ses.c revision 1.22.2.2 1 1.22.2.2 skrll /* $NetBSD: ses.c,v 1.22.2.2 2004/08/25 06:58:43 skrll Exp $ */
2 1.1 mjacob /*
3 1.1 mjacob * Copyright (C) 2000 National Aeronautics & Space Administration
4 1.1 mjacob * All rights reserved.
5 1.1 mjacob *
6 1.1 mjacob * Redistribution and use in source and binary forms, with or without
7 1.1 mjacob * modification, are permitted provided that the following conditions
8 1.1 mjacob * are met:
9 1.1 mjacob * 1. Redistributions of source code must retain the above copyright
10 1.1 mjacob * notice, this list of conditions and the following disclaimer.
11 1.1 mjacob * 2. The name of the author may not be used to endorse or promote products
12 1.1 mjacob * derived from this software without specific prior written permission
13 1.1 mjacob *
14 1.1 mjacob * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 1.1 mjacob * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 1.1 mjacob * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 1.1 mjacob * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 1.1 mjacob * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 1.1 mjacob * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 1.1 mjacob * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 1.1 mjacob * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 1.1 mjacob * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 1.1 mjacob * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 1.1 mjacob *
25 1.1 mjacob * Author: mjacob (at) nas.nasa.gov
26 1.1 mjacob */
27 1.1 mjacob
28 1.12 lukem #include <sys/cdefs.h>
29 1.22.2.2 skrll __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.22.2.2 2004/08/25 06:58:43 skrll Exp $");
30 1.1 mjacob
31 1.1 mjacob #include "opt_scsi.h"
32 1.1 mjacob
33 1.1 mjacob #include <sys/param.h>
34 1.1 mjacob #include <sys/systm.h>
35 1.1 mjacob #include <sys/kernel.h>
36 1.1 mjacob #include <sys/file.h>
37 1.1 mjacob #include <sys/stat.h>
38 1.1 mjacob #include <sys/ioctl.h>
39 1.1 mjacob #include <sys/scsiio.h>
40 1.1 mjacob #include <sys/buf.h>
41 1.1 mjacob #include <sys/uio.h>
42 1.1 mjacob #include <sys/malloc.h>
43 1.1 mjacob #include <sys/errno.h>
44 1.1 mjacob #include <sys/device.h>
45 1.1 mjacob #include <sys/disklabel.h>
46 1.1 mjacob #include <sys/disk.h>
47 1.1 mjacob #include <sys/proc.h>
48 1.1 mjacob #include <sys/conf.h>
49 1.1 mjacob #include <sys/vnode.h>
50 1.1 mjacob #include <machine/stdarg.h>
51 1.1 mjacob
52 1.1 mjacob #include <dev/scsipi/scsipi_all.h>
53 1.1 mjacob #include <dev/scsipi/scsi_all.h>
54 1.1 mjacob #include <dev/scsipi/scsipi_disk.h>
55 1.1 mjacob #include <dev/scsipi/scsi_disk.h>
56 1.1 mjacob #include <dev/scsipi/scsiconf.h>
57 1.1 mjacob #include <dev/scsipi/ses.h>
58 1.1 mjacob
59 1.1 mjacob /*
60 1.1 mjacob * Platform Independent Driver Internal Definitions for SES devices.
61 1.1 mjacob */
62 1.1 mjacob typedef enum {
63 1.1 mjacob SES_NONE,
64 1.1 mjacob SES_SES_SCSI2,
65 1.1 mjacob SES_SES,
66 1.1 mjacob SES_SES_PASSTHROUGH,
67 1.1 mjacob SES_SEN,
68 1.1 mjacob SES_SAFT
69 1.1 mjacob } enctyp;
70 1.1 mjacob
71 1.1 mjacob struct ses_softc;
72 1.1 mjacob typedef struct ses_softc ses_softc_t;
73 1.1 mjacob typedef struct {
74 1.22.2.2 skrll int (*softc_init)(ses_softc_t *, int);
75 1.22.2.2 skrll int (*init_enc)(ses_softc_t *);
76 1.22.2.2 skrll int (*get_encstat)(ses_softc_t *, int);
77 1.22.2.2 skrll int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 1.22.2.2 skrll int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 1.22.2.2 skrll int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 1.1 mjacob } encvec;
81 1.1 mjacob
82 1.1 mjacob #define ENCI_SVALID 0x80
83 1.1 mjacob
84 1.1 mjacob typedef struct {
85 1.1 mjacob uint32_t
86 1.1 mjacob enctype : 8, /* enclosure type */
87 1.1 mjacob subenclosure : 8, /* subenclosure id */
88 1.1 mjacob svalid : 1, /* enclosure information valid */
89 1.1 mjacob priv : 15; /* private data, per object */
90 1.1 mjacob uint8_t encstat[4]; /* state && stats */
91 1.1 mjacob } encobj;
92 1.1 mjacob
93 1.1 mjacob #define SEN_ID "UNISYS SUN_SEN"
94 1.1 mjacob #define SEN_ID_LEN 24
95 1.1 mjacob
96 1.22.2.2 skrll static enctyp ses_type(struct scsipi_inquiry_data *);
97 1.1 mjacob
98 1.1 mjacob
99 1.1 mjacob /* Forward reference to Enclosure Functions */
100 1.22.2.2 skrll static int ses_softc_init(ses_softc_t *, int);
101 1.22.2.2 skrll static int ses_init_enc(ses_softc_t *);
102 1.22.2.2 skrll static int ses_get_encstat(ses_softc_t *, int);
103 1.22.2.2 skrll static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 1.22.2.2 skrll static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 1.22.2.2 skrll static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106 1.22.2.2 skrll
107 1.22.2.2 skrll static int safte_softc_init(ses_softc_t *, int);
108 1.22.2.2 skrll static int safte_init_enc(ses_softc_t *);
109 1.22.2.2 skrll static int safte_get_encstat(ses_softc_t *, int);
110 1.22.2.2 skrll static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 1.22.2.2 skrll static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 1.22.2.2 skrll static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113 1.1 mjacob
114 1.1 mjacob /*
115 1.1 mjacob * Platform implementation defines/functions for SES internal kernel stuff
116 1.1 mjacob */
117 1.1 mjacob
118 1.1 mjacob #define STRNCMP strncmp
119 1.1 mjacob #define PRINTF printf
120 1.1 mjacob #define SES_LOG ses_log
121 1.1 mjacob #if defined(DEBUG) || defined(SCSIDEBUG)
122 1.1 mjacob #define SES_VLOG ses_log
123 1.1 mjacob #else
124 1.1 mjacob #define SES_VLOG if (0) ses_log
125 1.1 mjacob #endif
126 1.1 mjacob #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 1.1 mjacob #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 1.10 thorpej #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 1.11 thorpej #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 1.1 mjacob #define RECEIVE_DIAGNOSTIC 0x1c
131 1.1 mjacob #define SEND_DIAGNOSTIC 0x1d
132 1.1 mjacob #define WRITE_BUFFER 0x3b
133 1.1 mjacob #define READ_BUFFER 0x3c
134 1.1 mjacob
135 1.22.2.2 skrll static dev_type_open(sesopen);
136 1.22.2.2 skrll static dev_type_close(sesclose);
137 1.22.2.2 skrll static dev_type_ioctl(sesioctl);
138 1.14 gehenna
139 1.14 gehenna const struct cdevsw ses_cdevsw = {
140 1.14 gehenna sesopen, sesclose, noread, nowrite, sesioctl,
141 1.18 jdolecek nostop, notty, nopoll, nommap, nokqfilter,
142 1.14 gehenna };
143 1.1 mjacob
144 1.22.2.2 skrll static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
145 1.22.2.2 skrll static void ses_log(struct ses_softc *, const char *, ...)
146 1.7 sommerfe __attribute__((__format__(__printf__, 2, 3)));
147 1.1 mjacob
148 1.1 mjacob /*
149 1.1 mjacob * General NetBSD kernel stuff.
150 1.1 mjacob */
151 1.1 mjacob
152 1.1 mjacob struct ses_softc {
153 1.1 mjacob struct device sc_device;
154 1.9 bouyer struct scsipi_periph *sc_periph;
155 1.1 mjacob enctyp ses_type; /* type of enclosure */
156 1.1 mjacob encvec ses_vec; /* vector to handlers */
157 1.1 mjacob void * ses_private; /* per-type private data */
158 1.1 mjacob encobj * ses_objmap; /* objects */
159 1.1 mjacob u_int32_t ses_nobjects; /* number of objects */
160 1.1 mjacob ses_encstat ses_encstat; /* overall status */
161 1.1 mjacob u_int8_t ses_flags;
162 1.1 mjacob };
163 1.1 mjacob #define SES_FLAG_INVALID 0x01
164 1.1 mjacob #define SES_FLAG_OPEN 0x02
165 1.1 mjacob #define SES_FLAG_INITIALIZED 0x04
166 1.1 mjacob
167 1.1 mjacob #define SESUNIT(x) (minor((x)))
168 1.1 mjacob
169 1.22.2.2 skrll static int ses_match(struct device *, struct cfdata *, void *);
170 1.22.2.2 skrll static void ses_attach(struct device *, struct device *, void *);
171 1.22.2.2 skrll static enctyp ses_device_type(struct scsipibus_attach_args *);
172 1.1 mjacob
173 1.16 thorpej CFATTACH_DECL(ses, sizeof (struct ses_softc),
174 1.17 thorpej ses_match, ses_attach, NULL, NULL);
175 1.16 thorpej
176 1.1 mjacob extern struct cfdriver ses_cd;
177 1.1 mjacob
178 1.22.2.2 skrll static const struct scsipi_periphsw ses_switch = {
179 1.1 mjacob NULL,
180 1.1 mjacob NULL,
181 1.1 mjacob NULL,
182 1.1 mjacob NULL
183 1.1 mjacob };
184 1.1 mjacob
185 1.22.2.2 skrll static int
186 1.22.2.2 skrll ses_match(struct device *parent, struct cfdata *match, void *aux)
187 1.1 mjacob {
188 1.1 mjacob struct scsipibus_attach_args *sa = aux;
189 1.2 mjacob
190 1.1 mjacob switch (ses_device_type(sa)) {
191 1.1 mjacob case SES_SES:
192 1.1 mjacob case SES_SES_SCSI2:
193 1.1 mjacob case SES_SEN:
194 1.1 mjacob case SES_SAFT:
195 1.2 mjacob case SES_SES_PASSTHROUGH:
196 1.2 mjacob /*
197 1.2 mjacob * For these devices, it's a perfect match.
198 1.2 mjacob */
199 1.2 mjacob return (24);
200 1.1 mjacob default:
201 1.1 mjacob return (0);
202 1.1 mjacob }
203 1.1 mjacob }
204 1.1 mjacob
205 1.1 mjacob
206 1.1 mjacob /*
207 1.1 mjacob * Complete the attachment.
208 1.1 mjacob *
209 1.1 mjacob * We have to repeat the rerun of INQUIRY data as above because
210 1.1 mjacob * it's not until the return from the match routine that we have
211 1.1 mjacob * the softc available to set stuff in.
212 1.1 mjacob */
213 1.22.2.2 skrll static void
214 1.22.2.2 skrll ses_attach(struct device *parent, struct device *self, void *aux)
215 1.1 mjacob {
216 1.1 mjacob char *tname;
217 1.1 mjacob struct ses_softc *softc = (void *)self;
218 1.1 mjacob struct scsipibus_attach_args *sa = aux;
219 1.9 bouyer struct scsipi_periph *periph = sa->sa_periph;
220 1.1 mjacob
221 1.9 bouyer SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
222 1.9 bouyer softc->sc_periph = periph;
223 1.9 bouyer periph->periph_dev = &softc->sc_device;
224 1.9 bouyer periph->periph_switch = &ses_switch;
225 1.9 bouyer periph->periph_openings = 1;
226 1.1 mjacob
227 1.1 mjacob softc->ses_type = ses_device_type(sa);
228 1.1 mjacob switch (softc->ses_type) {
229 1.1 mjacob case SES_SES:
230 1.1 mjacob case SES_SES_SCSI2:
231 1.1 mjacob case SES_SES_PASSTHROUGH:
232 1.1 mjacob softc->ses_vec.softc_init = ses_softc_init;
233 1.1 mjacob softc->ses_vec.init_enc = ses_init_enc;
234 1.1 mjacob softc->ses_vec.get_encstat = ses_get_encstat;
235 1.1 mjacob softc->ses_vec.set_encstat = ses_set_encstat;
236 1.1 mjacob softc->ses_vec.get_objstat = ses_get_objstat;
237 1.1 mjacob softc->ses_vec.set_objstat = ses_set_objstat;
238 1.1 mjacob break;
239 1.1 mjacob case SES_SAFT:
240 1.1 mjacob softc->ses_vec.softc_init = safte_softc_init;
241 1.1 mjacob softc->ses_vec.init_enc = safte_init_enc;
242 1.1 mjacob softc->ses_vec.get_encstat = safte_get_encstat;
243 1.1 mjacob softc->ses_vec.set_encstat = safte_set_encstat;
244 1.1 mjacob softc->ses_vec.get_objstat = safte_get_objstat;
245 1.1 mjacob softc->ses_vec.set_objstat = safte_set_objstat;
246 1.1 mjacob break;
247 1.1 mjacob case SES_SEN:
248 1.1 mjacob break;
249 1.1 mjacob case SES_NONE:
250 1.1 mjacob default:
251 1.1 mjacob break;
252 1.1 mjacob }
253 1.1 mjacob
254 1.1 mjacob switch (softc->ses_type) {
255 1.1 mjacob default:
256 1.1 mjacob case SES_NONE:
257 1.1 mjacob tname = "No SES device";
258 1.1 mjacob break;
259 1.1 mjacob case SES_SES_SCSI2:
260 1.1 mjacob tname = "SCSI-2 SES Device";
261 1.1 mjacob break;
262 1.1 mjacob case SES_SES:
263 1.1 mjacob tname = "SCSI-3 SES Device";
264 1.1 mjacob break;
265 1.1 mjacob case SES_SES_PASSTHROUGH:
266 1.1 mjacob tname = "SES Passthrough Device";
267 1.1 mjacob break;
268 1.1 mjacob case SES_SEN:
269 1.1 mjacob tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 1.1 mjacob break;
271 1.1 mjacob case SES_SAFT:
272 1.1 mjacob tname = "SAF-TE Compliant Device";
273 1.1 mjacob break;
274 1.1 mjacob }
275 1.1 mjacob printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 1.1 mjacob }
277 1.1 mjacob
278 1.2 mjacob
279 1.1 mjacob static enctyp
280 1.22.2.2 skrll ses_device_type(struct scsipibus_attach_args *sa)
281 1.1 mjacob {
282 1.1 mjacob struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
283 1.1 mjacob
284 1.1 mjacob if (inqp == NULL)
285 1.1 mjacob return (SES_NONE);
286 1.1 mjacob
287 1.5 dante return (ses_type(inqp));
288 1.1 mjacob }
289 1.1 mjacob
290 1.22.2.2 skrll static int
291 1.22.2.2 skrll sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
292 1.1 mjacob {
293 1.1 mjacob struct ses_softc *softc;
294 1.1 mjacob int error, unit;
295 1.1 mjacob
296 1.1 mjacob unit = SESUNIT(dev);
297 1.1 mjacob if (unit >= ses_cd.cd_ndevs)
298 1.1 mjacob return (ENXIO);
299 1.1 mjacob softc = ses_cd.cd_devs[unit];
300 1.1 mjacob if (softc == NULL)
301 1.1 mjacob return (ENXIO);
302 1.1 mjacob
303 1.1 mjacob if (softc->ses_flags & SES_FLAG_INVALID) {
304 1.1 mjacob error = ENXIO;
305 1.1 mjacob goto out;
306 1.1 mjacob }
307 1.1 mjacob if (softc->ses_flags & SES_FLAG_OPEN) {
308 1.1 mjacob error = EBUSY;
309 1.1 mjacob goto out;
310 1.1 mjacob }
311 1.1 mjacob if (softc->ses_vec.softc_init == NULL) {
312 1.1 mjacob error = ENXIO;
313 1.1 mjacob goto out;
314 1.1 mjacob }
315 1.9 bouyer error = scsipi_adapter_addref(
316 1.9 bouyer softc->sc_periph->periph_channel->chan_adapter);
317 1.1 mjacob if (error != 0)
318 1.1 mjacob goto out;
319 1.1 mjacob
320 1.1 mjacob
321 1.1 mjacob softc->ses_flags |= SES_FLAG_OPEN;
322 1.1 mjacob if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
323 1.1 mjacob error = (*softc->ses_vec.softc_init)(softc, 1);
324 1.1 mjacob if (error)
325 1.1 mjacob softc->ses_flags &= ~SES_FLAG_OPEN;
326 1.1 mjacob else
327 1.1 mjacob softc->ses_flags |= SES_FLAG_INITIALIZED;
328 1.1 mjacob }
329 1.1 mjacob
330 1.1 mjacob out:
331 1.1 mjacob return (error);
332 1.1 mjacob }
333 1.1 mjacob
334 1.22.2.2 skrll static int
335 1.22.2.2 skrll sesclose(dev_t dev, int flags, int fmt, struct lwp *l)
336 1.1 mjacob {
337 1.1 mjacob struct ses_softc *softc;
338 1.1 mjacob int unit;
339 1.1 mjacob
340 1.1 mjacob unit = SESUNIT(dev);
341 1.1 mjacob if (unit >= ses_cd.cd_ndevs)
342 1.1 mjacob return (ENXIO);
343 1.1 mjacob softc = ses_cd.cd_devs[unit];
344 1.1 mjacob if (softc == NULL)
345 1.1 mjacob return (ENXIO);
346 1.1 mjacob
347 1.9 bouyer scsipi_wait_drain(softc->sc_periph);
348 1.9 bouyer scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
349 1.1 mjacob softc->ses_flags &= ~SES_FLAG_OPEN;
350 1.1 mjacob return (0);
351 1.1 mjacob }
352 1.1 mjacob
353 1.22.2.2 skrll static int
354 1.22.2.2 skrll sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct lwp *l)
355 1.1 mjacob {
356 1.1 mjacob ses_encstat tmp;
357 1.1 mjacob ses_objstat objs;
358 1.1 mjacob ses_object obj, *uobj;
359 1.1 mjacob struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
360 1.1 mjacob void *addr;
361 1.1 mjacob int error, i;
362 1.1 mjacob
363 1.1 mjacob
364 1.1 mjacob if (arg_addr)
365 1.1 mjacob addr = *((caddr_t *) arg_addr);
366 1.1 mjacob else
367 1.1 mjacob addr = NULL;
368 1.1 mjacob
369 1.9 bouyer SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
370 1.1 mjacob
371 1.1 mjacob /*
372 1.1 mjacob * Now check to see whether we're initialized or not.
373 1.1 mjacob */
374 1.1 mjacob if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
375 1.1 mjacob return (ENODEV);
376 1.1 mjacob }
377 1.1 mjacob
378 1.1 mjacob error = 0;
379 1.1 mjacob
380 1.1 mjacob /*
381 1.1 mjacob * If this command can change the device's state,
382 1.1 mjacob * we must have the device open for writing.
383 1.1 mjacob */
384 1.1 mjacob switch (cmd) {
385 1.1 mjacob case SESIOC_GETNOBJ:
386 1.1 mjacob case SESIOC_GETOBJMAP:
387 1.1 mjacob case SESIOC_GETENCSTAT:
388 1.1 mjacob case SESIOC_GETOBJSTAT:
389 1.1 mjacob break;
390 1.1 mjacob default:
391 1.1 mjacob if ((flag & FWRITE) == 0) {
392 1.1 mjacob return (EBADF);
393 1.1 mjacob }
394 1.1 mjacob }
395 1.1 mjacob
396 1.1 mjacob switch (cmd) {
397 1.1 mjacob case SESIOC_GETNOBJ:
398 1.1 mjacob error = copyout(&ssc->ses_nobjects, addr,
399 1.1 mjacob sizeof (ssc->ses_nobjects));
400 1.1 mjacob break;
401 1.1 mjacob
402 1.1 mjacob case SESIOC_GETOBJMAP:
403 1.1 mjacob for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
404 1.1 mjacob obj.obj_id = i;
405 1.1 mjacob obj.subencid = ssc->ses_objmap[i].subenclosure;
406 1.1 mjacob obj.object_type = ssc->ses_objmap[i].enctype;
407 1.1 mjacob error = copyout(&obj, uobj, sizeof (ses_object));
408 1.1 mjacob if (error) {
409 1.1 mjacob break;
410 1.1 mjacob }
411 1.1 mjacob }
412 1.1 mjacob break;
413 1.1 mjacob
414 1.1 mjacob case SESIOC_GETENCSTAT:
415 1.1 mjacob error = (*ssc->ses_vec.get_encstat)(ssc, 1);
416 1.1 mjacob if (error)
417 1.1 mjacob break;
418 1.1 mjacob tmp = ssc->ses_encstat & ~ENCI_SVALID;
419 1.1 mjacob error = copyout(&tmp, addr, sizeof (ses_encstat));
420 1.1 mjacob ssc->ses_encstat = tmp;
421 1.1 mjacob break;
422 1.1 mjacob
423 1.1 mjacob case SESIOC_SETENCSTAT:
424 1.1 mjacob error = copyin(addr, &tmp, sizeof (ses_encstat));
425 1.1 mjacob if (error)
426 1.1 mjacob break;
427 1.1 mjacob error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
428 1.1 mjacob break;
429 1.1 mjacob
430 1.1 mjacob case SESIOC_GETOBJSTAT:
431 1.1 mjacob error = copyin(addr, &objs, sizeof (ses_objstat));
432 1.1 mjacob if (error)
433 1.1 mjacob break;
434 1.1 mjacob if (objs.obj_id >= ssc->ses_nobjects) {
435 1.1 mjacob error = EINVAL;
436 1.1 mjacob break;
437 1.1 mjacob }
438 1.1 mjacob error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
439 1.1 mjacob if (error)
440 1.1 mjacob break;
441 1.1 mjacob error = copyout(&objs, addr, sizeof (ses_objstat));
442 1.1 mjacob /*
443 1.1 mjacob * Always (for now) invalidate entry.
444 1.1 mjacob */
445 1.1 mjacob ssc->ses_objmap[objs.obj_id].svalid = 0;
446 1.1 mjacob break;
447 1.1 mjacob
448 1.1 mjacob case SESIOC_SETOBJSTAT:
449 1.1 mjacob error = copyin(addr, &objs, sizeof (ses_objstat));
450 1.1 mjacob if (error)
451 1.1 mjacob break;
452 1.1 mjacob
453 1.1 mjacob if (objs.obj_id >= ssc->ses_nobjects) {
454 1.1 mjacob error = EINVAL;
455 1.1 mjacob break;
456 1.1 mjacob }
457 1.1 mjacob error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
458 1.1 mjacob
459 1.1 mjacob /*
460 1.1 mjacob * Always (for now) invalidate entry.
461 1.1 mjacob */
462 1.1 mjacob ssc->ses_objmap[objs.obj_id].svalid = 0;
463 1.1 mjacob break;
464 1.1 mjacob
465 1.1 mjacob case SESIOC_INIT:
466 1.1 mjacob
467 1.1 mjacob error = (*ssc->ses_vec.init_enc)(ssc);
468 1.1 mjacob break;
469 1.1 mjacob
470 1.1 mjacob default:
471 1.9 bouyer error = scsipi_do_ioctl(ssc->sc_periph,
472 1.22.2.1 darrenr dev, cmd, arg_addr, flag, l);
473 1.1 mjacob break;
474 1.1 mjacob }
475 1.1 mjacob return (error);
476 1.1 mjacob }
477 1.1 mjacob
478 1.1 mjacob static int
479 1.1 mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
480 1.1 mjacob {
481 1.1 mjacob struct scsipi_generic sgen;
482 1.1 mjacob int dl, flg, error;
483 1.1 mjacob
484 1.1 mjacob if (dptr) {
485 1.1 mjacob if ((dl = *dlenp) < 0) {
486 1.1 mjacob dl = -dl;
487 1.1 mjacob flg = XS_CTL_DATA_OUT;
488 1.1 mjacob } else {
489 1.1 mjacob flg = XS_CTL_DATA_IN;
490 1.1 mjacob }
491 1.1 mjacob } else {
492 1.1 mjacob dl = 0;
493 1.1 mjacob flg = 0;
494 1.1 mjacob }
495 1.1 mjacob
496 1.1 mjacob if (cdbl > sizeof (struct scsipi_generic)) {
497 1.1 mjacob cdbl = sizeof (struct scsipi_generic);
498 1.1 mjacob }
499 1.11 thorpej memcpy(&sgen, cdb, cdbl);
500 1.1 mjacob #ifndef SCSIDEBUG
501 1.1 mjacob flg |= XS_CTL_SILENT;
502 1.1 mjacob #endif
503 1.9 bouyer error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
504 1.1 mjacob (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
505 1.1 mjacob
506 1.1 mjacob if (error == 0 && dptr)
507 1.1 mjacob *dlenp = 0;
508 1.1 mjacob
509 1.1 mjacob return (error);
510 1.1 mjacob }
511 1.1 mjacob
512 1.1 mjacob static void
513 1.1 mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
514 1.1 mjacob {
515 1.1 mjacob va_list ap;
516 1.1 mjacob
517 1.1 mjacob printf("%s: ", ssc->sc_device.dv_xname);
518 1.1 mjacob va_start(ap, fmt);
519 1.1 mjacob vprintf(fmt, ap);
520 1.1 mjacob va_end(ap);
521 1.1 mjacob }
522 1.1 mjacob
523 1.1 mjacob /*
524 1.1 mjacob * The code after this point runs on many platforms,
525 1.1 mjacob * so forgive the slightly awkward and nonconforming
526 1.1 mjacob * appearance.
527 1.1 mjacob */
528 1.1 mjacob
529 1.1 mjacob /*
530 1.1 mjacob * Is this a device that supports enclosure services?
531 1.1 mjacob *
532 1.1 mjacob * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
533 1.1 mjacob * an SES device. If it happens to be an old UNISYS SEN device, we can
534 1.1 mjacob * handle that too.
535 1.1 mjacob */
536 1.3 mjacob
537 1.3 mjacob #define SAFTE_START 44
538 1.3 mjacob #define SAFTE_END 50
539 1.3 mjacob #define SAFTE_LEN SAFTE_END-SAFTE_START
540 1.1 mjacob
541 1.1 mjacob static enctyp
542 1.22.2.2 skrll ses_type(struct scsipi_inquiry_data *inqp)
543 1.1 mjacob {
544 1.5 dante size_t given_len = inqp->additional_length + 4;
545 1.1 mjacob
546 1.5 dante if (given_len < 8+SEN_ID_LEN)
547 1.1 mjacob return (SES_NONE);
548 1.1 mjacob
549 1.5 dante if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
550 1.5 dante if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
551 1.1 mjacob return (SES_SEN);
552 1.5 dante } else if ((inqp->version & SID_ANSII) > 2) {
553 1.1 mjacob return (SES_SES);
554 1.1 mjacob } else {
555 1.1 mjacob return (SES_SES_SCSI2);
556 1.1 mjacob }
557 1.1 mjacob return (SES_NONE);
558 1.1 mjacob }
559 1.1 mjacob
560 1.1 mjacob #ifdef SES_ENABLE_PASSTHROUGH
561 1.5 dante if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
562 1.1 mjacob /*
563 1.1 mjacob * PassThrough Device.
564 1.1 mjacob */
565 1.1 mjacob return (SES_SES_PASSTHROUGH);
566 1.1 mjacob }
567 1.1 mjacob #endif
568 1.1 mjacob
569 1.2 mjacob /*
570 1.2 mjacob * The comparison is short for a reason-
571 1.2 mjacob * some vendors were chopping it short.
572 1.2 mjacob */
573 1.2 mjacob
574 1.5 dante if (given_len < SAFTE_END - 2) {
575 1.1 mjacob return (SES_NONE);
576 1.1 mjacob }
577 1.2 mjacob
578 1.5 dante if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
579 1.5 dante SAFTE_LEN - 2) == 0) {
580 1.1 mjacob return (SES_SAFT);
581 1.6 thorpej }
582 1.5 dante
583 1.1 mjacob return (SES_NONE);
584 1.1 mjacob }
585 1.1 mjacob
586 1.1 mjacob /*
587 1.1 mjacob * SES Native Type Device Support
588 1.1 mjacob */
589 1.1 mjacob
590 1.1 mjacob /*
591 1.1 mjacob * SES Diagnostic Page Codes
592 1.1 mjacob */
593 1.1 mjacob
594 1.1 mjacob typedef enum {
595 1.1 mjacob SesConfigPage = 0x1,
596 1.1 mjacob SesControlPage,
597 1.1 mjacob #define SesStatusPage SesControlPage
598 1.1 mjacob SesHelpTxt,
599 1.1 mjacob SesStringOut,
600 1.1 mjacob #define SesStringIn SesStringOut
601 1.1 mjacob SesThresholdOut,
602 1.1 mjacob #define SesThresholdIn SesThresholdOut
603 1.1 mjacob SesArrayControl,
604 1.1 mjacob #define SesArrayStatus SesArrayControl
605 1.1 mjacob SesElementDescriptor,
606 1.1 mjacob SesShortStatus
607 1.1 mjacob } SesDiagPageCodes;
608 1.1 mjacob
609 1.1 mjacob /*
610 1.1 mjacob * minimal amounts
611 1.1 mjacob */
612 1.1 mjacob
613 1.1 mjacob /*
614 1.1 mjacob * Minimum amount of data, starting from byte 0, to have
615 1.1 mjacob * the config header.
616 1.1 mjacob */
617 1.1 mjacob #define SES_CFGHDR_MINLEN 12
618 1.1 mjacob
619 1.1 mjacob /*
620 1.1 mjacob * Minimum amount of data, starting from byte 0, to have
621 1.1 mjacob * the config header and one enclosure header.
622 1.1 mjacob */
623 1.1 mjacob #define SES_ENCHDR_MINLEN 48
624 1.1 mjacob
625 1.1 mjacob /*
626 1.1 mjacob * Take this value, subtract it from VEnclen and you know
627 1.1 mjacob * the length of the vendor unique bytes.
628 1.1 mjacob */
629 1.1 mjacob #define SES_ENCHDR_VMIN 36
630 1.1 mjacob
631 1.1 mjacob /*
632 1.1 mjacob * SES Data Structures
633 1.1 mjacob */
634 1.1 mjacob
635 1.1 mjacob typedef struct {
636 1.1 mjacob uint32_t GenCode; /* Generation Code */
637 1.1 mjacob uint8_t Nsubenc; /* Number of Subenclosures */
638 1.1 mjacob } SesCfgHdr;
639 1.1 mjacob
640 1.1 mjacob typedef struct {
641 1.1 mjacob uint8_t Subencid; /* SubEnclosure Identifier */
642 1.1 mjacob uint8_t Ntypes; /* # of supported types */
643 1.1 mjacob uint8_t VEnclen; /* Enclosure Descriptor Length */
644 1.1 mjacob } SesEncHdr;
645 1.1 mjacob
646 1.1 mjacob typedef struct {
647 1.1 mjacob uint8_t encWWN[8]; /* XXX- Not Right Yet */
648 1.1 mjacob uint8_t encVid[8];
649 1.1 mjacob uint8_t encPid[16];
650 1.1 mjacob uint8_t encRev[4];
651 1.1 mjacob uint8_t encVen[1];
652 1.1 mjacob } SesEncDesc;
653 1.1 mjacob
654 1.1 mjacob typedef struct {
655 1.1 mjacob uint8_t enc_type; /* type of element */
656 1.1 mjacob uint8_t enc_maxelt; /* maximum supported */
657 1.1 mjacob uint8_t enc_subenc; /* in SubEnc # N */
658 1.1 mjacob uint8_t enc_tlen; /* Type Descriptor Text Length */
659 1.1 mjacob } SesThdr;
660 1.1 mjacob
661 1.1 mjacob typedef struct {
662 1.1 mjacob uint8_t comstatus;
663 1.1 mjacob uint8_t comstat[3];
664 1.1 mjacob } SesComStat;
665 1.1 mjacob
666 1.1 mjacob struct typidx {
667 1.1 mjacob int ses_tidx;
668 1.1 mjacob int ses_oidx;
669 1.1 mjacob };
670 1.1 mjacob
671 1.1 mjacob struct sscfg {
672 1.1 mjacob uint8_t ses_ntypes; /* total number of types supported */
673 1.1 mjacob
674 1.1 mjacob /*
675 1.1 mjacob * We need to keep a type index as well as an
676 1.1 mjacob * object index for each object in an enclosure.
677 1.1 mjacob */
678 1.1 mjacob struct typidx *ses_typidx;
679 1.1 mjacob
680 1.1 mjacob /*
681 1.1 mjacob * We also need to keep track of the number of elements
682 1.1 mjacob * per type of element. This is needed later so that we
683 1.1 mjacob * can find precisely in the returned status data the
684 1.1 mjacob * status for the Nth element of the Kth type.
685 1.1 mjacob */
686 1.1 mjacob uint8_t * ses_eltmap;
687 1.1 mjacob };
688 1.1 mjacob
689 1.1 mjacob
690 1.1 mjacob /*
691 1.1 mjacob * (de)canonicalization defines
692 1.1 mjacob */
693 1.1 mjacob #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
694 1.1 mjacob #define sbit(x, bit) (((uint32_t)(x)) << bit)
695 1.1 mjacob #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
696 1.1 mjacob
697 1.1 mjacob #define sset16(outp, idx, sval) \
698 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
699 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
700 1.1 mjacob
701 1.1 mjacob
702 1.1 mjacob #define sset24(outp, idx, sval) \
703 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
704 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
705 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
706 1.1 mjacob
707 1.1 mjacob
708 1.1 mjacob #define sset32(outp, idx, sval) \
709 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
710 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
711 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
712 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
713 1.1 mjacob
714 1.1 mjacob #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
715 1.1 mjacob #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
716 1.1 mjacob #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
717 1.1 mjacob #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
718 1.1 mjacob
719 1.1 mjacob #define sget16(inp, idx, lval) \
720 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
721 1.1 mjacob (((uint8_t *)(inp))[idx+1]), idx += 2
722 1.1 mjacob
723 1.1 mjacob #define gget16(inp, idx, lval) \
724 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
725 1.1 mjacob (((uint8_t *)(inp))[idx+1])
726 1.1 mjacob
727 1.1 mjacob #define sget24(inp, idx, lval) \
728 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
729 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
730 1.1 mjacob (((uint8_t *)(inp))[idx+2]), idx += 3
731 1.1 mjacob
732 1.1 mjacob #define gget24(inp, idx, lval) \
733 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
734 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
735 1.1 mjacob (((uint8_t *)(inp))[idx+2])
736 1.1 mjacob
737 1.1 mjacob #define sget32(inp, idx, lval) \
738 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
739 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
740 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
741 1.1 mjacob (((uint8_t *)(inp))[idx+3]), idx += 4
742 1.1 mjacob
743 1.1 mjacob #define gget32(inp, idx, lval) \
744 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
745 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
746 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
747 1.1 mjacob (((uint8_t *)(inp))[idx+3])
748 1.1 mjacob
749 1.1 mjacob #define SCSZ 0x2000
750 1.1 mjacob #define CFLEN (256 + SES_ENCHDR_MINLEN)
751 1.1 mjacob
752 1.1 mjacob /*
753 1.1 mjacob * Routines specific && private to SES only
754 1.1 mjacob */
755 1.1 mjacob
756 1.1 mjacob static int ses_getconfig(ses_softc_t *);
757 1.1 mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
758 1.1 mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
759 1.1 mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
760 1.1 mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
761 1.1 mjacob static int ses_getthdr(uint8_t *, int, int, SesThdr *);
762 1.1 mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
763 1.1 mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
764 1.1 mjacob
765 1.1 mjacob static int
766 1.1 mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
767 1.1 mjacob {
768 1.1 mjacob if (doinit == 0) {
769 1.1 mjacob struct sscfg *cc;
770 1.1 mjacob if (ssc->ses_nobjects) {
771 1.1 mjacob SES_FREE(ssc->ses_objmap,
772 1.1 mjacob ssc->ses_nobjects * sizeof (encobj));
773 1.1 mjacob ssc->ses_objmap = NULL;
774 1.1 mjacob }
775 1.1 mjacob if ((cc = ssc->ses_private) != NULL) {
776 1.1 mjacob if (cc->ses_eltmap && cc->ses_ntypes) {
777 1.1 mjacob SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
778 1.1 mjacob cc->ses_eltmap = NULL;
779 1.1 mjacob cc->ses_ntypes = 0;
780 1.1 mjacob }
781 1.1 mjacob if (cc->ses_typidx && ssc->ses_nobjects) {
782 1.1 mjacob SES_FREE(cc->ses_typidx,
783 1.1 mjacob ssc->ses_nobjects * sizeof (struct typidx));
784 1.1 mjacob cc->ses_typidx = NULL;
785 1.1 mjacob }
786 1.1 mjacob SES_FREE(cc, sizeof (struct sscfg));
787 1.1 mjacob ssc->ses_private = NULL;
788 1.1 mjacob }
789 1.1 mjacob ssc->ses_nobjects = 0;
790 1.1 mjacob return (0);
791 1.1 mjacob }
792 1.1 mjacob if (ssc->ses_private == NULL) {
793 1.1 mjacob ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
794 1.1 mjacob }
795 1.1 mjacob if (ssc->ses_private == NULL) {
796 1.1 mjacob return (ENOMEM);
797 1.1 mjacob }
798 1.1 mjacob ssc->ses_nobjects = 0;
799 1.1 mjacob ssc->ses_encstat = 0;
800 1.1 mjacob return (ses_getconfig(ssc));
801 1.1 mjacob }
802 1.1 mjacob
803 1.1 mjacob static int
804 1.1 mjacob ses_init_enc(ses_softc_t *ssc)
805 1.1 mjacob {
806 1.1 mjacob return (0);
807 1.1 mjacob }
808 1.1 mjacob
809 1.1 mjacob static int
810 1.1 mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
811 1.1 mjacob {
812 1.1 mjacob SesComStat ComStat;
813 1.1 mjacob int status;
814 1.1 mjacob
815 1.1 mjacob if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
816 1.1 mjacob return (status);
817 1.1 mjacob }
818 1.1 mjacob ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
819 1.1 mjacob return (0);
820 1.1 mjacob }
821 1.1 mjacob
822 1.1 mjacob static int
823 1.1 mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
824 1.1 mjacob {
825 1.1 mjacob SesComStat ComStat;
826 1.1 mjacob int status;
827 1.1 mjacob
828 1.1 mjacob ComStat.comstatus = encstat & 0xf;
829 1.1 mjacob if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
830 1.1 mjacob return (status);
831 1.1 mjacob }
832 1.1 mjacob ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
833 1.1 mjacob return (0);
834 1.1 mjacob }
835 1.1 mjacob
836 1.1 mjacob static int
837 1.1 mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
838 1.1 mjacob {
839 1.1 mjacob int i = (int)obp->obj_id;
840 1.1 mjacob
841 1.1 mjacob if (ssc->ses_objmap[i].svalid == 0) {
842 1.1 mjacob SesComStat ComStat;
843 1.1 mjacob int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
844 1.1 mjacob if (err)
845 1.1 mjacob return (err);
846 1.1 mjacob ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
847 1.1 mjacob ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
848 1.1 mjacob ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
849 1.1 mjacob ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
850 1.1 mjacob ssc->ses_objmap[i].svalid = 1;
851 1.1 mjacob }
852 1.1 mjacob obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
853 1.1 mjacob obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
854 1.1 mjacob obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
855 1.1 mjacob obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
856 1.1 mjacob return (0);
857 1.1 mjacob }
858 1.1 mjacob
859 1.1 mjacob static int
860 1.1 mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
861 1.1 mjacob {
862 1.1 mjacob SesComStat ComStat;
863 1.1 mjacob int err;
864 1.1 mjacob /*
865 1.1 mjacob * If this is clear, we don't do diddly.
866 1.1 mjacob */
867 1.1 mjacob if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
868 1.1 mjacob return (0);
869 1.1 mjacob }
870 1.1 mjacob ComStat.comstatus = obp->cstat[0];
871 1.1 mjacob ComStat.comstat[0] = obp->cstat[1];
872 1.1 mjacob ComStat.comstat[1] = obp->cstat[2];
873 1.1 mjacob ComStat.comstat[2] = obp->cstat[3];
874 1.1 mjacob err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
875 1.1 mjacob ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
876 1.1 mjacob return (err);
877 1.1 mjacob }
878 1.1 mjacob
879 1.1 mjacob static int
880 1.1 mjacob ses_getconfig(ses_softc_t *ssc)
881 1.1 mjacob {
882 1.1 mjacob struct sscfg *cc;
883 1.1 mjacob SesCfgHdr cf;
884 1.1 mjacob SesEncHdr hd;
885 1.1 mjacob SesEncDesc *cdp;
886 1.1 mjacob SesThdr thdr;
887 1.1 mjacob int err, amt, i, nobj, ntype, maxima;
888 1.1 mjacob char storage[CFLEN], *sdata;
889 1.1 mjacob static char cdb[6] = {
890 1.1 mjacob RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
891 1.1 mjacob };
892 1.1 mjacob
893 1.1 mjacob cc = ssc->ses_private;
894 1.1 mjacob if (cc == NULL) {
895 1.1 mjacob return (ENXIO);
896 1.1 mjacob }
897 1.1 mjacob
898 1.1 mjacob sdata = SES_MALLOC(SCSZ);
899 1.1 mjacob if (sdata == NULL)
900 1.1 mjacob return (ENOMEM);
901 1.1 mjacob
902 1.1 mjacob amt = SCSZ;
903 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
904 1.1 mjacob if (err) {
905 1.1 mjacob SES_FREE(sdata, SCSZ);
906 1.1 mjacob return (err);
907 1.1 mjacob }
908 1.1 mjacob amt = SCSZ - amt;
909 1.1 mjacob
910 1.1 mjacob if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
911 1.1 mjacob SES_LOG(ssc, "Unable to parse SES Config Header\n");
912 1.1 mjacob SES_FREE(sdata, SCSZ);
913 1.1 mjacob return (EIO);
914 1.1 mjacob }
915 1.1 mjacob if (amt < SES_ENCHDR_MINLEN) {
916 1.1 mjacob SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
917 1.1 mjacob SES_FREE(sdata, SCSZ);
918 1.1 mjacob return (EIO);
919 1.1 mjacob }
920 1.1 mjacob
921 1.1 mjacob SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
922 1.1 mjacob
923 1.1 mjacob /*
924 1.1 mjacob * Now waltz through all the subenclosures toting up the
925 1.1 mjacob * number of types available in each. For this, we only
926 1.1 mjacob * really need the enclosure header. However, we get the
927 1.1 mjacob * enclosure descriptor for debug purposes, as well
928 1.1 mjacob * as self-consistency checking purposes.
929 1.1 mjacob */
930 1.1 mjacob
931 1.1 mjacob maxima = cf.Nsubenc + 1;
932 1.1 mjacob cdp = (SesEncDesc *) storage;
933 1.1 mjacob for (ntype = i = 0; i < maxima; i++) {
934 1.1 mjacob MEMZERO((caddr_t)cdp, sizeof (*cdp));
935 1.1 mjacob if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
936 1.1 mjacob SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
937 1.1 mjacob SES_FREE(sdata, SCSZ);
938 1.1 mjacob return (EIO);
939 1.1 mjacob }
940 1.1 mjacob SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
941 1.1 mjacob "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
942 1.1 mjacob
943 1.1 mjacob if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
944 1.1 mjacob SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
945 1.1 mjacob SES_FREE(sdata, SCSZ);
946 1.1 mjacob return (EIO);
947 1.1 mjacob }
948 1.1 mjacob SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
949 1.1 mjacob cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
950 1.1 mjacob cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
951 1.1 mjacob cdp->encWWN[6], cdp->encWWN[7]);
952 1.1 mjacob ntype += hd.Ntypes;
953 1.1 mjacob }
954 1.1 mjacob
955 1.1 mjacob /*
956 1.1 mjacob * Now waltz through all the types that are available, getting
957 1.1 mjacob * the type header so we can start adding up the number of
958 1.1 mjacob * objects available.
959 1.1 mjacob */
960 1.1 mjacob for (nobj = i = 0; i < ntype; i++) {
961 1.1 mjacob if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
962 1.1 mjacob SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
963 1.1 mjacob SES_FREE(sdata, SCSZ);
964 1.1 mjacob return (EIO);
965 1.1 mjacob }
966 1.1 mjacob SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
967 1.1 mjacob "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
968 1.1 mjacob thdr.enc_subenc, thdr.enc_tlen);
969 1.1 mjacob nobj += thdr.enc_maxelt;
970 1.1 mjacob }
971 1.1 mjacob
972 1.1 mjacob
973 1.1 mjacob /*
974 1.1 mjacob * Now allocate the object array and type map.
975 1.1 mjacob */
976 1.1 mjacob
977 1.1 mjacob ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
978 1.1 mjacob cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
979 1.1 mjacob cc->ses_eltmap = SES_MALLOC(ntype);
980 1.1 mjacob
981 1.1 mjacob if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
982 1.1 mjacob cc->ses_eltmap == NULL) {
983 1.1 mjacob if (ssc->ses_objmap) {
984 1.1 mjacob SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
985 1.1 mjacob ssc->ses_objmap = NULL;
986 1.1 mjacob }
987 1.1 mjacob if (cc->ses_typidx) {
988 1.1 mjacob SES_FREE(cc->ses_typidx,
989 1.1 mjacob (nobj * sizeof (struct typidx)));
990 1.1 mjacob cc->ses_typidx = NULL;
991 1.1 mjacob }
992 1.1 mjacob if (cc->ses_eltmap) {
993 1.1 mjacob SES_FREE(cc->ses_eltmap, ntype);
994 1.1 mjacob cc->ses_eltmap = NULL;
995 1.1 mjacob }
996 1.1 mjacob SES_FREE(sdata, SCSZ);
997 1.1 mjacob return (ENOMEM);
998 1.1 mjacob }
999 1.1 mjacob MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1000 1.1 mjacob MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1001 1.1 mjacob MEMZERO(cc->ses_eltmap, ntype);
1002 1.1 mjacob cc->ses_ntypes = (uint8_t) ntype;
1003 1.1 mjacob ssc->ses_nobjects = nobj;
1004 1.1 mjacob
1005 1.1 mjacob /*
1006 1.1 mjacob * Now waltz through the # of types again to fill in the types
1007 1.1 mjacob * (and subenclosure ids) of the allocated objects.
1008 1.1 mjacob */
1009 1.1 mjacob nobj = 0;
1010 1.1 mjacob for (i = 0; i < ntype; i++) {
1011 1.1 mjacob int j;
1012 1.1 mjacob if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1013 1.1 mjacob continue;
1014 1.1 mjacob }
1015 1.1 mjacob cc->ses_eltmap[i] = thdr.enc_maxelt;
1016 1.1 mjacob for (j = 0; j < thdr.enc_maxelt; j++) {
1017 1.1 mjacob cc->ses_typidx[nobj].ses_tidx = i;
1018 1.1 mjacob cc->ses_typidx[nobj].ses_oidx = j;
1019 1.1 mjacob ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1020 1.1 mjacob ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1021 1.1 mjacob }
1022 1.1 mjacob }
1023 1.1 mjacob SES_FREE(sdata, SCSZ);
1024 1.1 mjacob return (0);
1025 1.1 mjacob }
1026 1.1 mjacob
1027 1.1 mjacob static int
1028 1.1 mjacob ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1029 1.1 mjacob {
1030 1.1 mjacob struct sscfg *cc;
1031 1.1 mjacob int err, amt, bufsiz, tidx, oidx;
1032 1.1 mjacob char cdb[6], *sdata;
1033 1.1 mjacob
1034 1.1 mjacob cc = ssc->ses_private;
1035 1.1 mjacob if (cc == NULL) {
1036 1.1 mjacob return (ENXIO);
1037 1.1 mjacob }
1038 1.1 mjacob
1039 1.1 mjacob /*
1040 1.1 mjacob * If we're just getting overall enclosure status,
1041 1.1 mjacob * we only need 2 bytes of data storage.
1042 1.1 mjacob *
1043 1.1 mjacob * If we're getting anything else, we know how much
1044 1.1 mjacob * storage we need by noting that starting at offset
1045 1.1 mjacob * 8 in returned data, all object status bytes are 4
1046 1.1 mjacob * bytes long, and are stored in chunks of types(M)
1047 1.1 mjacob * and nth+1 instances of type M.
1048 1.1 mjacob */
1049 1.1 mjacob if (objid == -1) {
1050 1.1 mjacob bufsiz = 2;
1051 1.1 mjacob } else {
1052 1.1 mjacob bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1053 1.1 mjacob }
1054 1.1 mjacob sdata = SES_MALLOC(bufsiz);
1055 1.1 mjacob if (sdata == NULL)
1056 1.1 mjacob return (ENOMEM);
1057 1.1 mjacob
1058 1.1 mjacob cdb[0] = RECEIVE_DIAGNOSTIC;
1059 1.1 mjacob cdb[1] = 1;
1060 1.1 mjacob cdb[2] = SesStatusPage;
1061 1.1 mjacob cdb[3] = bufsiz >> 8;
1062 1.1 mjacob cdb[4] = bufsiz & 0xff;
1063 1.1 mjacob cdb[5] = 0;
1064 1.1 mjacob amt = bufsiz;
1065 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1066 1.1 mjacob if (err) {
1067 1.1 mjacob SES_FREE(sdata, bufsiz);
1068 1.1 mjacob return (err);
1069 1.1 mjacob }
1070 1.1 mjacob amt = bufsiz - amt;
1071 1.1 mjacob
1072 1.1 mjacob if (objid == -1) {
1073 1.1 mjacob tidx = -1;
1074 1.1 mjacob oidx = -1;
1075 1.1 mjacob } else {
1076 1.1 mjacob tidx = cc->ses_typidx[objid].ses_tidx;
1077 1.1 mjacob oidx = cc->ses_typidx[objid].ses_oidx;
1078 1.1 mjacob }
1079 1.1 mjacob if (in) {
1080 1.1 mjacob if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1081 1.1 mjacob err = ENODEV;
1082 1.1 mjacob }
1083 1.1 mjacob } else {
1084 1.1 mjacob if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1085 1.1 mjacob err = ENODEV;
1086 1.1 mjacob } else {
1087 1.1 mjacob cdb[0] = SEND_DIAGNOSTIC;
1088 1.1 mjacob cdb[1] = 0x10;
1089 1.1 mjacob cdb[2] = 0;
1090 1.1 mjacob cdb[3] = bufsiz >> 8;
1091 1.1 mjacob cdb[4] = bufsiz & 0xff;
1092 1.1 mjacob cdb[5] = 0;
1093 1.1 mjacob amt = -bufsiz;
1094 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1095 1.1 mjacob }
1096 1.1 mjacob }
1097 1.1 mjacob SES_FREE(sdata, bufsiz);
1098 1.1 mjacob return (0);
1099 1.1 mjacob }
1100 1.1 mjacob
1101 1.1 mjacob
1102 1.1 mjacob /*
1103 1.1 mjacob * Routines to parse returned SES data structures.
1104 1.1 mjacob * Architecture and compiler independent.
1105 1.1 mjacob */
1106 1.1 mjacob
1107 1.1 mjacob static int
1108 1.1 mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1109 1.1 mjacob {
1110 1.1 mjacob if (buflen < SES_CFGHDR_MINLEN) {
1111 1.1 mjacob return (-1);
1112 1.1 mjacob }
1113 1.1 mjacob gget8(buffer, 1, cfp->Nsubenc);
1114 1.1 mjacob gget32(buffer, 4, cfp->GenCode);
1115 1.1 mjacob return (0);
1116 1.1 mjacob }
1117 1.1 mjacob
1118 1.1 mjacob static int
1119 1.1 mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1120 1.1 mjacob {
1121 1.1 mjacob int s, off = 8;
1122 1.1 mjacob for (s = 0; s < SubEncId; s++) {
1123 1.1 mjacob if (off + 3 > amt)
1124 1.1 mjacob return (-1);
1125 1.1 mjacob off += buffer[off+3] + 4;
1126 1.1 mjacob }
1127 1.1 mjacob if (off + 3 > amt) {
1128 1.1 mjacob return (-1);
1129 1.1 mjacob }
1130 1.1 mjacob gget8(buffer, off+1, chp->Subencid);
1131 1.1 mjacob gget8(buffer, off+2, chp->Ntypes);
1132 1.1 mjacob gget8(buffer, off+3, chp->VEnclen);
1133 1.1 mjacob return (0);
1134 1.1 mjacob }
1135 1.1 mjacob
1136 1.1 mjacob static int
1137 1.1 mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1138 1.1 mjacob {
1139 1.1 mjacob int s, e, enclen, off = 8;
1140 1.1 mjacob for (s = 0; s < SubEncId; s++) {
1141 1.1 mjacob if (off + 3 > amt)
1142 1.1 mjacob return (-1);
1143 1.1 mjacob off += buffer[off+3] + 4;
1144 1.1 mjacob }
1145 1.1 mjacob if (off + 3 > amt) {
1146 1.1 mjacob return (-1);
1147 1.1 mjacob }
1148 1.1 mjacob gget8(buffer, off+3, enclen);
1149 1.1 mjacob off += 4;
1150 1.1 mjacob if (off >= amt)
1151 1.1 mjacob return (-1);
1152 1.1 mjacob
1153 1.1 mjacob e = off + enclen;
1154 1.1 mjacob if (e > amt) {
1155 1.1 mjacob e = amt;
1156 1.1 mjacob }
1157 1.1 mjacob MEMCPY(cdp, &buffer[off], e - off);
1158 1.1 mjacob return (0);
1159 1.1 mjacob }
1160 1.1 mjacob
1161 1.1 mjacob static int
1162 1.1 mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1163 1.1 mjacob {
1164 1.1 mjacob int s, off = 8;
1165 1.1 mjacob
1166 1.1 mjacob if (amt < SES_CFGHDR_MINLEN) {
1167 1.1 mjacob return (-1);
1168 1.1 mjacob }
1169 1.1 mjacob for (s = 0; s < buffer[1]; s++) {
1170 1.1 mjacob if (off + 3 > amt)
1171 1.1 mjacob return (-1);
1172 1.1 mjacob off += buffer[off+3] + 4;
1173 1.1 mjacob }
1174 1.1 mjacob if (off + 3 > amt) {
1175 1.1 mjacob return (-1);
1176 1.1 mjacob }
1177 1.1 mjacob off += buffer[off+3] + 4 + (nth * 4);
1178 1.1 mjacob if (amt < (off + 4))
1179 1.1 mjacob return (-1);
1180 1.1 mjacob
1181 1.1 mjacob gget8(buffer, off++, thp->enc_type);
1182 1.1 mjacob gget8(buffer, off++, thp->enc_maxelt);
1183 1.1 mjacob gget8(buffer, off++, thp->enc_subenc);
1184 1.1 mjacob gget8(buffer, off, thp->enc_tlen);
1185 1.1 mjacob return (0);
1186 1.1 mjacob }
1187 1.1 mjacob
1188 1.1 mjacob /*
1189 1.1 mjacob * This function needs a little explanation.
1190 1.1 mjacob *
1191 1.1 mjacob * The arguments are:
1192 1.1 mjacob *
1193 1.1 mjacob *
1194 1.1 mjacob * char *b, int amt
1195 1.1 mjacob *
1196 1.1 mjacob * These describes the raw input SES status data and length.
1197 1.1 mjacob *
1198 1.1 mjacob * uint8_t *ep
1199 1.1 mjacob *
1200 1.1 mjacob * This is a map of the number of types for each element type
1201 1.1 mjacob * in the enclosure.
1202 1.1 mjacob *
1203 1.1 mjacob * int elt
1204 1.1 mjacob *
1205 1.1 mjacob * This is the element type being sought. If elt is -1,
1206 1.1 mjacob * then overall enclosure status is being sought.
1207 1.1 mjacob *
1208 1.1 mjacob * int elm
1209 1.1 mjacob *
1210 1.1 mjacob * This is the ordinal Mth element of type elt being sought.
1211 1.1 mjacob *
1212 1.1 mjacob * SesComStat *sp
1213 1.1 mjacob *
1214 1.1 mjacob * This is the output area to store the status for
1215 1.1 mjacob * the Mth element of type Elt.
1216 1.1 mjacob */
1217 1.1 mjacob
1218 1.1 mjacob static int
1219 1.1 mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1220 1.1 mjacob {
1221 1.1 mjacob int idx, i;
1222 1.1 mjacob
1223 1.1 mjacob /*
1224 1.1 mjacob * If it's overall enclosure status being sought, get that.
1225 1.1 mjacob * We need at least 2 bytes of status data to get that.
1226 1.1 mjacob */
1227 1.1 mjacob if (elt == -1) {
1228 1.1 mjacob if (amt < 2)
1229 1.1 mjacob return (-1);
1230 1.1 mjacob gget8(b, 1, sp->comstatus);
1231 1.1 mjacob sp->comstat[0] = 0;
1232 1.1 mjacob sp->comstat[1] = 0;
1233 1.1 mjacob sp->comstat[2] = 0;
1234 1.1 mjacob return (0);
1235 1.1 mjacob }
1236 1.1 mjacob
1237 1.1 mjacob /*
1238 1.1 mjacob * Check to make sure that the Mth element is legal for type Elt.
1239 1.1 mjacob */
1240 1.1 mjacob
1241 1.1 mjacob if (elm >= ep[elt])
1242 1.1 mjacob return (-1);
1243 1.1 mjacob
1244 1.1 mjacob /*
1245 1.1 mjacob * Starting at offset 8, start skipping over the storage
1246 1.1 mjacob * for the element types we're not interested in.
1247 1.1 mjacob */
1248 1.1 mjacob for (idx = 8, i = 0; i < elt; i++) {
1249 1.1 mjacob idx += ((ep[i] + 1) * 4);
1250 1.1 mjacob }
1251 1.1 mjacob
1252 1.1 mjacob /*
1253 1.1 mjacob * Skip over Overall status for this element type.
1254 1.1 mjacob */
1255 1.1 mjacob idx += 4;
1256 1.1 mjacob
1257 1.1 mjacob /*
1258 1.1 mjacob * And skip to the index for the Mth element that we're going for.
1259 1.1 mjacob */
1260 1.1 mjacob idx += (4 * elm);
1261 1.1 mjacob
1262 1.1 mjacob /*
1263 1.1 mjacob * Make sure we haven't overflowed the buffer.
1264 1.1 mjacob */
1265 1.1 mjacob if (idx+4 > amt)
1266 1.1 mjacob return (-1);
1267 1.1 mjacob
1268 1.1 mjacob /*
1269 1.1 mjacob * Retrieve the status.
1270 1.1 mjacob */
1271 1.1 mjacob gget8(b, idx++, sp->comstatus);
1272 1.1 mjacob gget8(b, idx++, sp->comstat[0]);
1273 1.1 mjacob gget8(b, idx++, sp->comstat[1]);
1274 1.1 mjacob gget8(b, idx++, sp->comstat[2]);
1275 1.1 mjacob #if 0
1276 1.1 mjacob PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1277 1.1 mjacob #endif
1278 1.1 mjacob return (0);
1279 1.1 mjacob }
1280 1.1 mjacob
1281 1.1 mjacob /*
1282 1.1 mjacob * This is the mirror function to ses_decode, but we set the 'select'
1283 1.1 mjacob * bit for the object which we're interested in. All other objects,
1284 1.1 mjacob * after a status fetch, should have that bit off. Hmm. It'd be easy
1285 1.1 mjacob * enough to ensure this, so we will.
1286 1.1 mjacob */
1287 1.1 mjacob
1288 1.1 mjacob static int
1289 1.1 mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1290 1.1 mjacob {
1291 1.1 mjacob int idx, i;
1292 1.1 mjacob
1293 1.1 mjacob /*
1294 1.1 mjacob * If it's overall enclosure status being sought, get that.
1295 1.1 mjacob * We need at least 2 bytes of status data to get that.
1296 1.1 mjacob */
1297 1.1 mjacob if (elt == -1) {
1298 1.1 mjacob if (amt < 2)
1299 1.1 mjacob return (-1);
1300 1.1 mjacob i = 0;
1301 1.1 mjacob sset8(b, i, 0);
1302 1.1 mjacob sset8(b, i, sp->comstatus & 0xf);
1303 1.1 mjacob #if 0
1304 1.1 mjacob PRINTF("set EncStat %x\n", sp->comstatus);
1305 1.1 mjacob #endif
1306 1.1 mjacob return (0);
1307 1.1 mjacob }
1308 1.1 mjacob
1309 1.1 mjacob /*
1310 1.1 mjacob * Check to make sure that the Mth element is legal for type Elt.
1311 1.1 mjacob */
1312 1.1 mjacob
1313 1.1 mjacob if (elm >= ep[elt])
1314 1.1 mjacob return (-1);
1315 1.1 mjacob
1316 1.1 mjacob /*
1317 1.1 mjacob * Starting at offset 8, start skipping over the storage
1318 1.1 mjacob * for the element types we're not interested in.
1319 1.1 mjacob */
1320 1.1 mjacob for (idx = 8, i = 0; i < elt; i++) {
1321 1.1 mjacob idx += ((ep[i] + 1) * 4);
1322 1.1 mjacob }
1323 1.1 mjacob
1324 1.1 mjacob /*
1325 1.1 mjacob * Skip over Overall status for this element type.
1326 1.1 mjacob */
1327 1.1 mjacob idx += 4;
1328 1.1 mjacob
1329 1.1 mjacob /*
1330 1.1 mjacob * And skip to the index for the Mth element that we're going for.
1331 1.1 mjacob */
1332 1.1 mjacob idx += (4 * elm);
1333 1.1 mjacob
1334 1.1 mjacob /*
1335 1.1 mjacob * Make sure we haven't overflowed the buffer.
1336 1.1 mjacob */
1337 1.1 mjacob if (idx+4 > amt)
1338 1.1 mjacob return (-1);
1339 1.1 mjacob
1340 1.1 mjacob /*
1341 1.1 mjacob * Set the status.
1342 1.1 mjacob */
1343 1.1 mjacob sset8(b, idx, sp->comstatus);
1344 1.1 mjacob sset8(b, idx, sp->comstat[0]);
1345 1.1 mjacob sset8(b, idx, sp->comstat[1]);
1346 1.1 mjacob sset8(b, idx, sp->comstat[2]);
1347 1.1 mjacob idx -= 4;
1348 1.1 mjacob
1349 1.1 mjacob #if 0
1350 1.1 mjacob PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1351 1.1 mjacob elt, elm, idx, sp->comstatus, sp->comstat[0],
1352 1.1 mjacob sp->comstat[1], sp->comstat[2]);
1353 1.1 mjacob #endif
1354 1.1 mjacob
1355 1.1 mjacob /*
1356 1.1 mjacob * Now make sure all other 'Select' bits are off.
1357 1.1 mjacob */
1358 1.1 mjacob for (i = 8; i < amt; i += 4) {
1359 1.1 mjacob if (i != idx)
1360 1.1 mjacob b[i] &= ~0x80;
1361 1.1 mjacob }
1362 1.1 mjacob /*
1363 1.1 mjacob * And make sure the INVOP bit is clear.
1364 1.1 mjacob */
1365 1.1 mjacob b[2] &= ~0x10;
1366 1.1 mjacob
1367 1.1 mjacob return (0);
1368 1.1 mjacob }
1369 1.1 mjacob
1370 1.1 mjacob /*
1371 1.1 mjacob * SAF-TE Type Device Emulation
1372 1.1 mjacob */
1373 1.1 mjacob
1374 1.1 mjacob static int safte_getconfig(ses_softc_t *);
1375 1.19 simonb static int safte_rdstat(ses_softc_t *, int);
1376 1.1 mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1377 1.1 mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1378 1.1 mjacob static void wrslot_stat(ses_softc_t *, int);
1379 1.1 mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1380 1.1 mjacob
1381 1.1 mjacob #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1382 1.1 mjacob SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1383 1.1 mjacob /*
1384 1.1 mjacob * SAF-TE specific defines- Mandatory ones only...
1385 1.1 mjacob */
1386 1.1 mjacob
1387 1.1 mjacob /*
1388 1.1 mjacob * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1389 1.1 mjacob */
1390 1.1 mjacob #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1391 1.1 mjacob #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1392 1.1 mjacob #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1393 1.1 mjacob
1394 1.1 mjacob /*
1395 1.1 mjacob * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1396 1.1 mjacob */
1397 1.1 mjacob #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1398 1.1 mjacob #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1399 1.1 mjacob #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1400 1.1 mjacob #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1401 1.1 mjacob #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1402 1.1 mjacob
1403 1.1 mjacob
1404 1.1 mjacob #define SAFT_SCRATCH 64
1405 1.1 mjacob #define NPSEUDO_THERM 16
1406 1.1 mjacob #define NPSEUDO_ALARM 1
1407 1.1 mjacob struct scfg {
1408 1.1 mjacob /*
1409 1.1 mjacob * Cached Configuration
1410 1.1 mjacob */
1411 1.1 mjacob uint8_t Nfans; /* Number of Fans */
1412 1.1 mjacob uint8_t Npwr; /* Number of Power Supplies */
1413 1.1 mjacob uint8_t Nslots; /* Number of Device Slots */
1414 1.1 mjacob uint8_t DoorLock; /* Door Lock Installed */
1415 1.1 mjacob uint8_t Ntherm; /* Number of Temperature Sensors */
1416 1.1 mjacob uint8_t Nspkrs; /* Number of Speakers */
1417 1.1 mjacob uint8_t Nalarm; /* Number of Alarms (at least one) */
1418 1.1 mjacob /*
1419 1.1 mjacob * Cached Flag Bytes for Global Status
1420 1.1 mjacob */
1421 1.1 mjacob uint8_t flag1;
1422 1.1 mjacob uint8_t flag2;
1423 1.1 mjacob /*
1424 1.1 mjacob * What object index ID is where various slots start.
1425 1.1 mjacob */
1426 1.1 mjacob uint8_t pwroff;
1427 1.1 mjacob uint8_t slotoff;
1428 1.1 mjacob #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1429 1.1 mjacob };
1430 1.1 mjacob
1431 1.1 mjacob #define SAFT_FLG1_ALARM 0x1
1432 1.1 mjacob #define SAFT_FLG1_GLOBFAIL 0x2
1433 1.1 mjacob #define SAFT_FLG1_GLOBWARN 0x4
1434 1.1 mjacob #define SAFT_FLG1_ENCPWROFF 0x8
1435 1.1 mjacob #define SAFT_FLG1_ENCFANFAIL 0x10
1436 1.1 mjacob #define SAFT_FLG1_ENCPWRFAIL 0x20
1437 1.1 mjacob #define SAFT_FLG1_ENCDRVFAIL 0x40
1438 1.1 mjacob #define SAFT_FLG1_ENCDRVWARN 0x80
1439 1.1 mjacob
1440 1.1 mjacob #define SAFT_FLG2_LOCKDOOR 0x4
1441 1.1 mjacob #define SAFT_PRIVATE sizeof (struct scfg)
1442 1.1 mjacob
1443 1.7 sommerfe static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1444 1.1 mjacob #define SAFT_BAIL(r, x, k, l) \
1445 1.1 mjacob if (r >= x) { \
1446 1.1 mjacob SES_LOG(ssc, safte_2little, x, __LINE__);\
1447 1.1 mjacob SES_FREE(k, l); \
1448 1.1 mjacob return (EIO); \
1449 1.1 mjacob }
1450 1.1 mjacob
1451 1.1 mjacob
1452 1.22.2.2 skrll static int
1453 1.1 mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
1454 1.1 mjacob {
1455 1.1 mjacob int err, i, r;
1456 1.1 mjacob struct scfg *cc;
1457 1.1 mjacob
1458 1.1 mjacob if (doinit == 0) {
1459 1.1 mjacob if (ssc->ses_nobjects) {
1460 1.1 mjacob if (ssc->ses_objmap) {
1461 1.1 mjacob SES_FREE(ssc->ses_objmap,
1462 1.1 mjacob ssc->ses_nobjects * sizeof (encobj));
1463 1.1 mjacob ssc->ses_objmap = NULL;
1464 1.1 mjacob }
1465 1.1 mjacob ssc->ses_nobjects = 0;
1466 1.1 mjacob }
1467 1.1 mjacob if (ssc->ses_private) {
1468 1.1 mjacob SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1469 1.1 mjacob ssc->ses_private = NULL;
1470 1.1 mjacob }
1471 1.1 mjacob return (0);
1472 1.1 mjacob }
1473 1.1 mjacob
1474 1.1 mjacob if (ssc->ses_private == NULL) {
1475 1.1 mjacob ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1476 1.1 mjacob if (ssc->ses_private == NULL) {
1477 1.1 mjacob return (ENOMEM);
1478 1.1 mjacob }
1479 1.1 mjacob MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1480 1.1 mjacob }
1481 1.1 mjacob
1482 1.1 mjacob ssc->ses_nobjects = 0;
1483 1.1 mjacob ssc->ses_encstat = 0;
1484 1.1 mjacob
1485 1.1 mjacob if ((err = safte_getconfig(ssc)) != 0) {
1486 1.1 mjacob return (err);
1487 1.1 mjacob }
1488 1.1 mjacob
1489 1.1 mjacob /*
1490 1.1 mjacob * The number of objects here, as well as that reported by the
1491 1.1 mjacob * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1492 1.1 mjacob * that get reported during READ_BUFFER/READ_ENC_STATUS.
1493 1.1 mjacob */
1494 1.1 mjacob cc = ssc->ses_private;
1495 1.1 mjacob ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1496 1.1 mjacob cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1497 1.1 mjacob ssc->ses_objmap = (encobj *)
1498 1.1 mjacob SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1499 1.1 mjacob if (ssc->ses_objmap == NULL) {
1500 1.1 mjacob return (ENOMEM);
1501 1.1 mjacob }
1502 1.1 mjacob MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1503 1.1 mjacob
1504 1.1 mjacob r = 0;
1505 1.1 mjacob /*
1506 1.1 mjacob * Note that this is all arranged for the convenience
1507 1.1 mjacob * in later fetches of status.
1508 1.1 mjacob */
1509 1.1 mjacob for (i = 0; i < cc->Nfans; i++)
1510 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1511 1.1 mjacob cc->pwroff = (uint8_t) r;
1512 1.1 mjacob for (i = 0; i < cc->Npwr; i++)
1513 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1514 1.1 mjacob for (i = 0; i < cc->DoorLock; i++)
1515 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1516 1.1 mjacob for (i = 0; i < cc->Nspkrs; i++)
1517 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1518 1.1 mjacob for (i = 0; i < cc->Ntherm; i++)
1519 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1520 1.1 mjacob for (i = 0; i < NPSEUDO_THERM; i++)
1521 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1522 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1523 1.1 mjacob cc->slotoff = (uint8_t) r;
1524 1.1 mjacob for (i = 0; i < cc->Nslots; i++)
1525 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1526 1.1 mjacob return (0);
1527 1.1 mjacob }
1528 1.1 mjacob
1529 1.22.2.2 skrll static int
1530 1.1 mjacob safte_init_enc(ses_softc_t *ssc)
1531 1.1 mjacob {
1532 1.1 mjacob int err, amt;
1533 1.1 mjacob char *sdata;
1534 1.4 mjacob static char cdb0[6] = { SEND_DIAGNOSTIC };
1535 1.1 mjacob static char cdb[10] =
1536 1.4 mjacob { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1537 1.1 mjacob
1538 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
1539 1.1 mjacob if (sdata == NULL)
1540 1.1 mjacob return (ENOMEM);
1541 1.1 mjacob
1542 1.4 mjacob err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1543 1.1 mjacob if (err) {
1544 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1545 1.1 mjacob return (err);
1546 1.1 mjacob }
1547 1.1 mjacob sdata[0] = SAFTE_WT_GLOBAL;
1548 1.4 mjacob MEMZERO(&sdata[1], 15);
1549 1.1 mjacob amt = -SAFT_SCRATCH;
1550 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1551 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1552 1.1 mjacob return (err);
1553 1.1 mjacob }
1554 1.1 mjacob
1555 1.22.2.2 skrll static int
1556 1.1 mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
1557 1.1 mjacob {
1558 1.1 mjacob return (safte_rdstat(ssc, slpflg));
1559 1.1 mjacob }
1560 1.1 mjacob
1561 1.22.2.2 skrll static int
1562 1.1 mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1563 1.1 mjacob {
1564 1.1 mjacob struct scfg *cc = ssc->ses_private;
1565 1.1 mjacob if (cc == NULL)
1566 1.1 mjacob return (0);
1567 1.1 mjacob /*
1568 1.1 mjacob * Since SAF-TE devices aren't necessarily sticky in terms
1569 1.1 mjacob * of state, make our soft copy of enclosure status 'sticky'-
1570 1.1 mjacob * that is, things set in enclosure status stay set (as implied
1571 1.1 mjacob * by conditions set in reading object status) until cleared.
1572 1.1 mjacob */
1573 1.1 mjacob ssc->ses_encstat &= ~ALL_ENC_STAT;
1574 1.1 mjacob ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1575 1.1 mjacob ssc->ses_encstat |= ENCI_SVALID;
1576 1.1 mjacob cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1577 1.1 mjacob if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1578 1.1 mjacob cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1579 1.1 mjacob } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1580 1.1 mjacob cc->flag1 |= SAFT_FLG1_GLOBWARN;
1581 1.1 mjacob }
1582 1.1 mjacob return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1583 1.1 mjacob }
1584 1.1 mjacob
1585 1.22.2.2 skrll static int
1586 1.1 mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1587 1.1 mjacob {
1588 1.1 mjacob int i = (int)obp->obj_id;
1589 1.1 mjacob
1590 1.1 mjacob if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1591 1.1 mjacob (ssc->ses_objmap[i].svalid) == 0) {
1592 1.1 mjacob int err = safte_rdstat(ssc, slpflg);
1593 1.1 mjacob if (err)
1594 1.1 mjacob return (err);
1595 1.1 mjacob }
1596 1.1 mjacob obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1597 1.1 mjacob obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1598 1.1 mjacob obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1599 1.1 mjacob obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1600 1.1 mjacob return (0);
1601 1.1 mjacob }
1602 1.1 mjacob
1603 1.1 mjacob
1604 1.22.2.2 skrll static int
1605 1.1 mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1606 1.1 mjacob {
1607 1.1 mjacob int idx, err;
1608 1.1 mjacob encobj *ep;
1609 1.1 mjacob struct scfg *cc;
1610 1.1 mjacob
1611 1.1 mjacob
1612 1.1 mjacob SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1613 1.1 mjacob (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1614 1.1 mjacob obp->cstat[3]);
1615 1.1 mjacob
1616 1.1 mjacob /*
1617 1.1 mjacob * If this is clear, we don't do diddly.
1618 1.1 mjacob */
1619 1.1 mjacob if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1620 1.1 mjacob return (0);
1621 1.1 mjacob }
1622 1.1 mjacob
1623 1.1 mjacob err = 0;
1624 1.1 mjacob /*
1625 1.1 mjacob * Check to see if the common bits are set and do them first.
1626 1.1 mjacob */
1627 1.1 mjacob if (obp->cstat[0] & ~SESCTL_CSEL) {
1628 1.1 mjacob err = set_objstat_sel(ssc, obp, slp);
1629 1.1 mjacob if (err)
1630 1.1 mjacob return (err);
1631 1.1 mjacob }
1632 1.1 mjacob
1633 1.1 mjacob cc = ssc->ses_private;
1634 1.1 mjacob if (cc == NULL)
1635 1.1 mjacob return (0);
1636 1.1 mjacob
1637 1.1 mjacob idx = (int)obp->obj_id;
1638 1.1 mjacob ep = &ssc->ses_objmap[idx];
1639 1.1 mjacob
1640 1.1 mjacob switch (ep->enctype) {
1641 1.1 mjacob case SESTYP_DEVICE:
1642 1.1 mjacob {
1643 1.1 mjacob uint8_t slotop = 0;
1644 1.1 mjacob /*
1645 1.1 mjacob * XXX: I should probably cache the previous state
1646 1.1 mjacob * XXX: of SESCTL_DEVOFF so that when it goes from
1647 1.1 mjacob * XXX: true to false I can then set PREPARE FOR OPERATION
1648 1.1 mjacob * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1649 1.1 mjacob */
1650 1.1 mjacob if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1651 1.1 mjacob slotop |= 0x2;
1652 1.1 mjacob }
1653 1.1 mjacob if (obp->cstat[2] & SESCTL_RQSID) {
1654 1.1 mjacob slotop |= 0x4;
1655 1.1 mjacob }
1656 1.1 mjacob err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1657 1.1 mjacob slotop, slp);
1658 1.1 mjacob if (err)
1659 1.1 mjacob return (err);
1660 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSFLT) {
1661 1.1 mjacob ep->priv |= 0x2;
1662 1.1 mjacob } else {
1663 1.1 mjacob ep->priv &= ~0x2;
1664 1.1 mjacob }
1665 1.1 mjacob if (ep->priv & 0xc6) {
1666 1.1 mjacob ep->priv &= ~0x1;
1667 1.1 mjacob } else {
1668 1.1 mjacob ep->priv |= 0x1; /* no errors */
1669 1.1 mjacob }
1670 1.1 mjacob wrslot_stat(ssc, slp);
1671 1.1 mjacob break;
1672 1.1 mjacob }
1673 1.1 mjacob case SESTYP_POWER:
1674 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1675 1.1 mjacob cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1676 1.1 mjacob } else {
1677 1.1 mjacob cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1678 1.1 mjacob }
1679 1.1 mjacob err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1680 1.1 mjacob cc->flag2, 0, slp);
1681 1.1 mjacob if (err)
1682 1.1 mjacob return (err);
1683 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTON) {
1684 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1685 1.1 mjacob idx - cc->pwroff, 0, 0, slp);
1686 1.1 mjacob } else {
1687 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1688 1.1 mjacob idx - cc->pwroff, 0, 1, slp);
1689 1.1 mjacob }
1690 1.1 mjacob break;
1691 1.1 mjacob case SESTYP_FAN:
1692 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1693 1.1 mjacob cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1694 1.1 mjacob } else {
1695 1.1 mjacob cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1696 1.1 mjacob }
1697 1.1 mjacob err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1698 1.1 mjacob cc->flag2, 0, slp);
1699 1.1 mjacob if (err)
1700 1.1 mjacob return (err);
1701 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTON) {
1702 1.1 mjacob uint8_t fsp;
1703 1.1 mjacob if ((obp->cstat[3] & 0x7) == 7) {
1704 1.1 mjacob fsp = 4;
1705 1.1 mjacob } else if ((obp->cstat[3] & 0x7) == 6) {
1706 1.1 mjacob fsp = 3;
1707 1.1 mjacob } else if ((obp->cstat[3] & 0x7) == 4) {
1708 1.1 mjacob fsp = 2;
1709 1.1 mjacob } else {
1710 1.1 mjacob fsp = 1;
1711 1.1 mjacob }
1712 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1713 1.1 mjacob } else {
1714 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1715 1.1 mjacob }
1716 1.1 mjacob break;
1717 1.1 mjacob case SESTYP_DOORLOCK:
1718 1.1 mjacob if (obp->cstat[3] & 0x1) {
1719 1.1 mjacob cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1720 1.1 mjacob } else {
1721 1.1 mjacob cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1722 1.1 mjacob }
1723 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1724 1.1 mjacob cc->flag2, 0, slp);
1725 1.1 mjacob break;
1726 1.1 mjacob case SESTYP_ALARM:
1727 1.1 mjacob /*
1728 1.1 mjacob * On all nonzero but the 'muted' bit, we turn on the alarm,
1729 1.1 mjacob */
1730 1.1 mjacob obp->cstat[3] &= ~0xa;
1731 1.1 mjacob if (obp->cstat[3] & 0x40) {
1732 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
1733 1.1 mjacob } else if (obp->cstat[3] != 0) {
1734 1.1 mjacob cc->flag2 |= SAFT_FLG1_ALARM;
1735 1.1 mjacob } else {
1736 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
1737 1.1 mjacob }
1738 1.1 mjacob ep->priv = obp->cstat[3];
1739 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1740 1.1 mjacob cc->flag2, 0, slp);
1741 1.1 mjacob break;
1742 1.1 mjacob default:
1743 1.1 mjacob break;
1744 1.1 mjacob }
1745 1.1 mjacob ep->svalid = 0;
1746 1.1 mjacob return (0);
1747 1.1 mjacob }
1748 1.1 mjacob
1749 1.1 mjacob static int
1750 1.1 mjacob safte_getconfig(ses_softc_t *ssc)
1751 1.1 mjacob {
1752 1.1 mjacob struct scfg *cfg;
1753 1.1 mjacob int err, amt;
1754 1.1 mjacob char *sdata;
1755 1.1 mjacob static char cdb[10] =
1756 1.1 mjacob { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1757 1.1 mjacob
1758 1.1 mjacob cfg = ssc->ses_private;
1759 1.1 mjacob if (cfg == NULL)
1760 1.1 mjacob return (ENXIO);
1761 1.1 mjacob
1762 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
1763 1.1 mjacob if (sdata == NULL)
1764 1.1 mjacob return (ENOMEM);
1765 1.1 mjacob
1766 1.1 mjacob amt = SAFT_SCRATCH;
1767 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1768 1.1 mjacob if (err) {
1769 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1770 1.1 mjacob return (err);
1771 1.1 mjacob }
1772 1.1 mjacob amt = SAFT_SCRATCH - amt;
1773 1.1 mjacob if (amt < 6) {
1774 1.1 mjacob SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1775 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1776 1.1 mjacob return (EIO);
1777 1.1 mjacob }
1778 1.1 mjacob SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1779 1.1 mjacob sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1780 1.1 mjacob cfg->Nfans = sdata[0];
1781 1.1 mjacob cfg->Npwr = sdata[1];
1782 1.1 mjacob cfg->Nslots = sdata[2];
1783 1.1 mjacob cfg->DoorLock = sdata[3];
1784 1.1 mjacob cfg->Ntherm = sdata[4];
1785 1.1 mjacob cfg->Nspkrs = sdata[5];
1786 1.1 mjacob cfg->Nalarm = NPSEUDO_ALARM;
1787 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1788 1.1 mjacob return (0);
1789 1.1 mjacob }
1790 1.1 mjacob
1791 1.1 mjacob static int
1792 1.1 mjacob safte_rdstat(ses_softc_t *ssc, int slpflg)
1793 1.1 mjacob {
1794 1.1 mjacob int err, oid, r, i, hiwater, nitems, amt;
1795 1.1 mjacob uint16_t tempflags;
1796 1.1 mjacob size_t buflen;
1797 1.1 mjacob uint8_t status, oencstat;
1798 1.1 mjacob char *sdata, cdb[10];
1799 1.1 mjacob struct scfg *cc = ssc->ses_private;
1800 1.1 mjacob
1801 1.1 mjacob
1802 1.1 mjacob /*
1803 1.1 mjacob * The number of objects overstates things a bit,
1804 1.1 mjacob * both for the bogus 'thermometer' entries and
1805 1.1 mjacob * the drive status (which isn't read at the same
1806 1.1 mjacob * time as the enclosure status), but that's okay.
1807 1.1 mjacob */
1808 1.1 mjacob buflen = 4 * cc->Nslots;
1809 1.1 mjacob if (ssc->ses_nobjects > buflen)
1810 1.1 mjacob buflen = ssc->ses_nobjects;
1811 1.1 mjacob sdata = SES_MALLOC(buflen);
1812 1.1 mjacob if (sdata == NULL)
1813 1.1 mjacob return (ENOMEM);
1814 1.1 mjacob
1815 1.1 mjacob cdb[0] = READ_BUFFER;
1816 1.1 mjacob cdb[1] = 1;
1817 1.1 mjacob cdb[2] = SAFTE_RD_RDESTS;
1818 1.1 mjacob cdb[3] = 0;
1819 1.1 mjacob cdb[4] = 0;
1820 1.1 mjacob cdb[5] = 0;
1821 1.1 mjacob cdb[6] = 0;
1822 1.1 mjacob cdb[7] = (buflen >> 8) & 0xff;
1823 1.1 mjacob cdb[8] = buflen & 0xff;
1824 1.1 mjacob cdb[9] = 0;
1825 1.1 mjacob amt = buflen;
1826 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1827 1.1 mjacob if (err) {
1828 1.1 mjacob SES_FREE(sdata, buflen);
1829 1.1 mjacob return (err);
1830 1.1 mjacob }
1831 1.1 mjacob hiwater = buflen - amt;
1832 1.1 mjacob
1833 1.1 mjacob
1834 1.1 mjacob /*
1835 1.1 mjacob * invalidate all status bits.
1836 1.1 mjacob */
1837 1.1 mjacob for (i = 0; i < ssc->ses_nobjects; i++)
1838 1.1 mjacob ssc->ses_objmap[i].svalid = 0;
1839 1.1 mjacob oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1840 1.1 mjacob ssc->ses_encstat = 0;
1841 1.1 mjacob
1842 1.1 mjacob
1843 1.1 mjacob /*
1844 1.1 mjacob * Now parse returned buffer.
1845 1.1 mjacob * If we didn't get enough data back,
1846 1.1 mjacob * that's considered a fatal error.
1847 1.1 mjacob */
1848 1.1 mjacob oid = r = 0;
1849 1.1 mjacob
1850 1.1 mjacob for (nitems = i = 0; i < cc->Nfans; i++) {
1851 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1852 1.1 mjacob /*
1853 1.1 mjacob * 0 = Fan Operational
1854 1.1 mjacob * 1 = Fan is malfunctioning
1855 1.1 mjacob * 2 = Fan is not present
1856 1.1 mjacob * 0x80 = Unknown or Not Reportable Status
1857 1.1 mjacob */
1858 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1859 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1860 1.1 mjacob switch ((int)(uint8_t)sdata[r]) {
1861 1.1 mjacob case 0:
1862 1.1 mjacob nitems++;
1863 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1864 1.1 mjacob /*
1865 1.1 mjacob * We could get fancier and cache
1866 1.1 mjacob * fan speeds that we have set, but
1867 1.1 mjacob * that isn't done now.
1868 1.1 mjacob */
1869 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 7;
1870 1.1 mjacob break;
1871 1.1 mjacob
1872 1.1 mjacob case 1:
1873 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1874 1.1 mjacob /*
1875 1.1 mjacob * FAIL and FAN STOPPED synthesized
1876 1.1 mjacob */
1877 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x40;
1878 1.1 mjacob /*
1879 1.1 mjacob * Enclosure marked with CRITICAL error
1880 1.1 mjacob * if only one fan or no thermometers,
1881 1.1 mjacob * else the NONCRITICAL error is set.
1882 1.1 mjacob */
1883 1.1 mjacob if (cc->Nfans == 1 || cc->Ntherm == 0)
1884 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1885 1.1 mjacob else
1886 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1887 1.1 mjacob break;
1888 1.1 mjacob case 2:
1889 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1890 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
1891 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1892 1.1 mjacob /*
1893 1.1 mjacob * Enclosure marked with CRITICAL error
1894 1.1 mjacob * if only one fan or no thermometers,
1895 1.1 mjacob * else the NONCRITICAL error is set.
1896 1.1 mjacob */
1897 1.1 mjacob if (cc->Nfans == 1)
1898 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1899 1.1 mjacob else
1900 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1901 1.1 mjacob break;
1902 1.1 mjacob case 0x80:
1903 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1904 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1905 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1906 1.1 mjacob break;
1907 1.1 mjacob default:
1908 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1909 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
1910 1.1 mjacob SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1911 1.1 mjacob sdata[r] & 0xff);
1912 1.1 mjacob break;
1913 1.1 mjacob }
1914 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
1915 1.1 mjacob r++;
1916 1.1 mjacob }
1917 1.1 mjacob
1918 1.1 mjacob /*
1919 1.1 mjacob * No matter how you cut it, no cooling elements when there
1920 1.1 mjacob * should be some there is critical.
1921 1.1 mjacob */
1922 1.1 mjacob if (cc->Nfans && nitems == 0) {
1923 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1924 1.1 mjacob }
1925 1.1 mjacob
1926 1.1 mjacob
1927 1.1 mjacob for (i = 0; i < cc->Npwr; i++) {
1928 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1929 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1930 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1931 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1932 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1933 1.1 mjacob switch ((uint8_t)sdata[r]) {
1934 1.1 mjacob case 0x00: /* pws operational and on */
1935 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1936 1.1 mjacob break;
1937 1.1 mjacob case 0x01: /* pws operational and off */
1938 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1939 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x10;
1940 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1941 1.1 mjacob break;
1942 1.1 mjacob case 0x10: /* pws is malfunctioning and commanded on */
1943 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1944 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x61;
1945 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1946 1.1 mjacob break;
1947 1.1 mjacob
1948 1.1 mjacob case 0x11: /* pws is malfunctioning and commanded off */
1949 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1950 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x51;
1951 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1952 1.1 mjacob break;
1953 1.1 mjacob case 0x20: /* pws is not present */
1954 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1955 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
1956 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1957 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1958 1.1 mjacob break;
1959 1.1 mjacob case 0x21: /* pws is present */
1960 1.1 mjacob /*
1961 1.1 mjacob * This is for enclosures that cannot tell whether the
1962 1.1 mjacob * device is on or malfunctioning, but know that it is
1963 1.1 mjacob * present. Just fall through.
1964 1.1 mjacob */
1965 1.1 mjacob /* FALLTHROUGH */
1966 1.1 mjacob case 0x80: /* Unknown or Not Reportable Status */
1967 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1968 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1969 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1970 1.1 mjacob break;
1971 1.1 mjacob default:
1972 1.1 mjacob SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1973 1.1 mjacob i, sdata[r] & 0xff);
1974 1.1 mjacob break;
1975 1.1 mjacob }
1976 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
1977 1.1 mjacob r++;
1978 1.1 mjacob }
1979 1.1 mjacob
1980 1.1 mjacob /*
1981 1.1 mjacob * Skip over Slot SCSI IDs
1982 1.1 mjacob */
1983 1.1 mjacob r += cc->Nslots;
1984 1.1 mjacob
1985 1.1 mjacob /*
1986 1.1 mjacob * We always have doorlock status, no matter what,
1987 1.1 mjacob * but we only save the status if we have one.
1988 1.1 mjacob */
1989 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1990 1.1 mjacob if (cc->DoorLock) {
1991 1.1 mjacob /*
1992 1.1 mjacob * 0 = Door Locked
1993 1.1 mjacob * 1 = Door Unlocked, or no Lock Installed
1994 1.1 mjacob * 0x80 = Unknown or Not Reportable Status
1995 1.1 mjacob */
1996 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
1997 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
1998 1.1 mjacob switch ((uint8_t)sdata[r]) {
1999 1.1 mjacob case 0:
2000 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2001 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2002 1.1 mjacob break;
2003 1.1 mjacob case 1:
2004 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2005 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 1;
2006 1.1 mjacob break;
2007 1.1 mjacob case 0x80:
2008 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2009 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2010 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
2011 1.1 mjacob break;
2012 1.1 mjacob default:
2013 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2014 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
2015 1.1 mjacob SES_LOG(ssc, "unknown lock status 0x%x\n",
2016 1.1 mjacob sdata[r] & 0xff);
2017 1.1 mjacob break;
2018 1.1 mjacob }
2019 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2020 1.1 mjacob }
2021 1.1 mjacob r++;
2022 1.1 mjacob
2023 1.1 mjacob /*
2024 1.1 mjacob * We always have speaker status, no matter what,
2025 1.1 mjacob * but we only save the status if we have one.
2026 1.1 mjacob */
2027 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2028 1.1 mjacob if (cc->Nspkrs) {
2029 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2030 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2031 1.1 mjacob if (sdata[r] == 1) {
2032 1.1 mjacob /*
2033 1.1 mjacob * We need to cache tone urgency indicators.
2034 1.1 mjacob * Someday.
2035 1.1 mjacob */
2036 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2037 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x8;
2038 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2039 1.1 mjacob } else if (sdata[r] == 0) {
2040 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2041 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2042 1.1 mjacob } else {
2043 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2044 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
2045 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2046 1.1 mjacob SES_LOG(ssc, "unknown spkr status 0x%x\n",
2047 1.1 mjacob sdata[r] & 0xff);
2048 1.1 mjacob }
2049 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2050 1.1 mjacob }
2051 1.1 mjacob r++;
2052 1.1 mjacob
2053 1.1 mjacob for (i = 0; i < cc->Ntherm; i++) {
2054 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2055 1.1 mjacob /*
2056 1.1 mjacob * Status is a range from -10 to 245 deg Celsius,
2057 1.1 mjacob * which we need to normalize to -20 to -245 according
2058 1.1 mjacob * to the latest SCSI spec, which makes little
2059 1.1 mjacob * sense since this would overflow an 8bit value.
2060 1.1 mjacob * Well, still, the base normalization is -20,
2061 1.1 mjacob * not -10, so we have to adjust.
2062 1.1 mjacob *
2063 1.1 mjacob * So what's over and under temperature?
2064 1.1 mjacob * Hmm- we'll state that 'normal' operating
2065 1.1 mjacob * is 10 to 40 deg Celsius.
2066 1.1 mjacob */
2067 1.8 mjacob
2068 1.8 mjacob /*
2069 1.8 mjacob * Actually.... All of the units that people out in the world
2070 1.8 mjacob * seem to have do not come even close to setting a value that
2071 1.8 mjacob * complies with this spec.
2072 1.8 mjacob *
2073 1.8 mjacob * The closest explanation I could find was in an
2074 1.8 mjacob * LSI-Logic manual, which seemed to indicate that
2075 1.8 mjacob * this value would be set by whatever the I2C code
2076 1.8 mjacob * would interpolate from the output of an LM75
2077 1.8 mjacob * temperature sensor.
2078 1.8 mjacob *
2079 1.8 mjacob * This means that it is impossible to use the actual
2080 1.8 mjacob * numeric value to predict anything. But we don't want
2081 1.8 mjacob * to lose the value. So, we'll propagate the *uncorrected*
2082 1.8 mjacob * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2083 1.8 mjacob * temperature flags for warnings.
2084 1.8 mjacob */
2085 1.8 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2086 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2087 1.8 mjacob ssc->ses_objmap[oid].encstat[2] = sdata[r];
2088 1.19 simonb ssc->ses_objmap[oid].encstat[3] = 0;
2089 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2090 1.1 mjacob r++;
2091 1.1 mjacob }
2092 1.1 mjacob
2093 1.1 mjacob /*
2094 1.1 mjacob * Now, for "pseudo" thermometers, we have two bytes
2095 1.1 mjacob * of information in enclosure status- 16 bits. Actually,
2096 1.1 mjacob * the MSB is a single TEMP ALERT flag indicating whether
2097 1.1 mjacob * any other bits are set, but, thanks to fuzzy thinking,
2098 1.1 mjacob * in the SAF-TE spec, this can also be set even if no
2099 1.1 mjacob * other bits are set, thus making this really another
2100 1.1 mjacob * binary temperature sensor.
2101 1.1 mjacob */
2102 1.1 mjacob
2103 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2104 1.1 mjacob tempflags = sdata[r++];
2105 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2106 1.1 mjacob tempflags |= (tempflags << 8) | sdata[r++];
2107 1.1 mjacob
2108 1.1 mjacob for (i = 0; i < NPSEUDO_THERM; i++) {
2109 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2110 1.1 mjacob if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2111 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2112 1.1 mjacob ssc->ses_objmap[4].encstat[2] = 0xff;
2113 1.1 mjacob /*
2114 1.1 mjacob * Set 'over temperature' failure.
2115 1.1 mjacob */
2116 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 8;
2117 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2118 1.1 mjacob } else {
2119 1.1 mjacob /*
2120 1.1 mjacob * We used to say 'not available' and synthesize a
2121 1.1 mjacob * nominal 30 deg (C)- that was wrong. Actually,
2122 1.1 mjacob * Just say 'OK', and use the reserved value of
2123 1.1 mjacob * zero.
2124 1.1 mjacob */
2125 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2126 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2127 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2128 1.1 mjacob }
2129 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2130 1.1 mjacob }
2131 1.1 mjacob
2132 1.1 mjacob /*
2133 1.1 mjacob * Get alarm status.
2134 1.1 mjacob */
2135 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2136 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2137 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2138 1.1 mjacob
2139 1.1 mjacob /*
2140 1.1 mjacob * Now get drive slot status
2141 1.1 mjacob */
2142 1.1 mjacob cdb[2] = SAFTE_RD_RDDSTS;
2143 1.1 mjacob amt = buflen;
2144 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2145 1.1 mjacob if (err) {
2146 1.1 mjacob SES_FREE(sdata, buflen);
2147 1.1 mjacob return (err);
2148 1.1 mjacob }
2149 1.1 mjacob hiwater = buflen - amt;
2150 1.1 mjacob for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2151 1.1 mjacob SAFT_BAIL(r+3, hiwater, sdata, buflen);
2152 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2153 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2154 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2155 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2156 1.1 mjacob status = sdata[r+3];
2157 1.1 mjacob if ((status & 0x1) == 0) { /* no device */
2158 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2159 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
2160 1.1 mjacob } else {
2161 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2162 1.1 mjacob }
2163 1.1 mjacob if (status & 0x2) {
2164 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0x8;
2165 1.1 mjacob }
2166 1.1 mjacob if ((status & 0x4) == 0) {
2167 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x10;
2168 1.1 mjacob }
2169 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2170 1.1 mjacob }
2171 1.1 mjacob /* see comment below about sticky enclosure status */
2172 1.1 mjacob ssc->ses_encstat |= ENCI_SVALID | oencstat;
2173 1.1 mjacob SES_FREE(sdata, buflen);
2174 1.1 mjacob return (0);
2175 1.1 mjacob }
2176 1.1 mjacob
2177 1.1 mjacob static int
2178 1.1 mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2179 1.1 mjacob {
2180 1.1 mjacob int idx;
2181 1.1 mjacob encobj *ep;
2182 1.1 mjacob struct scfg *cc = ssc->ses_private;
2183 1.1 mjacob
2184 1.1 mjacob if (cc == NULL)
2185 1.1 mjacob return (0);
2186 1.1 mjacob
2187 1.1 mjacob idx = (int)obp->obj_id;
2188 1.1 mjacob ep = &ssc->ses_objmap[idx];
2189 1.1 mjacob
2190 1.1 mjacob switch (ep->enctype) {
2191 1.1 mjacob case SESTYP_DEVICE:
2192 1.1 mjacob if (obp->cstat[0] & SESCTL_PRDFAIL) {
2193 1.1 mjacob ep->priv |= 0x40;
2194 1.1 mjacob }
2195 1.1 mjacob /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2196 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2197 1.1 mjacob ep->priv |= 0x80;
2198 1.1 mjacob /*
2199 1.1 mjacob * Hmm. Try to set the 'No Drive' flag.
2200 1.1 mjacob * Maybe that will count as a 'disable'.
2201 1.1 mjacob */
2202 1.1 mjacob }
2203 1.1 mjacob if (ep->priv & 0xc6) {
2204 1.1 mjacob ep->priv &= ~0x1;
2205 1.1 mjacob } else {
2206 1.1 mjacob ep->priv |= 0x1; /* no errors */
2207 1.1 mjacob }
2208 1.1 mjacob wrslot_stat(ssc, slp);
2209 1.1 mjacob break;
2210 1.1 mjacob case SESTYP_POWER:
2211 1.1 mjacob /*
2212 1.1 mjacob * Okay- the only one that makes sense here is to
2213 1.1 mjacob * do the 'disable' for a power supply.
2214 1.1 mjacob */
2215 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2216 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2217 1.1 mjacob idx - cc->pwroff, 0, 0, slp);
2218 1.1 mjacob }
2219 1.1 mjacob break;
2220 1.1 mjacob case SESTYP_FAN:
2221 1.1 mjacob /*
2222 1.1 mjacob * Okay- the only one that makes sense here is to
2223 1.1 mjacob * set fan speed to zero on disable.
2224 1.1 mjacob */
2225 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2226 1.1 mjacob /* remember- fans are the first items, so idx works */
2227 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2228 1.1 mjacob }
2229 1.1 mjacob break;
2230 1.1 mjacob case SESTYP_DOORLOCK:
2231 1.1 mjacob /*
2232 1.1 mjacob * Well, we can 'disable' the lock.
2233 1.1 mjacob */
2234 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2235 1.1 mjacob cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2236 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2237 1.1 mjacob cc->flag2, 0, slp);
2238 1.1 mjacob }
2239 1.1 mjacob break;
2240 1.1 mjacob case SESTYP_ALARM:
2241 1.1 mjacob /*
2242 1.1 mjacob * Well, we can 'disable' the alarm.
2243 1.1 mjacob */
2244 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2245 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
2246 1.1 mjacob ep->priv |= 0x40; /* Muted */
2247 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2248 1.1 mjacob cc->flag2, 0, slp);
2249 1.1 mjacob }
2250 1.1 mjacob break;
2251 1.1 mjacob default:
2252 1.1 mjacob break;
2253 1.1 mjacob }
2254 1.1 mjacob ep->svalid = 0;
2255 1.1 mjacob return (0);
2256 1.1 mjacob }
2257 1.1 mjacob
2258 1.1 mjacob /*
2259 1.1 mjacob * This function handles all of the 16 byte WRITE BUFFER commands.
2260 1.1 mjacob */
2261 1.1 mjacob static int
2262 1.1 mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2263 1.1 mjacob uint8_t b3, int slp)
2264 1.1 mjacob {
2265 1.1 mjacob int err, amt;
2266 1.1 mjacob char *sdata;
2267 1.1 mjacob struct scfg *cc = ssc->ses_private;
2268 1.1 mjacob static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2269 1.1 mjacob
2270 1.1 mjacob if (cc == NULL)
2271 1.1 mjacob return (0);
2272 1.1 mjacob
2273 1.1 mjacob sdata = SES_MALLOC(16);
2274 1.1 mjacob if (sdata == NULL)
2275 1.1 mjacob return (ENOMEM);
2276 1.1 mjacob
2277 1.1 mjacob SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2278 1.1 mjacob
2279 1.1 mjacob sdata[0] = op;
2280 1.1 mjacob sdata[1] = b1;
2281 1.1 mjacob sdata[2] = b2;
2282 1.1 mjacob sdata[3] = b3;
2283 1.1 mjacob MEMZERO(&sdata[4], 12);
2284 1.1 mjacob amt = -16;
2285 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2286 1.1 mjacob SES_FREE(sdata, 16);
2287 1.1 mjacob return (err);
2288 1.1 mjacob }
2289 1.1 mjacob
2290 1.1 mjacob /*
2291 1.1 mjacob * This function updates the status byte for the device slot described.
2292 1.1 mjacob *
2293 1.1 mjacob * Since this is an optional SAF-TE command, there's no point in
2294 1.1 mjacob * returning an error.
2295 1.1 mjacob */
2296 1.1 mjacob static void
2297 1.1 mjacob wrslot_stat(ses_softc_t *ssc, int slp)
2298 1.1 mjacob {
2299 1.1 mjacob int i, amt;
2300 1.1 mjacob encobj *ep;
2301 1.1 mjacob char cdb[10], *sdata;
2302 1.1 mjacob struct scfg *cc = ssc->ses_private;
2303 1.1 mjacob
2304 1.1 mjacob if (cc == NULL)
2305 1.1 mjacob return;
2306 1.1 mjacob
2307 1.1 mjacob SES_VLOG(ssc, "saf_wrslot\n");
2308 1.1 mjacob cdb[0] = WRITE_BUFFER;
2309 1.1 mjacob cdb[1] = 1;
2310 1.1 mjacob cdb[2] = 0;
2311 1.1 mjacob cdb[3] = 0;
2312 1.1 mjacob cdb[4] = 0;
2313 1.1 mjacob cdb[5] = 0;
2314 1.1 mjacob cdb[6] = 0;
2315 1.1 mjacob cdb[7] = 0;
2316 1.1 mjacob cdb[8] = cc->Nslots * 3 + 1;
2317 1.1 mjacob cdb[9] = 0;
2318 1.1 mjacob
2319 1.1 mjacob sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2320 1.1 mjacob if (sdata == NULL)
2321 1.1 mjacob return;
2322 1.1 mjacob MEMZERO(sdata, cc->Nslots * 3 + 1);
2323 1.1 mjacob
2324 1.1 mjacob sdata[0] = SAFTE_WT_DSTAT;
2325 1.1 mjacob for (i = 0; i < cc->Nslots; i++) {
2326 1.1 mjacob ep = &ssc->ses_objmap[cc->slotoff + i];
2327 1.1 mjacob SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2328 1.1 mjacob sdata[1 + (3 * i)] = ep->priv & 0xff;
2329 1.1 mjacob }
2330 1.1 mjacob amt = -(cc->Nslots * 3 + 1);
2331 1.1 mjacob (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2332 1.1 mjacob SES_FREE(sdata, cc->Nslots * 3 + 1);
2333 1.1 mjacob }
2334 1.1 mjacob
2335 1.1 mjacob /*
2336 1.1 mjacob * This function issues the "PERFORM SLOT OPERATION" command.
2337 1.1 mjacob */
2338 1.1 mjacob static int
2339 1.1 mjacob perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2340 1.1 mjacob {
2341 1.1 mjacob int err, amt;
2342 1.1 mjacob char *sdata;
2343 1.1 mjacob struct scfg *cc = ssc->ses_private;
2344 1.1 mjacob static char cdb[10] =
2345 1.1 mjacob { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2346 1.1 mjacob
2347 1.1 mjacob if (cc == NULL)
2348 1.1 mjacob return (0);
2349 1.1 mjacob
2350 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
2351 1.1 mjacob if (sdata == NULL)
2352 1.1 mjacob return (ENOMEM);
2353 1.1 mjacob MEMZERO(sdata, SAFT_SCRATCH);
2354 1.1 mjacob
2355 1.1 mjacob sdata[0] = SAFTE_WT_SLTOP;
2356 1.1 mjacob sdata[1] = slot;
2357 1.1 mjacob sdata[2] = opflag;
2358 1.1 mjacob SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2359 1.1 mjacob amt = -SAFT_SCRATCH;
2360 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2361 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
2362 1.1 mjacob return (err);
2363 1.1 mjacob }
2364