ses.c revision 1.11.2.1 1 1.11.2.1 thorpej /* $NetBSD: ses.c,v 1.11.2.1 2001/09/07 04:45:32 thorpej Exp $ */
2 1.1 mjacob /*
3 1.1 mjacob * Copyright (C) 2000 National Aeronautics & Space Administration
4 1.1 mjacob * All rights reserved.
5 1.1 mjacob *
6 1.1 mjacob * Redistribution and use in source and binary forms, with or without
7 1.1 mjacob * modification, are permitted provided that the following conditions
8 1.1 mjacob * are met:
9 1.1 mjacob * 1. Redistributions of source code must retain the above copyright
10 1.1 mjacob * notice, this list of conditions and the following disclaimer.
11 1.1 mjacob * 2. The name of the author may not be used to endorse or promote products
12 1.1 mjacob * derived from this software without specific prior written permission
13 1.1 mjacob *
14 1.1 mjacob * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 1.1 mjacob * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 1.1 mjacob * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 1.1 mjacob * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 1.1 mjacob * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 1.1 mjacob * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 1.1 mjacob * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 1.1 mjacob * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 1.1 mjacob * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 1.1 mjacob * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 1.1 mjacob *
25 1.1 mjacob * Author: mjacob (at) nas.nasa.gov
26 1.1 mjacob */
27 1.1 mjacob
28 1.1 mjacob
29 1.1 mjacob #include "opt_scsi.h"
30 1.1 mjacob
31 1.1 mjacob #include <sys/types.h>
32 1.1 mjacob #include <sys/param.h>
33 1.1 mjacob #include <sys/systm.h>
34 1.1 mjacob #include <sys/kernel.h>
35 1.1 mjacob #include <sys/file.h>
36 1.1 mjacob #include <sys/stat.h>
37 1.1 mjacob #include <sys/ioctl.h>
38 1.1 mjacob #include <sys/scsiio.h>
39 1.1 mjacob #include <sys/buf.h>
40 1.1 mjacob #include <sys/uio.h>
41 1.1 mjacob #include <sys/malloc.h>
42 1.1 mjacob #include <sys/errno.h>
43 1.1 mjacob #include <sys/device.h>
44 1.1 mjacob #include <sys/disklabel.h>
45 1.1 mjacob #include <sys/disk.h>
46 1.1 mjacob #include <sys/proc.h>
47 1.1 mjacob #include <sys/conf.h>
48 1.1 mjacob #include <sys/vnode.h>
49 1.1 mjacob #include <machine/stdarg.h>
50 1.1 mjacob
51 1.11.2.1 thorpej #include <miscfs/specfs/specdev.h>
52 1.11.2.1 thorpej
53 1.1 mjacob #include <dev/scsipi/scsipi_all.h>
54 1.1 mjacob #include <dev/scsipi/scsi_all.h>
55 1.1 mjacob #include <dev/scsipi/scsipi_disk.h>
56 1.1 mjacob #include <dev/scsipi/scsi_disk.h>
57 1.1 mjacob #include <dev/scsipi/scsiconf.h>
58 1.1 mjacob #include <dev/scsipi/ses.h>
59 1.1 mjacob
60 1.1 mjacob /*
61 1.1 mjacob * Platform Independent Driver Internal Definitions for SES devices.
62 1.1 mjacob */
63 1.1 mjacob typedef enum {
64 1.1 mjacob SES_NONE,
65 1.1 mjacob SES_SES_SCSI2,
66 1.1 mjacob SES_SES,
67 1.1 mjacob SES_SES_PASSTHROUGH,
68 1.1 mjacob SES_SEN,
69 1.1 mjacob SES_SAFT
70 1.1 mjacob } enctyp;
71 1.1 mjacob
72 1.1 mjacob struct ses_softc;
73 1.1 mjacob typedef struct ses_softc ses_softc_t;
74 1.1 mjacob typedef struct {
75 1.1 mjacob int (*softc_init) __P((ses_softc_t *, int));
76 1.1 mjacob int (*init_enc) __P((ses_softc_t *));
77 1.1 mjacob int (*get_encstat) __P((ses_softc_t *, int));
78 1.1 mjacob int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
79 1.1 mjacob int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
80 1.1 mjacob int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
81 1.1 mjacob } encvec;
82 1.1 mjacob
83 1.1 mjacob #define ENCI_SVALID 0x80
84 1.1 mjacob
85 1.1 mjacob typedef struct {
86 1.1 mjacob uint32_t
87 1.1 mjacob enctype : 8, /* enclosure type */
88 1.1 mjacob subenclosure : 8, /* subenclosure id */
89 1.1 mjacob svalid : 1, /* enclosure information valid */
90 1.1 mjacob priv : 15; /* private data, per object */
91 1.1 mjacob uint8_t encstat[4]; /* state && stats */
92 1.1 mjacob } encobj;
93 1.1 mjacob
94 1.1 mjacob #define SEN_ID "UNISYS SUN_SEN"
95 1.1 mjacob #define SEN_ID_LEN 24
96 1.1 mjacob
97 1.5 dante static enctyp ses_type __P((struct scsipi_inquiry_data *));
98 1.1 mjacob
99 1.1 mjacob
100 1.1 mjacob /* Forward reference to Enclosure Functions */
101 1.1 mjacob static int ses_softc_init __P((ses_softc_t *, int));
102 1.1 mjacob static int ses_init_enc __P((ses_softc_t *));
103 1.1 mjacob static int ses_get_encstat __P((ses_softc_t *, int));
104 1.1 mjacob static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
105 1.1 mjacob static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
106 1.1 mjacob static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
107 1.1 mjacob
108 1.1 mjacob static int safte_softc_init __P((ses_softc_t *, int));
109 1.1 mjacob static int safte_init_enc __P((ses_softc_t *));
110 1.1 mjacob static int safte_get_encstat __P((ses_softc_t *, int));
111 1.1 mjacob static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
112 1.1 mjacob static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
113 1.1 mjacob static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
114 1.1 mjacob
115 1.1 mjacob /*
116 1.1 mjacob * Platform implementation defines/functions for SES internal kernel stuff
117 1.1 mjacob */
118 1.1 mjacob
119 1.1 mjacob #define STRNCMP strncmp
120 1.1 mjacob #define PRINTF printf
121 1.1 mjacob #define SES_LOG ses_log
122 1.1 mjacob #if defined(DEBUG) || defined(SCSIDEBUG)
123 1.1 mjacob #define SES_VLOG ses_log
124 1.1 mjacob #else
125 1.1 mjacob #define SES_VLOG if (0) ses_log
126 1.1 mjacob #endif
127 1.1 mjacob #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
128 1.1 mjacob #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
129 1.10 thorpej #define MEMZERO(dest, amt) memset(dest, 0, amt)
130 1.11 thorpej #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
131 1.1 mjacob #define RECEIVE_DIAGNOSTIC 0x1c
132 1.1 mjacob #define SEND_DIAGNOSTIC 0x1d
133 1.1 mjacob #define WRITE_BUFFER 0x3b
134 1.1 mjacob #define READ_BUFFER 0x3c
135 1.1 mjacob
136 1.11.2.1 thorpej cdev_decl(ses);
137 1.1 mjacob
138 1.1 mjacob static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 1.7 sommerfe static void ses_log __P((struct ses_softc *, const char *, ...))
140 1.7 sommerfe __attribute__((__format__(__printf__, 2, 3)));
141 1.1 mjacob
142 1.1 mjacob /*
143 1.1 mjacob * General NetBSD kernel stuff.
144 1.1 mjacob */
145 1.1 mjacob
146 1.1 mjacob struct ses_softc {
147 1.1 mjacob struct device sc_device;
148 1.9 bouyer struct scsipi_periph *sc_periph;
149 1.1 mjacob enctyp ses_type; /* type of enclosure */
150 1.1 mjacob encvec ses_vec; /* vector to handlers */
151 1.1 mjacob void * ses_private; /* per-type private data */
152 1.1 mjacob encobj * ses_objmap; /* objects */
153 1.1 mjacob u_int32_t ses_nobjects; /* number of objects */
154 1.1 mjacob ses_encstat ses_encstat; /* overall status */
155 1.1 mjacob u_int8_t ses_flags;
156 1.1 mjacob };
157 1.1 mjacob #define SES_FLAG_INVALID 0x01
158 1.1 mjacob #define SES_FLAG_OPEN 0x02
159 1.1 mjacob #define SES_FLAG_INITIALIZED 0x04
160 1.1 mjacob
161 1.1 mjacob #define SESUNIT(x) (minor((x)))
162 1.1 mjacob
163 1.1 mjacob static int ses_match __P((struct device *, struct cfdata *, void *));
164 1.1 mjacob static void ses_attach __P((struct device *, struct device *, void *));
165 1.1 mjacob static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166 1.1 mjacob
167 1.1 mjacob struct cfattach ses_ca = {
168 1.1 mjacob sizeof (struct ses_softc), ses_match, ses_attach
169 1.1 mjacob };
170 1.1 mjacob extern struct cfdriver ses_cd;
171 1.1 mjacob
172 1.9 bouyer const struct scsipi_periphsw ses_switch = {
173 1.1 mjacob NULL,
174 1.1 mjacob NULL,
175 1.1 mjacob NULL,
176 1.1 mjacob NULL
177 1.1 mjacob };
178 1.1 mjacob
179 1.1 mjacob
180 1.1 mjacob int
181 1.1 mjacob ses_match(parent, match, aux)
182 1.1 mjacob struct device *parent;
183 1.1 mjacob struct cfdata *match;
184 1.1 mjacob void *aux;
185 1.1 mjacob {
186 1.1 mjacob struct scsipibus_attach_args *sa = aux;
187 1.2 mjacob
188 1.1 mjacob switch (ses_device_type(sa)) {
189 1.1 mjacob case SES_SES:
190 1.1 mjacob case SES_SES_SCSI2:
191 1.1 mjacob case SES_SEN:
192 1.1 mjacob case SES_SAFT:
193 1.2 mjacob case SES_SES_PASSTHROUGH:
194 1.2 mjacob /*
195 1.2 mjacob * For these devices, it's a perfect match.
196 1.2 mjacob */
197 1.2 mjacob return (24);
198 1.1 mjacob default:
199 1.1 mjacob return (0);
200 1.1 mjacob }
201 1.1 mjacob }
202 1.1 mjacob
203 1.1 mjacob
204 1.1 mjacob /*
205 1.1 mjacob * Complete the attachment.
206 1.1 mjacob *
207 1.1 mjacob * We have to repeat the rerun of INQUIRY data as above because
208 1.1 mjacob * it's not until the return from the match routine that we have
209 1.1 mjacob * the softc available to set stuff in.
210 1.1 mjacob */
211 1.1 mjacob void
212 1.1 mjacob ses_attach(parent, self, aux)
213 1.1 mjacob struct device *parent;
214 1.1 mjacob struct device *self;
215 1.1 mjacob void *aux;
216 1.1 mjacob {
217 1.1 mjacob char *tname;
218 1.1 mjacob struct ses_softc *softc = (void *)self;
219 1.1 mjacob struct scsipibus_attach_args *sa = aux;
220 1.9 bouyer struct scsipi_periph *periph = sa->sa_periph;
221 1.1 mjacob
222 1.9 bouyer SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 1.9 bouyer softc->sc_periph = periph;
224 1.9 bouyer periph->periph_dev = &softc->sc_device;
225 1.9 bouyer periph->periph_switch = &ses_switch;
226 1.9 bouyer periph->periph_openings = 1;
227 1.1 mjacob
228 1.1 mjacob softc->ses_type = ses_device_type(sa);
229 1.1 mjacob switch (softc->ses_type) {
230 1.1 mjacob case SES_SES:
231 1.1 mjacob case SES_SES_SCSI2:
232 1.1 mjacob case SES_SES_PASSTHROUGH:
233 1.1 mjacob softc->ses_vec.softc_init = ses_softc_init;
234 1.1 mjacob softc->ses_vec.init_enc = ses_init_enc;
235 1.1 mjacob softc->ses_vec.get_encstat = ses_get_encstat;
236 1.1 mjacob softc->ses_vec.set_encstat = ses_set_encstat;
237 1.1 mjacob softc->ses_vec.get_objstat = ses_get_objstat;
238 1.1 mjacob softc->ses_vec.set_objstat = ses_set_objstat;
239 1.1 mjacob break;
240 1.1 mjacob case SES_SAFT:
241 1.1 mjacob softc->ses_vec.softc_init = safte_softc_init;
242 1.1 mjacob softc->ses_vec.init_enc = safte_init_enc;
243 1.1 mjacob softc->ses_vec.get_encstat = safte_get_encstat;
244 1.1 mjacob softc->ses_vec.set_encstat = safte_set_encstat;
245 1.1 mjacob softc->ses_vec.get_objstat = safte_get_objstat;
246 1.1 mjacob softc->ses_vec.set_objstat = safte_set_objstat;
247 1.1 mjacob break;
248 1.1 mjacob case SES_SEN:
249 1.1 mjacob break;
250 1.1 mjacob case SES_NONE:
251 1.1 mjacob default:
252 1.1 mjacob break;
253 1.1 mjacob }
254 1.1 mjacob
255 1.1 mjacob switch (softc->ses_type) {
256 1.1 mjacob default:
257 1.1 mjacob case SES_NONE:
258 1.1 mjacob tname = "No SES device";
259 1.1 mjacob break;
260 1.1 mjacob case SES_SES_SCSI2:
261 1.1 mjacob tname = "SCSI-2 SES Device";
262 1.1 mjacob break;
263 1.1 mjacob case SES_SES:
264 1.1 mjacob tname = "SCSI-3 SES Device";
265 1.1 mjacob break;
266 1.1 mjacob case SES_SES_PASSTHROUGH:
267 1.1 mjacob tname = "SES Passthrough Device";
268 1.1 mjacob break;
269 1.1 mjacob case SES_SEN:
270 1.1 mjacob tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 1.1 mjacob break;
272 1.1 mjacob case SES_SAFT:
273 1.1 mjacob tname = "SAF-TE Compliant Device";
274 1.1 mjacob break;
275 1.1 mjacob }
276 1.1 mjacob printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 1.1 mjacob }
278 1.1 mjacob
279 1.2 mjacob
280 1.1 mjacob static enctyp
281 1.1 mjacob ses_device_type(sa)
282 1.1 mjacob struct scsipibus_attach_args *sa;
283 1.1 mjacob {
284 1.1 mjacob struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285 1.1 mjacob
286 1.1 mjacob if (inqp == NULL)
287 1.1 mjacob return (SES_NONE);
288 1.1 mjacob
289 1.5 dante return (ses_type(inqp));
290 1.1 mjacob }
291 1.1 mjacob
292 1.1 mjacob int
293 1.11.2.1 thorpej sesopen(devvp, flags, fmt, p)
294 1.11.2.1 thorpej struct vnode *devvp;
295 1.1 mjacob int flags;
296 1.1 mjacob int fmt;
297 1.1 mjacob struct proc *p;
298 1.1 mjacob {
299 1.1 mjacob struct ses_softc *softc;
300 1.1 mjacob int error, unit;
301 1.1 mjacob
302 1.11.2.1 thorpej unit = SESUNIT(devvp->v_rdev);
303 1.1 mjacob if (unit >= ses_cd.cd_ndevs)
304 1.1 mjacob return (ENXIO);
305 1.1 mjacob softc = ses_cd.cd_devs[unit];
306 1.1 mjacob if (softc == NULL)
307 1.1 mjacob return (ENXIO);
308 1.1 mjacob
309 1.1 mjacob if (softc->ses_flags & SES_FLAG_INVALID) {
310 1.1 mjacob error = ENXIO;
311 1.1 mjacob goto out;
312 1.1 mjacob }
313 1.1 mjacob if (softc->ses_flags & SES_FLAG_OPEN) {
314 1.1 mjacob error = EBUSY;
315 1.1 mjacob goto out;
316 1.1 mjacob }
317 1.1 mjacob if (softc->ses_vec.softc_init == NULL) {
318 1.1 mjacob error = ENXIO;
319 1.1 mjacob goto out;
320 1.1 mjacob }
321 1.9 bouyer error = scsipi_adapter_addref(
322 1.9 bouyer softc->sc_periph->periph_channel->chan_adapter);
323 1.1 mjacob if (error != 0)
324 1.1 mjacob goto out;
325 1.1 mjacob
326 1.11.2.1 thorpej devvp->v_devcookie = softc;
327 1.1 mjacob
328 1.1 mjacob softc->ses_flags |= SES_FLAG_OPEN;
329 1.1 mjacob if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
330 1.1 mjacob error = (*softc->ses_vec.softc_init)(softc, 1);
331 1.1 mjacob if (error)
332 1.1 mjacob softc->ses_flags &= ~SES_FLAG_OPEN;
333 1.1 mjacob else
334 1.1 mjacob softc->ses_flags |= SES_FLAG_INITIALIZED;
335 1.1 mjacob }
336 1.1 mjacob
337 1.1 mjacob out:
338 1.1 mjacob return (error);
339 1.1 mjacob }
340 1.1 mjacob
341 1.1 mjacob int
342 1.11.2.1 thorpej sesclose(devvp, flags, fmt, p)
343 1.11.2.1 thorpej struct vnode *devvp;
344 1.1 mjacob int flags;
345 1.1 mjacob int fmt;
346 1.1 mjacob struct proc *p;
347 1.1 mjacob {
348 1.11.2.1 thorpej struct ses_softc *softc = devvp->v_devcookie;
349 1.1 mjacob
350 1.9 bouyer scsipi_wait_drain(softc->sc_periph);
351 1.9 bouyer scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
352 1.1 mjacob softc->ses_flags &= ~SES_FLAG_OPEN;
353 1.1 mjacob return (0);
354 1.1 mjacob }
355 1.1 mjacob
356 1.1 mjacob int
357 1.11.2.1 thorpej sesioctl(devvp, cmd, arg_addr, flag, p)
358 1.11.2.1 thorpej struct vnode *devvp;
359 1.1 mjacob u_long cmd;
360 1.1 mjacob caddr_t arg_addr;
361 1.1 mjacob int flag;
362 1.1 mjacob struct proc *p;
363 1.1 mjacob {
364 1.1 mjacob ses_encstat tmp;
365 1.1 mjacob ses_objstat objs;
366 1.1 mjacob ses_object obj, *uobj;
367 1.11.2.1 thorpej struct ses_softc *ssc = devvp->v_devcookie;
368 1.1 mjacob void *addr;
369 1.1 mjacob int error, i;
370 1.1 mjacob
371 1.1 mjacob
372 1.1 mjacob if (arg_addr)
373 1.1 mjacob addr = *((caddr_t *) arg_addr);
374 1.1 mjacob else
375 1.1 mjacob addr = NULL;
376 1.1 mjacob
377 1.9 bouyer SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
378 1.1 mjacob
379 1.1 mjacob /*
380 1.1 mjacob * Now check to see whether we're initialized or not.
381 1.1 mjacob */
382 1.1 mjacob if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
383 1.1 mjacob return (ENODEV);
384 1.1 mjacob }
385 1.1 mjacob
386 1.1 mjacob error = 0;
387 1.1 mjacob
388 1.1 mjacob /*
389 1.1 mjacob * If this command can change the device's state,
390 1.1 mjacob * we must have the device open for writing.
391 1.1 mjacob */
392 1.1 mjacob switch (cmd) {
393 1.1 mjacob case SESIOC_GETNOBJ:
394 1.1 mjacob case SESIOC_GETOBJMAP:
395 1.1 mjacob case SESIOC_GETENCSTAT:
396 1.1 mjacob case SESIOC_GETOBJSTAT:
397 1.1 mjacob break;
398 1.1 mjacob default:
399 1.1 mjacob if ((flag & FWRITE) == 0) {
400 1.1 mjacob return (EBADF);
401 1.1 mjacob }
402 1.1 mjacob }
403 1.1 mjacob
404 1.1 mjacob switch (cmd) {
405 1.1 mjacob case SESIOC_GETNOBJ:
406 1.1 mjacob error = copyout(&ssc->ses_nobjects, addr,
407 1.1 mjacob sizeof (ssc->ses_nobjects));
408 1.1 mjacob break;
409 1.1 mjacob
410 1.1 mjacob case SESIOC_GETOBJMAP:
411 1.1 mjacob for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
412 1.1 mjacob obj.obj_id = i;
413 1.1 mjacob obj.subencid = ssc->ses_objmap[i].subenclosure;
414 1.1 mjacob obj.object_type = ssc->ses_objmap[i].enctype;
415 1.1 mjacob error = copyout(&obj, uobj, sizeof (ses_object));
416 1.1 mjacob if (error) {
417 1.1 mjacob break;
418 1.1 mjacob }
419 1.1 mjacob }
420 1.1 mjacob break;
421 1.1 mjacob
422 1.1 mjacob case SESIOC_GETENCSTAT:
423 1.1 mjacob error = (*ssc->ses_vec.get_encstat)(ssc, 1);
424 1.1 mjacob if (error)
425 1.1 mjacob break;
426 1.1 mjacob tmp = ssc->ses_encstat & ~ENCI_SVALID;
427 1.1 mjacob error = copyout(&tmp, addr, sizeof (ses_encstat));
428 1.1 mjacob ssc->ses_encstat = tmp;
429 1.1 mjacob break;
430 1.1 mjacob
431 1.1 mjacob case SESIOC_SETENCSTAT:
432 1.1 mjacob error = copyin(addr, &tmp, sizeof (ses_encstat));
433 1.1 mjacob if (error)
434 1.1 mjacob break;
435 1.1 mjacob error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
436 1.1 mjacob break;
437 1.1 mjacob
438 1.1 mjacob case SESIOC_GETOBJSTAT:
439 1.1 mjacob error = copyin(addr, &objs, sizeof (ses_objstat));
440 1.1 mjacob if (error)
441 1.1 mjacob break;
442 1.1 mjacob if (objs.obj_id >= ssc->ses_nobjects) {
443 1.1 mjacob error = EINVAL;
444 1.1 mjacob break;
445 1.1 mjacob }
446 1.1 mjacob error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
447 1.1 mjacob if (error)
448 1.1 mjacob break;
449 1.1 mjacob error = copyout(&objs, addr, sizeof (ses_objstat));
450 1.1 mjacob /*
451 1.1 mjacob * Always (for now) invalidate entry.
452 1.1 mjacob */
453 1.1 mjacob ssc->ses_objmap[objs.obj_id].svalid = 0;
454 1.1 mjacob break;
455 1.1 mjacob
456 1.1 mjacob case SESIOC_SETOBJSTAT:
457 1.1 mjacob error = copyin(addr, &objs, sizeof (ses_objstat));
458 1.1 mjacob if (error)
459 1.1 mjacob break;
460 1.1 mjacob
461 1.1 mjacob if (objs.obj_id >= ssc->ses_nobjects) {
462 1.1 mjacob error = EINVAL;
463 1.1 mjacob break;
464 1.1 mjacob }
465 1.1 mjacob error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
466 1.1 mjacob
467 1.1 mjacob /*
468 1.1 mjacob * Always (for now) invalidate entry.
469 1.1 mjacob */
470 1.1 mjacob ssc->ses_objmap[objs.obj_id].svalid = 0;
471 1.1 mjacob break;
472 1.1 mjacob
473 1.1 mjacob case SESIOC_INIT:
474 1.1 mjacob
475 1.1 mjacob error = (*ssc->ses_vec.init_enc)(ssc);
476 1.1 mjacob break;
477 1.1 mjacob
478 1.1 mjacob default:
479 1.9 bouyer error = scsipi_do_ioctl(ssc->sc_periph,
480 1.11.2.1 thorpej devvp, cmd, addr, flag, p);
481 1.1 mjacob break;
482 1.1 mjacob }
483 1.1 mjacob return (error);
484 1.1 mjacob }
485 1.1 mjacob
486 1.1 mjacob static int
487 1.1 mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
488 1.1 mjacob {
489 1.1 mjacob struct scsipi_generic sgen;
490 1.1 mjacob int dl, flg, error;
491 1.1 mjacob
492 1.1 mjacob if (dptr) {
493 1.1 mjacob if ((dl = *dlenp) < 0) {
494 1.1 mjacob dl = -dl;
495 1.1 mjacob flg = XS_CTL_DATA_OUT;
496 1.1 mjacob } else {
497 1.1 mjacob flg = XS_CTL_DATA_IN;
498 1.1 mjacob }
499 1.1 mjacob } else {
500 1.1 mjacob dl = 0;
501 1.1 mjacob flg = 0;
502 1.1 mjacob }
503 1.1 mjacob
504 1.1 mjacob if (cdbl > sizeof (struct scsipi_generic)) {
505 1.1 mjacob cdbl = sizeof (struct scsipi_generic);
506 1.1 mjacob }
507 1.11 thorpej memcpy(&sgen, cdb, cdbl);
508 1.1 mjacob #ifndef SCSIDEBUG
509 1.1 mjacob flg |= XS_CTL_SILENT;
510 1.1 mjacob #endif
511 1.9 bouyer error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
512 1.1 mjacob (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
513 1.1 mjacob
514 1.1 mjacob if (error == 0 && dptr)
515 1.1 mjacob *dlenp = 0;
516 1.1 mjacob
517 1.1 mjacob return (error);
518 1.1 mjacob }
519 1.1 mjacob
520 1.1 mjacob #ifdef __STDC__
521 1.1 mjacob static void
522 1.1 mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
523 1.1 mjacob {
524 1.1 mjacob va_list ap;
525 1.1 mjacob
526 1.1 mjacob printf("%s: ", ssc->sc_device.dv_xname);
527 1.1 mjacob va_start(ap, fmt);
528 1.1 mjacob vprintf(fmt, ap);
529 1.1 mjacob va_end(ap);
530 1.1 mjacob }
531 1.1 mjacob #else
532 1.1 mjacob static void
533 1.1 mjacob ses_log(ssc, fmt, va_alist)
534 1.1 mjacob struct ses_softc *ssc;
535 1.1 mjacob char *fmt;
536 1.1 mjacob va_dcl
537 1.1 mjacob {
538 1.1 mjacob va_list ap;
539 1.1 mjacob
540 1.1 mjacob printf("%s: ", ssc->sc_device.dv_xname);
541 1.1 mjacob va_start(ap, fmt);
542 1.1 mjacob vprintf(fmt, ap);
543 1.1 mjacob va_end(ap);
544 1.1 mjacob }
545 1.1 mjacob #endif
546 1.1 mjacob
547 1.1 mjacob /*
548 1.1 mjacob * The code after this point runs on many platforms,
549 1.1 mjacob * so forgive the slightly awkward and nonconforming
550 1.1 mjacob * appearance.
551 1.1 mjacob */
552 1.1 mjacob
553 1.1 mjacob /*
554 1.1 mjacob * Is this a device that supports enclosure services?
555 1.1 mjacob *
556 1.1 mjacob * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
557 1.1 mjacob * an SES device. If it happens to be an old UNISYS SEN device, we can
558 1.1 mjacob * handle that too.
559 1.1 mjacob */
560 1.3 mjacob
561 1.3 mjacob #define SAFTE_START 44
562 1.3 mjacob #define SAFTE_END 50
563 1.3 mjacob #define SAFTE_LEN SAFTE_END-SAFTE_START
564 1.1 mjacob
565 1.1 mjacob static enctyp
566 1.5 dante ses_type(inqp)
567 1.5 dante struct scsipi_inquiry_data *inqp;
568 1.1 mjacob {
569 1.5 dante size_t given_len = inqp->additional_length + 4;
570 1.1 mjacob
571 1.5 dante if (given_len < 8+SEN_ID_LEN)
572 1.1 mjacob return (SES_NONE);
573 1.1 mjacob
574 1.5 dante if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
575 1.5 dante if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
576 1.1 mjacob return (SES_SEN);
577 1.5 dante } else if ((inqp->version & SID_ANSII) > 2) {
578 1.1 mjacob return (SES_SES);
579 1.1 mjacob } else {
580 1.1 mjacob return (SES_SES_SCSI2);
581 1.1 mjacob }
582 1.1 mjacob return (SES_NONE);
583 1.1 mjacob }
584 1.1 mjacob
585 1.1 mjacob #ifdef SES_ENABLE_PASSTHROUGH
586 1.5 dante if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
587 1.1 mjacob /*
588 1.1 mjacob * PassThrough Device.
589 1.1 mjacob */
590 1.1 mjacob return (SES_SES_PASSTHROUGH);
591 1.1 mjacob }
592 1.1 mjacob #endif
593 1.1 mjacob
594 1.2 mjacob /*
595 1.2 mjacob * The comparison is short for a reason-
596 1.2 mjacob * some vendors were chopping it short.
597 1.2 mjacob */
598 1.2 mjacob
599 1.5 dante if (given_len < SAFTE_END - 2) {
600 1.1 mjacob return (SES_NONE);
601 1.1 mjacob }
602 1.2 mjacob
603 1.5 dante if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
604 1.5 dante SAFTE_LEN - 2) == 0) {
605 1.1 mjacob return (SES_SAFT);
606 1.6 thorpej }
607 1.5 dante
608 1.1 mjacob return (SES_NONE);
609 1.1 mjacob }
610 1.1 mjacob
611 1.1 mjacob /*
612 1.1 mjacob * SES Native Type Device Support
613 1.1 mjacob */
614 1.1 mjacob
615 1.1 mjacob /*
616 1.1 mjacob * SES Diagnostic Page Codes
617 1.1 mjacob */
618 1.1 mjacob
619 1.1 mjacob typedef enum {
620 1.1 mjacob SesConfigPage = 0x1,
621 1.1 mjacob SesControlPage,
622 1.1 mjacob #define SesStatusPage SesControlPage
623 1.1 mjacob SesHelpTxt,
624 1.1 mjacob SesStringOut,
625 1.1 mjacob #define SesStringIn SesStringOut
626 1.1 mjacob SesThresholdOut,
627 1.1 mjacob #define SesThresholdIn SesThresholdOut
628 1.1 mjacob SesArrayControl,
629 1.1 mjacob #define SesArrayStatus SesArrayControl
630 1.1 mjacob SesElementDescriptor,
631 1.1 mjacob SesShortStatus
632 1.1 mjacob } SesDiagPageCodes;
633 1.1 mjacob
634 1.1 mjacob /*
635 1.1 mjacob * minimal amounts
636 1.1 mjacob */
637 1.1 mjacob
638 1.1 mjacob /*
639 1.1 mjacob * Minimum amount of data, starting from byte 0, to have
640 1.1 mjacob * the config header.
641 1.1 mjacob */
642 1.1 mjacob #define SES_CFGHDR_MINLEN 12
643 1.1 mjacob
644 1.1 mjacob /*
645 1.1 mjacob * Minimum amount of data, starting from byte 0, to have
646 1.1 mjacob * the config header and one enclosure header.
647 1.1 mjacob */
648 1.1 mjacob #define SES_ENCHDR_MINLEN 48
649 1.1 mjacob
650 1.1 mjacob /*
651 1.1 mjacob * Take this value, subtract it from VEnclen and you know
652 1.1 mjacob * the length of the vendor unique bytes.
653 1.1 mjacob */
654 1.1 mjacob #define SES_ENCHDR_VMIN 36
655 1.1 mjacob
656 1.1 mjacob /*
657 1.1 mjacob * SES Data Structures
658 1.1 mjacob */
659 1.1 mjacob
660 1.1 mjacob typedef struct {
661 1.1 mjacob uint32_t GenCode; /* Generation Code */
662 1.1 mjacob uint8_t Nsubenc; /* Number of Subenclosures */
663 1.1 mjacob } SesCfgHdr;
664 1.1 mjacob
665 1.1 mjacob typedef struct {
666 1.1 mjacob uint8_t Subencid; /* SubEnclosure Identifier */
667 1.1 mjacob uint8_t Ntypes; /* # of supported types */
668 1.1 mjacob uint8_t VEnclen; /* Enclosure Descriptor Length */
669 1.1 mjacob } SesEncHdr;
670 1.1 mjacob
671 1.1 mjacob typedef struct {
672 1.1 mjacob uint8_t encWWN[8]; /* XXX- Not Right Yet */
673 1.1 mjacob uint8_t encVid[8];
674 1.1 mjacob uint8_t encPid[16];
675 1.1 mjacob uint8_t encRev[4];
676 1.1 mjacob uint8_t encVen[1];
677 1.1 mjacob } SesEncDesc;
678 1.1 mjacob
679 1.1 mjacob typedef struct {
680 1.1 mjacob uint8_t enc_type; /* type of element */
681 1.1 mjacob uint8_t enc_maxelt; /* maximum supported */
682 1.1 mjacob uint8_t enc_subenc; /* in SubEnc # N */
683 1.1 mjacob uint8_t enc_tlen; /* Type Descriptor Text Length */
684 1.1 mjacob } SesThdr;
685 1.1 mjacob
686 1.1 mjacob typedef struct {
687 1.1 mjacob uint8_t comstatus;
688 1.1 mjacob uint8_t comstat[3];
689 1.1 mjacob } SesComStat;
690 1.1 mjacob
691 1.1 mjacob struct typidx {
692 1.1 mjacob int ses_tidx;
693 1.1 mjacob int ses_oidx;
694 1.1 mjacob };
695 1.1 mjacob
696 1.1 mjacob struct sscfg {
697 1.1 mjacob uint8_t ses_ntypes; /* total number of types supported */
698 1.1 mjacob
699 1.1 mjacob /*
700 1.1 mjacob * We need to keep a type index as well as an
701 1.1 mjacob * object index for each object in an enclosure.
702 1.1 mjacob */
703 1.1 mjacob struct typidx *ses_typidx;
704 1.1 mjacob
705 1.1 mjacob /*
706 1.1 mjacob * We also need to keep track of the number of elements
707 1.1 mjacob * per type of element. This is needed later so that we
708 1.1 mjacob * can find precisely in the returned status data the
709 1.1 mjacob * status for the Nth element of the Kth type.
710 1.1 mjacob */
711 1.1 mjacob uint8_t * ses_eltmap;
712 1.1 mjacob };
713 1.1 mjacob
714 1.1 mjacob
715 1.1 mjacob /*
716 1.1 mjacob * (de)canonicalization defines
717 1.1 mjacob */
718 1.1 mjacob #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
719 1.1 mjacob #define sbit(x, bit) (((uint32_t)(x)) << bit)
720 1.1 mjacob #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
721 1.1 mjacob
722 1.1 mjacob #define sset16(outp, idx, sval) \
723 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
724 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725 1.1 mjacob
726 1.1 mjacob
727 1.1 mjacob #define sset24(outp, idx, sval) \
728 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
729 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
730 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
731 1.1 mjacob
732 1.1 mjacob
733 1.1 mjacob #define sset32(outp, idx, sval) \
734 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
735 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
736 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738 1.1 mjacob
739 1.1 mjacob #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
740 1.1 mjacob #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
741 1.1 mjacob #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
742 1.1 mjacob #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
743 1.1 mjacob
744 1.1 mjacob #define sget16(inp, idx, lval) \
745 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
746 1.1 mjacob (((uint8_t *)(inp))[idx+1]), idx += 2
747 1.1 mjacob
748 1.1 mjacob #define gget16(inp, idx, lval) \
749 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
750 1.1 mjacob (((uint8_t *)(inp))[idx+1])
751 1.1 mjacob
752 1.1 mjacob #define sget24(inp, idx, lval) \
753 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
754 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
755 1.1 mjacob (((uint8_t *)(inp))[idx+2]), idx += 3
756 1.1 mjacob
757 1.1 mjacob #define gget24(inp, idx, lval) \
758 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
759 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
760 1.1 mjacob (((uint8_t *)(inp))[idx+2])
761 1.1 mjacob
762 1.1 mjacob #define sget32(inp, idx, lval) \
763 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
764 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
765 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
766 1.1 mjacob (((uint8_t *)(inp))[idx+3]), idx += 4
767 1.1 mjacob
768 1.1 mjacob #define gget32(inp, idx, lval) \
769 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
770 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
771 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
772 1.1 mjacob (((uint8_t *)(inp))[idx+3])
773 1.1 mjacob
774 1.1 mjacob #define SCSZ 0x2000
775 1.1 mjacob #define CFLEN (256 + SES_ENCHDR_MINLEN)
776 1.1 mjacob
777 1.1 mjacob /*
778 1.1 mjacob * Routines specific && private to SES only
779 1.1 mjacob */
780 1.1 mjacob
781 1.1 mjacob static int ses_getconfig(ses_softc_t *);
782 1.1 mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
783 1.1 mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
784 1.1 mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
785 1.1 mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
786 1.1 mjacob static int ses_getthdr(uint8_t *, int, int, SesThdr *);
787 1.1 mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
788 1.1 mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
789 1.1 mjacob
790 1.1 mjacob static int
791 1.1 mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
792 1.1 mjacob {
793 1.1 mjacob if (doinit == 0) {
794 1.1 mjacob struct sscfg *cc;
795 1.1 mjacob if (ssc->ses_nobjects) {
796 1.1 mjacob SES_FREE(ssc->ses_objmap,
797 1.1 mjacob ssc->ses_nobjects * sizeof (encobj));
798 1.1 mjacob ssc->ses_objmap = NULL;
799 1.1 mjacob }
800 1.1 mjacob if ((cc = ssc->ses_private) != NULL) {
801 1.1 mjacob if (cc->ses_eltmap && cc->ses_ntypes) {
802 1.1 mjacob SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
803 1.1 mjacob cc->ses_eltmap = NULL;
804 1.1 mjacob cc->ses_ntypes = 0;
805 1.1 mjacob }
806 1.1 mjacob if (cc->ses_typidx && ssc->ses_nobjects) {
807 1.1 mjacob SES_FREE(cc->ses_typidx,
808 1.1 mjacob ssc->ses_nobjects * sizeof (struct typidx));
809 1.1 mjacob cc->ses_typidx = NULL;
810 1.1 mjacob }
811 1.1 mjacob SES_FREE(cc, sizeof (struct sscfg));
812 1.1 mjacob ssc->ses_private = NULL;
813 1.1 mjacob }
814 1.1 mjacob ssc->ses_nobjects = 0;
815 1.1 mjacob return (0);
816 1.1 mjacob }
817 1.1 mjacob if (ssc->ses_private == NULL) {
818 1.1 mjacob ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
819 1.1 mjacob }
820 1.1 mjacob if (ssc->ses_private == NULL) {
821 1.1 mjacob return (ENOMEM);
822 1.1 mjacob }
823 1.1 mjacob ssc->ses_nobjects = 0;
824 1.1 mjacob ssc->ses_encstat = 0;
825 1.1 mjacob return (ses_getconfig(ssc));
826 1.1 mjacob }
827 1.1 mjacob
828 1.1 mjacob static int
829 1.1 mjacob ses_init_enc(ses_softc_t *ssc)
830 1.1 mjacob {
831 1.1 mjacob return (0);
832 1.1 mjacob }
833 1.1 mjacob
834 1.1 mjacob static int
835 1.1 mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
836 1.1 mjacob {
837 1.1 mjacob SesComStat ComStat;
838 1.1 mjacob int status;
839 1.1 mjacob
840 1.1 mjacob if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
841 1.1 mjacob return (status);
842 1.1 mjacob }
843 1.1 mjacob ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
844 1.1 mjacob return (0);
845 1.1 mjacob }
846 1.1 mjacob
847 1.1 mjacob static int
848 1.1 mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
849 1.1 mjacob {
850 1.1 mjacob SesComStat ComStat;
851 1.1 mjacob int status;
852 1.1 mjacob
853 1.1 mjacob ComStat.comstatus = encstat & 0xf;
854 1.1 mjacob if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
855 1.1 mjacob return (status);
856 1.1 mjacob }
857 1.1 mjacob ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
858 1.1 mjacob return (0);
859 1.1 mjacob }
860 1.1 mjacob
861 1.1 mjacob static int
862 1.1 mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
863 1.1 mjacob {
864 1.1 mjacob int i = (int)obp->obj_id;
865 1.1 mjacob
866 1.1 mjacob if (ssc->ses_objmap[i].svalid == 0) {
867 1.1 mjacob SesComStat ComStat;
868 1.1 mjacob int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
869 1.1 mjacob if (err)
870 1.1 mjacob return (err);
871 1.1 mjacob ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
872 1.1 mjacob ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
873 1.1 mjacob ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
874 1.1 mjacob ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
875 1.1 mjacob ssc->ses_objmap[i].svalid = 1;
876 1.1 mjacob }
877 1.1 mjacob obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
878 1.1 mjacob obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
879 1.1 mjacob obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
880 1.1 mjacob obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
881 1.1 mjacob return (0);
882 1.1 mjacob }
883 1.1 mjacob
884 1.1 mjacob static int
885 1.1 mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
886 1.1 mjacob {
887 1.1 mjacob SesComStat ComStat;
888 1.1 mjacob int err;
889 1.1 mjacob /*
890 1.1 mjacob * If this is clear, we don't do diddly.
891 1.1 mjacob */
892 1.1 mjacob if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
893 1.1 mjacob return (0);
894 1.1 mjacob }
895 1.1 mjacob ComStat.comstatus = obp->cstat[0];
896 1.1 mjacob ComStat.comstat[0] = obp->cstat[1];
897 1.1 mjacob ComStat.comstat[1] = obp->cstat[2];
898 1.1 mjacob ComStat.comstat[2] = obp->cstat[3];
899 1.1 mjacob err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
900 1.1 mjacob ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
901 1.1 mjacob return (err);
902 1.1 mjacob }
903 1.1 mjacob
904 1.1 mjacob static int
905 1.1 mjacob ses_getconfig(ses_softc_t *ssc)
906 1.1 mjacob {
907 1.1 mjacob struct sscfg *cc;
908 1.1 mjacob SesCfgHdr cf;
909 1.1 mjacob SesEncHdr hd;
910 1.1 mjacob SesEncDesc *cdp;
911 1.1 mjacob SesThdr thdr;
912 1.1 mjacob int err, amt, i, nobj, ntype, maxima;
913 1.1 mjacob char storage[CFLEN], *sdata;
914 1.1 mjacob static char cdb[6] = {
915 1.1 mjacob RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
916 1.1 mjacob };
917 1.1 mjacob
918 1.1 mjacob cc = ssc->ses_private;
919 1.1 mjacob if (cc == NULL) {
920 1.1 mjacob return (ENXIO);
921 1.1 mjacob }
922 1.1 mjacob
923 1.1 mjacob sdata = SES_MALLOC(SCSZ);
924 1.1 mjacob if (sdata == NULL)
925 1.1 mjacob return (ENOMEM);
926 1.1 mjacob
927 1.1 mjacob amt = SCSZ;
928 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
929 1.1 mjacob if (err) {
930 1.1 mjacob SES_FREE(sdata, SCSZ);
931 1.1 mjacob return (err);
932 1.1 mjacob }
933 1.1 mjacob amt = SCSZ - amt;
934 1.1 mjacob
935 1.1 mjacob if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
936 1.1 mjacob SES_LOG(ssc, "Unable to parse SES Config Header\n");
937 1.1 mjacob SES_FREE(sdata, SCSZ);
938 1.1 mjacob return (EIO);
939 1.1 mjacob }
940 1.1 mjacob if (amt < SES_ENCHDR_MINLEN) {
941 1.1 mjacob SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
942 1.1 mjacob SES_FREE(sdata, SCSZ);
943 1.1 mjacob return (EIO);
944 1.1 mjacob }
945 1.1 mjacob
946 1.1 mjacob SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
947 1.1 mjacob
948 1.1 mjacob /*
949 1.1 mjacob * Now waltz through all the subenclosures toting up the
950 1.1 mjacob * number of types available in each. For this, we only
951 1.1 mjacob * really need the enclosure header. However, we get the
952 1.1 mjacob * enclosure descriptor for debug purposes, as well
953 1.1 mjacob * as self-consistency checking purposes.
954 1.1 mjacob */
955 1.1 mjacob
956 1.1 mjacob maxima = cf.Nsubenc + 1;
957 1.1 mjacob cdp = (SesEncDesc *) storage;
958 1.1 mjacob for (ntype = i = 0; i < maxima; i++) {
959 1.1 mjacob MEMZERO((caddr_t)cdp, sizeof (*cdp));
960 1.1 mjacob if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
961 1.1 mjacob SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
962 1.1 mjacob SES_FREE(sdata, SCSZ);
963 1.1 mjacob return (EIO);
964 1.1 mjacob }
965 1.1 mjacob SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
966 1.1 mjacob "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
967 1.1 mjacob
968 1.1 mjacob if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
969 1.1 mjacob SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
970 1.1 mjacob SES_FREE(sdata, SCSZ);
971 1.1 mjacob return (EIO);
972 1.1 mjacob }
973 1.1 mjacob SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
974 1.1 mjacob cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
975 1.1 mjacob cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
976 1.1 mjacob cdp->encWWN[6], cdp->encWWN[7]);
977 1.1 mjacob ntype += hd.Ntypes;
978 1.1 mjacob }
979 1.1 mjacob
980 1.1 mjacob /*
981 1.1 mjacob * Now waltz through all the types that are available, getting
982 1.1 mjacob * the type header so we can start adding up the number of
983 1.1 mjacob * objects available.
984 1.1 mjacob */
985 1.1 mjacob for (nobj = i = 0; i < ntype; i++) {
986 1.1 mjacob if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
987 1.1 mjacob SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
988 1.1 mjacob SES_FREE(sdata, SCSZ);
989 1.1 mjacob return (EIO);
990 1.1 mjacob }
991 1.1 mjacob SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
992 1.1 mjacob "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
993 1.1 mjacob thdr.enc_subenc, thdr.enc_tlen);
994 1.1 mjacob nobj += thdr.enc_maxelt;
995 1.1 mjacob }
996 1.1 mjacob
997 1.1 mjacob
998 1.1 mjacob /*
999 1.1 mjacob * Now allocate the object array and type map.
1000 1.1 mjacob */
1001 1.1 mjacob
1002 1.1 mjacob ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1003 1.1 mjacob cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1004 1.1 mjacob cc->ses_eltmap = SES_MALLOC(ntype);
1005 1.1 mjacob
1006 1.1 mjacob if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1007 1.1 mjacob cc->ses_eltmap == NULL) {
1008 1.1 mjacob if (ssc->ses_objmap) {
1009 1.1 mjacob SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1010 1.1 mjacob ssc->ses_objmap = NULL;
1011 1.1 mjacob }
1012 1.1 mjacob if (cc->ses_typidx) {
1013 1.1 mjacob SES_FREE(cc->ses_typidx,
1014 1.1 mjacob (nobj * sizeof (struct typidx)));
1015 1.1 mjacob cc->ses_typidx = NULL;
1016 1.1 mjacob }
1017 1.1 mjacob if (cc->ses_eltmap) {
1018 1.1 mjacob SES_FREE(cc->ses_eltmap, ntype);
1019 1.1 mjacob cc->ses_eltmap = NULL;
1020 1.1 mjacob }
1021 1.1 mjacob SES_FREE(sdata, SCSZ);
1022 1.1 mjacob return (ENOMEM);
1023 1.1 mjacob }
1024 1.1 mjacob MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1025 1.1 mjacob MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1026 1.1 mjacob MEMZERO(cc->ses_eltmap, ntype);
1027 1.1 mjacob cc->ses_ntypes = (uint8_t) ntype;
1028 1.1 mjacob ssc->ses_nobjects = nobj;
1029 1.1 mjacob
1030 1.1 mjacob /*
1031 1.1 mjacob * Now waltz through the # of types again to fill in the types
1032 1.1 mjacob * (and subenclosure ids) of the allocated objects.
1033 1.1 mjacob */
1034 1.1 mjacob nobj = 0;
1035 1.1 mjacob for (i = 0; i < ntype; i++) {
1036 1.1 mjacob int j;
1037 1.1 mjacob if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1038 1.1 mjacob continue;
1039 1.1 mjacob }
1040 1.1 mjacob cc->ses_eltmap[i] = thdr.enc_maxelt;
1041 1.1 mjacob for (j = 0; j < thdr.enc_maxelt; j++) {
1042 1.1 mjacob cc->ses_typidx[nobj].ses_tidx = i;
1043 1.1 mjacob cc->ses_typidx[nobj].ses_oidx = j;
1044 1.1 mjacob ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1045 1.1 mjacob ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1046 1.1 mjacob }
1047 1.1 mjacob }
1048 1.1 mjacob SES_FREE(sdata, SCSZ);
1049 1.1 mjacob return (0);
1050 1.1 mjacob }
1051 1.1 mjacob
1052 1.1 mjacob static int
1053 1.1 mjacob ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1054 1.1 mjacob {
1055 1.1 mjacob struct sscfg *cc;
1056 1.1 mjacob int err, amt, bufsiz, tidx, oidx;
1057 1.1 mjacob char cdb[6], *sdata;
1058 1.1 mjacob
1059 1.1 mjacob cc = ssc->ses_private;
1060 1.1 mjacob if (cc == NULL) {
1061 1.1 mjacob return (ENXIO);
1062 1.1 mjacob }
1063 1.1 mjacob
1064 1.1 mjacob /*
1065 1.1 mjacob * If we're just getting overall enclosure status,
1066 1.1 mjacob * we only need 2 bytes of data storage.
1067 1.1 mjacob *
1068 1.1 mjacob * If we're getting anything else, we know how much
1069 1.1 mjacob * storage we need by noting that starting at offset
1070 1.1 mjacob * 8 in returned data, all object status bytes are 4
1071 1.1 mjacob * bytes long, and are stored in chunks of types(M)
1072 1.1 mjacob * and nth+1 instances of type M.
1073 1.1 mjacob */
1074 1.1 mjacob if (objid == -1) {
1075 1.1 mjacob bufsiz = 2;
1076 1.1 mjacob } else {
1077 1.1 mjacob bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1078 1.1 mjacob }
1079 1.1 mjacob sdata = SES_MALLOC(bufsiz);
1080 1.1 mjacob if (sdata == NULL)
1081 1.1 mjacob return (ENOMEM);
1082 1.1 mjacob
1083 1.1 mjacob cdb[0] = RECEIVE_DIAGNOSTIC;
1084 1.1 mjacob cdb[1] = 1;
1085 1.1 mjacob cdb[2] = SesStatusPage;
1086 1.1 mjacob cdb[3] = bufsiz >> 8;
1087 1.1 mjacob cdb[4] = bufsiz & 0xff;
1088 1.1 mjacob cdb[5] = 0;
1089 1.1 mjacob amt = bufsiz;
1090 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1091 1.1 mjacob if (err) {
1092 1.1 mjacob SES_FREE(sdata, bufsiz);
1093 1.1 mjacob return (err);
1094 1.1 mjacob }
1095 1.1 mjacob amt = bufsiz - amt;
1096 1.1 mjacob
1097 1.1 mjacob if (objid == -1) {
1098 1.1 mjacob tidx = -1;
1099 1.1 mjacob oidx = -1;
1100 1.1 mjacob } else {
1101 1.1 mjacob tidx = cc->ses_typidx[objid].ses_tidx;
1102 1.1 mjacob oidx = cc->ses_typidx[objid].ses_oidx;
1103 1.1 mjacob }
1104 1.1 mjacob if (in) {
1105 1.1 mjacob if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1106 1.1 mjacob err = ENODEV;
1107 1.1 mjacob }
1108 1.1 mjacob } else {
1109 1.1 mjacob if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1110 1.1 mjacob err = ENODEV;
1111 1.1 mjacob } else {
1112 1.1 mjacob cdb[0] = SEND_DIAGNOSTIC;
1113 1.1 mjacob cdb[1] = 0x10;
1114 1.1 mjacob cdb[2] = 0;
1115 1.1 mjacob cdb[3] = bufsiz >> 8;
1116 1.1 mjacob cdb[4] = bufsiz & 0xff;
1117 1.1 mjacob cdb[5] = 0;
1118 1.1 mjacob amt = -bufsiz;
1119 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1120 1.1 mjacob }
1121 1.1 mjacob }
1122 1.1 mjacob SES_FREE(sdata, bufsiz);
1123 1.1 mjacob return (0);
1124 1.1 mjacob }
1125 1.1 mjacob
1126 1.1 mjacob
1127 1.1 mjacob /*
1128 1.1 mjacob * Routines to parse returned SES data structures.
1129 1.1 mjacob * Architecture and compiler independent.
1130 1.1 mjacob */
1131 1.1 mjacob
1132 1.1 mjacob static int
1133 1.1 mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1134 1.1 mjacob {
1135 1.1 mjacob if (buflen < SES_CFGHDR_MINLEN) {
1136 1.1 mjacob return (-1);
1137 1.1 mjacob }
1138 1.1 mjacob gget8(buffer, 1, cfp->Nsubenc);
1139 1.1 mjacob gget32(buffer, 4, cfp->GenCode);
1140 1.1 mjacob return (0);
1141 1.1 mjacob }
1142 1.1 mjacob
1143 1.1 mjacob static int
1144 1.1 mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1145 1.1 mjacob {
1146 1.1 mjacob int s, off = 8;
1147 1.1 mjacob for (s = 0; s < SubEncId; s++) {
1148 1.1 mjacob if (off + 3 > amt)
1149 1.1 mjacob return (-1);
1150 1.1 mjacob off += buffer[off+3] + 4;
1151 1.1 mjacob }
1152 1.1 mjacob if (off + 3 > amt) {
1153 1.1 mjacob return (-1);
1154 1.1 mjacob }
1155 1.1 mjacob gget8(buffer, off+1, chp->Subencid);
1156 1.1 mjacob gget8(buffer, off+2, chp->Ntypes);
1157 1.1 mjacob gget8(buffer, off+3, chp->VEnclen);
1158 1.1 mjacob return (0);
1159 1.1 mjacob }
1160 1.1 mjacob
1161 1.1 mjacob static int
1162 1.1 mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1163 1.1 mjacob {
1164 1.1 mjacob int s, e, enclen, off = 8;
1165 1.1 mjacob for (s = 0; s < SubEncId; s++) {
1166 1.1 mjacob if (off + 3 > amt)
1167 1.1 mjacob return (-1);
1168 1.1 mjacob off += buffer[off+3] + 4;
1169 1.1 mjacob }
1170 1.1 mjacob if (off + 3 > amt) {
1171 1.1 mjacob return (-1);
1172 1.1 mjacob }
1173 1.1 mjacob gget8(buffer, off+3, enclen);
1174 1.1 mjacob off += 4;
1175 1.1 mjacob if (off >= amt)
1176 1.1 mjacob return (-1);
1177 1.1 mjacob
1178 1.1 mjacob e = off + enclen;
1179 1.1 mjacob if (e > amt) {
1180 1.1 mjacob e = amt;
1181 1.1 mjacob }
1182 1.1 mjacob MEMCPY(cdp, &buffer[off], e - off);
1183 1.1 mjacob return (0);
1184 1.1 mjacob }
1185 1.1 mjacob
1186 1.1 mjacob static int
1187 1.1 mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1188 1.1 mjacob {
1189 1.1 mjacob int s, off = 8;
1190 1.1 mjacob
1191 1.1 mjacob if (amt < SES_CFGHDR_MINLEN) {
1192 1.1 mjacob return (-1);
1193 1.1 mjacob }
1194 1.1 mjacob for (s = 0; s < buffer[1]; s++) {
1195 1.1 mjacob if (off + 3 > amt)
1196 1.1 mjacob return (-1);
1197 1.1 mjacob off += buffer[off+3] + 4;
1198 1.1 mjacob }
1199 1.1 mjacob if (off + 3 > amt) {
1200 1.1 mjacob return (-1);
1201 1.1 mjacob }
1202 1.1 mjacob off += buffer[off+3] + 4 + (nth * 4);
1203 1.1 mjacob if (amt < (off + 4))
1204 1.1 mjacob return (-1);
1205 1.1 mjacob
1206 1.1 mjacob gget8(buffer, off++, thp->enc_type);
1207 1.1 mjacob gget8(buffer, off++, thp->enc_maxelt);
1208 1.1 mjacob gget8(buffer, off++, thp->enc_subenc);
1209 1.1 mjacob gget8(buffer, off, thp->enc_tlen);
1210 1.1 mjacob return (0);
1211 1.1 mjacob }
1212 1.1 mjacob
1213 1.1 mjacob /*
1214 1.1 mjacob * This function needs a little explanation.
1215 1.1 mjacob *
1216 1.1 mjacob * The arguments are:
1217 1.1 mjacob *
1218 1.1 mjacob *
1219 1.1 mjacob * char *b, int amt
1220 1.1 mjacob *
1221 1.1 mjacob * These describes the raw input SES status data and length.
1222 1.1 mjacob *
1223 1.1 mjacob * uint8_t *ep
1224 1.1 mjacob *
1225 1.1 mjacob * This is a map of the number of types for each element type
1226 1.1 mjacob * in the enclosure.
1227 1.1 mjacob *
1228 1.1 mjacob * int elt
1229 1.1 mjacob *
1230 1.1 mjacob * This is the element type being sought. If elt is -1,
1231 1.1 mjacob * then overall enclosure status is being sought.
1232 1.1 mjacob *
1233 1.1 mjacob * int elm
1234 1.1 mjacob *
1235 1.1 mjacob * This is the ordinal Mth element of type elt being sought.
1236 1.1 mjacob *
1237 1.1 mjacob * SesComStat *sp
1238 1.1 mjacob *
1239 1.1 mjacob * This is the output area to store the status for
1240 1.1 mjacob * the Mth element of type Elt.
1241 1.1 mjacob */
1242 1.1 mjacob
1243 1.1 mjacob static int
1244 1.1 mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1245 1.1 mjacob {
1246 1.1 mjacob int idx, i;
1247 1.1 mjacob
1248 1.1 mjacob /*
1249 1.1 mjacob * If it's overall enclosure status being sought, get that.
1250 1.1 mjacob * We need at least 2 bytes of status data to get that.
1251 1.1 mjacob */
1252 1.1 mjacob if (elt == -1) {
1253 1.1 mjacob if (amt < 2)
1254 1.1 mjacob return (-1);
1255 1.1 mjacob gget8(b, 1, sp->comstatus);
1256 1.1 mjacob sp->comstat[0] = 0;
1257 1.1 mjacob sp->comstat[1] = 0;
1258 1.1 mjacob sp->comstat[2] = 0;
1259 1.1 mjacob return (0);
1260 1.1 mjacob }
1261 1.1 mjacob
1262 1.1 mjacob /*
1263 1.1 mjacob * Check to make sure that the Mth element is legal for type Elt.
1264 1.1 mjacob */
1265 1.1 mjacob
1266 1.1 mjacob if (elm >= ep[elt])
1267 1.1 mjacob return (-1);
1268 1.1 mjacob
1269 1.1 mjacob /*
1270 1.1 mjacob * Starting at offset 8, start skipping over the storage
1271 1.1 mjacob * for the element types we're not interested in.
1272 1.1 mjacob */
1273 1.1 mjacob for (idx = 8, i = 0; i < elt; i++) {
1274 1.1 mjacob idx += ((ep[i] + 1) * 4);
1275 1.1 mjacob }
1276 1.1 mjacob
1277 1.1 mjacob /*
1278 1.1 mjacob * Skip over Overall status for this element type.
1279 1.1 mjacob */
1280 1.1 mjacob idx += 4;
1281 1.1 mjacob
1282 1.1 mjacob /*
1283 1.1 mjacob * And skip to the index for the Mth element that we're going for.
1284 1.1 mjacob */
1285 1.1 mjacob idx += (4 * elm);
1286 1.1 mjacob
1287 1.1 mjacob /*
1288 1.1 mjacob * Make sure we haven't overflowed the buffer.
1289 1.1 mjacob */
1290 1.1 mjacob if (idx+4 > amt)
1291 1.1 mjacob return (-1);
1292 1.1 mjacob
1293 1.1 mjacob /*
1294 1.1 mjacob * Retrieve the status.
1295 1.1 mjacob */
1296 1.1 mjacob gget8(b, idx++, sp->comstatus);
1297 1.1 mjacob gget8(b, idx++, sp->comstat[0]);
1298 1.1 mjacob gget8(b, idx++, sp->comstat[1]);
1299 1.1 mjacob gget8(b, idx++, sp->comstat[2]);
1300 1.1 mjacob #if 0
1301 1.1 mjacob PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1302 1.1 mjacob #endif
1303 1.1 mjacob return (0);
1304 1.1 mjacob }
1305 1.1 mjacob
1306 1.1 mjacob /*
1307 1.1 mjacob * This is the mirror function to ses_decode, but we set the 'select'
1308 1.1 mjacob * bit for the object which we're interested in. All other objects,
1309 1.1 mjacob * after a status fetch, should have that bit off. Hmm. It'd be easy
1310 1.1 mjacob * enough to ensure this, so we will.
1311 1.1 mjacob */
1312 1.1 mjacob
1313 1.1 mjacob static int
1314 1.1 mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1315 1.1 mjacob {
1316 1.1 mjacob int idx, i;
1317 1.1 mjacob
1318 1.1 mjacob /*
1319 1.1 mjacob * If it's overall enclosure status being sought, get that.
1320 1.1 mjacob * We need at least 2 bytes of status data to get that.
1321 1.1 mjacob */
1322 1.1 mjacob if (elt == -1) {
1323 1.1 mjacob if (amt < 2)
1324 1.1 mjacob return (-1);
1325 1.1 mjacob i = 0;
1326 1.1 mjacob sset8(b, i, 0);
1327 1.1 mjacob sset8(b, i, sp->comstatus & 0xf);
1328 1.1 mjacob #if 0
1329 1.1 mjacob PRINTF("set EncStat %x\n", sp->comstatus);
1330 1.1 mjacob #endif
1331 1.1 mjacob return (0);
1332 1.1 mjacob }
1333 1.1 mjacob
1334 1.1 mjacob /*
1335 1.1 mjacob * Check to make sure that the Mth element is legal for type Elt.
1336 1.1 mjacob */
1337 1.1 mjacob
1338 1.1 mjacob if (elm >= ep[elt])
1339 1.1 mjacob return (-1);
1340 1.1 mjacob
1341 1.1 mjacob /*
1342 1.1 mjacob * Starting at offset 8, start skipping over the storage
1343 1.1 mjacob * for the element types we're not interested in.
1344 1.1 mjacob */
1345 1.1 mjacob for (idx = 8, i = 0; i < elt; i++) {
1346 1.1 mjacob idx += ((ep[i] + 1) * 4);
1347 1.1 mjacob }
1348 1.1 mjacob
1349 1.1 mjacob /*
1350 1.1 mjacob * Skip over Overall status for this element type.
1351 1.1 mjacob */
1352 1.1 mjacob idx += 4;
1353 1.1 mjacob
1354 1.1 mjacob /*
1355 1.1 mjacob * And skip to the index for the Mth element that we're going for.
1356 1.1 mjacob */
1357 1.1 mjacob idx += (4 * elm);
1358 1.1 mjacob
1359 1.1 mjacob /*
1360 1.1 mjacob * Make sure we haven't overflowed the buffer.
1361 1.1 mjacob */
1362 1.1 mjacob if (idx+4 > amt)
1363 1.1 mjacob return (-1);
1364 1.1 mjacob
1365 1.1 mjacob /*
1366 1.1 mjacob * Set the status.
1367 1.1 mjacob */
1368 1.1 mjacob sset8(b, idx, sp->comstatus);
1369 1.1 mjacob sset8(b, idx, sp->comstat[0]);
1370 1.1 mjacob sset8(b, idx, sp->comstat[1]);
1371 1.1 mjacob sset8(b, idx, sp->comstat[2]);
1372 1.1 mjacob idx -= 4;
1373 1.1 mjacob
1374 1.1 mjacob #if 0
1375 1.1 mjacob PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1376 1.1 mjacob elt, elm, idx, sp->comstatus, sp->comstat[0],
1377 1.1 mjacob sp->comstat[1], sp->comstat[2]);
1378 1.1 mjacob #endif
1379 1.1 mjacob
1380 1.1 mjacob /*
1381 1.1 mjacob * Now make sure all other 'Select' bits are off.
1382 1.1 mjacob */
1383 1.1 mjacob for (i = 8; i < amt; i += 4) {
1384 1.1 mjacob if (i != idx)
1385 1.1 mjacob b[i] &= ~0x80;
1386 1.1 mjacob }
1387 1.1 mjacob /*
1388 1.1 mjacob * And make sure the INVOP bit is clear.
1389 1.1 mjacob */
1390 1.1 mjacob b[2] &= ~0x10;
1391 1.1 mjacob
1392 1.1 mjacob return (0);
1393 1.1 mjacob }
1394 1.1 mjacob
1395 1.1 mjacob /*
1396 1.1 mjacob * SAF-TE Type Device Emulation
1397 1.1 mjacob */
1398 1.1 mjacob
1399 1.1 mjacob static int safte_getconfig(ses_softc_t *);
1400 1.1 mjacob static int safte_rdstat(ses_softc_t *, int);;
1401 1.1 mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1402 1.1 mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1403 1.1 mjacob static void wrslot_stat(ses_softc_t *, int);
1404 1.1 mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1405 1.1 mjacob
1406 1.1 mjacob #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1407 1.1 mjacob SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1408 1.1 mjacob /*
1409 1.1 mjacob * SAF-TE specific defines- Mandatory ones only...
1410 1.1 mjacob */
1411 1.1 mjacob
1412 1.1 mjacob /*
1413 1.1 mjacob * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1414 1.1 mjacob */
1415 1.1 mjacob #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1416 1.1 mjacob #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1417 1.1 mjacob #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1418 1.1 mjacob
1419 1.1 mjacob /*
1420 1.1 mjacob * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1421 1.1 mjacob */
1422 1.1 mjacob #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1423 1.1 mjacob #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1424 1.1 mjacob #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1425 1.1 mjacob #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1426 1.1 mjacob #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1427 1.1 mjacob
1428 1.1 mjacob
1429 1.1 mjacob #define SAFT_SCRATCH 64
1430 1.1 mjacob #define NPSEUDO_THERM 16
1431 1.1 mjacob #define NPSEUDO_ALARM 1
1432 1.1 mjacob struct scfg {
1433 1.1 mjacob /*
1434 1.1 mjacob * Cached Configuration
1435 1.1 mjacob */
1436 1.1 mjacob uint8_t Nfans; /* Number of Fans */
1437 1.1 mjacob uint8_t Npwr; /* Number of Power Supplies */
1438 1.1 mjacob uint8_t Nslots; /* Number of Device Slots */
1439 1.1 mjacob uint8_t DoorLock; /* Door Lock Installed */
1440 1.1 mjacob uint8_t Ntherm; /* Number of Temperature Sensors */
1441 1.1 mjacob uint8_t Nspkrs; /* Number of Speakers */
1442 1.1 mjacob uint8_t Nalarm; /* Number of Alarms (at least one) */
1443 1.1 mjacob /*
1444 1.1 mjacob * Cached Flag Bytes for Global Status
1445 1.1 mjacob */
1446 1.1 mjacob uint8_t flag1;
1447 1.1 mjacob uint8_t flag2;
1448 1.1 mjacob /*
1449 1.1 mjacob * What object index ID is where various slots start.
1450 1.1 mjacob */
1451 1.1 mjacob uint8_t pwroff;
1452 1.1 mjacob uint8_t slotoff;
1453 1.1 mjacob #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1454 1.1 mjacob };
1455 1.1 mjacob
1456 1.1 mjacob #define SAFT_FLG1_ALARM 0x1
1457 1.1 mjacob #define SAFT_FLG1_GLOBFAIL 0x2
1458 1.1 mjacob #define SAFT_FLG1_GLOBWARN 0x4
1459 1.1 mjacob #define SAFT_FLG1_ENCPWROFF 0x8
1460 1.1 mjacob #define SAFT_FLG1_ENCFANFAIL 0x10
1461 1.1 mjacob #define SAFT_FLG1_ENCPWRFAIL 0x20
1462 1.1 mjacob #define SAFT_FLG1_ENCDRVFAIL 0x40
1463 1.1 mjacob #define SAFT_FLG1_ENCDRVWARN 0x80
1464 1.1 mjacob
1465 1.1 mjacob #define SAFT_FLG2_LOCKDOOR 0x4
1466 1.1 mjacob #define SAFT_PRIVATE sizeof (struct scfg)
1467 1.1 mjacob
1468 1.7 sommerfe static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1469 1.1 mjacob #define SAFT_BAIL(r, x, k, l) \
1470 1.1 mjacob if (r >= x) { \
1471 1.1 mjacob SES_LOG(ssc, safte_2little, x, __LINE__);\
1472 1.1 mjacob SES_FREE(k, l); \
1473 1.1 mjacob return (EIO); \
1474 1.1 mjacob }
1475 1.1 mjacob
1476 1.1 mjacob
1477 1.1 mjacob int
1478 1.1 mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
1479 1.1 mjacob {
1480 1.1 mjacob int err, i, r;
1481 1.1 mjacob struct scfg *cc;
1482 1.1 mjacob
1483 1.1 mjacob if (doinit == 0) {
1484 1.1 mjacob if (ssc->ses_nobjects) {
1485 1.1 mjacob if (ssc->ses_objmap) {
1486 1.1 mjacob SES_FREE(ssc->ses_objmap,
1487 1.1 mjacob ssc->ses_nobjects * sizeof (encobj));
1488 1.1 mjacob ssc->ses_objmap = NULL;
1489 1.1 mjacob }
1490 1.1 mjacob ssc->ses_nobjects = 0;
1491 1.1 mjacob }
1492 1.1 mjacob if (ssc->ses_private) {
1493 1.1 mjacob SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1494 1.1 mjacob ssc->ses_private = NULL;
1495 1.1 mjacob }
1496 1.1 mjacob return (0);
1497 1.1 mjacob }
1498 1.1 mjacob
1499 1.1 mjacob if (ssc->ses_private == NULL) {
1500 1.1 mjacob ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1501 1.1 mjacob if (ssc->ses_private == NULL) {
1502 1.1 mjacob return (ENOMEM);
1503 1.1 mjacob }
1504 1.1 mjacob MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1505 1.1 mjacob }
1506 1.1 mjacob
1507 1.1 mjacob ssc->ses_nobjects = 0;
1508 1.1 mjacob ssc->ses_encstat = 0;
1509 1.1 mjacob
1510 1.1 mjacob if ((err = safte_getconfig(ssc)) != 0) {
1511 1.1 mjacob return (err);
1512 1.1 mjacob }
1513 1.1 mjacob
1514 1.1 mjacob /*
1515 1.1 mjacob * The number of objects here, as well as that reported by the
1516 1.1 mjacob * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1517 1.1 mjacob * that get reported during READ_BUFFER/READ_ENC_STATUS.
1518 1.1 mjacob */
1519 1.1 mjacob cc = ssc->ses_private;
1520 1.1 mjacob ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1521 1.1 mjacob cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1522 1.1 mjacob ssc->ses_objmap = (encobj *)
1523 1.1 mjacob SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1524 1.1 mjacob if (ssc->ses_objmap == NULL) {
1525 1.1 mjacob return (ENOMEM);
1526 1.1 mjacob }
1527 1.1 mjacob MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1528 1.1 mjacob
1529 1.1 mjacob r = 0;
1530 1.1 mjacob /*
1531 1.1 mjacob * Note that this is all arranged for the convenience
1532 1.1 mjacob * in later fetches of status.
1533 1.1 mjacob */
1534 1.1 mjacob for (i = 0; i < cc->Nfans; i++)
1535 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1536 1.1 mjacob cc->pwroff = (uint8_t) r;
1537 1.1 mjacob for (i = 0; i < cc->Npwr; i++)
1538 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1539 1.1 mjacob for (i = 0; i < cc->DoorLock; i++)
1540 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1541 1.1 mjacob for (i = 0; i < cc->Nspkrs; i++)
1542 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1543 1.1 mjacob for (i = 0; i < cc->Ntherm; i++)
1544 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1545 1.1 mjacob for (i = 0; i < NPSEUDO_THERM; i++)
1546 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1547 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1548 1.1 mjacob cc->slotoff = (uint8_t) r;
1549 1.1 mjacob for (i = 0; i < cc->Nslots; i++)
1550 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1551 1.1 mjacob return (0);
1552 1.1 mjacob }
1553 1.1 mjacob
1554 1.1 mjacob int
1555 1.1 mjacob safte_init_enc(ses_softc_t *ssc)
1556 1.1 mjacob {
1557 1.1 mjacob int err, amt;
1558 1.1 mjacob char *sdata;
1559 1.4 mjacob static char cdb0[6] = { SEND_DIAGNOSTIC };
1560 1.1 mjacob static char cdb[10] =
1561 1.4 mjacob { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1562 1.1 mjacob
1563 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
1564 1.1 mjacob if (sdata == NULL)
1565 1.1 mjacob return (ENOMEM);
1566 1.1 mjacob
1567 1.4 mjacob err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1568 1.1 mjacob if (err) {
1569 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1570 1.1 mjacob return (err);
1571 1.1 mjacob }
1572 1.1 mjacob sdata[0] = SAFTE_WT_GLOBAL;
1573 1.4 mjacob MEMZERO(&sdata[1], 15);
1574 1.1 mjacob amt = -SAFT_SCRATCH;
1575 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1576 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1577 1.1 mjacob return (err);
1578 1.1 mjacob }
1579 1.1 mjacob
1580 1.1 mjacob int
1581 1.1 mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
1582 1.1 mjacob {
1583 1.1 mjacob return (safte_rdstat(ssc, slpflg));
1584 1.1 mjacob }
1585 1.1 mjacob
1586 1.1 mjacob int
1587 1.1 mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1588 1.1 mjacob {
1589 1.1 mjacob struct scfg *cc = ssc->ses_private;
1590 1.1 mjacob if (cc == NULL)
1591 1.1 mjacob return (0);
1592 1.1 mjacob /*
1593 1.1 mjacob * Since SAF-TE devices aren't necessarily sticky in terms
1594 1.1 mjacob * of state, make our soft copy of enclosure status 'sticky'-
1595 1.1 mjacob * that is, things set in enclosure status stay set (as implied
1596 1.1 mjacob * by conditions set in reading object status) until cleared.
1597 1.1 mjacob */
1598 1.1 mjacob ssc->ses_encstat &= ~ALL_ENC_STAT;
1599 1.1 mjacob ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1600 1.1 mjacob ssc->ses_encstat |= ENCI_SVALID;
1601 1.1 mjacob cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1602 1.1 mjacob if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1603 1.1 mjacob cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1604 1.1 mjacob } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1605 1.1 mjacob cc->flag1 |= SAFT_FLG1_GLOBWARN;
1606 1.1 mjacob }
1607 1.1 mjacob return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1608 1.1 mjacob }
1609 1.1 mjacob
1610 1.1 mjacob int
1611 1.1 mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1612 1.1 mjacob {
1613 1.1 mjacob int i = (int)obp->obj_id;
1614 1.1 mjacob
1615 1.1 mjacob if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1616 1.1 mjacob (ssc->ses_objmap[i].svalid) == 0) {
1617 1.1 mjacob int err = safte_rdstat(ssc, slpflg);
1618 1.1 mjacob if (err)
1619 1.1 mjacob return (err);
1620 1.1 mjacob }
1621 1.1 mjacob obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1622 1.1 mjacob obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1623 1.1 mjacob obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1624 1.1 mjacob obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1625 1.1 mjacob return (0);
1626 1.1 mjacob }
1627 1.1 mjacob
1628 1.1 mjacob
1629 1.1 mjacob int
1630 1.1 mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1631 1.1 mjacob {
1632 1.1 mjacob int idx, err;
1633 1.1 mjacob encobj *ep;
1634 1.1 mjacob struct scfg *cc;
1635 1.1 mjacob
1636 1.1 mjacob
1637 1.1 mjacob SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1638 1.1 mjacob (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1639 1.1 mjacob obp->cstat[3]);
1640 1.1 mjacob
1641 1.1 mjacob /*
1642 1.1 mjacob * If this is clear, we don't do diddly.
1643 1.1 mjacob */
1644 1.1 mjacob if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1645 1.1 mjacob return (0);
1646 1.1 mjacob }
1647 1.1 mjacob
1648 1.1 mjacob err = 0;
1649 1.1 mjacob /*
1650 1.1 mjacob * Check to see if the common bits are set and do them first.
1651 1.1 mjacob */
1652 1.1 mjacob if (obp->cstat[0] & ~SESCTL_CSEL) {
1653 1.1 mjacob err = set_objstat_sel(ssc, obp, slp);
1654 1.1 mjacob if (err)
1655 1.1 mjacob return (err);
1656 1.1 mjacob }
1657 1.1 mjacob
1658 1.1 mjacob cc = ssc->ses_private;
1659 1.1 mjacob if (cc == NULL)
1660 1.1 mjacob return (0);
1661 1.1 mjacob
1662 1.1 mjacob idx = (int)obp->obj_id;
1663 1.1 mjacob ep = &ssc->ses_objmap[idx];
1664 1.1 mjacob
1665 1.1 mjacob switch (ep->enctype) {
1666 1.1 mjacob case SESTYP_DEVICE:
1667 1.1 mjacob {
1668 1.1 mjacob uint8_t slotop = 0;
1669 1.1 mjacob /*
1670 1.1 mjacob * XXX: I should probably cache the previous state
1671 1.1 mjacob * XXX: of SESCTL_DEVOFF so that when it goes from
1672 1.1 mjacob * XXX: true to false I can then set PREPARE FOR OPERATION
1673 1.1 mjacob * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1674 1.1 mjacob */
1675 1.1 mjacob if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1676 1.1 mjacob slotop |= 0x2;
1677 1.1 mjacob }
1678 1.1 mjacob if (obp->cstat[2] & SESCTL_RQSID) {
1679 1.1 mjacob slotop |= 0x4;
1680 1.1 mjacob }
1681 1.1 mjacob err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1682 1.1 mjacob slotop, slp);
1683 1.1 mjacob if (err)
1684 1.1 mjacob return (err);
1685 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSFLT) {
1686 1.1 mjacob ep->priv |= 0x2;
1687 1.1 mjacob } else {
1688 1.1 mjacob ep->priv &= ~0x2;
1689 1.1 mjacob }
1690 1.1 mjacob if (ep->priv & 0xc6) {
1691 1.1 mjacob ep->priv &= ~0x1;
1692 1.1 mjacob } else {
1693 1.1 mjacob ep->priv |= 0x1; /* no errors */
1694 1.1 mjacob }
1695 1.1 mjacob wrslot_stat(ssc, slp);
1696 1.1 mjacob break;
1697 1.1 mjacob }
1698 1.1 mjacob case SESTYP_POWER:
1699 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1700 1.1 mjacob cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1701 1.1 mjacob } else {
1702 1.1 mjacob cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1703 1.1 mjacob }
1704 1.1 mjacob err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1705 1.1 mjacob cc->flag2, 0, slp);
1706 1.1 mjacob if (err)
1707 1.1 mjacob return (err);
1708 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTON) {
1709 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1710 1.1 mjacob idx - cc->pwroff, 0, 0, slp);
1711 1.1 mjacob } else {
1712 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1713 1.1 mjacob idx - cc->pwroff, 0, 1, slp);
1714 1.1 mjacob }
1715 1.1 mjacob break;
1716 1.1 mjacob case SESTYP_FAN:
1717 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1718 1.1 mjacob cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1719 1.1 mjacob } else {
1720 1.1 mjacob cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1721 1.1 mjacob }
1722 1.1 mjacob err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1723 1.1 mjacob cc->flag2, 0, slp);
1724 1.1 mjacob if (err)
1725 1.1 mjacob return (err);
1726 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTON) {
1727 1.1 mjacob uint8_t fsp;
1728 1.1 mjacob if ((obp->cstat[3] & 0x7) == 7) {
1729 1.1 mjacob fsp = 4;
1730 1.1 mjacob } else if ((obp->cstat[3] & 0x7) == 6) {
1731 1.1 mjacob fsp = 3;
1732 1.1 mjacob } else if ((obp->cstat[3] & 0x7) == 4) {
1733 1.1 mjacob fsp = 2;
1734 1.1 mjacob } else {
1735 1.1 mjacob fsp = 1;
1736 1.1 mjacob }
1737 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1738 1.1 mjacob } else {
1739 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1740 1.1 mjacob }
1741 1.1 mjacob break;
1742 1.1 mjacob case SESTYP_DOORLOCK:
1743 1.1 mjacob if (obp->cstat[3] & 0x1) {
1744 1.1 mjacob cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1745 1.1 mjacob } else {
1746 1.1 mjacob cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1747 1.1 mjacob }
1748 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1749 1.1 mjacob cc->flag2, 0, slp);
1750 1.1 mjacob break;
1751 1.1 mjacob case SESTYP_ALARM:
1752 1.1 mjacob /*
1753 1.1 mjacob * On all nonzero but the 'muted' bit, we turn on the alarm,
1754 1.1 mjacob */
1755 1.1 mjacob obp->cstat[3] &= ~0xa;
1756 1.1 mjacob if (obp->cstat[3] & 0x40) {
1757 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
1758 1.1 mjacob } else if (obp->cstat[3] != 0) {
1759 1.1 mjacob cc->flag2 |= SAFT_FLG1_ALARM;
1760 1.1 mjacob } else {
1761 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
1762 1.1 mjacob }
1763 1.1 mjacob ep->priv = obp->cstat[3];
1764 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1765 1.1 mjacob cc->flag2, 0, slp);
1766 1.1 mjacob break;
1767 1.1 mjacob default:
1768 1.1 mjacob break;
1769 1.1 mjacob }
1770 1.1 mjacob ep->svalid = 0;
1771 1.1 mjacob return (0);
1772 1.1 mjacob }
1773 1.1 mjacob
1774 1.1 mjacob static int
1775 1.1 mjacob safte_getconfig(ses_softc_t *ssc)
1776 1.1 mjacob {
1777 1.1 mjacob struct scfg *cfg;
1778 1.1 mjacob int err, amt;
1779 1.1 mjacob char *sdata;
1780 1.1 mjacob static char cdb[10] =
1781 1.1 mjacob { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1782 1.1 mjacob
1783 1.1 mjacob cfg = ssc->ses_private;
1784 1.1 mjacob if (cfg == NULL)
1785 1.1 mjacob return (ENXIO);
1786 1.1 mjacob
1787 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
1788 1.1 mjacob if (sdata == NULL)
1789 1.1 mjacob return (ENOMEM);
1790 1.1 mjacob
1791 1.1 mjacob amt = SAFT_SCRATCH;
1792 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1793 1.1 mjacob if (err) {
1794 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1795 1.1 mjacob return (err);
1796 1.1 mjacob }
1797 1.1 mjacob amt = SAFT_SCRATCH - amt;
1798 1.1 mjacob if (amt < 6) {
1799 1.1 mjacob SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1800 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1801 1.1 mjacob return (EIO);
1802 1.1 mjacob }
1803 1.1 mjacob SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1804 1.1 mjacob sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1805 1.1 mjacob cfg->Nfans = sdata[0];
1806 1.1 mjacob cfg->Npwr = sdata[1];
1807 1.1 mjacob cfg->Nslots = sdata[2];
1808 1.1 mjacob cfg->DoorLock = sdata[3];
1809 1.1 mjacob cfg->Ntherm = sdata[4];
1810 1.1 mjacob cfg->Nspkrs = sdata[5];
1811 1.1 mjacob cfg->Nalarm = NPSEUDO_ALARM;
1812 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1813 1.1 mjacob return (0);
1814 1.1 mjacob }
1815 1.1 mjacob
1816 1.1 mjacob static int
1817 1.1 mjacob safte_rdstat(ses_softc_t *ssc, int slpflg)
1818 1.1 mjacob {
1819 1.1 mjacob int err, oid, r, i, hiwater, nitems, amt;
1820 1.1 mjacob uint16_t tempflags;
1821 1.1 mjacob size_t buflen;
1822 1.1 mjacob uint8_t status, oencstat;
1823 1.1 mjacob char *sdata, cdb[10];
1824 1.1 mjacob struct scfg *cc = ssc->ses_private;
1825 1.1 mjacob
1826 1.1 mjacob
1827 1.1 mjacob /*
1828 1.1 mjacob * The number of objects overstates things a bit,
1829 1.1 mjacob * both for the bogus 'thermometer' entries and
1830 1.1 mjacob * the drive status (which isn't read at the same
1831 1.1 mjacob * time as the enclosure status), but that's okay.
1832 1.1 mjacob */
1833 1.1 mjacob buflen = 4 * cc->Nslots;
1834 1.1 mjacob if (ssc->ses_nobjects > buflen)
1835 1.1 mjacob buflen = ssc->ses_nobjects;
1836 1.1 mjacob sdata = SES_MALLOC(buflen);
1837 1.1 mjacob if (sdata == NULL)
1838 1.1 mjacob return (ENOMEM);
1839 1.1 mjacob
1840 1.1 mjacob cdb[0] = READ_BUFFER;
1841 1.1 mjacob cdb[1] = 1;
1842 1.1 mjacob cdb[2] = SAFTE_RD_RDESTS;
1843 1.1 mjacob cdb[3] = 0;
1844 1.1 mjacob cdb[4] = 0;
1845 1.1 mjacob cdb[5] = 0;
1846 1.1 mjacob cdb[6] = 0;
1847 1.1 mjacob cdb[7] = (buflen >> 8) & 0xff;
1848 1.1 mjacob cdb[8] = buflen & 0xff;
1849 1.1 mjacob cdb[9] = 0;
1850 1.1 mjacob amt = buflen;
1851 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1852 1.1 mjacob if (err) {
1853 1.1 mjacob SES_FREE(sdata, buflen);
1854 1.1 mjacob return (err);
1855 1.1 mjacob }
1856 1.1 mjacob hiwater = buflen - amt;
1857 1.1 mjacob
1858 1.1 mjacob
1859 1.1 mjacob /*
1860 1.1 mjacob * invalidate all status bits.
1861 1.1 mjacob */
1862 1.1 mjacob for (i = 0; i < ssc->ses_nobjects; i++)
1863 1.1 mjacob ssc->ses_objmap[i].svalid = 0;
1864 1.1 mjacob oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1865 1.1 mjacob ssc->ses_encstat = 0;
1866 1.1 mjacob
1867 1.1 mjacob
1868 1.1 mjacob /*
1869 1.1 mjacob * Now parse returned buffer.
1870 1.1 mjacob * If we didn't get enough data back,
1871 1.1 mjacob * that's considered a fatal error.
1872 1.1 mjacob */
1873 1.1 mjacob oid = r = 0;
1874 1.1 mjacob
1875 1.1 mjacob for (nitems = i = 0; i < cc->Nfans; i++) {
1876 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1877 1.1 mjacob /*
1878 1.1 mjacob * 0 = Fan Operational
1879 1.1 mjacob * 1 = Fan is malfunctioning
1880 1.1 mjacob * 2 = Fan is not present
1881 1.1 mjacob * 0x80 = Unknown or Not Reportable Status
1882 1.1 mjacob */
1883 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1884 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1885 1.1 mjacob switch ((int)(uint8_t)sdata[r]) {
1886 1.1 mjacob case 0:
1887 1.1 mjacob nitems++;
1888 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1889 1.1 mjacob /*
1890 1.1 mjacob * We could get fancier and cache
1891 1.1 mjacob * fan speeds that we have set, but
1892 1.1 mjacob * that isn't done now.
1893 1.1 mjacob */
1894 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 7;
1895 1.1 mjacob break;
1896 1.1 mjacob
1897 1.1 mjacob case 1:
1898 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1899 1.1 mjacob /*
1900 1.1 mjacob * FAIL and FAN STOPPED synthesized
1901 1.1 mjacob */
1902 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x40;
1903 1.1 mjacob /*
1904 1.1 mjacob * Enclosure marked with CRITICAL error
1905 1.1 mjacob * if only one fan or no thermometers,
1906 1.1 mjacob * else the NONCRITICAL error is set.
1907 1.1 mjacob */
1908 1.1 mjacob if (cc->Nfans == 1 || cc->Ntherm == 0)
1909 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1910 1.1 mjacob else
1911 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1912 1.1 mjacob break;
1913 1.1 mjacob case 2:
1914 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1915 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
1916 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1917 1.1 mjacob /*
1918 1.1 mjacob * Enclosure marked with CRITICAL error
1919 1.1 mjacob * if only one fan or no thermometers,
1920 1.1 mjacob * else the NONCRITICAL error is set.
1921 1.1 mjacob */
1922 1.1 mjacob if (cc->Nfans == 1)
1923 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1924 1.1 mjacob else
1925 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1926 1.1 mjacob break;
1927 1.1 mjacob case 0x80:
1928 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1929 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1930 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1931 1.1 mjacob break;
1932 1.1 mjacob default:
1933 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1934 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
1935 1.1 mjacob SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1936 1.1 mjacob sdata[r] & 0xff);
1937 1.1 mjacob break;
1938 1.1 mjacob }
1939 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
1940 1.1 mjacob r++;
1941 1.1 mjacob }
1942 1.1 mjacob
1943 1.1 mjacob /*
1944 1.1 mjacob * No matter how you cut it, no cooling elements when there
1945 1.1 mjacob * should be some there is critical.
1946 1.1 mjacob */
1947 1.1 mjacob if (cc->Nfans && nitems == 0) {
1948 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1949 1.1 mjacob }
1950 1.1 mjacob
1951 1.1 mjacob
1952 1.1 mjacob for (i = 0; i < cc->Npwr; i++) {
1953 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1954 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1955 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1956 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1957 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1958 1.1 mjacob switch ((uint8_t)sdata[r]) {
1959 1.1 mjacob case 0x00: /* pws operational and on */
1960 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1961 1.1 mjacob break;
1962 1.1 mjacob case 0x01: /* pws operational and off */
1963 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1964 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x10;
1965 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1966 1.1 mjacob break;
1967 1.1 mjacob case 0x10: /* pws is malfunctioning and commanded on */
1968 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1969 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x61;
1970 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1971 1.1 mjacob break;
1972 1.1 mjacob
1973 1.1 mjacob case 0x11: /* pws is malfunctioning and commanded off */
1974 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1975 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x51;
1976 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1977 1.1 mjacob break;
1978 1.1 mjacob case 0x20: /* pws is not present */
1979 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1980 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
1981 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1982 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1983 1.1 mjacob break;
1984 1.1 mjacob case 0x21: /* pws is present */
1985 1.1 mjacob /*
1986 1.1 mjacob * This is for enclosures that cannot tell whether the
1987 1.1 mjacob * device is on or malfunctioning, but know that it is
1988 1.1 mjacob * present. Just fall through.
1989 1.1 mjacob */
1990 1.1 mjacob /* FALLTHROUGH */
1991 1.1 mjacob case 0x80: /* Unknown or Not Reportable Status */
1992 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1993 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1994 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1995 1.1 mjacob break;
1996 1.1 mjacob default:
1997 1.1 mjacob SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1998 1.1 mjacob i, sdata[r] & 0xff);
1999 1.1 mjacob break;
2000 1.1 mjacob }
2001 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2002 1.1 mjacob r++;
2003 1.1 mjacob }
2004 1.1 mjacob
2005 1.1 mjacob /*
2006 1.1 mjacob * Skip over Slot SCSI IDs
2007 1.1 mjacob */
2008 1.1 mjacob r += cc->Nslots;
2009 1.1 mjacob
2010 1.1 mjacob /*
2011 1.1 mjacob * We always have doorlock status, no matter what,
2012 1.1 mjacob * but we only save the status if we have one.
2013 1.1 mjacob */
2014 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2015 1.1 mjacob if (cc->DoorLock) {
2016 1.1 mjacob /*
2017 1.1 mjacob * 0 = Door Locked
2018 1.1 mjacob * 1 = Door Unlocked, or no Lock Installed
2019 1.1 mjacob * 0x80 = Unknown or Not Reportable Status
2020 1.1 mjacob */
2021 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2022 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2023 1.1 mjacob switch ((uint8_t)sdata[r]) {
2024 1.1 mjacob case 0:
2025 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2026 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2027 1.1 mjacob break;
2028 1.1 mjacob case 1:
2029 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2030 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 1;
2031 1.1 mjacob break;
2032 1.1 mjacob case 0x80:
2033 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2034 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2035 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
2036 1.1 mjacob break;
2037 1.1 mjacob default:
2038 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2039 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
2040 1.1 mjacob SES_LOG(ssc, "unknown lock status 0x%x\n",
2041 1.1 mjacob sdata[r] & 0xff);
2042 1.1 mjacob break;
2043 1.1 mjacob }
2044 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2045 1.1 mjacob }
2046 1.1 mjacob r++;
2047 1.1 mjacob
2048 1.1 mjacob /*
2049 1.1 mjacob * We always have speaker status, no matter what,
2050 1.1 mjacob * but we only save the status if we have one.
2051 1.1 mjacob */
2052 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2053 1.1 mjacob if (cc->Nspkrs) {
2054 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2055 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2056 1.1 mjacob if (sdata[r] == 1) {
2057 1.1 mjacob /*
2058 1.1 mjacob * We need to cache tone urgency indicators.
2059 1.1 mjacob * Someday.
2060 1.1 mjacob */
2061 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2062 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x8;
2063 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2064 1.1 mjacob } else if (sdata[r] == 0) {
2065 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2066 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2067 1.1 mjacob } else {
2068 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2069 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
2070 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2071 1.1 mjacob SES_LOG(ssc, "unknown spkr status 0x%x\n",
2072 1.1 mjacob sdata[r] & 0xff);
2073 1.1 mjacob }
2074 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2075 1.1 mjacob }
2076 1.1 mjacob r++;
2077 1.1 mjacob
2078 1.1 mjacob for (i = 0; i < cc->Ntherm; i++) {
2079 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2080 1.1 mjacob /*
2081 1.1 mjacob * Status is a range from -10 to 245 deg Celsius,
2082 1.1 mjacob * which we need to normalize to -20 to -245 according
2083 1.1 mjacob * to the latest SCSI spec, which makes little
2084 1.1 mjacob * sense since this would overflow an 8bit value.
2085 1.1 mjacob * Well, still, the base normalization is -20,
2086 1.1 mjacob * not -10, so we have to adjust.
2087 1.1 mjacob *
2088 1.1 mjacob * So what's over and under temperature?
2089 1.1 mjacob * Hmm- we'll state that 'normal' operating
2090 1.1 mjacob * is 10 to 40 deg Celsius.
2091 1.1 mjacob */
2092 1.8 mjacob
2093 1.8 mjacob /*
2094 1.8 mjacob * Actually.... All of the units that people out in the world
2095 1.8 mjacob * seem to have do not come even close to setting a value that
2096 1.8 mjacob * complies with this spec.
2097 1.8 mjacob *
2098 1.8 mjacob * The closest explanation I could find was in an
2099 1.8 mjacob * LSI-Logic manual, which seemed to indicate that
2100 1.8 mjacob * this value would be set by whatever the I2C code
2101 1.8 mjacob * would interpolate from the output of an LM75
2102 1.8 mjacob * temperature sensor.
2103 1.8 mjacob *
2104 1.8 mjacob * This means that it is impossible to use the actual
2105 1.8 mjacob * numeric value to predict anything. But we don't want
2106 1.8 mjacob * to lose the value. So, we'll propagate the *uncorrected*
2107 1.8 mjacob * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2108 1.8 mjacob * temperature flags for warnings.
2109 1.8 mjacob */
2110 1.8 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2111 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2112 1.8 mjacob ssc->ses_objmap[oid].encstat[2] = sdata[r];
2113 1.8 mjacob ssc->ses_objmap[oid].encstat[3] = 0;;
2114 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2115 1.1 mjacob r++;
2116 1.1 mjacob }
2117 1.1 mjacob
2118 1.1 mjacob /*
2119 1.1 mjacob * Now, for "pseudo" thermometers, we have two bytes
2120 1.1 mjacob * of information in enclosure status- 16 bits. Actually,
2121 1.1 mjacob * the MSB is a single TEMP ALERT flag indicating whether
2122 1.1 mjacob * any other bits are set, but, thanks to fuzzy thinking,
2123 1.1 mjacob * in the SAF-TE spec, this can also be set even if no
2124 1.1 mjacob * other bits are set, thus making this really another
2125 1.1 mjacob * binary temperature sensor.
2126 1.1 mjacob */
2127 1.1 mjacob
2128 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2129 1.1 mjacob tempflags = sdata[r++];
2130 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2131 1.1 mjacob tempflags |= (tempflags << 8) | sdata[r++];
2132 1.1 mjacob
2133 1.1 mjacob for (i = 0; i < NPSEUDO_THERM; i++) {
2134 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2135 1.1 mjacob if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2136 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2137 1.1 mjacob ssc->ses_objmap[4].encstat[2] = 0xff;
2138 1.1 mjacob /*
2139 1.1 mjacob * Set 'over temperature' failure.
2140 1.1 mjacob */
2141 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 8;
2142 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2143 1.1 mjacob } else {
2144 1.1 mjacob /*
2145 1.1 mjacob * We used to say 'not available' and synthesize a
2146 1.1 mjacob * nominal 30 deg (C)- that was wrong. Actually,
2147 1.1 mjacob * Just say 'OK', and use the reserved value of
2148 1.1 mjacob * zero.
2149 1.1 mjacob */
2150 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2151 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2152 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2153 1.1 mjacob }
2154 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2155 1.1 mjacob }
2156 1.1 mjacob
2157 1.1 mjacob /*
2158 1.1 mjacob * Get alarm status.
2159 1.1 mjacob */
2160 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2161 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2162 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2163 1.1 mjacob
2164 1.1 mjacob /*
2165 1.1 mjacob * Now get drive slot status
2166 1.1 mjacob */
2167 1.1 mjacob cdb[2] = SAFTE_RD_RDDSTS;
2168 1.1 mjacob amt = buflen;
2169 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2170 1.1 mjacob if (err) {
2171 1.1 mjacob SES_FREE(sdata, buflen);
2172 1.1 mjacob return (err);
2173 1.1 mjacob }
2174 1.1 mjacob hiwater = buflen - amt;
2175 1.1 mjacob for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2176 1.1 mjacob SAFT_BAIL(r+3, hiwater, sdata, buflen);
2177 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2178 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2179 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2180 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2181 1.1 mjacob status = sdata[r+3];
2182 1.1 mjacob if ((status & 0x1) == 0) { /* no device */
2183 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2184 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
2185 1.1 mjacob } else {
2186 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2187 1.1 mjacob }
2188 1.1 mjacob if (status & 0x2) {
2189 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0x8;
2190 1.1 mjacob }
2191 1.1 mjacob if ((status & 0x4) == 0) {
2192 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x10;
2193 1.1 mjacob }
2194 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2195 1.1 mjacob }
2196 1.1 mjacob /* see comment below about sticky enclosure status */
2197 1.1 mjacob ssc->ses_encstat |= ENCI_SVALID | oencstat;
2198 1.1 mjacob SES_FREE(sdata, buflen);
2199 1.1 mjacob return (0);
2200 1.1 mjacob }
2201 1.1 mjacob
2202 1.1 mjacob static int
2203 1.1 mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2204 1.1 mjacob {
2205 1.1 mjacob int idx;
2206 1.1 mjacob encobj *ep;
2207 1.1 mjacob struct scfg *cc = ssc->ses_private;
2208 1.1 mjacob
2209 1.1 mjacob if (cc == NULL)
2210 1.1 mjacob return (0);
2211 1.1 mjacob
2212 1.1 mjacob idx = (int)obp->obj_id;
2213 1.1 mjacob ep = &ssc->ses_objmap[idx];
2214 1.1 mjacob
2215 1.1 mjacob switch (ep->enctype) {
2216 1.1 mjacob case SESTYP_DEVICE:
2217 1.1 mjacob if (obp->cstat[0] & SESCTL_PRDFAIL) {
2218 1.1 mjacob ep->priv |= 0x40;
2219 1.1 mjacob }
2220 1.1 mjacob /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2221 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2222 1.1 mjacob ep->priv |= 0x80;
2223 1.1 mjacob /*
2224 1.1 mjacob * Hmm. Try to set the 'No Drive' flag.
2225 1.1 mjacob * Maybe that will count as a 'disable'.
2226 1.1 mjacob */
2227 1.1 mjacob }
2228 1.1 mjacob if (ep->priv & 0xc6) {
2229 1.1 mjacob ep->priv &= ~0x1;
2230 1.1 mjacob } else {
2231 1.1 mjacob ep->priv |= 0x1; /* no errors */
2232 1.1 mjacob }
2233 1.1 mjacob wrslot_stat(ssc, slp);
2234 1.1 mjacob break;
2235 1.1 mjacob case SESTYP_POWER:
2236 1.1 mjacob /*
2237 1.1 mjacob * Okay- the only one that makes sense here is to
2238 1.1 mjacob * do the 'disable' for a power supply.
2239 1.1 mjacob */
2240 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2241 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2242 1.1 mjacob idx - cc->pwroff, 0, 0, slp);
2243 1.1 mjacob }
2244 1.1 mjacob break;
2245 1.1 mjacob case SESTYP_FAN:
2246 1.1 mjacob /*
2247 1.1 mjacob * Okay- the only one that makes sense here is to
2248 1.1 mjacob * set fan speed to zero on disable.
2249 1.1 mjacob */
2250 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2251 1.1 mjacob /* remember- fans are the first items, so idx works */
2252 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2253 1.1 mjacob }
2254 1.1 mjacob break;
2255 1.1 mjacob case SESTYP_DOORLOCK:
2256 1.1 mjacob /*
2257 1.1 mjacob * Well, we can 'disable' the lock.
2258 1.1 mjacob */
2259 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2260 1.1 mjacob cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2261 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2262 1.1 mjacob cc->flag2, 0, slp);
2263 1.1 mjacob }
2264 1.1 mjacob break;
2265 1.1 mjacob case SESTYP_ALARM:
2266 1.1 mjacob /*
2267 1.1 mjacob * Well, we can 'disable' the alarm.
2268 1.1 mjacob */
2269 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2270 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
2271 1.1 mjacob ep->priv |= 0x40; /* Muted */
2272 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2273 1.1 mjacob cc->flag2, 0, slp);
2274 1.1 mjacob }
2275 1.1 mjacob break;
2276 1.1 mjacob default:
2277 1.1 mjacob break;
2278 1.1 mjacob }
2279 1.1 mjacob ep->svalid = 0;
2280 1.1 mjacob return (0);
2281 1.1 mjacob }
2282 1.1 mjacob
2283 1.1 mjacob /*
2284 1.1 mjacob * This function handles all of the 16 byte WRITE BUFFER commands.
2285 1.1 mjacob */
2286 1.1 mjacob static int
2287 1.1 mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2288 1.1 mjacob uint8_t b3, int slp)
2289 1.1 mjacob {
2290 1.1 mjacob int err, amt;
2291 1.1 mjacob char *sdata;
2292 1.1 mjacob struct scfg *cc = ssc->ses_private;
2293 1.1 mjacob static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2294 1.1 mjacob
2295 1.1 mjacob if (cc == NULL)
2296 1.1 mjacob return (0);
2297 1.1 mjacob
2298 1.1 mjacob sdata = SES_MALLOC(16);
2299 1.1 mjacob if (sdata == NULL)
2300 1.1 mjacob return (ENOMEM);
2301 1.1 mjacob
2302 1.1 mjacob SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2303 1.1 mjacob
2304 1.1 mjacob sdata[0] = op;
2305 1.1 mjacob sdata[1] = b1;
2306 1.1 mjacob sdata[2] = b2;
2307 1.1 mjacob sdata[3] = b3;
2308 1.1 mjacob MEMZERO(&sdata[4], 12);
2309 1.1 mjacob amt = -16;
2310 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2311 1.1 mjacob SES_FREE(sdata, 16);
2312 1.1 mjacob return (err);
2313 1.1 mjacob }
2314 1.1 mjacob
2315 1.1 mjacob /*
2316 1.1 mjacob * This function updates the status byte for the device slot described.
2317 1.1 mjacob *
2318 1.1 mjacob * Since this is an optional SAF-TE command, there's no point in
2319 1.1 mjacob * returning an error.
2320 1.1 mjacob */
2321 1.1 mjacob static void
2322 1.1 mjacob wrslot_stat(ses_softc_t *ssc, int slp)
2323 1.1 mjacob {
2324 1.1 mjacob int i, amt;
2325 1.1 mjacob encobj *ep;
2326 1.1 mjacob char cdb[10], *sdata;
2327 1.1 mjacob struct scfg *cc = ssc->ses_private;
2328 1.1 mjacob
2329 1.1 mjacob if (cc == NULL)
2330 1.1 mjacob return;
2331 1.1 mjacob
2332 1.1 mjacob SES_VLOG(ssc, "saf_wrslot\n");
2333 1.1 mjacob cdb[0] = WRITE_BUFFER;
2334 1.1 mjacob cdb[1] = 1;
2335 1.1 mjacob cdb[2] = 0;
2336 1.1 mjacob cdb[3] = 0;
2337 1.1 mjacob cdb[4] = 0;
2338 1.1 mjacob cdb[5] = 0;
2339 1.1 mjacob cdb[6] = 0;
2340 1.1 mjacob cdb[7] = 0;
2341 1.1 mjacob cdb[8] = cc->Nslots * 3 + 1;
2342 1.1 mjacob cdb[9] = 0;
2343 1.1 mjacob
2344 1.1 mjacob sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2345 1.1 mjacob if (sdata == NULL)
2346 1.1 mjacob return;
2347 1.1 mjacob MEMZERO(sdata, cc->Nslots * 3 + 1);
2348 1.1 mjacob
2349 1.1 mjacob sdata[0] = SAFTE_WT_DSTAT;
2350 1.1 mjacob for (i = 0; i < cc->Nslots; i++) {
2351 1.1 mjacob ep = &ssc->ses_objmap[cc->slotoff + i];
2352 1.1 mjacob SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2353 1.1 mjacob sdata[1 + (3 * i)] = ep->priv & 0xff;
2354 1.1 mjacob }
2355 1.1 mjacob amt = -(cc->Nslots * 3 + 1);
2356 1.1 mjacob (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2357 1.1 mjacob SES_FREE(sdata, cc->Nslots * 3 + 1);
2358 1.1 mjacob }
2359 1.1 mjacob
2360 1.1 mjacob /*
2361 1.1 mjacob * This function issues the "PERFORM SLOT OPERATION" command.
2362 1.1 mjacob */
2363 1.1 mjacob static int
2364 1.1 mjacob perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2365 1.1 mjacob {
2366 1.1 mjacob int err, amt;
2367 1.1 mjacob char *sdata;
2368 1.1 mjacob struct scfg *cc = ssc->ses_private;
2369 1.1 mjacob static char cdb[10] =
2370 1.1 mjacob { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2371 1.1 mjacob
2372 1.1 mjacob if (cc == NULL)
2373 1.1 mjacob return (0);
2374 1.1 mjacob
2375 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
2376 1.1 mjacob if (sdata == NULL)
2377 1.1 mjacob return (ENOMEM);
2378 1.1 mjacob MEMZERO(sdata, SAFT_SCRATCH);
2379 1.1 mjacob
2380 1.1 mjacob sdata[0] = SAFTE_WT_SLTOP;
2381 1.1 mjacob sdata[1] = slot;
2382 1.1 mjacob sdata[2] = opflag;
2383 1.1 mjacob SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2384 1.1 mjacob amt = -SAFT_SCRATCH;
2385 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2386 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
2387 1.1 mjacob return (err);
2388 1.1 mjacob }
2389