, "device timeout\n");
1869 ifp->if_oerrors++;
1870 ifp->if_flags &= ~IFF_UP;
1871 iwi_stop(ifp, 1);
1872 return;
1873 }
1874 ifp->if_timer = 1;
1875 }
1876
1877 ieee80211_watchdog(&sc->sc_ic);
1878 }
1879
1880 static int
1881 iwi_get_table0(struct iwi_softc *sc, uint32_t *tbl)
1882 {
1883 uint32_t size, buf[128];
1884
1885 if (!(sc->flags & IWI_FLAG_FW_INITED)) {
1886 memset(buf, 0, sizeof buf);
1887 return copyout(buf, tbl, sizeof buf);
1888 }
1889
1890 size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
1891 CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
1892
1893 return copyout(buf, tbl, sizeof buf);
1894 }
1895
1896 static int
1897 iwi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1898 {
1899 #define IS_RUNNING(ifp) \
1900 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1901
1902 struct iwi_softc *sc = ifp->if_softc;
1903 struct ieee80211com *ic = &sc->sc_ic;
1904 struct ifreq *ifr = (struct ifreq *)data;
1905 int s, error = 0;
1906 int val;
1907
1908 s = splnet();
1909
1910 switch (cmd) {
1911 case SIOCSIFFLAGS:
1912 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1913 break;
1914 if (ifp->if_flags & IFF_UP) {
1915 if (!(ifp->if_flags & IFF_RUNNING))
1916 iwi_init(ifp);
1917 } else {
1918 if (ifp->if_flags & IFF_RUNNING)
1919 iwi_stop(ifp, 1);
1920 }
1921 break;
1922
1923 case SIOCADDMULTI:
1924 case SIOCDELMULTI:
1925 /* XXX no h/w multicast filter? --dyoung */
1926 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1927 /* setup multicast filter, etc */
1928 error = 0;
1929 }
1930 break;
1931
1932 case SIOCGTABLE0:
1933 error = iwi_get_table0(sc, (uint32_t *)ifr->ifr_data);
1934 break;
1935
1936 case SIOCGRADIO:
1937 val = !iwi_getrfkill(sc);
1938 error = copyout(&val, (int *)ifr->ifr_data, sizeof val);
1939 break;
1940
1941 case SIOCSIFMEDIA:
1942 if (ifr->ifr_media & IFM_IEEE80211_ADHOC) {
1943 sc->sc_fwname = "ipw2200-ibss.fw";
1944 } else if (ifr->ifr_media & IFM_IEEE80211_MONITOR) {
1945 sc->sc_fwname = "ipw2200-sniffer.fw";
1946 } else {
1947 sc->sc_fwname = "ipw2200-bss.fw";
1948 }
1949 error = iwi_cache_firmware(sc);
1950 if (error)
1951 break;
1952 /* FALLTRHOUGH */
1953
1954 default:
1955 error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1956
1957 if (error == ENETRESET) {
1958 if (IS_RUNNING(ifp) &&
1959 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1960 iwi_init(ifp);
1961 error = 0;
1962 }
1963 }
1964
1965 splx(s);
1966 return error;
1967 #undef IS_RUNNING
1968 }
1969
1970 static void
1971 iwi_stop_master(struct iwi_softc *sc)
1972 {
1973 int ntries;
1974
1975 /* Disable interrupts */
1976 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
1977
1978 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
1979 for (ntries = 0; ntries < 5; ntries++) {
1980 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
1981 break;
1982 DELAY(10);
1983 }
1984 if (ntries == 5)
1985 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
1986
1987 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
1988 IWI_RST_PRINCETON_RESET);
1989
1990 sc->flags &= ~IWI_FLAG_FW_INITED;
1991 }
1992
1993 static int
1994 iwi_reset(struct iwi_softc *sc)
1995 {
1996 int i, ntries;
1997
1998 iwi_stop_master(sc);
1999
2000 /* Move adapter to D0 state */
2001 CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
2002 IWI_CTL_INIT);
2003
2004 /* Initialize Phase-Locked Level (PLL) */
2005 CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2006
2007 /* Wait for clock stabilization */
2008 for (ntries = 0; ntries < 1000; ntries++) {
2009 if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2010 break;
2011 DELAY(200);
2012 }
2013 if (ntries == 1000) {
2014 aprint_error_dev(sc->sc_dev,
2015 "timeout waiting for clock stabilization\n");
2016 return ETIMEDOUT;
2017 }
2018
2019 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2020 IWI_RST_SW_RESET);
2021
2022 DELAY(10);
2023
2024 CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
2025 IWI_CTL_INIT);
2026
2027 /* Clear NIC memory */
2028 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2029 for (i = 0; i < 0xc000; i++)
2030 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2031
2032 return 0;
2033 }
2034
2035 static int
2036 iwi_load_ucode(struct iwi_softc *sc, void *uc, int size)
2037 {
2038 uint16_t *w;
2039 int ntries, i;
2040
2041 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2042 IWI_RST_STOP_MASTER);
2043 for (ntries = 0; ntries < 5; ntries++) {
2044 if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2045 break;
2046 DELAY(10);
2047 }
2048 if (ntries == 5) {
2049 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
2050 return ETIMEDOUT;
2051 }
2052
2053 MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2054 DELAY(5000);
2055 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) &
2056 ~IWI_RST_PRINCETON_RESET);
2057 DELAY(5000);
2058 MEM_WRITE_4(sc, 0x3000e0, 0);
2059 DELAY(1000);
2060 MEM_WRITE_4(sc, 0x300004, 1);
2061 DELAY(1000);
2062 MEM_WRITE_4(sc, 0x300004, 0);
2063 DELAY(1000);
2064 MEM_WRITE_1(sc, 0x200000, 0x00);
2065 MEM_WRITE_1(sc, 0x200000, 0x40);
2066 DELAY(1000);
2067
2068 /* Adapter is buggy, we must set the address for each word */
2069 for (w = uc; size > 0; w++, size -= 2)
2070 MEM_WRITE_2(sc, 0x200010, htole16(*w));
2071
2072 MEM_WRITE_1(sc, 0x200000, 0x00);
2073 MEM_WRITE_1(sc, 0x200000, 0x80);
2074
2075 /* Wait until we get a response in the uc queue */
2076 for (ntries = 0; ntries < 100; ntries++) {
2077 if (MEM_READ_1(sc, 0x200000) & 1)
2078 break;
2079 DELAY(100);
2080 }
2081 if (ntries == 100) {
2082 aprint_error_dev(sc->sc_dev,
2083 "timeout waiting for ucode to initialize\n");
2084 return ETIMEDOUT;
2085 }
2086
2087 /* Empty the uc queue or the firmware will not initialize properly */
2088 for (i = 0; i < 7; i++)
2089 MEM_READ_4(sc, 0x200004);
2090
2091 MEM_WRITE_1(sc, 0x200000, 0x00);
2092
2093 return 0;
2094 }
2095
2096 /* macro to handle unaligned little endian data in firmware image */
2097 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2098 static int
2099 iwi_load_firmware(struct iwi_softc *sc, void *fw, int size)
2100 {
2101 bus_dmamap_t map;
2102 u_char *p, *end;
2103 uint32_t sentinel, ctl, sum;
2104 uint32_t cs, sl, cd, cl;
2105 int ntries, nsegs, error;
2106 int sn;
2107
2108 nsegs = atop((vaddr_t)fw+size-1) - atop((vaddr_t)fw) + 1;
2109
2110 /* Create a DMA map for the firmware image */
2111 error = bus_dmamap_create(sc->sc_dmat, size, nsegs, size, 0,
2112 BUS_DMA_NOWAIT, &map);
2113 if (error != 0) {
2114 aprint_error_dev(sc->sc_dev,
2115 "could not create firmware DMA map\n");
2116 map = NULL;
2117 goto fail1;
2118 }
2119
2120 error = bus_dmamap_load(sc->sc_dmat, map, fw, size, NULL,
2121 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
2122 if (error != 0) {
2123 aprint_error_dev(sc->sc_dev, "could not load fw dma map(%d)\n",
2124 error);
2125 goto fail2;
2126 }
2127
2128 /* Make sure the adapter will get up-to-date values */
2129 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
2130
2131 /* Tell the adapter where the command blocks are stored */
2132 MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2133
2134 /*
2135 * Store command blocks into adapter's internal memory using register
2136 * indirections. The adapter will read the firmware image through DMA
2137 * using information stored in command blocks.
2138 */
2139 p = fw;
2140 end = p + size;
2141 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2142
2143 sn = 0;
2144 sl = cl = 0;
2145 cs = cd = 0;
2146 while (p < end) {
2147 if (sl == 0) {
2148 cs = map->dm_segs[sn].ds_addr;
2149 sl = map->dm_segs[sn].ds_len;
2150 sn++;
2151 }
2152 if (cl == 0) {
2153 cd = GETLE32(p); p += 4; cs += 4; sl -= 4;
2154 cl = GETLE32(p); p += 4; cs += 4; sl -= 4;
2155 }
2156 while (sl > 0 && cl > 0) {
2157 int len = min(cl, sl);
2158
2159 sl -= len;
2160 cl -= len;
2161 p += len;
2162
2163 while (len > 0) {
2164 int mlen = min(len, IWI_CB_MAXDATALEN);
2165
2166 ctl = IWI_CB_DEFAULT_CTL | mlen;
2167 sum = ctl ^ cs ^ cd;
2168
2169 /* Write a command block */
2170 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2171 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, cs);
2172 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, cd);
2173 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2174
2175 cs += mlen;
2176 cd += mlen;
2177 len -= mlen;
2178 }
2179 }
2180 }
2181
2182 /* Write a fictive final command block (sentinel) */
2183 sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2184 CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2185
2186 CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) &
2187 ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER));
2188
2189 /* Tell the adapter to start processing command blocks */
2190 MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2191
2192 /* Wait until the adapter has processed all command blocks */
2193 for (ntries = 0; ntries < 400; ntries++) {
2194 if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2195 break;
2196 DELAY(100);
2197 }
2198 if (ntries == 400) {
2199 aprint_error_dev(sc->sc_dev, "timeout processing cb\n");
2200 error = ETIMEDOUT;
2201 goto fail3;
2202 }
2203
2204 /* We're done with command blocks processing */
2205 MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2206
2207 /* Allow interrupts so we know when the firmware is inited */
2208 CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2209
2210 /* Tell the adapter to initialize the firmware */
2211 CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2212 CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) |
2213 IWI_CTL_ALLOW_STANDBY);
2214
2215 /* Wait at most one second for firmware initialization to complete */
2216 if ((error = tsleep(sc, 0, "iwiinit", hz)) != 0) {
2217 aprint_error_dev(sc->sc_dev,
2218 "timeout waiting for firmware initialization to complete\n");
2219 goto fail3;
2220 }
2221
2222 fail3:
2223 bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
2224 bus_dmamap_unload(sc->sc_dmat, map);
2225 fail2:
2226 if (map != NULL)
2227 bus_dmamap_destroy(sc->sc_dmat, map);
2228
2229 fail1:
2230 return error;
2231 }
2232
2233 /*
2234 * Store firmware into kernel memory so we can download it when we need to,
2235 * e.g when the adapter wakes up from suspend mode.
2236 */
2237 static int
2238 iwi_cache_firmware(struct iwi_softc *sc)
2239 {
2240 struct iwi_firmware *kfw = &sc->fw;
2241 firmware_handle_t fwh;
2242 struct iwi_firmware_hdr *hdr;
2243 off_t size;
2244 char *fw;
2245 int error;
2246
2247 if (iwi_accept_eula == 0) {
2248 aprint_error_dev(sc->sc_dev,
2249 "EULA not accepted; please see the iwi(4) man page.\n");
2250 return EPERM;
2251 }
2252
2253 iwi_free_firmware(sc);
2254 error = firmware_open("if_iwi", sc->sc_fwname, &fwh);
2255 if (error != 0) {
2256 aprint_error_dev(sc->sc_dev, "firmware_open failed\n");
2257 goto fail1;
2258 }
2259
2260 size = firmware_get_size(fwh);
2261 if (size < sizeof(struct iwi_firmware_hdr)) {
2262 aprint_error_dev(sc->sc_dev, "image '%s' has no header\n",
2263 sc->sc_fwname);
2264 error = EIO;
2265 goto fail1;
2266 }
2267 sc->sc_blobsize = size;
2268
2269 sc->sc_blob = firmware_malloc(size);
2270 if (sc->sc_blob == NULL) {
2271 error = ENOMEM;
2272 firmware_close(fwh);
2273 goto fail1;
2274 }
2275
2276 error = firmware_read(fwh, 0, sc->sc_blob, size);
2277 firmware_close(fwh);
2278 if (error != 0)
2279 goto fail2;
2280
2281 hdr = (struct iwi_firmware_hdr *)sc->sc_blob;
2282 hdr->version = le32toh(hdr->version);
2283 hdr->bsize = le32toh(hdr->bsize);
2284 hdr->usize = le32toh(hdr->usize);
2285 hdr->fsize = le32toh(hdr->fsize);
2286
2287 if (size < sizeof(struct iwi_firmware_hdr) + hdr->bsize + hdr->usize + hdr->fsize) {
2288 aprint_error_dev(sc->sc_dev, "image '%s' too small\n",
2289 sc->sc_fwname);
2290 error = EIO;
2291 goto fail2;
2292 }
2293
2294 DPRINTF(("firmware version = %d\n", hdr->version));
2295 if ((IWI_FW_GET_MAJOR(hdr->version) != IWI_FW_REQ_MAJOR) ||
2296 (IWI_FW_GET_MINOR(hdr->version) != IWI_FW_REQ_MINOR)) {
2297 aprint_error_dev(sc->sc_dev,
2298 "version for '%s' %d.%d != %d.%d\n", sc->sc_fwname,
2299 IWI_FW_GET_MAJOR(hdr->version),
2300 IWI_FW_GET_MINOR(hdr->version),
2301 IWI_FW_REQ_MAJOR, IWI_FW_REQ_MINOR);
2302 error = EIO;
2303 goto fail2;
2304 }
2305
2306 kfw->boot_size = hdr->bsize;
2307 kfw->ucode_size = hdr->usize;
2308 kfw->main_size = hdr->fsize;
2309
2310 fw = sc->sc_blob + sizeof(struct iwi_firmware_hdr);
2311 kfw->boot = fw;
2312 fw += kfw->boot_size;
2313 kfw->ucode = fw;
2314 fw += kfw->ucode_size;
2315 kfw->main = fw;
2316
2317 DPRINTF(("Firmware cached: boot %p, ucode %p, main %p\n",
2318 kfw->boot, kfw->ucode, kfw->main));
2319 DPRINTF(("Firmware cached: boot %u, ucode %u, main %u\n",
2320 kfw->boot_size, kfw->ucode_size, kfw->main_size));
2321
2322 sc->flags |= IWI_FLAG_FW_CACHED;
2323
2324 return 0;
2325
2326
2327 fail2: firmware_free(sc->sc_blob, sc->sc_blobsize);
2328 fail1:
2329 return error;
2330 }
2331
2332 static void
2333 iwi_free_firmware(struct iwi_softc *sc)
2334 {
2335
2336 if (!(sc->flags & IWI_FLAG_FW_CACHED))
2337 return;
2338
2339 firmware_free(sc->sc_blob, sc->sc_blobsize);
2340
2341 sc->flags &= ~IWI_FLAG_FW_CACHED;
2342 }
2343
2344 static int
2345 iwi_config(struct iwi_softc *sc)
2346 {
2347 struct ieee80211com *ic = &sc->sc_ic;
2348 struct ifnet *ifp = &sc->sc_if;
2349 struct iwi_configuration config;
2350 struct iwi_rateset rs;
2351 struct iwi_txpower power;
2352 struct ieee80211_key *wk;
2353 struct iwi_wep_key wepkey;
2354 uint32_t data;
2355 int error, nchan, i;
2356
2357 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2358 DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2359 error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
2360 IEEE80211_ADDR_LEN, 0);
2361 if (error != 0)
2362 return error;
2363
2364 memset(&config, 0, sizeof config);
2365 config.bluetooth_coexistence = sc->bluetooth;
2366 config.antenna = sc->antenna;
2367 config.silence_threshold = 0x1e;
2368 config.multicast_enabled = 1;
2369 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2370 config.disable_unicast_decryption = 1;
2371 config.disable_multicast_decryption = 1;
2372 DPRINTF(("Configuring adapter\n"));
2373 error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config,
2374 0);
2375 if (error != 0)
2376 return error;
2377
2378 data = htole32(IWI_POWER_MODE_CAM);
2379 DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2380 error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0);
2381 if (error != 0)
2382 return error;
2383
2384 data = htole32(ic->ic_rtsthreshold);
2385 DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2386 error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0);
2387 if (error != 0)
2388 return error;
2389
2390 data = htole32(ic->ic_fragthreshold);
2391 DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2392 error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0);
2393 if (error != 0)
2394 return error;
2395
2396 /*
2397 * Set default Tx power for 802.11b/g and 802.11a channels.
2398 */
2399 nchan = 0;
2400 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2401 if (!IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]))
2402 continue;
2403 power.chan[nchan].chan = i;
2404 power.chan[nchan].power = IWI_TXPOWER_MAX;
2405 nchan++;
2406 }
2407 power.nchan = nchan;
2408
2409 power.mode = IWI_MODE_11G;
2410 DPRINTF(("Setting .11g channels tx power\n"));
2411 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0);
2412 if (error != 0)
2413 return error;
2414
2415 power.mode = IWI_MODE_11B;
2416 DPRINTF(("Setting .11b channels tx power\n"));
2417 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0);
2418 if (error != 0)
2419 return error;
2420
2421 nchan = 0;
2422 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2423 if (!IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]))
2424 continue;
2425 power.chan[nchan].chan = i;
2426 power.chan[nchan].power = IWI_TXPOWER_MAX;
2427 nchan++;
2428 }
2429 power.nchan = nchan;
2430
2431 if (nchan > 0) { /* 2915ABG only */
2432 power.mode = IWI_MODE_11A;
2433 DPRINTF(("Setting .11a channels tx power\n"));
2434 error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
2435 0);
2436 if (error != 0)
2437 return error;
2438 }
2439
2440 rs.mode = IWI_MODE_11G;
2441 rs.type = IWI_RATESET_TYPE_SUPPORTED;
2442 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2443 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2444 rs.nrates);
2445 DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2446 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
2447 if (error != 0)
2448 return error;
2449
2450 rs.mode = IWI_MODE_11A;
2451 rs.type = IWI_RATESET_TYPE_SUPPORTED;
2452 rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2453 memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2454 rs.nrates);
2455 DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2456 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
2457 if (error != 0)
2458 return error;
2459
2460 /* if we have a desired ESSID, set it now */
2461 if (ic->ic_des_esslen != 0) {
2462 #ifdef IWI_DEBUG
2463 if (iwi_debug > 0) {
2464 printf("Setting desired ESSID to ");
2465 ieee80211_print_essid(ic->ic_des_essid,
2466 ic->ic_des_esslen);
2467 printf("\n");
2468 }
2469 #endif
2470 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
2471 ic->ic_des_esslen, 0);
2472 if (error != 0)
2473 return error;
2474 }
2475
2476 cprng_fast(&data, sizeof(data));
2477 data = htole32(data);
2478 DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2479 error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0);
2480 if (error != 0)
2481 return error;
2482
2483 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2484 /* XXX iwi_setwepkeys? */
2485 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2486 wk = &ic->ic_crypto.cs_nw_keys[i];
2487
2488 wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2489 wepkey.idx = i;
2490 wepkey.len = wk->wk_keylen;
2491 memset(wepkey.key, 0, sizeof wepkey.key);
2492 memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2493 DPRINTF(("Setting wep key index %u len %u\n",
2494 wepkey.idx, wepkey.len));
2495 error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2496 sizeof wepkey, 0);
2497 if (error != 0)
2498 return error;
2499 }
2500 }
2501
2502 /* Enable adapter */
2503 DPRINTF(("Enabling adapter\n"));
2504 return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0);
2505 }
2506
2507 static int
2508 iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan)
2509 {
2510 struct ieee80211com *ic = &sc->sc_ic;
2511 struct iwi_scan_v2 scan;
2512
2513 (void)memset(&scan, 0, sizeof scan);
2514
2515 scan.dwelltime[IWI_SCAN_TYPE_PASSIVE] = htole16(2000);
2516 scan.channels[0] = 1 |
2517 (IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ);
2518 scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2519 iwi_scan_type_set(scan, 1, IWI_SCAN_TYPE_PASSIVE);
2520
2521 DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
2522 return iwi_cmd(sc, IWI_CMD_SCAN_V2, &scan, sizeof scan, 1);
2523 }
2524
2525 static int
2526 iwi_scan(struct iwi_softc *sc)
2527 {
2528 struct ieee80211com *ic = &sc->sc_ic;
2529 struct iwi_scan_v2 scan;
2530 uint32_t type;
2531 uint8_t *p;
2532 int i, count, idx;
2533
2534 (void)memset(&scan, 0, sizeof scan);
2535 scan.dwelltime[IWI_SCAN_TYPE_ACTIVE_BROADCAST] =
2536 htole16(sc->dwelltime);
2537 scan.dwelltime[IWI_SCAN_TYPE_ACTIVE_BDIRECT] =
2538 htole16(sc->dwelltime);
2539
2540 /* tell the firmware about the desired essid */
2541 if (ic->ic_des_esslen) {
2542 int error;
2543
2544 DPRINTF(("%s: Setting adapter desired ESSID to %s\n",
2545 __func__, ic->ic_des_essid));
2546
2547 error = iwi_cmd(sc, IWI_CMD_SET_ESSID,
2548 ic->ic_des_essid, ic->ic_des_esslen, 1);
2549 if (error)
2550 return error;
2551
2552 type = IWI_SCAN_TYPE_ACTIVE_BDIRECT;
2553 } else {
2554 type = IWI_SCAN_TYPE_ACTIVE_BROADCAST;
2555 }
2556
2557 p = &scan.channels[0];
2558 count = idx = 0;
2559 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2560 if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) &&
2561 isset(ic->ic_chan_active, i)) {
2562 *++p = i;
2563 count++;
2564 idx++;
2565 iwi_scan_type_set(scan, idx, type);
2566 }
2567 }
2568 if (count) {
2569 *(p - count) = IWI_CHAN_5GHZ | count;
2570 p++;
2571 }
2572
2573 count = 0;
2574 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
2575 if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) &&
2576 isset(ic->ic_chan_active, i)) {
2577 *++p = i;
2578 count++;
2579 idx++;
2580 iwi_scan_type_set(scan, idx, type);
2581 }
2582 }
2583 *(p - count) = IWI_CHAN_2GHZ | count;
2584
2585 DPRINTF(("Start scanning\n"));
2586 return iwi_cmd(sc, IWI_CMD_SCAN_V2, &scan, sizeof scan, 1);
2587 }
2588
2589 static int
2590 iwi_auth_and_assoc(struct iwi_softc *sc)
2591 {
2592 struct ieee80211com *ic = &sc->sc_ic;
2593 struct ieee80211_node *ni = ic->ic_bss;
2594 struct ifnet *ifp = &sc->sc_if;
2595 struct ieee80211_wme_info wme;
2596 struct iwi_configuration config;
2597 struct iwi_associate assoc;
2598 struct iwi_rateset rs;
2599 uint16_t capinfo;
2600 uint32_t data;
2601 int error;
2602
2603 memset(&config, 0, sizeof config);
2604 config.bluetooth_coexistence = sc->bluetooth;
2605 config.antenna = sc->antenna;
2606 config.multicast_enabled = 1;
2607 config.silence_threshold = 0x1e;
2608 if (ic->ic_curmode == IEEE80211_MODE_11G)
2609 config.use_protection = 1;
2610 config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2611 config.disable_unicast_decryption = 1;
2612 config.disable_multicast_decryption = 1;
2613
2614 DPRINTF(("Configuring adapter\n"));
2615 error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config,
2616 sizeof config, 1);
2617 if (error != 0)
2618 return error;
2619
2620 #ifdef IWI_DEBUG
2621 if (iwi_debug > 0) {
2622 aprint_debug_dev(sc->sc_dev, "Setting ESSID to ");
2623 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2624 aprint_debug("\n");
2625 }
2626 #endif
2627 error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1);
2628 if (error != 0)
2629 return error;
2630
2631 /* the rate set has already been "negotiated" */
2632 rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
2633 IWI_MODE_11G;
2634 rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2635 rs.nrates = ni->ni_rates.rs_nrates;
2636
2637 if (rs.nrates > IWI_RATESET_SIZE) {
2638 DPRINTF(("Truncating negotiated rate set from %u\n",
2639 rs.nrates));
2640 rs.nrates = IWI_RATESET_SIZE;
2641 }
2642 memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2643 DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2644 error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1);
2645 if (error != 0)
2646 return error;
2647
2648 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) {
2649 wme.wme_id = IEEE80211_ELEMID_VENDOR;
2650 wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
2651 wme.wme_oui[0] = 0x00;
2652 wme.wme_oui[1] = 0x50;
2653 wme.wme_oui[2] = 0xf2;
2654 wme.wme_type = WME_OUI_TYPE;
2655 wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
2656 wme.wme_version = WME_VERSION;
2657 wme.wme_info = 0;
2658
2659 DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
2660 error = iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme, 1);
2661 if (error != 0)
2662 return error;
2663 }
2664
2665 if (ic->ic_opt_ie != NULL) {
2666 DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len));
2667 error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie,
2668 ic->ic_opt_ie_len, 1);
2669 if (error != 0)
2670 return error;
2671 }
2672 data = htole32(ni->ni_rssi);
2673 DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi));
2674 error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1);
2675 if (error != 0)
2676 return error;
2677
2678 memset(&assoc, 0, sizeof assoc);
2679 if (IEEE80211_IS_CHAN_A(ni->ni_chan))
2680 assoc.mode = IWI_MODE_11A;
2681 else if (IEEE80211_IS_CHAN_G(ni->ni_chan))
2682 assoc.mode = IWI_MODE_11G;
2683 else if (IEEE80211_IS_CHAN_B(ni->ni_chan))
2684 assoc.mode = IWI_MODE_11B;
2685
2686 assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2687
2688 if (ni->ni_authmode == IEEE80211_AUTH_SHARED)
2689 assoc.auth = (ic->ic_crypto.cs_def_txkey << 4) | IWI_AUTH_SHARED;
2690
2691 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2692 assoc.plen = IWI_ASSOC_SHPREAMBLE;
2693
2694 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
2695 assoc.policy |= htole16(IWI_POLICY_WME);
2696 if (ic->ic_flags & IEEE80211_F_WPA)
2697 assoc.policy |= htole16(IWI_POLICY_WPA);
2698 if (ic->ic_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2699 assoc.type = IWI_HC_IBSS_START;
2700 else
2701 assoc.type = IWI_HC_ASSOC;
2702 memcpy(assoc.tstamp, ni->ni_tstamp.data, 8);
2703
2704 if (ic->ic_opmode == IEEE80211_M_IBSS)
2705 capinfo = IEEE80211_CAPINFO_IBSS;
2706 else
2707 capinfo = IEEE80211_CAPINFO_ESS;
2708 if (ic->ic_flags & IEEE80211_F_PRIVACY)
2709 capinfo |= IEEE80211_CAPINFO_PRIVACY;
2710 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2711 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2712 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2713 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2714 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2715 assoc.capinfo = htole16(capinfo);
2716
2717 assoc.lintval = htole16(ic->ic_lintval);
2718 assoc.intval = htole16(ni->ni_intval);
2719 IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid);
2720 if (ic->ic_opmode == IEEE80211_M_IBSS)
2721 IEEE80211_ADDR_COPY(assoc.dst, ifp->if_broadcastaddr);
2722 else
2723 IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid);
2724
2725 DPRINTF(("%s bssid %s dst %s channel %u policy 0x%x "
2726 "auth %u capinfo 0x%x lintval %u bintval %u\n",
2727 assoc.type == IWI_HC_IBSS_START ? "Start" : "Join",
2728 ether_sprintf(assoc.bssid), ether_sprintf(assoc.dst),
2729 assoc.chan, le16toh(assoc.policy), assoc.auth,
2730 le16toh(assoc.capinfo), le16toh(assoc.lintval),
2731 le16toh(assoc.intval)));
2732
2733 return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1);
2734 }
2735
2736 static int
2737 iwi_init(struct ifnet *ifp)
2738 {
2739 struct iwi_softc *sc = ifp->if_softc;
2740 struct ieee80211com *ic = &sc->sc_ic;
2741 struct iwi_firmware *fw = &sc->fw;
2742 int i, error;
2743
2744 /* exit immediately if firmware has not been ioctl'd */
2745 if (!(sc->flags & IWI_FLAG_FW_CACHED)) {
2746 if ((error = iwi_cache_firmware(sc)) != 0) {
2747 aprint_error_dev(sc->sc_dev,
2748 "could not cache the firmware\n");
2749 goto fail;
2750 }
2751 }
2752
2753 iwi_stop(ifp, 0);
2754
2755 if ((error = iwi_reset(sc)) != 0) {
2756 aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
2757 goto fail;
2758 }
2759
2760 if ((error = iwi_load_firmware(sc, fw->boot, fw->boot_size)) != 0) {
2761 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
2762 goto fail;
2763 }
2764
2765 if ((error = iwi_load_ucode(sc, fw->ucode, fw->ucode_size)) != 0) {
2766 aprint_error_dev(sc->sc_dev, "could not load microcode\n");
2767 goto fail;
2768 }
2769
2770 iwi_stop_master(sc);
2771
2772 CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.desc_map->dm_segs[0].ds_addr);
2773 CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
2774 CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
2775
2776 CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].desc_map->dm_segs[0].ds_addr);
2777 CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
2778 CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
2779
2780 CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].desc_map->dm_segs[0].ds_addr);
2781 CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
2782 CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
2783
2784 CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].desc_map->dm_segs[0].ds_addr);
2785 CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
2786 CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
2787
2788 CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].desc_map->dm_segs[0].ds_addr);
2789 CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
2790 CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
2791
2792 for (i = 0; i < sc->rxq.count; i++)
2793 CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4,
2794 sc->rxq.data[i].map->dm_segs[0].ds_addr);
2795
2796 CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count -1);
2797
2798 if ((error = iwi_load_firmware(sc, fw->main, fw->main_size)) != 0) {
2799 aprint_error_dev(sc->sc_dev, "could not load main firmware\n");
2800 goto fail;
2801 }
2802
2803 sc->flags |= IWI_FLAG_FW_INITED;
2804
2805 if ((error = iwi_config(sc)) != 0) {
2806 aprint_error_dev(sc->sc_dev, "device configuration failed\n");
2807 goto fail;
2808 }
2809
2810 ic->ic_state = IEEE80211_S_INIT;
2811
2812 ifp->if_flags &= ~IFF_OACTIVE;
2813 ifp->if_flags |= IFF_RUNNING;
2814
2815 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2816 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2817 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2818 } else
2819 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2820
2821 return 0;
2822
2823 fail: ifp->if_flags &= ~IFF_UP;
2824 iwi_stop(ifp, 0);
2825
2826 return error;
2827 }
2828
2829
2830 /*
2831 * Return whether or not the radio is enabled in hardware
2832 * (i.e. the rfkill switch is "off").
2833 */
2834 static int
2835 iwi_getrfkill(struct iwi_softc *sc)
2836 {
2837 return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
2838 }
2839
2840 static int
2841 iwi_sysctl_radio(SYSCTLFN_ARGS)
2842 {
2843 struct sysctlnode node;
2844 struct iwi_softc *sc;
2845 int val, error;
2846
2847 node = *rnode;
2848 sc = (struct iwi_softc *)node.sysctl_data;
2849
2850 val = !iwi_getrfkill(sc);
2851
2852 node.sysctl_data = &val;
2853 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2854
2855 if (error || newp == NULL)
2856 return error;
2857
2858 return 0;
2859 }
2860
2861 #ifdef IWI_DEBUG
2862 SYSCTL_SETUP(sysctl_iwi, "sysctl iwi(4) subtree setup")
2863 {
2864 int rc;
2865 const struct sysctlnode *rnode;
2866 const struct sysctlnode *cnode;
2867
2868 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
2869 CTLFLAG_PERMANENT, CTLTYPE_NODE, "iwi",
2870 SYSCTL_DESCR("iwi global controls"),
2871 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
2872 goto err;
2873
2874 /* control debugging printfs */
2875 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
2876 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
2877 "debug", SYSCTL_DESCR("Enable debugging output"),
2878 NULL, 0, &iwi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
2879 goto err;
2880
2881 return;
2882 err:
2883 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
2884 }
2885
2886 #endif /* IWI_DEBUG */
2887
2888 /*
2889 * Add sysctl knobs.
2890 */
2891 static void
2892 iwi_sysctlattach(struct iwi_softc *sc)
2893 {
2894 int rc;
2895 const struct sysctlnode *rnode;
2896 const struct sysctlnode *cnode;
2897
2898 struct sysctllog **clog = &sc->sc_sysctllog;
2899
2900 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
2901 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
2902 SYSCTL_DESCR("iwi controls and statistics"),
2903 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
2904 goto err;
2905
2906 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
2907 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
2908 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
2909 iwi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
2910 goto err;
2911
2912 sc->dwelltime = 100;
2913 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
2914 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
2915 "dwell", SYSCTL_DESCR("channel dwell time (ms) for AP/station scanning"),
2916 NULL, 0, &sc->dwelltime, 0, CTL_CREATE, CTL_EOL)) != 0)
2917 goto err;
2918
2919 sc->bluetooth = 0;
2920 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
2921 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
2922 "bluetooth", SYSCTL_DESCR("bluetooth coexistence"),
2923 NULL, 0, &sc->bluetooth, 0, CTL_CREATE, CTL_EOL)) != 0)
2924 goto err;
2925
2926 sc->antenna = IWI_ANTENNA_AUTO;
2927 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
2928 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
2929 "antenna", SYSCTL_DESCR("antenna (0=auto)"),
2930 NULL, 0, &sc->antenna, 0, CTL_CREATE, CTL_EOL)) != 0)
2931 goto err;
2932
2933 return;
2934 err:
2935 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
2936 }
2937
2938 static void
2939 iwi_stop(struct ifnet *ifp, int disable)
2940 {
2941 struct iwi_softc *sc = ifp->if_softc;
2942 struct ieee80211com *ic = &sc->sc_ic;
2943
2944 IWI_LED_OFF(sc);
2945
2946 iwi_stop_master(sc);
2947 CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET);
2948
2949 /* reset rings */
2950 iwi_reset_cmd_ring(sc, &sc->cmdq);
2951 iwi_reset_tx_ring(sc, &sc->txq[0]);
2952 iwi_reset_tx_ring(sc, &sc->txq[1]);
2953 iwi_reset_tx_ring(sc, &sc->txq[2]);
2954 iwi_reset_tx_ring(sc, &sc->txq[3]);
2955 iwi_reset_rx_ring(sc, &sc->rxq);
2956
2957 ifp->if_timer = 0;
2958 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2959
2960 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2961 }
2962
2963 static void
2964 iwi_led_set(struct iwi_softc *sc, uint32_t state, int toggle)
2965 {
2966 uint32_t val;
2967
2968 val = MEM_READ_4(sc, IWI_MEM_EVENT_CTL);
2969
2970 switch (sc->nictype) {
2971 case 1:
2972 /* special NIC type: reversed leds */
2973 if (state == IWI_LED_ACTIVITY) {
2974 state &= ~IWI_LED_ACTIVITY;
2975 state |= IWI_LED_ASSOCIATED;
2976 } else if (state == IWI_LED_ASSOCIATED) {
2977 state &= ~IWI_LED_ASSOCIATED;
2978 state |= IWI_LED_ACTIVITY;
2979 }
2980 /* and ignore toggle effect */
2981 val |= state;
2982 break;
2983 case 0:
2984 case 2:
2985 case 3:
2986 case 4:
2987 val = (toggle && (val & state)) ? val & ~state : val | state;
2988 break;
2989 default:
2990 aprint_normal_dev(sc->sc_dev, "unknown NIC type %d\n",
2991 sc->nictype);
2992 return;
2993 break;
2994 }
2995
2996 MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, val);
2997
2998 return;
2999 }
3000
3001 SYSCTL_SETUP(sysctl_hw_iwi_accept_eula_setup, "sysctl hw.iwi.accept_eula")
3002 {
3003 const struct sysctlnode *rnode;
3004 const struct sysctlnode *cnode;
3005
3006 sysctl_createv(NULL, 0, NULL, &rnode,
3007 CTLFLAG_PERMANENT,
3008 CTLTYPE_NODE, "iwi",
3009 NULL,
3010 NULL, 0,
3011 NULL, 0,
3012 CTL_HW, CTL_CREATE, CTL_EOL);
3013
3014 sysctl_createv(NULL, 0, &rnode, &cnode,
3015 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3016 CTLTYPE_INT, "accept_eula",
3017 SYSCTL_DESCR("Accept Intel EULA and permit use of iwi(4) firmware"),
3018 NULL, 0,
3019 &iwi_accept_eula, sizeof(iwi_accept_eula),
3020 CTL_CREATE, CTL_EOL);
3021 }
3022