Home | History | Annotate | Line # | Download | only in scsipi
ses.c revision 1.40.12.1
      1  1.40.12.1       jym /*	$NetBSD: ses.c,v 1.40.12.1 2009/05/13 17:21:23 jym Exp $ */
      2        1.1    mjacob /*
      3        1.1    mjacob  * Copyright (C) 2000 National Aeronautics & Space Administration
      4        1.1    mjacob  * All rights reserved.
      5        1.1    mjacob  *
      6        1.1    mjacob  * Redistribution and use in source and binary forms, with or without
      7        1.1    mjacob  * modification, are permitted provided that the following conditions
      8        1.1    mjacob  * are met:
      9        1.1    mjacob  * 1. Redistributions of source code must retain the above copyright
     10        1.1    mjacob  *    notice, this list of conditions and the following disclaimer.
     11        1.1    mjacob  * 2. The name of the author may not be used to endorse or promote products
     12        1.1    mjacob  *    derived from this software without specific prior written permission
     13        1.1    mjacob  *
     14        1.1    mjacob  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     15        1.1    mjacob  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     16        1.1    mjacob  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     17        1.1    mjacob  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     18        1.1    mjacob  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     19        1.1    mjacob  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     20        1.1    mjacob  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     21        1.1    mjacob  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22        1.1    mjacob  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     23        1.1    mjacob  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24        1.1    mjacob  *
     25        1.1    mjacob  * Author:	mjacob (at) nas.nasa.gov
     26        1.1    mjacob  */
     27        1.1    mjacob 
     28       1.12     lukem #include <sys/cdefs.h>
     29  1.40.12.1       jym __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.40.12.1 2009/05/13 17:21:23 jym Exp $");
     30        1.1    mjacob 
     31        1.1    mjacob #include "opt_scsi.h"
     32        1.1    mjacob 
     33        1.1    mjacob #include <sys/param.h>
     34        1.1    mjacob #include <sys/systm.h>
     35        1.1    mjacob #include <sys/kernel.h>
     36        1.1    mjacob #include <sys/file.h>
     37        1.1    mjacob #include <sys/stat.h>
     38        1.1    mjacob #include <sys/ioctl.h>
     39        1.1    mjacob #include <sys/scsiio.h>
     40        1.1    mjacob #include <sys/buf.h>
     41        1.1    mjacob #include <sys/uio.h>
     42        1.1    mjacob #include <sys/malloc.h>
     43        1.1    mjacob #include <sys/errno.h>
     44        1.1    mjacob #include <sys/device.h>
     45        1.1    mjacob #include <sys/disklabel.h>
     46        1.1    mjacob #include <sys/disk.h>
     47        1.1    mjacob #include <sys/proc.h>
     48        1.1    mjacob #include <sys/conf.h>
     49        1.1    mjacob #include <sys/vnode.h>
     50        1.1    mjacob #include <machine/stdarg.h>
     51        1.1    mjacob 
     52        1.1    mjacob #include <dev/scsipi/scsipi_all.h>
     53       1.26   mycroft #include <dev/scsipi/scsipi_disk.h>
     54        1.1    mjacob #include <dev/scsipi/scsi_all.h>
     55        1.1    mjacob #include <dev/scsipi/scsi_disk.h>
     56       1.26   mycroft #include <dev/scsipi/scsipiconf.h>
     57       1.26   mycroft #include <dev/scsipi/scsipi_base.h>
     58        1.1    mjacob #include <dev/scsipi/ses.h>
     59        1.1    mjacob 
     60        1.1    mjacob /*
     61        1.1    mjacob  * Platform Independent Driver Internal Definitions for SES devices.
     62        1.1    mjacob  */
     63        1.1    mjacob typedef enum {
     64        1.1    mjacob 	SES_NONE,
     65        1.1    mjacob 	SES_SES_SCSI2,
     66        1.1    mjacob 	SES_SES,
     67        1.1    mjacob 	SES_SES_PASSTHROUGH,
     68        1.1    mjacob 	SES_SEN,
     69        1.1    mjacob 	SES_SAFT
     70        1.1    mjacob } enctyp;
     71        1.1    mjacob 
     72        1.1    mjacob struct ses_softc;
     73        1.1    mjacob typedef struct ses_softc ses_softc_t;
     74        1.1    mjacob typedef struct {
     75       1.23   thorpej 	int (*softc_init)(ses_softc_t *, int);
     76       1.23   thorpej 	int (*init_enc)(ses_softc_t *);
     77       1.23   thorpej 	int (*get_encstat)(ses_softc_t *, int);
     78       1.23   thorpej 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
     79       1.23   thorpej 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
     80       1.23   thorpej 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
     81        1.1    mjacob } encvec;
     82        1.1    mjacob 
     83        1.1    mjacob #define	ENCI_SVALID	0x80
     84        1.1    mjacob 
     85        1.1    mjacob typedef struct {
     86        1.1    mjacob 	uint32_t
     87        1.1    mjacob 		enctype	: 8,		/* enclosure type */
     88        1.1    mjacob 		subenclosure : 8,	/* subenclosure id */
     89        1.1    mjacob 		svalid	: 1,		/* enclosure information valid */
     90        1.1    mjacob 		priv	: 15;		/* private data, per object */
     91        1.1    mjacob 	uint8_t	encstat[4];	/* state && stats */
     92        1.1    mjacob } encobj;
     93        1.1    mjacob 
     94        1.1    mjacob #define	SEN_ID		"UNISYS           SUN_SEN"
     95        1.1    mjacob #define	SEN_ID_LEN	24
     96        1.1    mjacob 
     97       1.23   thorpej static enctyp ses_type(struct scsipi_inquiry_data *);
     98        1.1    mjacob 
     99        1.1    mjacob 
    100        1.1    mjacob /* Forward reference to Enclosure Functions */
    101       1.23   thorpej static int ses_softc_init(ses_softc_t *, int);
    102       1.23   thorpej static int ses_init_enc(ses_softc_t *);
    103       1.23   thorpej static int ses_get_encstat(ses_softc_t *, int);
    104       1.23   thorpej static int ses_set_encstat(ses_softc_t *, uint8_t, int);
    105       1.23   thorpej static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
    106       1.23   thorpej static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
    107       1.23   thorpej 
    108       1.23   thorpej static int safte_softc_init(ses_softc_t *, int);
    109       1.23   thorpej static int safte_init_enc(ses_softc_t *);
    110       1.23   thorpej static int safte_get_encstat(ses_softc_t *, int);
    111       1.23   thorpej static int safte_set_encstat(ses_softc_t *, uint8_t, int);
    112       1.23   thorpej static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
    113       1.23   thorpej static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
    114        1.1    mjacob 
    115        1.1    mjacob /*
    116        1.1    mjacob  * Platform implementation defines/functions for SES internal kernel stuff
    117        1.1    mjacob  */
    118        1.1    mjacob 
    119        1.1    mjacob #define	STRNCMP			strncmp
    120        1.1    mjacob #define	PRINTF			printf
    121        1.1    mjacob #define	SES_LOG			ses_log
    122        1.1    mjacob #if	defined(DEBUG) || defined(SCSIDEBUG)
    123        1.1    mjacob #define	SES_VLOG		ses_log
    124        1.1    mjacob #else
    125        1.1    mjacob #define	SES_VLOG		if (0) ses_log
    126        1.1    mjacob #endif
    127        1.1    mjacob #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
    128        1.1    mjacob #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
    129       1.10   thorpej #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
    130       1.11   thorpej #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
    131        1.1    mjacob #define	RECEIVE_DIAGNOSTIC	0x1c
    132        1.1    mjacob #define	SEND_DIAGNOSTIC		0x1d
    133        1.1    mjacob #define	WRITE_BUFFER		0x3b
    134        1.1    mjacob #define	READ_BUFFER		0x3c
    135        1.1    mjacob 
    136       1.23   thorpej static dev_type_open(sesopen);
    137       1.23   thorpej static dev_type_close(sesclose);
    138       1.23   thorpej static dev_type_ioctl(sesioctl);
    139       1.14   gehenna 
    140       1.14   gehenna const struct cdevsw ses_cdevsw = {
    141       1.14   gehenna 	sesopen, sesclose, noread, nowrite, sesioctl,
    142       1.35  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
    143       1.14   gehenna };
    144        1.1    mjacob 
    145       1.23   thorpej static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
    146       1.23   thorpej static void ses_log(struct ses_softc *, const char *, ...)
    147        1.7  sommerfe      __attribute__((__format__(__printf__, 2, 3)));
    148        1.1    mjacob 
    149        1.1    mjacob /*
    150        1.1    mjacob  * General NetBSD kernel stuff.
    151        1.1    mjacob  */
    152        1.1    mjacob 
    153        1.1    mjacob struct ses_softc {
    154        1.1    mjacob 	struct device	sc_device;
    155        1.9    bouyer 	struct scsipi_periph *sc_periph;
    156        1.1    mjacob 	enctyp		ses_type;	/* type of enclosure */
    157        1.1    mjacob 	encvec		ses_vec;	/* vector to handlers */
    158        1.1    mjacob 	void *		ses_private;	/* per-type private data */
    159        1.1    mjacob 	encobj *	ses_objmap;	/* objects */
    160       1.29   reinoud 	u_int32_t	ses_nobjects;	/* number of objects */
    161        1.1    mjacob 	ses_encstat	ses_encstat;	/* overall status */
    162       1.29   reinoud 	u_int8_t	ses_flags;
    163        1.1    mjacob };
    164        1.1    mjacob #define	SES_FLAG_INVALID	0x01
    165        1.1    mjacob #define	SES_FLAG_OPEN		0x02
    166        1.1    mjacob #define	SES_FLAG_INITIALIZED	0x04
    167        1.1    mjacob 
    168        1.1    mjacob #define SESUNIT(x)       (minor((x)))
    169        1.1    mjacob 
    170  1.40.12.1       jym static int ses_match(device_t, cfdata_t, void *);
    171  1.40.12.1       jym static void ses_attach(device_t, device_t, void *);
    172       1.23   thorpej static enctyp ses_device_type(struct scsipibus_attach_args *);
    173        1.1    mjacob 
    174       1.16   thorpej CFATTACH_DECL(ses, sizeof (struct ses_softc),
    175       1.17   thorpej     ses_match, ses_attach, NULL, NULL);
    176       1.16   thorpej 
    177        1.1    mjacob extern struct cfdriver ses_cd;
    178        1.1    mjacob 
    179       1.23   thorpej static const struct scsipi_periphsw ses_switch = {
    180        1.1    mjacob 	NULL,
    181        1.1    mjacob 	NULL,
    182        1.1    mjacob 	NULL,
    183        1.1    mjacob 	NULL
    184        1.1    mjacob };
    185        1.1    mjacob 
    186       1.23   thorpej static int
    187  1.40.12.1       jym ses_match(device_t parent, cfdata_t match,
    188       1.36  christos     void *aux)
    189        1.1    mjacob {
    190        1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    191        1.2    mjacob 
    192        1.1    mjacob 	switch (ses_device_type(sa)) {
    193        1.1    mjacob 	case SES_SES:
    194        1.1    mjacob 	case SES_SES_SCSI2:
    195        1.1    mjacob 	case SES_SEN:
    196        1.1    mjacob 	case SES_SAFT:
    197        1.2    mjacob 	case SES_SES_PASSTHROUGH:
    198        1.2    mjacob 		/*
    199        1.2    mjacob 		 * For these devices, it's a perfect match.
    200        1.2    mjacob 		 */
    201        1.2    mjacob 		return (24);
    202        1.1    mjacob 	default:
    203        1.1    mjacob 		return (0);
    204        1.1    mjacob 	}
    205        1.1    mjacob }
    206        1.1    mjacob 
    207        1.1    mjacob 
    208        1.1    mjacob /*
    209        1.1    mjacob  * Complete the attachment.
    210        1.1    mjacob  *
    211        1.1    mjacob  * We have to repeat the rerun of INQUIRY data as above because
    212        1.1    mjacob  * it's not until the return from the match routine that we have
    213        1.1    mjacob  * the softc available to set stuff in.
    214        1.1    mjacob  */
    215       1.23   thorpej static void
    216  1.40.12.1       jym ses_attach(device_t parent, device_t self, void *aux)
    217        1.1    mjacob {
    218       1.31  christos 	const char *tname;
    219       1.33   thorpej 	struct ses_softc *softc = device_private(self);
    220        1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    221        1.9    bouyer 	struct scsipi_periph *periph = sa->sa_periph;
    222        1.1    mjacob 
    223        1.9    bouyer 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
    224        1.9    bouyer 	softc->sc_periph = periph;
    225        1.9    bouyer 	periph->periph_dev = &softc->sc_device;
    226        1.9    bouyer 	periph->periph_switch = &ses_switch;
    227        1.9    bouyer 	periph->periph_openings = 1;
    228        1.1    mjacob 
    229        1.1    mjacob 	softc->ses_type = ses_device_type(sa);
    230        1.1    mjacob 	switch (softc->ses_type) {
    231        1.1    mjacob 	case SES_SES:
    232        1.1    mjacob 	case SES_SES_SCSI2:
    233        1.1    mjacob         case SES_SES_PASSTHROUGH:
    234        1.1    mjacob 		softc->ses_vec.softc_init = ses_softc_init;
    235        1.1    mjacob 		softc->ses_vec.init_enc = ses_init_enc;
    236        1.1    mjacob 		softc->ses_vec.get_encstat = ses_get_encstat;
    237        1.1    mjacob 		softc->ses_vec.set_encstat = ses_set_encstat;
    238        1.1    mjacob 		softc->ses_vec.get_objstat = ses_get_objstat;
    239        1.1    mjacob 		softc->ses_vec.set_objstat = ses_set_objstat;
    240        1.1    mjacob 		break;
    241        1.1    mjacob         case SES_SAFT:
    242        1.1    mjacob 		softc->ses_vec.softc_init = safte_softc_init;
    243        1.1    mjacob 		softc->ses_vec.init_enc = safte_init_enc;
    244        1.1    mjacob 		softc->ses_vec.get_encstat = safte_get_encstat;
    245        1.1    mjacob 		softc->ses_vec.set_encstat = safte_set_encstat;
    246        1.1    mjacob 		softc->ses_vec.get_objstat = safte_get_objstat;
    247        1.1    mjacob 		softc->ses_vec.set_objstat = safte_set_objstat;
    248        1.1    mjacob 		break;
    249        1.1    mjacob         case SES_SEN:
    250        1.1    mjacob 		break;
    251        1.1    mjacob 	case SES_NONE:
    252        1.1    mjacob 	default:
    253        1.1    mjacob 		break;
    254        1.1    mjacob 	}
    255        1.1    mjacob 
    256        1.1    mjacob 	switch (softc->ses_type) {
    257        1.1    mjacob 	default:
    258        1.1    mjacob 	case SES_NONE:
    259        1.1    mjacob 		tname = "No SES device";
    260        1.1    mjacob 		break;
    261        1.1    mjacob 	case SES_SES_SCSI2:
    262        1.1    mjacob 		tname = "SCSI-2 SES Device";
    263        1.1    mjacob 		break;
    264        1.1    mjacob 	case SES_SES:
    265        1.1    mjacob 		tname = "SCSI-3 SES Device";
    266        1.1    mjacob 		break;
    267        1.1    mjacob         case SES_SES_PASSTHROUGH:
    268        1.1    mjacob 		tname = "SES Passthrough Device";
    269        1.1    mjacob 		break;
    270        1.1    mjacob         case SES_SEN:
    271        1.1    mjacob 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
    272        1.1    mjacob 		break;
    273        1.1    mjacob         case SES_SAFT:
    274        1.1    mjacob 		tname = "SAF-TE Compliant Device";
    275        1.1    mjacob 		break;
    276        1.1    mjacob 	}
    277       1.39    cegger 	printf("\n%s: %s\n", device_xname(&softc->sc_device), tname);
    278        1.1    mjacob }
    279        1.1    mjacob 
    280        1.2    mjacob 
    281        1.1    mjacob static enctyp
    282       1.23   thorpej ses_device_type(struct scsipibus_attach_args *sa)
    283        1.1    mjacob {
    284        1.1    mjacob 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
    285       1.30     perry 
    286        1.1    mjacob 	if (inqp == NULL)
    287        1.1    mjacob 		return (SES_NONE);
    288        1.1    mjacob 
    289        1.5     dante 	return (ses_type(inqp));
    290        1.1    mjacob }
    291        1.1    mjacob 
    292       1.23   thorpej static int
    293       1.37  christos sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
    294        1.1    mjacob {
    295        1.1    mjacob 	struct ses_softc *softc;
    296        1.1    mjacob 	int error, unit;
    297        1.1    mjacob 
    298        1.1    mjacob 	unit = SESUNIT(dev);
    299       1.40   tsutsui 	softc = device_lookup_private(&ses_cd, unit);
    300        1.1    mjacob 	if (softc == NULL)
    301        1.1    mjacob 		return (ENXIO);
    302        1.1    mjacob 
    303        1.1    mjacob 	if (softc->ses_flags & SES_FLAG_INVALID) {
    304        1.1    mjacob 		error = ENXIO;
    305        1.1    mjacob 		goto out;
    306        1.1    mjacob 	}
    307        1.1    mjacob 	if (softc->ses_flags & SES_FLAG_OPEN) {
    308        1.1    mjacob 		error = EBUSY;
    309        1.1    mjacob 		goto out;
    310        1.1    mjacob 	}
    311        1.1    mjacob 	if (softc->ses_vec.softc_init == NULL) {
    312        1.1    mjacob 		error = ENXIO;
    313        1.1    mjacob 		goto out;
    314        1.1    mjacob 	}
    315        1.9    bouyer 	error = scsipi_adapter_addref(
    316        1.9    bouyer 	    softc->sc_periph->periph_channel->chan_adapter);
    317        1.1    mjacob 	if (error != 0)
    318        1.1    mjacob                 goto out;
    319        1.1    mjacob 
    320        1.1    mjacob 
    321        1.1    mjacob 	softc->ses_flags |= SES_FLAG_OPEN;
    322        1.1    mjacob 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    323        1.1    mjacob 		error = (*softc->ses_vec.softc_init)(softc, 1);
    324        1.1    mjacob 		if (error)
    325        1.1    mjacob 			softc->ses_flags &= ~SES_FLAG_OPEN;
    326        1.1    mjacob 		else
    327        1.1    mjacob 			softc->ses_flags |= SES_FLAG_INITIALIZED;
    328        1.1    mjacob 	}
    329        1.1    mjacob 
    330        1.1    mjacob out:
    331        1.1    mjacob 	return (error);
    332        1.1    mjacob }
    333        1.1    mjacob 
    334       1.23   thorpej static int
    335       1.37  christos sesclose(dev_t dev, int flags, int fmt,
    336       1.37  christos     struct lwp *l)
    337        1.1    mjacob {
    338        1.1    mjacob 	struct ses_softc *softc;
    339        1.1    mjacob 	int unit;
    340        1.1    mjacob 
    341        1.1    mjacob 	unit = SESUNIT(dev);
    342       1.40   tsutsui 	softc = device_lookup_private(&ses_cd, unit);
    343        1.1    mjacob 	if (softc == NULL)
    344        1.1    mjacob 		return (ENXIO);
    345        1.1    mjacob 
    346        1.9    bouyer 	scsipi_wait_drain(softc->sc_periph);
    347        1.9    bouyer 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
    348        1.1    mjacob 	softc->ses_flags &= ~SES_FLAG_OPEN;
    349        1.1    mjacob 	return (0);
    350        1.1    mjacob }
    351        1.1    mjacob 
    352       1.23   thorpej static int
    353       1.38  christos sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
    354        1.1    mjacob {
    355        1.1    mjacob 	ses_encstat tmp;
    356        1.1    mjacob 	ses_objstat objs;
    357        1.1    mjacob 	ses_object obj, *uobj;
    358       1.40   tsutsui 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
    359        1.1    mjacob 	void *addr;
    360        1.1    mjacob 	int error, i;
    361        1.1    mjacob 
    362        1.1    mjacob 
    363        1.1    mjacob 	if (arg_addr)
    364       1.38  christos 		addr = *((void **) arg_addr);
    365        1.1    mjacob 	else
    366        1.1    mjacob 		addr = NULL;
    367        1.1    mjacob 
    368        1.9    bouyer 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
    369        1.1    mjacob 
    370        1.1    mjacob 	/*
    371        1.1    mjacob 	 * Now check to see whether we're initialized or not.
    372        1.1    mjacob 	 */
    373        1.1    mjacob 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    374        1.1    mjacob 		return (ENODEV);
    375        1.1    mjacob 	}
    376        1.1    mjacob 
    377        1.1    mjacob 	error = 0;
    378        1.1    mjacob 
    379        1.1    mjacob 	/*
    380        1.1    mjacob 	 * If this command can change the device's state,
    381        1.1    mjacob 	 * we must have the device open for writing.
    382        1.1    mjacob 	 */
    383        1.1    mjacob 	switch (cmd) {
    384        1.1    mjacob 	case SESIOC_GETNOBJ:
    385        1.1    mjacob 	case SESIOC_GETOBJMAP:
    386        1.1    mjacob 	case SESIOC_GETENCSTAT:
    387        1.1    mjacob 	case SESIOC_GETOBJSTAT:
    388        1.1    mjacob 		break;
    389        1.1    mjacob 	default:
    390        1.1    mjacob 		if ((flag & FWRITE) == 0) {
    391        1.1    mjacob 			return (EBADF);
    392        1.1    mjacob 		}
    393        1.1    mjacob 	}
    394        1.1    mjacob 
    395        1.1    mjacob 	switch (cmd) {
    396        1.1    mjacob 	case SESIOC_GETNOBJ:
    397       1.34  christos 		if (addr == NULL)
    398       1.34  christos 			return EINVAL;
    399        1.1    mjacob 		error = copyout(&ssc->ses_nobjects, addr,
    400        1.1    mjacob 		    sizeof (ssc->ses_nobjects));
    401        1.1    mjacob 		break;
    402       1.30     perry 
    403        1.1    mjacob 	case SESIOC_GETOBJMAP:
    404       1.34  christos 		if (addr == NULL)
    405       1.34  christos 			return EINVAL;
    406        1.1    mjacob 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
    407        1.1    mjacob 			obj.obj_id = i;
    408        1.1    mjacob 			obj.subencid = ssc->ses_objmap[i].subenclosure;
    409        1.1    mjacob 			obj.object_type = ssc->ses_objmap[i].enctype;
    410        1.1    mjacob 			error = copyout(&obj, uobj, sizeof (ses_object));
    411        1.1    mjacob 			if (error) {
    412        1.1    mjacob 				break;
    413        1.1    mjacob 			}
    414        1.1    mjacob 		}
    415        1.1    mjacob 		break;
    416        1.1    mjacob 
    417        1.1    mjacob 	case SESIOC_GETENCSTAT:
    418       1.34  christos 		if (addr == NULL)
    419       1.34  christos 			return EINVAL;
    420        1.1    mjacob 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
    421        1.1    mjacob 		if (error)
    422        1.1    mjacob 			break;
    423        1.1    mjacob 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
    424        1.1    mjacob 		error = copyout(&tmp, addr, sizeof (ses_encstat));
    425        1.1    mjacob 		ssc->ses_encstat = tmp;
    426        1.1    mjacob 		break;
    427        1.1    mjacob 
    428        1.1    mjacob 	case SESIOC_SETENCSTAT:
    429       1.34  christos 		if (addr == NULL)
    430       1.34  christos 			return EINVAL;
    431        1.1    mjacob 		error = copyin(addr, &tmp, sizeof (ses_encstat));
    432        1.1    mjacob 		if (error)
    433        1.1    mjacob 			break;
    434        1.1    mjacob 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
    435        1.1    mjacob 		break;
    436        1.1    mjacob 
    437        1.1    mjacob 	case SESIOC_GETOBJSTAT:
    438       1.34  christos 		if (addr == NULL)
    439       1.34  christos 			return EINVAL;
    440        1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    441        1.1    mjacob 		if (error)
    442        1.1    mjacob 			break;
    443        1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    444        1.1    mjacob 			error = EINVAL;
    445        1.1    mjacob 			break;
    446        1.1    mjacob 		}
    447        1.1    mjacob 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
    448        1.1    mjacob 		if (error)
    449        1.1    mjacob 			break;
    450        1.1    mjacob 		error = copyout(&objs, addr, sizeof (ses_objstat));
    451        1.1    mjacob 		/*
    452        1.1    mjacob 		 * Always (for now) invalidate entry.
    453        1.1    mjacob 		 */
    454        1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    455        1.1    mjacob 		break;
    456        1.1    mjacob 
    457        1.1    mjacob 	case SESIOC_SETOBJSTAT:
    458       1.34  christos 		if (addr == NULL)
    459       1.34  christos 			return EINVAL;
    460        1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    461        1.1    mjacob 		if (error)
    462        1.1    mjacob 			break;
    463        1.1    mjacob 
    464        1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    465        1.1    mjacob 			error = EINVAL;
    466        1.1    mjacob 			break;
    467        1.1    mjacob 		}
    468        1.1    mjacob 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
    469        1.1    mjacob 
    470        1.1    mjacob 		/*
    471        1.1    mjacob 		 * Always (for now) invalidate entry.
    472        1.1    mjacob 		 */
    473        1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    474        1.1    mjacob 		break;
    475        1.1    mjacob 
    476        1.1    mjacob 	case SESIOC_INIT:
    477        1.1    mjacob 
    478        1.1    mjacob 		error = (*ssc->ses_vec.init_enc)(ssc);
    479        1.1    mjacob 		break;
    480        1.1    mjacob 
    481        1.1    mjacob 	default:
    482        1.9    bouyer 		error = scsipi_do_ioctl(ssc->sc_periph,
    483       1.32  christos 			    dev, cmd, arg_addr, flag, l);
    484        1.1    mjacob 		break;
    485        1.1    mjacob 	}
    486        1.1    mjacob 	return (error);
    487        1.1    mjacob }
    488        1.1    mjacob 
    489        1.1    mjacob static int
    490        1.1    mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
    491        1.1    mjacob {
    492        1.1    mjacob 	struct scsipi_generic sgen;
    493        1.1    mjacob 	int dl, flg, error;
    494        1.1    mjacob 
    495        1.1    mjacob 	if (dptr) {
    496        1.1    mjacob 		if ((dl = *dlenp) < 0) {
    497        1.1    mjacob 			dl = -dl;
    498        1.1    mjacob 			flg = XS_CTL_DATA_OUT;
    499        1.1    mjacob 		} else {
    500        1.1    mjacob 			flg = XS_CTL_DATA_IN;
    501        1.1    mjacob 		}
    502        1.1    mjacob 	} else {
    503        1.1    mjacob 		dl = 0;
    504        1.1    mjacob 		flg = 0;
    505        1.1    mjacob 	}
    506        1.1    mjacob 
    507        1.1    mjacob 	if (cdbl > sizeof (struct scsipi_generic)) {
    508        1.1    mjacob 		cdbl = sizeof (struct scsipi_generic);
    509        1.1    mjacob 	}
    510       1.11   thorpej 	memcpy(&sgen, cdb, cdbl);
    511        1.1    mjacob #ifndef	SCSIDEBUG
    512        1.1    mjacob 	flg |= XS_CTL_SILENT;
    513        1.1    mjacob #endif
    514       1.25   mycroft 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
    515       1.29   reinoud 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
    516        1.1    mjacob 
    517        1.1    mjacob 	if (error == 0 && dptr)
    518        1.1    mjacob 		*dlenp = 0;
    519        1.1    mjacob 
    520        1.1    mjacob 	return (error);
    521        1.1    mjacob }
    522        1.1    mjacob 
    523        1.1    mjacob static void
    524        1.1    mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
    525        1.1    mjacob {
    526        1.1    mjacob 	va_list ap;
    527        1.1    mjacob 
    528       1.39    cegger 	printf("%s: ", device_xname(&ssc->sc_device));
    529        1.1    mjacob 	va_start(ap, fmt);
    530        1.1    mjacob 	vprintf(fmt, ap);
    531        1.1    mjacob 	va_end(ap);
    532        1.1    mjacob }
    533        1.1    mjacob 
    534        1.1    mjacob /*
    535        1.1    mjacob  * The code after this point runs on many platforms,
    536        1.1    mjacob  * so forgive the slightly awkward and nonconforming
    537        1.1    mjacob  * appearance.
    538        1.1    mjacob  */
    539        1.1    mjacob 
    540        1.1    mjacob /*
    541        1.1    mjacob  * Is this a device that supports enclosure services?
    542        1.1    mjacob  *
    543        1.1    mjacob  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
    544        1.1    mjacob  * an SES device. If it happens to be an old UNISYS SEN device, we can
    545        1.1    mjacob  * handle that too.
    546        1.1    mjacob  */
    547        1.3    mjacob 
    548        1.3    mjacob #define	SAFTE_START	44
    549        1.3    mjacob #define	SAFTE_END	50
    550        1.3    mjacob #define	SAFTE_LEN	SAFTE_END-SAFTE_START
    551        1.1    mjacob 
    552        1.1    mjacob static enctyp
    553       1.23   thorpej ses_type(struct scsipi_inquiry_data *inqp)
    554        1.1    mjacob {
    555        1.5     dante 	size_t	given_len = inqp->additional_length + 4;
    556        1.1    mjacob 
    557        1.5     dante 	if (given_len < 8+SEN_ID_LEN)
    558        1.1    mjacob 		return (SES_NONE);
    559        1.1    mjacob 
    560        1.5     dante 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
    561        1.5     dante 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
    562        1.1    mjacob 			return (SES_SEN);
    563        1.5     dante 		} else if ((inqp->version & SID_ANSII) > 2) {
    564        1.1    mjacob 			return (SES_SES);
    565        1.1    mjacob 		} else {
    566        1.1    mjacob 			return (SES_SES_SCSI2);
    567        1.1    mjacob 		}
    568        1.1    mjacob 		return (SES_NONE);
    569        1.1    mjacob 	}
    570        1.1    mjacob 
    571        1.1    mjacob #ifdef	SES_ENABLE_PASSTHROUGH
    572        1.5     dante 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
    573        1.1    mjacob 		/*
    574        1.1    mjacob 		 * PassThrough Device.
    575        1.1    mjacob 		 */
    576        1.1    mjacob 		return (SES_SES_PASSTHROUGH);
    577        1.1    mjacob 	}
    578        1.1    mjacob #endif
    579        1.1    mjacob 
    580        1.2    mjacob 	/*
    581        1.2    mjacob 	 * The comparison is short for a reason-
    582        1.2    mjacob 	 * some vendors were chopping it short.
    583        1.2    mjacob 	 */
    584        1.2    mjacob 
    585        1.5     dante 	if (given_len < SAFTE_END - 2) {
    586        1.1    mjacob 		return (SES_NONE);
    587        1.1    mjacob 	}
    588        1.2    mjacob 
    589        1.5     dante 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
    590        1.5     dante 			SAFTE_LEN - 2) == 0) {
    591        1.1    mjacob 		return (SES_SAFT);
    592        1.6   thorpej 	}
    593        1.5     dante 
    594        1.1    mjacob 	return (SES_NONE);
    595        1.1    mjacob }
    596        1.1    mjacob 
    597        1.1    mjacob /*
    598        1.1    mjacob  * SES Native Type Device Support
    599        1.1    mjacob  */
    600        1.1    mjacob 
    601        1.1    mjacob /*
    602        1.1    mjacob  * SES Diagnostic Page Codes
    603        1.1    mjacob  */
    604        1.1    mjacob 
    605        1.1    mjacob typedef enum {
    606        1.1    mjacob 	SesConfigPage = 0x1,
    607        1.1    mjacob 	SesControlPage,
    608        1.1    mjacob #define	SesStatusPage SesControlPage
    609        1.1    mjacob 	SesHelpTxt,
    610        1.1    mjacob 	SesStringOut,
    611        1.1    mjacob #define	SesStringIn	SesStringOut
    612        1.1    mjacob 	SesThresholdOut,
    613        1.1    mjacob #define	SesThresholdIn SesThresholdOut
    614        1.1    mjacob 	SesArrayControl,
    615        1.1    mjacob #define	SesArrayStatus	SesArrayControl
    616        1.1    mjacob 	SesElementDescriptor,
    617        1.1    mjacob 	SesShortStatus
    618        1.1    mjacob } SesDiagPageCodes;
    619        1.1    mjacob 
    620        1.1    mjacob /*
    621        1.1    mjacob  * minimal amounts
    622        1.1    mjacob  */
    623        1.1    mjacob 
    624        1.1    mjacob /*
    625        1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    626        1.1    mjacob  * the config header.
    627        1.1    mjacob  */
    628        1.1    mjacob #define	SES_CFGHDR_MINLEN	12
    629        1.1    mjacob 
    630        1.1    mjacob /*
    631        1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    632        1.1    mjacob  * the config header and one enclosure header.
    633        1.1    mjacob  */
    634        1.1    mjacob #define	SES_ENCHDR_MINLEN	48
    635        1.1    mjacob 
    636        1.1    mjacob /*
    637        1.1    mjacob  * Take this value, subtract it from VEnclen and you know
    638        1.1    mjacob  * the length of the vendor unique bytes.
    639        1.1    mjacob  */
    640        1.1    mjacob #define	SES_ENCHDR_VMIN		36
    641        1.1    mjacob 
    642        1.1    mjacob /*
    643        1.1    mjacob  * SES Data Structures
    644        1.1    mjacob  */
    645        1.1    mjacob 
    646        1.1    mjacob typedef struct {
    647        1.1    mjacob 	uint32_t GenCode;	/* Generation Code */
    648        1.1    mjacob 	uint8_t	Nsubenc;	/* Number of Subenclosures */
    649        1.1    mjacob } SesCfgHdr;
    650        1.1    mjacob 
    651        1.1    mjacob typedef struct {
    652        1.1    mjacob 	uint8_t	Subencid;	/* SubEnclosure Identifier */
    653        1.1    mjacob 	uint8_t	Ntypes;		/* # of supported types */
    654        1.1    mjacob 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
    655        1.1    mjacob } SesEncHdr;
    656        1.1    mjacob 
    657        1.1    mjacob typedef struct {
    658        1.1    mjacob 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
    659        1.1    mjacob 	uint8_t	encVid[8];
    660        1.1    mjacob 	uint8_t	encPid[16];
    661        1.1    mjacob 	uint8_t	encRev[4];
    662        1.1    mjacob 	uint8_t	encVen[1];
    663        1.1    mjacob } SesEncDesc;
    664        1.1    mjacob 
    665        1.1    mjacob typedef struct {
    666        1.1    mjacob 	uint8_t	enc_type;		/* type of element */
    667        1.1    mjacob 	uint8_t	enc_maxelt;		/* maximum supported */
    668        1.1    mjacob 	uint8_t	enc_subenc;		/* in SubEnc # N */
    669        1.1    mjacob 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
    670        1.1    mjacob } SesThdr;
    671        1.1    mjacob 
    672        1.1    mjacob typedef struct {
    673        1.1    mjacob 	uint8_t	comstatus;
    674        1.1    mjacob 	uint8_t	comstat[3];
    675        1.1    mjacob } SesComStat;
    676        1.1    mjacob 
    677        1.1    mjacob struct typidx {
    678        1.1    mjacob 	int ses_tidx;
    679        1.1    mjacob 	int ses_oidx;
    680        1.1    mjacob };
    681        1.1    mjacob 
    682        1.1    mjacob struct sscfg {
    683        1.1    mjacob 	uint8_t ses_ntypes;	/* total number of types supported */
    684        1.1    mjacob 
    685        1.1    mjacob 	/*
    686        1.1    mjacob 	 * We need to keep a type index as well as an
    687        1.1    mjacob 	 * object index for each object in an enclosure.
    688        1.1    mjacob 	 */
    689        1.1    mjacob 	struct typidx *ses_typidx;
    690        1.1    mjacob 
    691        1.1    mjacob 	/*
    692        1.1    mjacob 	 * We also need to keep track of the number of elements
    693        1.1    mjacob 	 * per type of element. This is needed later so that we
    694        1.1    mjacob 	 * can find precisely in the returned status data the
    695        1.1    mjacob 	 * status for the Nth element of the Kth type.
    696        1.1    mjacob 	 */
    697        1.1    mjacob 	uint8_t *	ses_eltmap;
    698        1.1    mjacob };
    699        1.1    mjacob 
    700        1.1    mjacob 
    701        1.1    mjacob /*
    702        1.1    mjacob  * (de)canonicalization defines
    703        1.1    mjacob  */
    704        1.1    mjacob #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
    705        1.1    mjacob #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
    706        1.1    mjacob #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    707        1.1    mjacob 
    708        1.1    mjacob #define	sset16(outp, idx, sval)	\
    709        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    710        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    711        1.1    mjacob 
    712        1.1    mjacob 
    713        1.1    mjacob #define	sset24(outp, idx, sval)	\
    714        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    715        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    716        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    717        1.1    mjacob 
    718        1.1    mjacob 
    719        1.1    mjacob #define	sset32(outp, idx, sval)	\
    720        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
    721        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    722        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    723        1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    724        1.1    mjacob 
    725        1.1    mjacob #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
    726        1.1    mjacob #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
    727        1.1    mjacob #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
    728        1.1    mjacob #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
    729        1.1    mjacob 
    730        1.1    mjacob #define	sget16(inp, idx, lval)	\
    731        1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    732        1.1    mjacob 		(((uint8_t *)(inp))[idx+1]), idx += 2
    733        1.1    mjacob 
    734        1.1    mjacob #define	gget16(inp, idx, lval)	\
    735        1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    736        1.1    mjacob 		(((uint8_t *)(inp))[idx+1])
    737        1.1    mjacob 
    738        1.1    mjacob #define	sget24(inp, idx, lval)	\
    739        1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    740        1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    741        1.1    mjacob 			(((uint8_t *)(inp))[idx+2]), idx += 3
    742        1.1    mjacob 
    743        1.1    mjacob #define	gget24(inp, idx, lval)	\
    744        1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    745        1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    746        1.1    mjacob 			(((uint8_t *)(inp))[idx+2])
    747        1.1    mjacob 
    748        1.1    mjacob #define	sget32(inp, idx, lval)	\
    749        1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    750        1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    751        1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    752        1.1    mjacob 			(((uint8_t *)(inp))[idx+3]), idx += 4
    753        1.1    mjacob 
    754        1.1    mjacob #define	gget32(inp, idx, lval)	\
    755        1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    756        1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    757        1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    758        1.1    mjacob 			(((uint8_t *)(inp))[idx+3])
    759        1.1    mjacob 
    760        1.1    mjacob #define	SCSZ	0x2000
    761        1.1    mjacob #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
    762        1.1    mjacob 
    763        1.1    mjacob /*
    764        1.1    mjacob  * Routines specific && private to SES only
    765        1.1    mjacob  */
    766        1.1    mjacob 
    767        1.1    mjacob static int ses_getconfig(ses_softc_t *);
    768        1.1    mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
    769        1.1    mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
    770        1.1    mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
    771        1.1    mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
    772        1.1    mjacob static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
    773        1.1    mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
    774        1.1    mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
    775        1.1    mjacob 
    776        1.1    mjacob static int
    777        1.1    mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
    778        1.1    mjacob {
    779        1.1    mjacob 	if (doinit == 0) {
    780        1.1    mjacob 		struct sscfg *cc;
    781        1.1    mjacob 		if (ssc->ses_nobjects) {
    782        1.1    mjacob 			SES_FREE(ssc->ses_objmap,
    783        1.1    mjacob 			    ssc->ses_nobjects * sizeof (encobj));
    784        1.1    mjacob 			ssc->ses_objmap = NULL;
    785        1.1    mjacob 		}
    786        1.1    mjacob 		if ((cc = ssc->ses_private) != NULL) {
    787        1.1    mjacob 			if (cc->ses_eltmap && cc->ses_ntypes) {
    788        1.1    mjacob 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
    789        1.1    mjacob 				cc->ses_eltmap = NULL;
    790        1.1    mjacob 				cc->ses_ntypes = 0;
    791        1.1    mjacob 			}
    792        1.1    mjacob 			if (cc->ses_typidx && ssc->ses_nobjects) {
    793        1.1    mjacob 				SES_FREE(cc->ses_typidx,
    794        1.1    mjacob 				    ssc->ses_nobjects * sizeof (struct typidx));
    795        1.1    mjacob 				cc->ses_typidx = NULL;
    796        1.1    mjacob 			}
    797        1.1    mjacob 			SES_FREE(cc, sizeof (struct sscfg));
    798        1.1    mjacob 			ssc->ses_private = NULL;
    799        1.1    mjacob 		}
    800        1.1    mjacob 		ssc->ses_nobjects = 0;
    801        1.1    mjacob 		return (0);
    802        1.1    mjacob 	}
    803        1.1    mjacob 	if (ssc->ses_private == NULL) {
    804        1.1    mjacob 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
    805        1.1    mjacob 	}
    806        1.1    mjacob 	if (ssc->ses_private == NULL) {
    807        1.1    mjacob 		return (ENOMEM);
    808        1.1    mjacob 	}
    809        1.1    mjacob 	ssc->ses_nobjects = 0;
    810        1.1    mjacob 	ssc->ses_encstat = 0;
    811        1.1    mjacob 	return (ses_getconfig(ssc));
    812        1.1    mjacob }
    813        1.1    mjacob 
    814        1.1    mjacob static int
    815       1.37  christos ses_init_enc(ses_softc_t *ssc)
    816        1.1    mjacob {
    817        1.1    mjacob 	return (0);
    818        1.1    mjacob }
    819        1.1    mjacob 
    820        1.1    mjacob static int
    821        1.1    mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
    822        1.1    mjacob {
    823        1.1    mjacob 	SesComStat ComStat;
    824        1.1    mjacob 	int status;
    825        1.1    mjacob 
    826        1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
    827        1.1    mjacob 		return (status);
    828        1.1    mjacob 	}
    829        1.1    mjacob 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
    830        1.1    mjacob 	return (0);
    831        1.1    mjacob }
    832        1.1    mjacob 
    833        1.1    mjacob static int
    834        1.1    mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
    835        1.1    mjacob {
    836        1.1    mjacob 	SesComStat ComStat;
    837        1.1    mjacob 	int status;
    838        1.1    mjacob 
    839        1.1    mjacob 	ComStat.comstatus = encstat & 0xf;
    840        1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
    841        1.1    mjacob 		return (status);
    842        1.1    mjacob 	}
    843        1.1    mjacob 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
    844        1.1    mjacob 	return (0);
    845        1.1    mjacob }
    846        1.1    mjacob 
    847        1.1    mjacob static int
    848        1.1    mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    849        1.1    mjacob {
    850        1.1    mjacob 	int i = (int)obp->obj_id;
    851        1.1    mjacob 
    852        1.1    mjacob 	if (ssc->ses_objmap[i].svalid == 0) {
    853        1.1    mjacob 		SesComStat ComStat;
    854        1.1    mjacob 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
    855        1.1    mjacob 		if (err)
    856        1.1    mjacob 			return (err);
    857        1.1    mjacob 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
    858        1.1    mjacob 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
    859        1.1    mjacob 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
    860        1.1    mjacob 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
    861        1.1    mjacob 		ssc->ses_objmap[i].svalid = 1;
    862        1.1    mjacob 	}
    863        1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
    864        1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
    865        1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
    866        1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
    867        1.1    mjacob 	return (0);
    868        1.1    mjacob }
    869        1.1    mjacob 
    870        1.1    mjacob static int
    871        1.1    mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    872        1.1    mjacob {
    873        1.1    mjacob 	SesComStat ComStat;
    874        1.1    mjacob 	int err;
    875        1.1    mjacob 	/*
    876        1.1    mjacob 	 * If this is clear, we don't do diddly.
    877        1.1    mjacob 	 */
    878        1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
    879        1.1    mjacob 		return (0);
    880        1.1    mjacob 	}
    881        1.1    mjacob 	ComStat.comstatus = obp->cstat[0];
    882        1.1    mjacob 	ComStat.comstat[0] = obp->cstat[1];
    883        1.1    mjacob 	ComStat.comstat[1] = obp->cstat[2];
    884        1.1    mjacob 	ComStat.comstat[2] = obp->cstat[3];
    885        1.1    mjacob 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
    886        1.1    mjacob 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
    887        1.1    mjacob 	return (err);
    888        1.1    mjacob }
    889        1.1    mjacob 
    890        1.1    mjacob static int
    891        1.1    mjacob ses_getconfig(ses_softc_t *ssc)
    892        1.1    mjacob {
    893        1.1    mjacob 	struct sscfg *cc;
    894        1.1    mjacob 	SesCfgHdr cf;
    895        1.1    mjacob 	SesEncHdr hd;
    896        1.1    mjacob 	SesEncDesc *cdp;
    897        1.1    mjacob 	SesThdr thdr;
    898        1.1    mjacob 	int err, amt, i, nobj, ntype, maxima;
    899        1.1    mjacob 	char storage[CFLEN], *sdata;
    900        1.1    mjacob 	static char cdb[6] = {
    901        1.1    mjacob 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
    902        1.1    mjacob 	};
    903        1.1    mjacob 
    904        1.1    mjacob 	cc = ssc->ses_private;
    905        1.1    mjacob 	if (cc == NULL) {
    906        1.1    mjacob 		return (ENXIO);
    907        1.1    mjacob 	}
    908        1.1    mjacob 
    909        1.1    mjacob 	sdata = SES_MALLOC(SCSZ);
    910        1.1    mjacob 	if (sdata == NULL)
    911        1.1    mjacob 		return (ENOMEM);
    912        1.1    mjacob 
    913        1.1    mjacob 	amt = SCSZ;
    914        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
    915        1.1    mjacob 	if (err) {
    916        1.1    mjacob 		SES_FREE(sdata, SCSZ);
    917        1.1    mjacob 		return (err);
    918        1.1    mjacob 	}
    919        1.1    mjacob 	amt = SCSZ - amt;
    920        1.1    mjacob 
    921        1.1    mjacob 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
    922        1.1    mjacob 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
    923        1.1    mjacob 		SES_FREE(sdata, SCSZ);
    924        1.1    mjacob 		return (EIO);
    925        1.1    mjacob 	}
    926        1.1    mjacob 	if (amt < SES_ENCHDR_MINLEN) {
    927        1.1    mjacob 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
    928        1.1    mjacob 		SES_FREE(sdata, SCSZ);
    929        1.1    mjacob 		return (EIO);
    930        1.1    mjacob 	}
    931        1.1    mjacob 
    932        1.1    mjacob 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
    933        1.1    mjacob 
    934        1.1    mjacob 	/*
    935        1.1    mjacob 	 * Now waltz through all the subenclosures toting up the
    936        1.1    mjacob 	 * number of types available in each. For this, we only
    937        1.1    mjacob 	 * really need the enclosure header. However, we get the
    938        1.1    mjacob 	 * enclosure descriptor for debug purposes, as well
    939        1.1    mjacob 	 * as self-consistency checking purposes.
    940        1.1    mjacob 	 */
    941        1.1    mjacob 
    942        1.1    mjacob 	maxima = cf.Nsubenc + 1;
    943        1.1    mjacob 	cdp = (SesEncDesc *) storage;
    944        1.1    mjacob 	for (ntype = i = 0; i < maxima; i++) {
    945       1.38  christos 		MEMZERO((void *)cdp, sizeof (*cdp));
    946        1.1    mjacob 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
    947        1.1    mjacob 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
    948        1.1    mjacob 			SES_FREE(sdata, SCSZ);
    949        1.1    mjacob 			return (EIO);
    950        1.1    mjacob 		}
    951        1.1    mjacob 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
    952        1.1    mjacob 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
    953        1.1    mjacob 
    954        1.1    mjacob 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
    955        1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
    956        1.1    mjacob 			SES_FREE(sdata, SCSZ);
    957        1.1    mjacob 			return (EIO);
    958        1.1    mjacob 		}
    959        1.1    mjacob 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
    960        1.1    mjacob 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
    961        1.1    mjacob 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
    962        1.1    mjacob 		    cdp->encWWN[6], cdp->encWWN[7]);
    963        1.1    mjacob 		ntype += hd.Ntypes;
    964        1.1    mjacob 	}
    965        1.1    mjacob 
    966        1.1    mjacob 	/*
    967        1.1    mjacob 	 * Now waltz through all the types that are available, getting
    968        1.1    mjacob 	 * the type header so we can start adding up the number of
    969        1.1    mjacob 	 * objects available.
    970        1.1    mjacob 	 */
    971        1.1    mjacob 	for (nobj = i = 0; i < ntype; i++) {
    972        1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
    973        1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
    974        1.1    mjacob 			SES_FREE(sdata, SCSZ);
    975        1.1    mjacob 			return (EIO);
    976        1.1    mjacob 		}
    977        1.1    mjacob 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
    978        1.1    mjacob 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
    979        1.1    mjacob 		    thdr.enc_subenc, thdr.enc_tlen);
    980        1.1    mjacob 		nobj += thdr.enc_maxelt;
    981        1.1    mjacob 	}
    982        1.1    mjacob 
    983        1.1    mjacob 
    984        1.1    mjacob 	/*
    985        1.1    mjacob 	 * Now allocate the object array and type map.
    986        1.1    mjacob 	 */
    987        1.1    mjacob 
    988        1.1    mjacob 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
    989        1.1    mjacob 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
    990        1.1    mjacob 	cc->ses_eltmap = SES_MALLOC(ntype);
    991        1.1    mjacob 
    992        1.1    mjacob 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
    993        1.1    mjacob 	    cc->ses_eltmap == NULL) {
    994        1.1    mjacob 		if (ssc->ses_objmap) {
    995        1.1    mjacob 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
    996        1.1    mjacob 			ssc->ses_objmap = NULL;
    997        1.1    mjacob 		}
    998        1.1    mjacob 		if (cc->ses_typidx) {
    999        1.1    mjacob 			SES_FREE(cc->ses_typidx,
   1000        1.1    mjacob 			    (nobj * sizeof (struct typidx)));
   1001        1.1    mjacob 			cc->ses_typidx = NULL;
   1002        1.1    mjacob 		}
   1003        1.1    mjacob 		if (cc->ses_eltmap) {
   1004        1.1    mjacob 			SES_FREE(cc->ses_eltmap, ntype);
   1005        1.1    mjacob 			cc->ses_eltmap = NULL;
   1006        1.1    mjacob 		}
   1007        1.1    mjacob 		SES_FREE(sdata, SCSZ);
   1008        1.1    mjacob 		return (ENOMEM);
   1009        1.1    mjacob 	}
   1010        1.1    mjacob 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
   1011        1.1    mjacob 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
   1012        1.1    mjacob 	MEMZERO(cc->ses_eltmap, ntype);
   1013        1.1    mjacob 	cc->ses_ntypes = (uint8_t) ntype;
   1014        1.1    mjacob 	ssc->ses_nobjects = nobj;
   1015        1.1    mjacob 
   1016        1.1    mjacob 	/*
   1017        1.1    mjacob 	 * Now waltz through the # of types again to fill in the types
   1018        1.1    mjacob 	 * (and subenclosure ids) of the allocated objects.
   1019        1.1    mjacob 	 */
   1020        1.1    mjacob 	nobj = 0;
   1021        1.1    mjacob 	for (i = 0; i < ntype; i++) {
   1022        1.1    mjacob 		int j;
   1023        1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
   1024        1.1    mjacob 			continue;
   1025        1.1    mjacob 		}
   1026        1.1    mjacob 		cc->ses_eltmap[i] = thdr.enc_maxelt;
   1027        1.1    mjacob 		for (j = 0; j < thdr.enc_maxelt; j++) {
   1028        1.1    mjacob 			cc->ses_typidx[nobj].ses_tidx = i;
   1029        1.1    mjacob 			cc->ses_typidx[nobj].ses_oidx = j;
   1030        1.1    mjacob 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
   1031        1.1    mjacob 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
   1032        1.1    mjacob 		}
   1033        1.1    mjacob 	}
   1034        1.1    mjacob 	SES_FREE(sdata, SCSZ);
   1035        1.1    mjacob 	return (0);
   1036        1.1    mjacob }
   1037        1.1    mjacob 
   1038        1.1    mjacob static int
   1039       1.37  christos ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
   1040       1.36  christos     int in)
   1041        1.1    mjacob {
   1042        1.1    mjacob 	struct sscfg *cc;
   1043        1.1    mjacob 	int err, amt, bufsiz, tidx, oidx;
   1044        1.1    mjacob 	char cdb[6], *sdata;
   1045        1.1    mjacob 
   1046        1.1    mjacob 	cc = ssc->ses_private;
   1047        1.1    mjacob 	if (cc == NULL) {
   1048        1.1    mjacob 		return (ENXIO);
   1049        1.1    mjacob 	}
   1050        1.1    mjacob 
   1051        1.1    mjacob 	/*
   1052        1.1    mjacob 	 * If we're just getting overall enclosure status,
   1053        1.1    mjacob 	 * we only need 2 bytes of data storage.
   1054        1.1    mjacob 	 *
   1055        1.1    mjacob 	 * If we're getting anything else, we know how much
   1056        1.1    mjacob 	 * storage we need by noting that starting at offset
   1057        1.1    mjacob 	 * 8 in returned data, all object status bytes are 4
   1058        1.1    mjacob 	 * bytes long, and are stored in chunks of types(M)
   1059        1.1    mjacob 	 * and nth+1 instances of type M.
   1060        1.1    mjacob 	 */
   1061        1.1    mjacob 	if (objid == -1) {
   1062        1.1    mjacob 		bufsiz = 2;
   1063        1.1    mjacob 	} else {
   1064        1.1    mjacob 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
   1065        1.1    mjacob 	}
   1066        1.1    mjacob 	sdata = SES_MALLOC(bufsiz);
   1067        1.1    mjacob 	if (sdata == NULL)
   1068        1.1    mjacob 		return (ENOMEM);
   1069        1.1    mjacob 
   1070        1.1    mjacob 	cdb[0] = RECEIVE_DIAGNOSTIC;
   1071        1.1    mjacob 	cdb[1] = 1;
   1072        1.1    mjacob 	cdb[2] = SesStatusPage;
   1073        1.1    mjacob 	cdb[3] = bufsiz >> 8;
   1074        1.1    mjacob 	cdb[4] = bufsiz & 0xff;
   1075        1.1    mjacob 	cdb[5] = 0;
   1076        1.1    mjacob 	amt = bufsiz;
   1077        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1078        1.1    mjacob 	if (err) {
   1079        1.1    mjacob 		SES_FREE(sdata, bufsiz);
   1080        1.1    mjacob 		return (err);
   1081        1.1    mjacob 	}
   1082        1.1    mjacob 	amt = bufsiz - amt;
   1083        1.1    mjacob 
   1084        1.1    mjacob 	if (objid == -1) {
   1085        1.1    mjacob 		tidx = -1;
   1086        1.1    mjacob 		oidx = -1;
   1087        1.1    mjacob 	} else {
   1088        1.1    mjacob 		tidx = cc->ses_typidx[objid].ses_tidx;
   1089        1.1    mjacob 		oidx = cc->ses_typidx[objid].ses_oidx;
   1090        1.1    mjacob 	}
   1091        1.1    mjacob 	if (in) {
   1092        1.1    mjacob 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1093        1.1    mjacob 			err = ENODEV;
   1094        1.1    mjacob 		}
   1095        1.1    mjacob 	} else {
   1096        1.1    mjacob 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1097        1.1    mjacob 			err = ENODEV;
   1098        1.1    mjacob 		} else {
   1099        1.1    mjacob 			cdb[0] = SEND_DIAGNOSTIC;
   1100        1.1    mjacob 			cdb[1] = 0x10;
   1101        1.1    mjacob 			cdb[2] = 0;
   1102        1.1    mjacob 			cdb[3] = bufsiz >> 8;
   1103        1.1    mjacob 			cdb[4] = bufsiz & 0xff;
   1104        1.1    mjacob 			cdb[5] = 0;
   1105        1.1    mjacob 			amt = -bufsiz;
   1106       1.30     perry 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1107        1.1    mjacob 		}
   1108        1.1    mjacob 	}
   1109        1.1    mjacob 	SES_FREE(sdata, bufsiz);
   1110        1.1    mjacob 	return (0);
   1111        1.1    mjacob }
   1112        1.1    mjacob 
   1113        1.1    mjacob 
   1114        1.1    mjacob /*
   1115        1.1    mjacob  * Routines to parse returned SES data structures.
   1116        1.1    mjacob  * Architecture and compiler independent.
   1117        1.1    mjacob  */
   1118        1.1    mjacob 
   1119        1.1    mjacob static int
   1120        1.1    mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
   1121        1.1    mjacob {
   1122        1.1    mjacob 	if (buflen < SES_CFGHDR_MINLEN) {
   1123        1.1    mjacob 		return (-1);
   1124        1.1    mjacob 	}
   1125        1.1    mjacob 	gget8(buffer, 1, cfp->Nsubenc);
   1126        1.1    mjacob 	gget32(buffer, 4, cfp->GenCode);
   1127        1.1    mjacob 	return (0);
   1128        1.1    mjacob }
   1129        1.1    mjacob 
   1130        1.1    mjacob static int
   1131        1.1    mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
   1132        1.1    mjacob {
   1133        1.1    mjacob 	int s, off = 8;
   1134        1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1135        1.1    mjacob 		if (off + 3 > amt)
   1136        1.1    mjacob 			return (-1);
   1137        1.1    mjacob 		off += buffer[off+3] + 4;
   1138        1.1    mjacob 	}
   1139        1.1    mjacob 	if (off + 3 > amt) {
   1140        1.1    mjacob 		return (-1);
   1141        1.1    mjacob 	}
   1142        1.1    mjacob 	gget8(buffer, off+1, chp->Subencid);
   1143        1.1    mjacob 	gget8(buffer, off+2, chp->Ntypes);
   1144        1.1    mjacob 	gget8(buffer, off+3, chp->VEnclen);
   1145        1.1    mjacob 	return (0);
   1146        1.1    mjacob }
   1147        1.1    mjacob 
   1148        1.1    mjacob static int
   1149        1.1    mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
   1150        1.1    mjacob {
   1151        1.1    mjacob 	int s, e, enclen, off = 8;
   1152        1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1153        1.1    mjacob 		if (off + 3 > amt)
   1154        1.1    mjacob 			return (-1);
   1155        1.1    mjacob 		off += buffer[off+3] + 4;
   1156        1.1    mjacob 	}
   1157        1.1    mjacob 	if (off + 3 > amt) {
   1158        1.1    mjacob 		return (-1);
   1159        1.1    mjacob 	}
   1160        1.1    mjacob 	gget8(buffer, off+3, enclen);
   1161        1.1    mjacob 	off += 4;
   1162        1.1    mjacob 	if (off  >= amt)
   1163        1.1    mjacob 		return (-1);
   1164        1.1    mjacob 
   1165        1.1    mjacob 	e = off + enclen;
   1166        1.1    mjacob 	if (e > amt) {
   1167        1.1    mjacob 		e = amt;
   1168        1.1    mjacob 	}
   1169        1.1    mjacob 	MEMCPY(cdp, &buffer[off], e - off);
   1170        1.1    mjacob 	return (0);
   1171        1.1    mjacob }
   1172        1.1    mjacob 
   1173        1.1    mjacob static int
   1174        1.1    mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
   1175        1.1    mjacob {
   1176        1.1    mjacob 	int s, off = 8;
   1177        1.1    mjacob 
   1178        1.1    mjacob 	if (amt < SES_CFGHDR_MINLEN) {
   1179        1.1    mjacob 		return (-1);
   1180        1.1    mjacob 	}
   1181        1.1    mjacob 	for (s = 0; s < buffer[1]; s++) {
   1182        1.1    mjacob 		if (off + 3 > amt)
   1183        1.1    mjacob 			return (-1);
   1184        1.1    mjacob 		off += buffer[off+3] + 4;
   1185        1.1    mjacob 	}
   1186        1.1    mjacob 	if (off + 3 > amt) {
   1187        1.1    mjacob 		return (-1);
   1188        1.1    mjacob 	}
   1189        1.1    mjacob 	off += buffer[off+3] + 4 + (nth * 4);
   1190        1.1    mjacob 	if (amt < (off + 4))
   1191        1.1    mjacob 		return (-1);
   1192        1.1    mjacob 
   1193        1.1    mjacob 	gget8(buffer, off++, thp->enc_type);
   1194        1.1    mjacob 	gget8(buffer, off++, thp->enc_maxelt);
   1195        1.1    mjacob 	gget8(buffer, off++, thp->enc_subenc);
   1196        1.1    mjacob 	gget8(buffer, off, thp->enc_tlen);
   1197        1.1    mjacob 	return (0);
   1198        1.1    mjacob }
   1199        1.1    mjacob 
   1200        1.1    mjacob /*
   1201        1.1    mjacob  * This function needs a little explanation.
   1202        1.1    mjacob  *
   1203        1.1    mjacob  * The arguments are:
   1204        1.1    mjacob  *
   1205        1.1    mjacob  *
   1206        1.1    mjacob  *	char *b, int amt
   1207        1.1    mjacob  *
   1208        1.1    mjacob  *		These describes the raw input SES status data and length.
   1209        1.1    mjacob  *
   1210        1.1    mjacob  *	uint8_t *ep
   1211        1.1    mjacob  *
   1212        1.1    mjacob  *		This is a map of the number of types for each element type
   1213        1.1    mjacob  *		in the enclosure.
   1214        1.1    mjacob  *
   1215        1.1    mjacob  *	int elt
   1216        1.1    mjacob  *
   1217        1.1    mjacob  *		This is the element type being sought. If elt is -1,
   1218        1.1    mjacob  *		then overall enclosure status is being sought.
   1219        1.1    mjacob  *
   1220        1.1    mjacob  *	int elm
   1221        1.1    mjacob  *
   1222        1.1    mjacob  *		This is the ordinal Mth element of type elt being sought.
   1223        1.1    mjacob  *
   1224        1.1    mjacob  *	SesComStat *sp
   1225        1.1    mjacob  *
   1226        1.1    mjacob  *		This is the output area to store the status for
   1227        1.1    mjacob  *		the Mth element of type Elt.
   1228        1.1    mjacob  */
   1229        1.1    mjacob 
   1230        1.1    mjacob static int
   1231        1.1    mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1232        1.1    mjacob {
   1233        1.1    mjacob 	int idx, i;
   1234        1.1    mjacob 
   1235        1.1    mjacob 	/*
   1236        1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1237        1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1238        1.1    mjacob 	 */
   1239        1.1    mjacob 	if (elt == -1) {
   1240        1.1    mjacob 		if (amt < 2)
   1241        1.1    mjacob 			return (-1);
   1242        1.1    mjacob 		gget8(b, 1, sp->comstatus);
   1243        1.1    mjacob 		sp->comstat[0] = 0;
   1244        1.1    mjacob 		sp->comstat[1] = 0;
   1245        1.1    mjacob 		sp->comstat[2] = 0;
   1246        1.1    mjacob 		return (0);
   1247        1.1    mjacob 	}
   1248        1.1    mjacob 
   1249        1.1    mjacob 	/*
   1250        1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1251        1.1    mjacob 	 */
   1252        1.1    mjacob 
   1253        1.1    mjacob 	if (elm >= ep[elt])
   1254        1.1    mjacob 		return (-1);
   1255        1.1    mjacob 
   1256        1.1    mjacob 	/*
   1257        1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1258        1.1    mjacob 	 * for the element types we're not interested in.
   1259        1.1    mjacob 	 */
   1260        1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1261        1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1262        1.1    mjacob 	}
   1263        1.1    mjacob 
   1264        1.1    mjacob 	/*
   1265        1.1    mjacob 	 * Skip over Overall status for this element type.
   1266        1.1    mjacob 	 */
   1267        1.1    mjacob 	idx += 4;
   1268        1.1    mjacob 
   1269        1.1    mjacob 	/*
   1270        1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1271        1.1    mjacob 	 */
   1272        1.1    mjacob 	idx += (4 * elm);
   1273        1.1    mjacob 
   1274        1.1    mjacob 	/*
   1275        1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1276        1.1    mjacob 	 */
   1277        1.1    mjacob 	if (idx+4 > amt)
   1278        1.1    mjacob 		return (-1);
   1279        1.1    mjacob 
   1280        1.1    mjacob 	/*
   1281        1.1    mjacob 	 * Retrieve the status.
   1282        1.1    mjacob 	 */
   1283        1.1    mjacob 	gget8(b, idx++, sp->comstatus);
   1284        1.1    mjacob 	gget8(b, idx++, sp->comstat[0]);
   1285        1.1    mjacob 	gget8(b, idx++, sp->comstat[1]);
   1286        1.1    mjacob 	gget8(b, idx++, sp->comstat[2]);
   1287        1.1    mjacob #if	0
   1288        1.1    mjacob 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
   1289        1.1    mjacob #endif
   1290        1.1    mjacob 	return (0);
   1291        1.1    mjacob }
   1292        1.1    mjacob 
   1293        1.1    mjacob /*
   1294        1.1    mjacob  * This is the mirror function to ses_decode, but we set the 'select'
   1295        1.1    mjacob  * bit for the object which we're interested in. All other objects,
   1296        1.1    mjacob  * after a status fetch, should have that bit off. Hmm. It'd be easy
   1297        1.1    mjacob  * enough to ensure this, so we will.
   1298        1.1    mjacob  */
   1299        1.1    mjacob 
   1300        1.1    mjacob static int
   1301        1.1    mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1302        1.1    mjacob {
   1303        1.1    mjacob 	int idx, i;
   1304        1.1    mjacob 
   1305        1.1    mjacob 	/*
   1306        1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1307        1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1308        1.1    mjacob 	 */
   1309        1.1    mjacob 	if (elt == -1) {
   1310        1.1    mjacob 		if (amt < 2)
   1311        1.1    mjacob 			return (-1);
   1312        1.1    mjacob 		i = 0;
   1313        1.1    mjacob 		sset8(b, i, 0);
   1314        1.1    mjacob 		sset8(b, i, sp->comstatus & 0xf);
   1315        1.1    mjacob #if	0
   1316        1.1    mjacob 		PRINTF("set EncStat %x\n", sp->comstatus);
   1317        1.1    mjacob #endif
   1318        1.1    mjacob 		return (0);
   1319        1.1    mjacob 	}
   1320        1.1    mjacob 
   1321        1.1    mjacob 	/*
   1322        1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1323        1.1    mjacob 	 */
   1324        1.1    mjacob 
   1325        1.1    mjacob 	if (elm >= ep[elt])
   1326        1.1    mjacob 		return (-1);
   1327        1.1    mjacob 
   1328        1.1    mjacob 	/*
   1329        1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1330        1.1    mjacob 	 * for the element types we're not interested in.
   1331        1.1    mjacob 	 */
   1332        1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1333        1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1334        1.1    mjacob 	}
   1335        1.1    mjacob 
   1336        1.1    mjacob 	/*
   1337        1.1    mjacob 	 * Skip over Overall status for this element type.
   1338        1.1    mjacob 	 */
   1339        1.1    mjacob 	idx += 4;
   1340        1.1    mjacob 
   1341        1.1    mjacob 	/*
   1342        1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1343        1.1    mjacob 	 */
   1344        1.1    mjacob 	idx += (4 * elm);
   1345        1.1    mjacob 
   1346        1.1    mjacob 	/*
   1347        1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1348        1.1    mjacob 	 */
   1349        1.1    mjacob 	if (idx+4 > amt)
   1350        1.1    mjacob 		return (-1);
   1351        1.1    mjacob 
   1352        1.1    mjacob 	/*
   1353        1.1    mjacob 	 * Set the status.
   1354        1.1    mjacob 	 */
   1355        1.1    mjacob 	sset8(b, idx, sp->comstatus);
   1356        1.1    mjacob 	sset8(b, idx, sp->comstat[0]);
   1357        1.1    mjacob 	sset8(b, idx, sp->comstat[1]);
   1358        1.1    mjacob 	sset8(b, idx, sp->comstat[2]);
   1359        1.1    mjacob 	idx -= 4;
   1360        1.1    mjacob 
   1361        1.1    mjacob #if	0
   1362        1.1    mjacob 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
   1363        1.1    mjacob 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
   1364        1.1    mjacob 	    sp->comstat[1], sp->comstat[2]);
   1365        1.1    mjacob #endif
   1366        1.1    mjacob 
   1367        1.1    mjacob 	/*
   1368        1.1    mjacob 	 * Now make sure all other 'Select' bits are off.
   1369        1.1    mjacob 	 */
   1370        1.1    mjacob 	for (i = 8; i < amt; i += 4) {
   1371        1.1    mjacob 		if (i != idx)
   1372        1.1    mjacob 			b[i] &= ~0x80;
   1373        1.1    mjacob 	}
   1374        1.1    mjacob 	/*
   1375        1.1    mjacob 	 * And make sure the INVOP bit is clear.
   1376        1.1    mjacob 	 */
   1377        1.1    mjacob 	b[2] &= ~0x10;
   1378        1.1    mjacob 
   1379        1.1    mjacob 	return (0);
   1380        1.1    mjacob }
   1381        1.1    mjacob 
   1382        1.1    mjacob /*
   1383        1.1    mjacob  * SAF-TE Type Device Emulation
   1384        1.1    mjacob  */
   1385        1.1    mjacob 
   1386        1.1    mjacob static int safte_getconfig(ses_softc_t *);
   1387       1.19    simonb static int safte_rdstat(ses_softc_t *, int);
   1388        1.1    mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
   1389        1.1    mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
   1390        1.1    mjacob static void wrslot_stat(ses_softc_t *, int);
   1391        1.1    mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
   1392        1.1    mjacob 
   1393        1.1    mjacob #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
   1394        1.1    mjacob 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
   1395        1.1    mjacob /*
   1396        1.1    mjacob  * SAF-TE specific defines- Mandatory ones only...
   1397        1.1    mjacob  */
   1398        1.1    mjacob 
   1399        1.1    mjacob /*
   1400        1.1    mjacob  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
   1401        1.1    mjacob  */
   1402        1.1    mjacob #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
   1403        1.1    mjacob #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
   1404        1.1    mjacob #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
   1405        1.1    mjacob 
   1406        1.1    mjacob /*
   1407        1.1    mjacob  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
   1408        1.1    mjacob  */
   1409        1.1    mjacob #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
   1410        1.1    mjacob #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
   1411        1.1    mjacob #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
   1412        1.1    mjacob #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
   1413        1.1    mjacob #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
   1414        1.1    mjacob 
   1415        1.1    mjacob 
   1416        1.1    mjacob #define	SAFT_SCRATCH	64
   1417        1.1    mjacob #define	NPSEUDO_THERM	16
   1418        1.1    mjacob #define	NPSEUDO_ALARM	1
   1419        1.1    mjacob struct scfg {
   1420        1.1    mjacob 	/*
   1421        1.1    mjacob 	 * Cached Configuration
   1422        1.1    mjacob 	 */
   1423        1.1    mjacob 	uint8_t	Nfans;		/* Number of Fans */
   1424        1.1    mjacob 	uint8_t	Npwr;		/* Number of Power Supplies */
   1425        1.1    mjacob 	uint8_t	Nslots;		/* Number of Device Slots */
   1426        1.1    mjacob 	uint8_t	DoorLock;	/* Door Lock Installed */
   1427        1.1    mjacob 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
   1428        1.1    mjacob 	uint8_t	Nspkrs;		/* Number of Speakers */
   1429        1.1    mjacob 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
   1430        1.1    mjacob 	/*
   1431        1.1    mjacob 	 * Cached Flag Bytes for Global Status
   1432        1.1    mjacob 	 */
   1433        1.1    mjacob 	uint8_t	flag1;
   1434        1.1    mjacob 	uint8_t	flag2;
   1435        1.1    mjacob 	/*
   1436        1.1    mjacob 	 * What object index ID is where various slots start.
   1437        1.1    mjacob 	 */
   1438        1.1    mjacob 	uint8_t	pwroff;
   1439        1.1    mjacob 	uint8_t	slotoff;
   1440        1.1    mjacob #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
   1441        1.1    mjacob };
   1442        1.1    mjacob 
   1443        1.1    mjacob #define	SAFT_FLG1_ALARM		0x1
   1444        1.1    mjacob #define	SAFT_FLG1_GLOBFAIL	0x2
   1445        1.1    mjacob #define	SAFT_FLG1_GLOBWARN	0x4
   1446        1.1    mjacob #define	SAFT_FLG1_ENCPWROFF	0x8
   1447        1.1    mjacob #define	SAFT_FLG1_ENCFANFAIL	0x10
   1448        1.1    mjacob #define	SAFT_FLG1_ENCPWRFAIL	0x20
   1449        1.1    mjacob #define	SAFT_FLG1_ENCDRVFAIL	0x40
   1450        1.1    mjacob #define	SAFT_FLG1_ENCDRVWARN	0x80
   1451        1.1    mjacob 
   1452        1.1    mjacob #define	SAFT_FLG2_LOCKDOOR	0x4
   1453        1.1    mjacob #define	SAFT_PRIVATE		sizeof (struct scfg)
   1454        1.1    mjacob 
   1455        1.7  sommerfe static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
   1456        1.1    mjacob #define	SAFT_BAIL(r, x, k, l)	\
   1457        1.1    mjacob 	if (r >= x) { \
   1458        1.1    mjacob 		SES_LOG(ssc, safte_2little, x, __LINE__);\
   1459        1.1    mjacob 		SES_FREE(k, l); \
   1460        1.1    mjacob 		return (EIO); \
   1461        1.1    mjacob 	}
   1462        1.1    mjacob 
   1463        1.1    mjacob 
   1464       1.23   thorpej static int
   1465        1.1    mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
   1466        1.1    mjacob {
   1467        1.1    mjacob 	int err, i, r;
   1468        1.1    mjacob 	struct scfg *cc;
   1469        1.1    mjacob 
   1470        1.1    mjacob 	if (doinit == 0) {
   1471        1.1    mjacob 		if (ssc->ses_nobjects) {
   1472        1.1    mjacob 			if (ssc->ses_objmap) {
   1473        1.1    mjacob 				SES_FREE(ssc->ses_objmap,
   1474        1.1    mjacob 				    ssc->ses_nobjects * sizeof (encobj));
   1475        1.1    mjacob 				ssc->ses_objmap = NULL;
   1476        1.1    mjacob 			}
   1477        1.1    mjacob 			ssc->ses_nobjects = 0;
   1478        1.1    mjacob 		}
   1479        1.1    mjacob 		if (ssc->ses_private) {
   1480        1.1    mjacob 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
   1481        1.1    mjacob 			ssc->ses_private = NULL;
   1482        1.1    mjacob 		}
   1483        1.1    mjacob 		return (0);
   1484        1.1    mjacob 	}
   1485        1.1    mjacob 
   1486        1.1    mjacob 	if (ssc->ses_private == NULL) {
   1487        1.1    mjacob 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
   1488        1.1    mjacob 		if (ssc->ses_private == NULL) {
   1489        1.1    mjacob 			return (ENOMEM);
   1490        1.1    mjacob 		}
   1491        1.1    mjacob 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
   1492        1.1    mjacob 	}
   1493        1.1    mjacob 
   1494        1.1    mjacob 	ssc->ses_nobjects = 0;
   1495        1.1    mjacob 	ssc->ses_encstat = 0;
   1496        1.1    mjacob 
   1497        1.1    mjacob 	if ((err = safte_getconfig(ssc)) != 0) {
   1498        1.1    mjacob 		return (err);
   1499        1.1    mjacob 	}
   1500        1.1    mjacob 
   1501        1.1    mjacob 	/*
   1502        1.1    mjacob 	 * The number of objects here, as well as that reported by the
   1503        1.1    mjacob 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
   1504        1.1    mjacob 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
   1505        1.1    mjacob 	 */
   1506        1.1    mjacob 	cc = ssc->ses_private;
   1507        1.1    mjacob 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
   1508        1.1    mjacob 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
   1509        1.1    mjacob 	ssc->ses_objmap = (encobj *)
   1510        1.1    mjacob 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
   1511        1.1    mjacob 	if (ssc->ses_objmap == NULL) {
   1512        1.1    mjacob 		return (ENOMEM);
   1513        1.1    mjacob 	}
   1514        1.1    mjacob 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
   1515        1.1    mjacob 
   1516        1.1    mjacob 	r = 0;
   1517        1.1    mjacob 	/*
   1518        1.1    mjacob 	 * Note that this is all arranged for the convenience
   1519        1.1    mjacob 	 * in later fetches of status.
   1520        1.1    mjacob 	 */
   1521        1.1    mjacob 	for (i = 0; i < cc->Nfans; i++)
   1522        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
   1523        1.1    mjacob 	cc->pwroff = (uint8_t) r;
   1524        1.1    mjacob 	for (i = 0; i < cc->Npwr; i++)
   1525        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
   1526        1.1    mjacob 	for (i = 0; i < cc->DoorLock; i++)
   1527        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
   1528        1.1    mjacob 	for (i = 0; i < cc->Nspkrs; i++)
   1529        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1530        1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++)
   1531        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1532        1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++)
   1533        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1534        1.1    mjacob 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1535        1.1    mjacob 	cc->slotoff = (uint8_t) r;
   1536        1.1    mjacob 	for (i = 0; i < cc->Nslots; i++)
   1537        1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
   1538        1.1    mjacob 	return (0);
   1539        1.1    mjacob }
   1540        1.1    mjacob 
   1541       1.23   thorpej static int
   1542        1.1    mjacob safte_init_enc(ses_softc_t *ssc)
   1543        1.1    mjacob {
   1544        1.1    mjacob 	int err, amt;
   1545        1.1    mjacob 	char *sdata;
   1546        1.4    mjacob 	static char cdb0[6] = { SEND_DIAGNOSTIC };
   1547        1.1    mjacob 	static char cdb[10] =
   1548        1.4    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   1549        1.1    mjacob 
   1550        1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1551        1.1    mjacob 	if (sdata == NULL)
   1552        1.1    mjacob 		return (ENOMEM);
   1553        1.1    mjacob 
   1554        1.4    mjacob 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
   1555        1.1    mjacob 	if (err) {
   1556        1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1557        1.1    mjacob 		return (err);
   1558        1.1    mjacob 	}
   1559        1.1    mjacob 	sdata[0] = SAFTE_WT_GLOBAL;
   1560        1.4    mjacob 	MEMZERO(&sdata[1], 15);
   1561        1.1    mjacob 	amt = -SAFT_SCRATCH;
   1562        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1563        1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1564        1.1    mjacob 	return (err);
   1565        1.1    mjacob }
   1566        1.1    mjacob 
   1567       1.23   thorpej static int
   1568        1.1    mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
   1569        1.1    mjacob {
   1570        1.1    mjacob 	return (safte_rdstat(ssc, slpflg));
   1571        1.1    mjacob }
   1572        1.1    mjacob 
   1573       1.23   thorpej static int
   1574        1.1    mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
   1575        1.1    mjacob {
   1576        1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1577        1.1    mjacob 	if (cc == NULL)
   1578        1.1    mjacob 		return (0);
   1579        1.1    mjacob 	/*
   1580        1.1    mjacob 	 * Since SAF-TE devices aren't necessarily sticky in terms
   1581        1.1    mjacob 	 * of state, make our soft copy of enclosure status 'sticky'-
   1582        1.1    mjacob 	 * that is, things set in enclosure status stay set (as implied
   1583        1.1    mjacob 	 * by conditions set in reading object status) until cleared.
   1584        1.1    mjacob 	 */
   1585        1.1    mjacob 	ssc->ses_encstat &= ~ALL_ENC_STAT;
   1586        1.1    mjacob 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
   1587        1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID;
   1588        1.1    mjacob 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
   1589        1.1    mjacob 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
   1590        1.1    mjacob 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
   1591        1.1    mjacob 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
   1592        1.1    mjacob 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
   1593        1.1    mjacob 	}
   1594        1.1    mjacob 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
   1595        1.1    mjacob }
   1596        1.1    mjacob 
   1597       1.23   thorpej static int
   1598        1.1    mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
   1599        1.1    mjacob {
   1600        1.1    mjacob 	int i = (int)obp->obj_id;
   1601        1.1    mjacob 
   1602        1.1    mjacob 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
   1603        1.1    mjacob 	    (ssc->ses_objmap[i].svalid) == 0) {
   1604        1.1    mjacob 		int err = safte_rdstat(ssc, slpflg);
   1605        1.1    mjacob 		if (err)
   1606        1.1    mjacob 			return (err);
   1607        1.1    mjacob 	}
   1608        1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
   1609        1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
   1610        1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
   1611        1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
   1612        1.1    mjacob 	return (0);
   1613        1.1    mjacob }
   1614        1.1    mjacob 
   1615        1.1    mjacob 
   1616       1.23   thorpej static int
   1617        1.1    mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
   1618        1.1    mjacob {
   1619        1.1    mjacob 	int idx, err;
   1620        1.1    mjacob 	encobj *ep;
   1621        1.1    mjacob 	struct scfg *cc;
   1622        1.1    mjacob 
   1623        1.1    mjacob 
   1624        1.1    mjacob 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
   1625        1.1    mjacob 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
   1626        1.1    mjacob 	    obp->cstat[3]);
   1627        1.1    mjacob 
   1628        1.1    mjacob 	/*
   1629        1.1    mjacob 	 * If this is clear, we don't do diddly.
   1630        1.1    mjacob 	 */
   1631        1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
   1632        1.1    mjacob 		return (0);
   1633        1.1    mjacob 	}
   1634        1.1    mjacob 
   1635        1.1    mjacob 	err = 0;
   1636        1.1    mjacob 	/*
   1637        1.1    mjacob 	 * Check to see if the common bits are set and do them first.
   1638        1.1    mjacob 	 */
   1639        1.1    mjacob 	if (obp->cstat[0] & ~SESCTL_CSEL) {
   1640        1.1    mjacob 		err = set_objstat_sel(ssc, obp, slp);
   1641        1.1    mjacob 		if (err)
   1642        1.1    mjacob 			return (err);
   1643        1.1    mjacob 	}
   1644        1.1    mjacob 
   1645        1.1    mjacob 	cc = ssc->ses_private;
   1646        1.1    mjacob 	if (cc == NULL)
   1647        1.1    mjacob 		return (0);
   1648        1.1    mjacob 
   1649        1.1    mjacob 	idx = (int)obp->obj_id;
   1650        1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   1651        1.1    mjacob 
   1652        1.1    mjacob 	switch (ep->enctype) {
   1653        1.1    mjacob 	case SESTYP_DEVICE:
   1654        1.1    mjacob 	{
   1655        1.1    mjacob 		uint8_t slotop = 0;
   1656        1.1    mjacob 		/*
   1657        1.1    mjacob 		 * XXX: I should probably cache the previous state
   1658        1.1    mjacob 		 * XXX: of SESCTL_DEVOFF so that when it goes from
   1659        1.1    mjacob 		 * XXX: true to false I can then set PREPARE FOR OPERATION
   1660        1.1    mjacob 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
   1661        1.1    mjacob 		 */
   1662        1.1    mjacob 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
   1663        1.1    mjacob 			slotop |= 0x2;
   1664        1.1    mjacob 		}
   1665        1.1    mjacob 		if (obp->cstat[2] & SESCTL_RQSID) {
   1666        1.1    mjacob 			slotop |= 0x4;
   1667        1.1    mjacob 		}
   1668        1.1    mjacob 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
   1669        1.1    mjacob 		    slotop, slp);
   1670        1.1    mjacob 		if (err)
   1671        1.1    mjacob 			return (err);
   1672        1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSFLT) {
   1673        1.1    mjacob 			ep->priv |= 0x2;
   1674        1.1    mjacob 		} else {
   1675        1.1    mjacob 			ep->priv &= ~0x2;
   1676        1.1    mjacob 		}
   1677        1.1    mjacob 		if (ep->priv & 0xc6) {
   1678        1.1    mjacob 			ep->priv &= ~0x1;
   1679        1.1    mjacob 		} else {
   1680        1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   1681        1.1    mjacob 		}
   1682        1.1    mjacob 		wrslot_stat(ssc, slp);
   1683        1.1    mjacob 		break;
   1684        1.1    mjacob 	}
   1685        1.1    mjacob 	case SESTYP_POWER:
   1686        1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1687        1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
   1688        1.1    mjacob 		} else {
   1689        1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
   1690        1.1    mjacob 		}
   1691        1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1692        1.1    mjacob 		    cc->flag2, 0, slp);
   1693        1.1    mjacob 		if (err)
   1694        1.1    mjacob 			return (err);
   1695        1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1696        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1697        1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   1698        1.1    mjacob 		} else {
   1699        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1700        1.1    mjacob 				idx - cc->pwroff, 0, 1, slp);
   1701        1.1    mjacob 		}
   1702        1.1    mjacob 		break;
   1703        1.1    mjacob 	case SESTYP_FAN:
   1704        1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1705        1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
   1706        1.1    mjacob 		} else {
   1707        1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
   1708        1.1    mjacob 		}
   1709        1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1710        1.1    mjacob 		    cc->flag2, 0, slp);
   1711        1.1    mjacob 		if (err)
   1712        1.1    mjacob 			return (err);
   1713        1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1714        1.1    mjacob 			uint8_t fsp;
   1715        1.1    mjacob 			if ((obp->cstat[3] & 0x7) == 7) {
   1716        1.1    mjacob 				fsp = 4;
   1717        1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 6) {
   1718        1.1    mjacob 				fsp = 3;
   1719        1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 4) {
   1720        1.1    mjacob 				fsp = 2;
   1721        1.1    mjacob 			} else {
   1722        1.1    mjacob 				fsp = 1;
   1723        1.1    mjacob 			}
   1724        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
   1725        1.1    mjacob 		} else {
   1726        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   1727        1.1    mjacob 		}
   1728        1.1    mjacob 		break;
   1729        1.1    mjacob 	case SESTYP_DOORLOCK:
   1730        1.1    mjacob 		if (obp->cstat[3] & 0x1) {
   1731        1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   1732        1.1    mjacob 		} else {
   1733        1.1    mjacob 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
   1734        1.1    mjacob 		}
   1735        1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1736        1.1    mjacob 		    cc->flag2, 0, slp);
   1737        1.1    mjacob 		break;
   1738        1.1    mjacob 	case SESTYP_ALARM:
   1739        1.1    mjacob 		/*
   1740        1.1    mjacob 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
   1741        1.1    mjacob 		 */
   1742        1.1    mjacob 		obp->cstat[3] &= ~0xa;
   1743        1.1    mjacob 		if (obp->cstat[3] & 0x40) {
   1744        1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1745        1.1    mjacob 		} else if (obp->cstat[3] != 0) {
   1746        1.1    mjacob 			cc->flag2 |= SAFT_FLG1_ALARM;
   1747        1.1    mjacob 		} else {
   1748        1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1749        1.1    mjacob 		}
   1750        1.1    mjacob 		ep->priv = obp->cstat[3];
   1751        1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1752        1.1    mjacob 			cc->flag2, 0, slp);
   1753        1.1    mjacob 		break;
   1754        1.1    mjacob 	default:
   1755        1.1    mjacob 		break;
   1756        1.1    mjacob 	}
   1757        1.1    mjacob 	ep->svalid = 0;
   1758        1.1    mjacob 	return (0);
   1759        1.1    mjacob }
   1760        1.1    mjacob 
   1761        1.1    mjacob static int
   1762        1.1    mjacob safte_getconfig(ses_softc_t *ssc)
   1763        1.1    mjacob {
   1764        1.1    mjacob 	struct scfg *cfg;
   1765        1.1    mjacob 	int err, amt;
   1766        1.1    mjacob 	char *sdata;
   1767        1.1    mjacob 	static char cdb[10] =
   1768        1.1    mjacob 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   1769        1.1    mjacob 
   1770        1.1    mjacob 	cfg = ssc->ses_private;
   1771        1.1    mjacob 	if (cfg == NULL)
   1772        1.1    mjacob 		return (ENXIO);
   1773        1.1    mjacob 
   1774        1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1775        1.1    mjacob 	if (sdata == NULL)
   1776        1.1    mjacob 		return (ENOMEM);
   1777        1.1    mjacob 
   1778        1.1    mjacob 	amt = SAFT_SCRATCH;
   1779        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1780        1.1    mjacob 	if (err) {
   1781        1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1782        1.1    mjacob 		return (err);
   1783        1.1    mjacob 	}
   1784        1.1    mjacob 	amt = SAFT_SCRATCH - amt;
   1785        1.1    mjacob 	if (amt < 6) {
   1786        1.1    mjacob 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
   1787        1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1788        1.1    mjacob 		return (EIO);
   1789        1.1    mjacob 	}
   1790        1.1    mjacob 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
   1791        1.1    mjacob 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
   1792        1.1    mjacob 	cfg->Nfans = sdata[0];
   1793        1.1    mjacob 	cfg->Npwr = sdata[1];
   1794        1.1    mjacob 	cfg->Nslots = sdata[2];
   1795        1.1    mjacob 	cfg->DoorLock = sdata[3];
   1796        1.1    mjacob 	cfg->Ntherm = sdata[4];
   1797        1.1    mjacob 	cfg->Nspkrs = sdata[5];
   1798        1.1    mjacob 	cfg->Nalarm = NPSEUDO_ALARM;
   1799        1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1800        1.1    mjacob 	return (0);
   1801        1.1    mjacob }
   1802        1.1    mjacob 
   1803        1.1    mjacob static int
   1804       1.37  christos safte_rdstat(ses_softc_t *ssc, int slpflg)
   1805        1.1    mjacob {
   1806        1.1    mjacob 	int err, oid, r, i, hiwater, nitems, amt;
   1807        1.1    mjacob 	uint16_t tempflags;
   1808        1.1    mjacob 	size_t buflen;
   1809        1.1    mjacob 	uint8_t status, oencstat;
   1810        1.1    mjacob 	char *sdata, cdb[10];
   1811        1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1812        1.1    mjacob 
   1813        1.1    mjacob 
   1814        1.1    mjacob 	/*
   1815        1.1    mjacob 	 * The number of objects overstates things a bit,
   1816        1.1    mjacob 	 * both for the bogus 'thermometer' entries and
   1817        1.1    mjacob 	 * the drive status (which isn't read at the same
   1818        1.1    mjacob 	 * time as the enclosure status), but that's okay.
   1819        1.1    mjacob 	 */
   1820        1.1    mjacob 	buflen = 4 * cc->Nslots;
   1821        1.1    mjacob 	if (ssc->ses_nobjects > buflen)
   1822        1.1    mjacob 		buflen = ssc->ses_nobjects;
   1823        1.1    mjacob 	sdata = SES_MALLOC(buflen);
   1824        1.1    mjacob 	if (sdata == NULL)
   1825        1.1    mjacob 		return (ENOMEM);
   1826        1.1    mjacob 
   1827        1.1    mjacob 	cdb[0] = READ_BUFFER;
   1828        1.1    mjacob 	cdb[1] = 1;
   1829        1.1    mjacob 	cdb[2] = SAFTE_RD_RDESTS;
   1830        1.1    mjacob 	cdb[3] = 0;
   1831        1.1    mjacob 	cdb[4] = 0;
   1832        1.1    mjacob 	cdb[5] = 0;
   1833        1.1    mjacob 	cdb[6] = 0;
   1834        1.1    mjacob 	cdb[7] = (buflen >> 8) & 0xff;
   1835        1.1    mjacob 	cdb[8] = buflen & 0xff;
   1836        1.1    mjacob 	cdb[9] = 0;
   1837        1.1    mjacob 	amt = buflen;
   1838        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1839        1.1    mjacob 	if (err) {
   1840        1.1    mjacob 		SES_FREE(sdata, buflen);
   1841        1.1    mjacob 		return (err);
   1842        1.1    mjacob 	}
   1843        1.1    mjacob 	hiwater = buflen - amt;
   1844        1.1    mjacob 
   1845        1.1    mjacob 
   1846        1.1    mjacob 	/*
   1847        1.1    mjacob 	 * invalidate all status bits.
   1848        1.1    mjacob 	 */
   1849        1.1    mjacob 	for (i = 0; i < ssc->ses_nobjects; i++)
   1850        1.1    mjacob 		ssc->ses_objmap[i].svalid = 0;
   1851        1.1    mjacob 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
   1852        1.1    mjacob 	ssc->ses_encstat = 0;
   1853        1.1    mjacob 
   1854        1.1    mjacob 
   1855        1.1    mjacob 	/*
   1856        1.1    mjacob 	 * Now parse returned buffer.
   1857        1.1    mjacob 	 * If we didn't get enough data back,
   1858        1.1    mjacob 	 * that's considered a fatal error.
   1859        1.1    mjacob 	 */
   1860        1.1    mjacob 	oid = r = 0;
   1861        1.1    mjacob 
   1862        1.1    mjacob 	for (nitems = i = 0; i < cc->Nfans; i++) {
   1863        1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1864        1.1    mjacob 		/*
   1865        1.1    mjacob 		 * 0 = Fan Operational
   1866        1.1    mjacob 		 * 1 = Fan is malfunctioning
   1867        1.1    mjacob 		 * 2 = Fan is not present
   1868        1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   1869        1.1    mjacob 		 */
   1870        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1871        1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1872        1.1    mjacob 		switch ((int)(uint8_t)sdata[r]) {
   1873        1.1    mjacob 		case 0:
   1874        1.1    mjacob 			nitems++;
   1875        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1876        1.1    mjacob 			/*
   1877        1.1    mjacob 			 * We could get fancier and cache
   1878        1.1    mjacob 			 * fan speeds that we have set, but
   1879        1.1    mjacob 			 * that isn't done now.
   1880        1.1    mjacob 			 */
   1881        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 7;
   1882        1.1    mjacob 			break;
   1883        1.1    mjacob 
   1884        1.1    mjacob 		case 1:
   1885        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1886        1.1    mjacob 			/*
   1887        1.1    mjacob 			 * FAIL and FAN STOPPED synthesized
   1888        1.1    mjacob 			 */
   1889        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x40;
   1890        1.1    mjacob 			/*
   1891        1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1892        1.1    mjacob 			 * if only one fan or no thermometers,
   1893        1.1    mjacob 			 * else the NONCRITICAL error is set.
   1894        1.1    mjacob 			 */
   1895        1.1    mjacob 			if (cc->Nfans == 1 || cc->Ntherm == 0)
   1896        1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1897        1.1    mjacob 			else
   1898        1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1899        1.1    mjacob 			break;
   1900        1.1    mjacob 		case 2:
   1901        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1902        1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1903        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1904        1.1    mjacob 			/*
   1905        1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1906        1.1    mjacob 			 * if only one fan or no thermometers,
   1907        1.1    mjacob 			 * else the NONCRITICAL error is set.
   1908        1.1    mjacob 			 */
   1909        1.1    mjacob 			if (cc->Nfans == 1)
   1910        1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1911        1.1    mjacob 			else
   1912        1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1913        1.1    mjacob 			break;
   1914        1.1    mjacob 		case 0x80:
   1915        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1916        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1917        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1918        1.1    mjacob 			break;
   1919        1.1    mjacob 		default:
   1920        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1921        1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   1922        1.1    mjacob 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
   1923        1.1    mjacob 			    sdata[r] & 0xff);
   1924        1.1    mjacob 			break;
   1925        1.1    mjacob 		}
   1926        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   1927        1.1    mjacob 		r++;
   1928        1.1    mjacob 	}
   1929        1.1    mjacob 
   1930        1.1    mjacob 	/*
   1931        1.1    mjacob 	 * No matter how you cut it, no cooling elements when there
   1932        1.1    mjacob 	 * should be some there is critical.
   1933        1.1    mjacob 	 */
   1934        1.1    mjacob 	if (cc->Nfans && nitems == 0) {
   1935        1.1    mjacob 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1936        1.1    mjacob 	}
   1937        1.1    mjacob 
   1938        1.1    mjacob 
   1939        1.1    mjacob 	for (i = 0; i < cc->Npwr; i++) {
   1940        1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1941        1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1942        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1943        1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1944        1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
   1945        1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   1946        1.1    mjacob 		case 0x00:	/* pws operational and on */
   1947        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1948        1.1    mjacob 			break;
   1949        1.1    mjacob 		case 0x01:	/* pws operational and off */
   1950        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1951        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   1952        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1953        1.1    mjacob 			break;
   1954        1.1    mjacob 		case 0x10:	/* pws is malfunctioning and commanded on */
   1955        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1956        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x61;
   1957        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1958        1.1    mjacob 			break;
   1959        1.1    mjacob 
   1960        1.1    mjacob 		case 0x11:	/* pws is malfunctioning and commanded off */
   1961        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   1962        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x51;
   1963        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1964        1.1    mjacob 			break;
   1965        1.1    mjacob 		case 0x20:	/* pws is not present */
   1966        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1967        1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1968        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1969        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1970        1.1    mjacob 			break;
   1971        1.1    mjacob 		case 0x21:	/* pws is present */
   1972        1.1    mjacob 			/*
   1973        1.1    mjacob 			 * This is for enclosures that cannot tell whether the
   1974        1.1    mjacob 			 * device is on or malfunctioning, but know that it is
   1975        1.1    mjacob 			 * present. Just fall through.
   1976        1.1    mjacob 			 */
   1977        1.1    mjacob 			/* FALLTHROUGH */
   1978        1.1    mjacob 		case 0x80:	/* Unknown or Not Reportable Status */
   1979        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1980        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1981        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1982        1.1    mjacob 			break;
   1983        1.1    mjacob 		default:
   1984        1.1    mjacob 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
   1985        1.1    mjacob 			    i, sdata[r] & 0xff);
   1986        1.1    mjacob 			break;
   1987        1.1    mjacob 		}
   1988        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   1989        1.1    mjacob 		r++;
   1990        1.1    mjacob 	}
   1991        1.1    mjacob 
   1992        1.1    mjacob 	/*
   1993        1.1    mjacob 	 * Skip over Slot SCSI IDs
   1994        1.1    mjacob 	 */
   1995        1.1    mjacob 	r += cc->Nslots;
   1996        1.1    mjacob 
   1997        1.1    mjacob 	/*
   1998        1.1    mjacob 	 * We always have doorlock status, no matter what,
   1999        1.1    mjacob 	 * but we only save the status if we have one.
   2000        1.1    mjacob 	 */
   2001        1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2002        1.1    mjacob 	if (cc->DoorLock) {
   2003        1.1    mjacob 		/*
   2004        1.1    mjacob 		 * 0 = Door Locked
   2005        1.1    mjacob 		 * 1 = Door Unlocked, or no Lock Installed
   2006        1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   2007        1.1    mjacob 		 */
   2008        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2009        1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2010        1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   2011        1.1    mjacob 		case 0:
   2012        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2013        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2014        1.1    mjacob 			break;
   2015        1.1    mjacob 		case 1:
   2016        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2017        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 1;
   2018        1.1    mjacob 			break;
   2019        1.1    mjacob 		case 0x80:
   2020        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   2021        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2022        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2023        1.1    mjacob 			break;
   2024        1.1    mjacob 		default:
   2025        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2026        1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2027        1.1    mjacob 			SES_LOG(ssc, "unknown lock status 0x%x\n",
   2028        1.1    mjacob 			    sdata[r] & 0xff);
   2029        1.1    mjacob 			break;
   2030        1.1    mjacob 		}
   2031        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2032        1.1    mjacob 	}
   2033        1.1    mjacob 	r++;
   2034        1.1    mjacob 
   2035        1.1    mjacob 	/*
   2036        1.1    mjacob 	 * We always have speaker status, no matter what,
   2037        1.1    mjacob 	 * but we only save the status if we have one.
   2038        1.1    mjacob 	 */
   2039        1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2040        1.1    mjacob 	if (cc->Nspkrs) {
   2041        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2042        1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2043        1.1    mjacob 		if (sdata[r] == 1) {
   2044        1.1    mjacob 			/*
   2045        1.1    mjacob 			 * We need to cache tone urgency indicators.
   2046        1.1    mjacob 			 * Someday.
   2047        1.1    mjacob 			 */
   2048        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   2049        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x8;
   2050        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   2051        1.1    mjacob 		} else if (sdata[r] == 0) {
   2052        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2053        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2054        1.1    mjacob 		} else {
   2055        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2056        1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2057        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2058        1.1    mjacob 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
   2059        1.1    mjacob 			    sdata[r] & 0xff);
   2060        1.1    mjacob 		}
   2061        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2062        1.1    mjacob 	}
   2063        1.1    mjacob 	r++;
   2064        1.1    mjacob 
   2065        1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++) {
   2066        1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   2067        1.1    mjacob 		/*
   2068        1.1    mjacob 		 * Status is a range from -10 to 245 deg Celsius,
   2069        1.1    mjacob 		 * which we need to normalize to -20 to -245 according
   2070        1.1    mjacob 		 * to the latest SCSI spec, which makes little
   2071        1.1    mjacob 		 * sense since this would overflow an 8bit value.
   2072        1.1    mjacob 		 * Well, still, the base normalization is -20,
   2073        1.1    mjacob 		 * not -10, so we have to adjust.
   2074        1.1    mjacob 		 *
   2075        1.1    mjacob 		 * So what's over and under temperature?
   2076        1.1    mjacob 		 * Hmm- we'll state that 'normal' operating
   2077        1.1    mjacob 		 * is 10 to 40 deg Celsius.
   2078        1.1    mjacob 		 */
   2079        1.8    mjacob 
   2080        1.8    mjacob 		/*
   2081        1.8    mjacob 		 * Actually.... All of the units that people out in the world
   2082        1.8    mjacob 		 * seem to have do not come even close to setting a value that
   2083        1.8    mjacob 		 * complies with this spec.
   2084        1.8    mjacob 		 *
   2085        1.8    mjacob 		 * The closest explanation I could find was in an
   2086        1.8    mjacob 		 * LSI-Logic manual, which seemed to indicate that
   2087        1.8    mjacob 		 * this value would be set by whatever the I2C code
   2088        1.8    mjacob 		 * would interpolate from the output of an LM75
   2089        1.8    mjacob 		 * temperature sensor.
   2090        1.8    mjacob 		 *
   2091        1.8    mjacob 		 * This means that it is impossible to use the actual
   2092        1.8    mjacob 		 * numeric value to predict anything. But we don't want
   2093        1.8    mjacob 		 * to lose the value. So, we'll propagate the *uncorrected*
   2094        1.8    mjacob 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
   2095        1.8    mjacob 		 * temperature flags for warnings.
   2096        1.8    mjacob 		 */
   2097        1.8    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
   2098        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2099        1.8    mjacob 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
   2100       1.19    simonb 		ssc->ses_objmap[oid].encstat[3] = 0;
   2101        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2102        1.1    mjacob 		r++;
   2103        1.1    mjacob 	}
   2104        1.1    mjacob 
   2105        1.1    mjacob 	/*
   2106        1.1    mjacob 	 * Now, for "pseudo" thermometers, we have two bytes
   2107        1.1    mjacob 	 * of information in enclosure status- 16 bits. Actually,
   2108        1.1    mjacob 	 * the MSB is a single TEMP ALERT flag indicating whether
   2109        1.1    mjacob 	 * any other bits are set, but, thanks to fuzzy thinking,
   2110        1.1    mjacob 	 * in the SAF-TE spec, this can also be set even if no
   2111        1.1    mjacob 	 * other bits are set, thus making this really another
   2112        1.1    mjacob 	 * binary temperature sensor.
   2113        1.1    mjacob 	 */
   2114        1.1    mjacob 
   2115        1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2116        1.1    mjacob 	tempflags = sdata[r++];
   2117        1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2118        1.1    mjacob 	tempflags |= (tempflags << 8) | sdata[r++];
   2119        1.1    mjacob 
   2120        1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++) {
   2121        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2122        1.1    mjacob 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
   2123        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   2124        1.1    mjacob 			ssc->ses_objmap[4].encstat[2] = 0xff;
   2125        1.1    mjacob 			/*
   2126        1.1    mjacob 			 * Set 'over temperature' failure.
   2127        1.1    mjacob 			 */
   2128        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 8;
   2129        1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   2130        1.1    mjacob 		} else {
   2131        1.1    mjacob 			/*
   2132        1.1    mjacob 			 * We used to say 'not available' and synthesize a
   2133        1.1    mjacob 			 * nominal 30 deg (C)- that was wrong. Actually,
   2134        1.1    mjacob 			 * Just say 'OK', and use the reserved value of
   2135        1.1    mjacob 			 * zero.
   2136        1.1    mjacob 			 */
   2137        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2138        1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0;
   2139        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2140        1.1    mjacob 		}
   2141        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2142        1.1    mjacob 	}
   2143        1.1    mjacob 
   2144        1.1    mjacob 	/*
   2145        1.1    mjacob 	 * Get alarm status.
   2146        1.1    mjacob 	 */
   2147        1.1    mjacob 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2148        1.1    mjacob 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
   2149        1.1    mjacob 	ssc->ses_objmap[oid++].svalid = 1;
   2150        1.1    mjacob 
   2151        1.1    mjacob 	/*
   2152        1.1    mjacob 	 * Now get drive slot status
   2153        1.1    mjacob 	 */
   2154        1.1    mjacob 	cdb[2] = SAFTE_RD_RDDSTS;
   2155        1.1    mjacob 	amt = buflen;
   2156        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2157        1.1    mjacob 	if (err) {
   2158        1.1    mjacob 		SES_FREE(sdata, buflen);
   2159        1.1    mjacob 		return (err);
   2160        1.1    mjacob 	}
   2161        1.1    mjacob 	hiwater = buflen - amt;
   2162        1.1    mjacob 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
   2163        1.1    mjacob 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
   2164        1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
   2165        1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
   2166        1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2167        1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0;
   2168        1.1    mjacob 		status = sdata[r+3];
   2169        1.1    mjacob 		if ((status & 0x1) == 0) {	/* no device */
   2170        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2171        1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   2172        1.1    mjacob 		} else {
   2173        1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2174        1.1    mjacob 		}
   2175        1.1    mjacob 		if (status & 0x2) {
   2176        1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0x8;
   2177        1.1    mjacob 		}
   2178        1.1    mjacob 		if ((status & 0x4) == 0) {
   2179        1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   2180        1.1    mjacob 		}
   2181        1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2182        1.1    mjacob 	}
   2183        1.1    mjacob 	/* see comment below about sticky enclosure status */
   2184        1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
   2185        1.1    mjacob 	SES_FREE(sdata, buflen);
   2186        1.1    mjacob 	return (0);
   2187        1.1    mjacob }
   2188        1.1    mjacob 
   2189        1.1    mjacob static int
   2190        1.1    mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
   2191        1.1    mjacob {
   2192        1.1    mjacob 	int idx;
   2193        1.1    mjacob 	encobj *ep;
   2194        1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2195        1.1    mjacob 
   2196        1.1    mjacob 	if (cc == NULL)
   2197        1.1    mjacob 		return (0);
   2198        1.1    mjacob 
   2199        1.1    mjacob 	idx = (int)obp->obj_id;
   2200        1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   2201        1.1    mjacob 
   2202        1.1    mjacob 	switch (ep->enctype) {
   2203        1.1    mjacob 	case SESTYP_DEVICE:
   2204        1.1    mjacob 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
   2205        1.1    mjacob 			ep->priv |= 0x40;
   2206        1.1    mjacob 		}
   2207        1.1    mjacob 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
   2208        1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2209        1.1    mjacob 			ep->priv |= 0x80;
   2210        1.1    mjacob 			/*
   2211        1.1    mjacob 			 * Hmm. Try to set the 'No Drive' flag.
   2212        1.1    mjacob 			 * Maybe that will count as a 'disable'.
   2213        1.1    mjacob 			 */
   2214        1.1    mjacob 		}
   2215        1.1    mjacob 		if (ep->priv & 0xc6) {
   2216        1.1    mjacob 			ep->priv &= ~0x1;
   2217        1.1    mjacob 		} else {
   2218        1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   2219        1.1    mjacob 		}
   2220        1.1    mjacob 		wrslot_stat(ssc, slp);
   2221        1.1    mjacob 		break;
   2222        1.1    mjacob 	case SESTYP_POWER:
   2223        1.1    mjacob 		/*
   2224        1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2225        1.1    mjacob 		 * do the 'disable' for a power supply.
   2226        1.1    mjacob 		 */
   2227        1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2228        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   2229        1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   2230        1.1    mjacob 		}
   2231        1.1    mjacob 		break;
   2232        1.1    mjacob 	case SESTYP_FAN:
   2233        1.1    mjacob 		/*
   2234        1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2235        1.1    mjacob 		 * set fan speed to zero on disable.
   2236        1.1    mjacob 		 */
   2237        1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2238        1.1    mjacob 			/* remember- fans are the first items, so idx works */
   2239        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   2240        1.1    mjacob 		}
   2241        1.1    mjacob 		break;
   2242        1.1    mjacob 	case SESTYP_DOORLOCK:
   2243        1.1    mjacob 		/*
   2244        1.1    mjacob 		 * Well, we can 'disable' the lock.
   2245        1.1    mjacob 		 */
   2246        1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2247        1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   2248        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2249        1.1    mjacob 				cc->flag2, 0, slp);
   2250        1.1    mjacob 		}
   2251        1.1    mjacob 		break;
   2252        1.1    mjacob 	case SESTYP_ALARM:
   2253        1.1    mjacob 		/*
   2254        1.1    mjacob 		 * Well, we can 'disable' the alarm.
   2255        1.1    mjacob 		 */
   2256        1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2257        1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   2258        1.1    mjacob 			ep->priv |= 0x40;	/* Muted */
   2259        1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2260        1.1    mjacob 				cc->flag2, 0, slp);
   2261        1.1    mjacob 		}
   2262        1.1    mjacob 		break;
   2263        1.1    mjacob 	default:
   2264        1.1    mjacob 		break;
   2265        1.1    mjacob 	}
   2266        1.1    mjacob 	ep->svalid = 0;
   2267        1.1    mjacob 	return (0);
   2268        1.1    mjacob }
   2269        1.1    mjacob 
   2270        1.1    mjacob /*
   2271        1.1    mjacob  * This function handles all of the 16 byte WRITE BUFFER commands.
   2272        1.1    mjacob  */
   2273        1.1    mjacob static int
   2274        1.1    mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
   2275       1.37  christos     uint8_t b3, int slp)
   2276        1.1    mjacob {
   2277        1.1    mjacob 	int err, amt;
   2278        1.1    mjacob 	char *sdata;
   2279        1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2280        1.1    mjacob 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   2281        1.1    mjacob 
   2282        1.1    mjacob 	if (cc == NULL)
   2283        1.1    mjacob 		return (0);
   2284        1.1    mjacob 
   2285        1.1    mjacob 	sdata = SES_MALLOC(16);
   2286        1.1    mjacob 	if (sdata == NULL)
   2287        1.1    mjacob 		return (ENOMEM);
   2288        1.1    mjacob 
   2289        1.1    mjacob 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
   2290        1.1    mjacob 
   2291        1.1    mjacob 	sdata[0] = op;
   2292        1.1    mjacob 	sdata[1] = b1;
   2293        1.1    mjacob 	sdata[2] = b2;
   2294        1.1    mjacob 	sdata[3] = b3;
   2295        1.1    mjacob 	MEMZERO(&sdata[4], 12);
   2296        1.1    mjacob 	amt = -16;
   2297        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2298        1.1    mjacob 	SES_FREE(sdata, 16);
   2299        1.1    mjacob 	return (err);
   2300        1.1    mjacob }
   2301        1.1    mjacob 
   2302        1.1    mjacob /*
   2303        1.1    mjacob  * This function updates the status byte for the device slot described.
   2304        1.1    mjacob  *
   2305        1.1    mjacob  * Since this is an optional SAF-TE command, there's no point in
   2306        1.1    mjacob  * returning an error.
   2307        1.1    mjacob  */
   2308        1.1    mjacob static void
   2309       1.37  christos wrslot_stat(ses_softc_t *ssc, int slp)
   2310        1.1    mjacob {
   2311        1.1    mjacob 	int i, amt;
   2312        1.1    mjacob 	encobj *ep;
   2313        1.1    mjacob 	char cdb[10], *sdata;
   2314        1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2315        1.1    mjacob 
   2316        1.1    mjacob 	if (cc == NULL)
   2317        1.1    mjacob 		return;
   2318        1.1    mjacob 
   2319        1.1    mjacob 	SES_VLOG(ssc, "saf_wrslot\n");
   2320        1.1    mjacob 	cdb[0] = WRITE_BUFFER;
   2321        1.1    mjacob 	cdb[1] = 1;
   2322        1.1    mjacob 	cdb[2] = 0;
   2323        1.1    mjacob 	cdb[3] = 0;
   2324        1.1    mjacob 	cdb[4] = 0;
   2325        1.1    mjacob 	cdb[5] = 0;
   2326        1.1    mjacob 	cdb[6] = 0;
   2327        1.1    mjacob 	cdb[7] = 0;
   2328        1.1    mjacob 	cdb[8] = cc->Nslots * 3 + 1;
   2329        1.1    mjacob 	cdb[9] = 0;
   2330        1.1    mjacob 
   2331        1.1    mjacob 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
   2332        1.1    mjacob 	if (sdata == NULL)
   2333        1.1    mjacob 		return;
   2334        1.1    mjacob 	MEMZERO(sdata, cc->Nslots * 3 + 1);
   2335        1.1    mjacob 
   2336        1.1    mjacob 	sdata[0] = SAFTE_WT_DSTAT;
   2337        1.1    mjacob 	for (i = 0; i < cc->Nslots; i++) {
   2338        1.1    mjacob 		ep = &ssc->ses_objmap[cc->slotoff + i];
   2339        1.1    mjacob 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
   2340        1.1    mjacob 		sdata[1 + (3 * i)] = ep->priv & 0xff;
   2341        1.1    mjacob 	}
   2342        1.1    mjacob 	amt = -(cc->Nslots * 3 + 1);
   2343        1.1    mjacob 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2344        1.1    mjacob 	SES_FREE(sdata, cc->Nslots * 3 + 1);
   2345        1.1    mjacob }
   2346        1.1    mjacob 
   2347        1.1    mjacob /*
   2348        1.1    mjacob  * This function issues the "PERFORM SLOT OPERATION" command.
   2349        1.1    mjacob  */
   2350        1.1    mjacob static int
   2351       1.37  christos perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
   2352        1.1    mjacob {
   2353        1.1    mjacob 	int err, amt;
   2354        1.1    mjacob 	char *sdata;
   2355        1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2356        1.1    mjacob 	static char cdb[10] =
   2357        1.1    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   2358        1.1    mjacob 
   2359        1.1    mjacob 	if (cc == NULL)
   2360        1.1    mjacob 		return (0);
   2361        1.1    mjacob 
   2362        1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   2363        1.1    mjacob 	if (sdata == NULL)
   2364        1.1    mjacob 		return (ENOMEM);
   2365        1.1    mjacob 	MEMZERO(sdata, SAFT_SCRATCH);
   2366        1.1    mjacob 
   2367        1.1    mjacob 	sdata[0] = SAFTE_WT_SLTOP;
   2368        1.1    mjacob 	sdata[1] = slot;
   2369        1.1    mjacob 	sdata[2] = opflag;
   2370        1.1    mjacob 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
   2371        1.1    mjacob 	amt = -SAFT_SCRATCH;
   2372        1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2373        1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   2374        1.1    mjacob 	return (err);
   2375        1.1    mjacob }
   2376