Home | History | Annotate | Line # | Download | only in scsipi
ses.c revision 1.42
      1  1.42    cegger /*	$NetBSD: ses.c,v 1.42 2009/05/12 14:44:31 cegger Exp $ */
      2   1.1    mjacob /*
      3   1.1    mjacob  * Copyright (C) 2000 National Aeronautics & Space Administration
      4   1.1    mjacob  * All rights reserved.
      5   1.1    mjacob  *
      6   1.1    mjacob  * Redistribution and use in source and binary forms, with or without
      7   1.1    mjacob  * modification, are permitted provided that the following conditions
      8   1.1    mjacob  * are met:
      9   1.1    mjacob  * 1. Redistributions of source code must retain the above copyright
     10   1.1    mjacob  *    notice, this list of conditions and the following disclaimer.
     11   1.1    mjacob  * 2. The name of the author may not be used to endorse or promote products
     12   1.1    mjacob  *    derived from this software without specific prior written permission
     13   1.1    mjacob  *
     14   1.1    mjacob  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     15   1.1    mjacob  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     16   1.1    mjacob  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     17   1.1    mjacob  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     18   1.1    mjacob  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     19   1.1    mjacob  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     20   1.1    mjacob  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     21   1.1    mjacob  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22   1.1    mjacob  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     23   1.1    mjacob  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24   1.1    mjacob  *
     25   1.1    mjacob  * Author:	mjacob (at) nas.nasa.gov
     26   1.1    mjacob  */
     27   1.1    mjacob 
     28  1.12     lukem #include <sys/cdefs.h>
     29  1.42    cegger __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.42 2009/05/12 14:44:31 cegger Exp $");
     30   1.1    mjacob 
     31   1.1    mjacob #include "opt_scsi.h"
     32   1.1    mjacob 
     33   1.1    mjacob #include <sys/param.h>
     34   1.1    mjacob #include <sys/systm.h>
     35   1.1    mjacob #include <sys/kernel.h>
     36   1.1    mjacob #include <sys/file.h>
     37   1.1    mjacob #include <sys/stat.h>
     38   1.1    mjacob #include <sys/ioctl.h>
     39   1.1    mjacob #include <sys/scsiio.h>
     40   1.1    mjacob #include <sys/buf.h>
     41   1.1    mjacob #include <sys/uio.h>
     42   1.1    mjacob #include <sys/malloc.h>
     43   1.1    mjacob #include <sys/errno.h>
     44   1.1    mjacob #include <sys/device.h>
     45   1.1    mjacob #include <sys/disklabel.h>
     46   1.1    mjacob #include <sys/disk.h>
     47   1.1    mjacob #include <sys/proc.h>
     48   1.1    mjacob #include <sys/conf.h>
     49   1.1    mjacob #include <sys/vnode.h>
     50   1.1    mjacob #include <machine/stdarg.h>
     51   1.1    mjacob 
     52   1.1    mjacob #include <dev/scsipi/scsipi_all.h>
     53  1.26   mycroft #include <dev/scsipi/scsipi_disk.h>
     54   1.1    mjacob #include <dev/scsipi/scsi_all.h>
     55   1.1    mjacob #include <dev/scsipi/scsi_disk.h>
     56  1.26   mycroft #include <dev/scsipi/scsipiconf.h>
     57  1.26   mycroft #include <dev/scsipi/scsipi_base.h>
     58   1.1    mjacob #include <dev/scsipi/ses.h>
     59   1.1    mjacob 
     60   1.1    mjacob /*
     61   1.1    mjacob  * Platform Independent Driver Internal Definitions for SES devices.
     62   1.1    mjacob  */
     63   1.1    mjacob typedef enum {
     64   1.1    mjacob 	SES_NONE,
     65   1.1    mjacob 	SES_SES_SCSI2,
     66   1.1    mjacob 	SES_SES,
     67   1.1    mjacob 	SES_SES_PASSTHROUGH,
     68   1.1    mjacob 	SES_SEN,
     69   1.1    mjacob 	SES_SAFT
     70   1.1    mjacob } enctyp;
     71   1.1    mjacob 
     72   1.1    mjacob struct ses_softc;
     73   1.1    mjacob typedef struct ses_softc ses_softc_t;
     74   1.1    mjacob typedef struct {
     75  1.23   thorpej 	int (*softc_init)(ses_softc_t *, int);
     76  1.23   thorpej 	int (*init_enc)(ses_softc_t *);
     77  1.23   thorpej 	int (*get_encstat)(ses_softc_t *, int);
     78  1.23   thorpej 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
     79  1.23   thorpej 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
     80  1.23   thorpej 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
     81   1.1    mjacob } encvec;
     82   1.1    mjacob 
     83   1.1    mjacob #define	ENCI_SVALID	0x80
     84   1.1    mjacob 
     85   1.1    mjacob typedef struct {
     86   1.1    mjacob 	uint32_t
     87   1.1    mjacob 		enctype	: 8,		/* enclosure type */
     88   1.1    mjacob 		subenclosure : 8,	/* subenclosure id */
     89   1.1    mjacob 		svalid	: 1,		/* enclosure information valid */
     90   1.1    mjacob 		priv	: 15;		/* private data, per object */
     91   1.1    mjacob 	uint8_t	encstat[4];	/* state && stats */
     92   1.1    mjacob } encobj;
     93   1.1    mjacob 
     94   1.1    mjacob #define	SEN_ID		"UNISYS           SUN_SEN"
     95   1.1    mjacob #define	SEN_ID_LEN	24
     96   1.1    mjacob 
     97  1.23   thorpej static enctyp ses_type(struct scsipi_inquiry_data *);
     98   1.1    mjacob 
     99   1.1    mjacob 
    100   1.1    mjacob /* Forward reference to Enclosure Functions */
    101  1.23   thorpej static int ses_softc_init(ses_softc_t *, int);
    102  1.23   thorpej static int ses_init_enc(ses_softc_t *);
    103  1.23   thorpej static int ses_get_encstat(ses_softc_t *, int);
    104  1.23   thorpej static int ses_set_encstat(ses_softc_t *, uint8_t, int);
    105  1.23   thorpej static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
    106  1.23   thorpej static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
    107  1.23   thorpej 
    108  1.23   thorpej static int safte_softc_init(ses_softc_t *, int);
    109  1.23   thorpej static int safte_init_enc(ses_softc_t *);
    110  1.23   thorpej static int safte_get_encstat(ses_softc_t *, int);
    111  1.23   thorpej static int safte_set_encstat(ses_softc_t *, uint8_t, int);
    112  1.23   thorpej static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
    113  1.23   thorpej static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
    114   1.1    mjacob 
    115   1.1    mjacob /*
    116   1.1    mjacob  * Platform implementation defines/functions for SES internal kernel stuff
    117   1.1    mjacob  */
    118   1.1    mjacob 
    119   1.1    mjacob #define	STRNCMP			strncmp
    120   1.1    mjacob #define	PRINTF			printf
    121   1.1    mjacob #define	SES_LOG			ses_log
    122   1.1    mjacob #if	defined(DEBUG) || defined(SCSIDEBUG)
    123   1.1    mjacob #define	SES_VLOG		ses_log
    124   1.1    mjacob #else
    125   1.1    mjacob #define	SES_VLOG		if (0) ses_log
    126   1.1    mjacob #endif
    127   1.1    mjacob #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
    128   1.1    mjacob #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
    129  1.10   thorpej #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
    130  1.11   thorpej #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
    131   1.1    mjacob #define	RECEIVE_DIAGNOSTIC	0x1c
    132   1.1    mjacob #define	SEND_DIAGNOSTIC		0x1d
    133   1.1    mjacob #define	WRITE_BUFFER		0x3b
    134   1.1    mjacob #define	READ_BUFFER		0x3c
    135   1.1    mjacob 
    136  1.23   thorpej static dev_type_open(sesopen);
    137  1.23   thorpej static dev_type_close(sesclose);
    138  1.23   thorpej static dev_type_ioctl(sesioctl);
    139  1.14   gehenna 
    140  1.14   gehenna const struct cdevsw ses_cdevsw = {
    141  1.14   gehenna 	sesopen, sesclose, noread, nowrite, sesioctl,
    142  1.35  christos 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
    143  1.14   gehenna };
    144   1.1    mjacob 
    145  1.23   thorpej static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
    146  1.23   thorpej static void ses_log(struct ses_softc *, const char *, ...)
    147   1.7  sommerfe      __attribute__((__format__(__printf__, 2, 3)));
    148   1.1    mjacob 
    149   1.1    mjacob /*
    150   1.1    mjacob  * General NetBSD kernel stuff.
    151   1.1    mjacob  */
    152   1.1    mjacob 
    153   1.1    mjacob struct ses_softc {
    154   1.1    mjacob 	struct device	sc_device;
    155   1.9    bouyer 	struct scsipi_periph *sc_periph;
    156   1.1    mjacob 	enctyp		ses_type;	/* type of enclosure */
    157   1.1    mjacob 	encvec		ses_vec;	/* vector to handlers */
    158   1.1    mjacob 	void *		ses_private;	/* per-type private data */
    159   1.1    mjacob 	encobj *	ses_objmap;	/* objects */
    160  1.29   reinoud 	u_int32_t	ses_nobjects;	/* number of objects */
    161   1.1    mjacob 	ses_encstat	ses_encstat;	/* overall status */
    162  1.29   reinoud 	u_int8_t	ses_flags;
    163   1.1    mjacob };
    164   1.1    mjacob #define	SES_FLAG_INVALID	0x01
    165   1.1    mjacob #define	SES_FLAG_OPEN		0x02
    166   1.1    mjacob #define	SES_FLAG_INITIALIZED	0x04
    167   1.1    mjacob 
    168   1.1    mjacob #define SESUNIT(x)       (minor((x)))
    169   1.1    mjacob 
    170  1.42    cegger static int ses_match(device_t, cfdata_t, void *);
    171  1.42    cegger static void ses_attach(device_t, device_t, void *);
    172  1.23   thorpej static enctyp ses_device_type(struct scsipibus_attach_args *);
    173   1.1    mjacob 
    174  1.16   thorpej CFATTACH_DECL(ses, sizeof (struct ses_softc),
    175  1.17   thorpej     ses_match, ses_attach, NULL, NULL);
    176  1.16   thorpej 
    177   1.1    mjacob extern struct cfdriver ses_cd;
    178   1.1    mjacob 
    179  1.23   thorpej static const struct scsipi_periphsw ses_switch = {
    180   1.1    mjacob 	NULL,
    181   1.1    mjacob 	NULL,
    182   1.1    mjacob 	NULL,
    183   1.1    mjacob 	NULL
    184   1.1    mjacob };
    185   1.1    mjacob 
    186  1.23   thorpej static int
    187  1.42    cegger ses_match(device_t parent, cfdata_t match,
    188  1.36  christos     void *aux)
    189   1.1    mjacob {
    190   1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    191   1.2    mjacob 
    192   1.1    mjacob 	switch (ses_device_type(sa)) {
    193   1.1    mjacob 	case SES_SES:
    194   1.1    mjacob 	case SES_SES_SCSI2:
    195   1.1    mjacob 	case SES_SEN:
    196   1.1    mjacob 	case SES_SAFT:
    197   1.2    mjacob 	case SES_SES_PASSTHROUGH:
    198   1.2    mjacob 		/*
    199   1.2    mjacob 		 * For these devices, it's a perfect match.
    200   1.2    mjacob 		 */
    201   1.2    mjacob 		return (24);
    202   1.1    mjacob 	default:
    203   1.1    mjacob 		return (0);
    204   1.1    mjacob 	}
    205   1.1    mjacob }
    206   1.1    mjacob 
    207   1.1    mjacob 
    208   1.1    mjacob /*
    209   1.1    mjacob  * Complete the attachment.
    210   1.1    mjacob  *
    211   1.1    mjacob  * We have to repeat the rerun of INQUIRY data as above because
    212   1.1    mjacob  * it's not until the return from the match routine that we have
    213   1.1    mjacob  * the softc available to set stuff in.
    214   1.1    mjacob  */
    215  1.23   thorpej static void
    216  1.42    cegger ses_attach(device_t parent, device_t self, void *aux)
    217   1.1    mjacob {
    218  1.31  christos 	const char *tname;
    219  1.33   thorpej 	struct ses_softc *softc = device_private(self);
    220   1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    221   1.9    bouyer 	struct scsipi_periph *periph = sa->sa_periph;
    222   1.1    mjacob 
    223   1.9    bouyer 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
    224   1.9    bouyer 	softc->sc_periph = periph;
    225   1.9    bouyer 	periph->periph_dev = &softc->sc_device;
    226   1.9    bouyer 	periph->periph_switch = &ses_switch;
    227   1.9    bouyer 	periph->periph_openings = 1;
    228   1.1    mjacob 
    229   1.1    mjacob 	softc->ses_type = ses_device_type(sa);
    230   1.1    mjacob 	switch (softc->ses_type) {
    231   1.1    mjacob 	case SES_SES:
    232   1.1    mjacob 	case SES_SES_SCSI2:
    233   1.1    mjacob         case SES_SES_PASSTHROUGH:
    234   1.1    mjacob 		softc->ses_vec.softc_init = ses_softc_init;
    235   1.1    mjacob 		softc->ses_vec.init_enc = ses_init_enc;
    236   1.1    mjacob 		softc->ses_vec.get_encstat = ses_get_encstat;
    237   1.1    mjacob 		softc->ses_vec.set_encstat = ses_set_encstat;
    238   1.1    mjacob 		softc->ses_vec.get_objstat = ses_get_objstat;
    239   1.1    mjacob 		softc->ses_vec.set_objstat = ses_set_objstat;
    240   1.1    mjacob 		break;
    241   1.1    mjacob         case SES_SAFT:
    242   1.1    mjacob 		softc->ses_vec.softc_init = safte_softc_init;
    243   1.1    mjacob 		softc->ses_vec.init_enc = safte_init_enc;
    244   1.1    mjacob 		softc->ses_vec.get_encstat = safte_get_encstat;
    245   1.1    mjacob 		softc->ses_vec.set_encstat = safte_set_encstat;
    246   1.1    mjacob 		softc->ses_vec.get_objstat = safte_get_objstat;
    247   1.1    mjacob 		softc->ses_vec.set_objstat = safte_set_objstat;
    248   1.1    mjacob 		break;
    249   1.1    mjacob         case SES_SEN:
    250   1.1    mjacob 		break;
    251   1.1    mjacob 	case SES_NONE:
    252   1.1    mjacob 	default:
    253   1.1    mjacob 		break;
    254   1.1    mjacob 	}
    255   1.1    mjacob 
    256   1.1    mjacob 	switch (softc->ses_type) {
    257   1.1    mjacob 	default:
    258   1.1    mjacob 	case SES_NONE:
    259   1.1    mjacob 		tname = "No SES device";
    260   1.1    mjacob 		break;
    261   1.1    mjacob 	case SES_SES_SCSI2:
    262   1.1    mjacob 		tname = "SCSI-2 SES Device";
    263   1.1    mjacob 		break;
    264   1.1    mjacob 	case SES_SES:
    265   1.1    mjacob 		tname = "SCSI-3 SES Device";
    266   1.1    mjacob 		break;
    267   1.1    mjacob         case SES_SES_PASSTHROUGH:
    268   1.1    mjacob 		tname = "SES Passthrough Device";
    269   1.1    mjacob 		break;
    270   1.1    mjacob         case SES_SEN:
    271   1.1    mjacob 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
    272   1.1    mjacob 		break;
    273   1.1    mjacob         case SES_SAFT:
    274   1.1    mjacob 		tname = "SAF-TE Compliant Device";
    275   1.1    mjacob 		break;
    276   1.1    mjacob 	}
    277  1.39    cegger 	printf("\n%s: %s\n", device_xname(&softc->sc_device), tname);
    278   1.1    mjacob }
    279   1.1    mjacob 
    280   1.2    mjacob 
    281   1.1    mjacob static enctyp
    282  1.23   thorpej ses_device_type(struct scsipibus_attach_args *sa)
    283   1.1    mjacob {
    284   1.1    mjacob 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
    285  1.30     perry 
    286   1.1    mjacob 	if (inqp == NULL)
    287   1.1    mjacob 		return (SES_NONE);
    288   1.1    mjacob 
    289   1.5     dante 	return (ses_type(inqp));
    290   1.1    mjacob }
    291   1.1    mjacob 
    292  1.23   thorpej static int
    293  1.37  christos sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
    294   1.1    mjacob {
    295   1.1    mjacob 	struct ses_softc *softc;
    296   1.1    mjacob 	int error, unit;
    297   1.1    mjacob 
    298   1.1    mjacob 	unit = SESUNIT(dev);
    299  1.40   tsutsui 	softc = device_lookup_private(&ses_cd, unit);
    300   1.1    mjacob 	if (softc == NULL)
    301   1.1    mjacob 		return (ENXIO);
    302   1.1    mjacob 
    303   1.1    mjacob 	if (softc->ses_flags & SES_FLAG_INVALID) {
    304   1.1    mjacob 		error = ENXIO;
    305   1.1    mjacob 		goto out;
    306   1.1    mjacob 	}
    307   1.1    mjacob 	if (softc->ses_flags & SES_FLAG_OPEN) {
    308   1.1    mjacob 		error = EBUSY;
    309   1.1    mjacob 		goto out;
    310   1.1    mjacob 	}
    311   1.1    mjacob 	if (softc->ses_vec.softc_init == NULL) {
    312   1.1    mjacob 		error = ENXIO;
    313   1.1    mjacob 		goto out;
    314   1.1    mjacob 	}
    315   1.9    bouyer 	error = scsipi_adapter_addref(
    316   1.9    bouyer 	    softc->sc_periph->periph_channel->chan_adapter);
    317   1.1    mjacob 	if (error != 0)
    318   1.1    mjacob                 goto out;
    319   1.1    mjacob 
    320   1.1    mjacob 
    321   1.1    mjacob 	softc->ses_flags |= SES_FLAG_OPEN;
    322   1.1    mjacob 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    323   1.1    mjacob 		error = (*softc->ses_vec.softc_init)(softc, 1);
    324   1.1    mjacob 		if (error)
    325   1.1    mjacob 			softc->ses_flags &= ~SES_FLAG_OPEN;
    326   1.1    mjacob 		else
    327   1.1    mjacob 			softc->ses_flags |= SES_FLAG_INITIALIZED;
    328   1.1    mjacob 	}
    329   1.1    mjacob 
    330   1.1    mjacob out:
    331   1.1    mjacob 	return (error);
    332   1.1    mjacob }
    333   1.1    mjacob 
    334  1.23   thorpej static int
    335  1.37  christos sesclose(dev_t dev, int flags, int fmt,
    336  1.37  christos     struct lwp *l)
    337   1.1    mjacob {
    338   1.1    mjacob 	struct ses_softc *softc;
    339   1.1    mjacob 	int unit;
    340   1.1    mjacob 
    341   1.1    mjacob 	unit = SESUNIT(dev);
    342  1.40   tsutsui 	softc = device_lookup_private(&ses_cd, unit);
    343   1.1    mjacob 	if (softc == NULL)
    344   1.1    mjacob 		return (ENXIO);
    345   1.1    mjacob 
    346   1.9    bouyer 	scsipi_wait_drain(softc->sc_periph);
    347   1.9    bouyer 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
    348   1.1    mjacob 	softc->ses_flags &= ~SES_FLAG_OPEN;
    349   1.1    mjacob 	return (0);
    350   1.1    mjacob }
    351   1.1    mjacob 
    352  1.23   thorpej static int
    353  1.38  christos sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
    354   1.1    mjacob {
    355   1.1    mjacob 	ses_encstat tmp;
    356   1.1    mjacob 	ses_objstat objs;
    357   1.1    mjacob 	ses_object obj, *uobj;
    358  1.40   tsutsui 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
    359   1.1    mjacob 	void *addr;
    360   1.1    mjacob 	int error, i;
    361   1.1    mjacob 
    362   1.1    mjacob 
    363   1.1    mjacob 	if (arg_addr)
    364  1.38  christos 		addr = *((void **) arg_addr);
    365   1.1    mjacob 	else
    366   1.1    mjacob 		addr = NULL;
    367   1.1    mjacob 
    368   1.9    bouyer 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
    369   1.1    mjacob 
    370   1.1    mjacob 	/*
    371   1.1    mjacob 	 * Now check to see whether we're initialized or not.
    372   1.1    mjacob 	 */
    373   1.1    mjacob 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    374   1.1    mjacob 		return (ENODEV);
    375   1.1    mjacob 	}
    376   1.1    mjacob 
    377   1.1    mjacob 	error = 0;
    378   1.1    mjacob 
    379   1.1    mjacob 	/*
    380   1.1    mjacob 	 * If this command can change the device's state,
    381   1.1    mjacob 	 * we must have the device open for writing.
    382   1.1    mjacob 	 */
    383   1.1    mjacob 	switch (cmd) {
    384   1.1    mjacob 	case SESIOC_GETNOBJ:
    385   1.1    mjacob 	case SESIOC_GETOBJMAP:
    386   1.1    mjacob 	case SESIOC_GETENCSTAT:
    387   1.1    mjacob 	case SESIOC_GETOBJSTAT:
    388   1.1    mjacob 		break;
    389   1.1    mjacob 	default:
    390   1.1    mjacob 		if ((flag & FWRITE) == 0) {
    391   1.1    mjacob 			return (EBADF);
    392   1.1    mjacob 		}
    393   1.1    mjacob 	}
    394   1.1    mjacob 
    395   1.1    mjacob 	switch (cmd) {
    396   1.1    mjacob 	case SESIOC_GETNOBJ:
    397  1.34  christos 		if (addr == NULL)
    398  1.34  christos 			return EINVAL;
    399   1.1    mjacob 		error = copyout(&ssc->ses_nobjects, addr,
    400   1.1    mjacob 		    sizeof (ssc->ses_nobjects));
    401   1.1    mjacob 		break;
    402  1.30     perry 
    403   1.1    mjacob 	case SESIOC_GETOBJMAP:
    404  1.34  christos 		if (addr == NULL)
    405  1.34  christos 			return EINVAL;
    406   1.1    mjacob 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
    407   1.1    mjacob 			obj.obj_id = i;
    408   1.1    mjacob 			obj.subencid = ssc->ses_objmap[i].subenclosure;
    409   1.1    mjacob 			obj.object_type = ssc->ses_objmap[i].enctype;
    410   1.1    mjacob 			error = copyout(&obj, uobj, sizeof (ses_object));
    411   1.1    mjacob 			if (error) {
    412   1.1    mjacob 				break;
    413   1.1    mjacob 			}
    414   1.1    mjacob 		}
    415   1.1    mjacob 		break;
    416   1.1    mjacob 
    417   1.1    mjacob 	case SESIOC_GETENCSTAT:
    418  1.34  christos 		if (addr == NULL)
    419  1.34  christos 			return EINVAL;
    420   1.1    mjacob 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
    421   1.1    mjacob 		if (error)
    422   1.1    mjacob 			break;
    423   1.1    mjacob 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
    424   1.1    mjacob 		error = copyout(&tmp, addr, sizeof (ses_encstat));
    425   1.1    mjacob 		ssc->ses_encstat = tmp;
    426   1.1    mjacob 		break;
    427   1.1    mjacob 
    428   1.1    mjacob 	case SESIOC_SETENCSTAT:
    429  1.34  christos 		if (addr == NULL)
    430  1.34  christos 			return EINVAL;
    431   1.1    mjacob 		error = copyin(addr, &tmp, sizeof (ses_encstat));
    432   1.1    mjacob 		if (error)
    433   1.1    mjacob 			break;
    434   1.1    mjacob 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
    435   1.1    mjacob 		break;
    436   1.1    mjacob 
    437   1.1    mjacob 	case SESIOC_GETOBJSTAT:
    438  1.34  christos 		if (addr == NULL)
    439  1.34  christos 			return EINVAL;
    440   1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    441   1.1    mjacob 		if (error)
    442   1.1    mjacob 			break;
    443   1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    444   1.1    mjacob 			error = EINVAL;
    445   1.1    mjacob 			break;
    446   1.1    mjacob 		}
    447   1.1    mjacob 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
    448   1.1    mjacob 		if (error)
    449   1.1    mjacob 			break;
    450   1.1    mjacob 		error = copyout(&objs, addr, sizeof (ses_objstat));
    451   1.1    mjacob 		/*
    452   1.1    mjacob 		 * Always (for now) invalidate entry.
    453   1.1    mjacob 		 */
    454   1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    455   1.1    mjacob 		break;
    456   1.1    mjacob 
    457   1.1    mjacob 	case SESIOC_SETOBJSTAT:
    458  1.34  christos 		if (addr == NULL)
    459  1.34  christos 			return EINVAL;
    460   1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    461   1.1    mjacob 		if (error)
    462   1.1    mjacob 			break;
    463   1.1    mjacob 
    464   1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    465   1.1    mjacob 			error = EINVAL;
    466   1.1    mjacob 			break;
    467   1.1    mjacob 		}
    468   1.1    mjacob 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
    469   1.1    mjacob 
    470   1.1    mjacob 		/*
    471   1.1    mjacob 		 * Always (for now) invalidate entry.
    472   1.1    mjacob 		 */
    473   1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    474   1.1    mjacob 		break;
    475   1.1    mjacob 
    476   1.1    mjacob 	case SESIOC_INIT:
    477   1.1    mjacob 
    478   1.1    mjacob 		error = (*ssc->ses_vec.init_enc)(ssc);
    479   1.1    mjacob 		break;
    480   1.1    mjacob 
    481   1.1    mjacob 	default:
    482   1.9    bouyer 		error = scsipi_do_ioctl(ssc->sc_periph,
    483  1.32  christos 			    dev, cmd, arg_addr, flag, l);
    484   1.1    mjacob 		break;
    485   1.1    mjacob 	}
    486   1.1    mjacob 	return (error);
    487   1.1    mjacob }
    488   1.1    mjacob 
    489   1.1    mjacob static int
    490   1.1    mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
    491   1.1    mjacob {
    492   1.1    mjacob 	struct scsipi_generic sgen;
    493   1.1    mjacob 	int dl, flg, error;
    494   1.1    mjacob 
    495   1.1    mjacob 	if (dptr) {
    496   1.1    mjacob 		if ((dl = *dlenp) < 0) {
    497   1.1    mjacob 			dl = -dl;
    498   1.1    mjacob 			flg = XS_CTL_DATA_OUT;
    499   1.1    mjacob 		} else {
    500   1.1    mjacob 			flg = XS_CTL_DATA_IN;
    501   1.1    mjacob 		}
    502   1.1    mjacob 	} else {
    503   1.1    mjacob 		dl = 0;
    504   1.1    mjacob 		flg = 0;
    505   1.1    mjacob 	}
    506   1.1    mjacob 
    507   1.1    mjacob 	if (cdbl > sizeof (struct scsipi_generic)) {
    508   1.1    mjacob 		cdbl = sizeof (struct scsipi_generic);
    509   1.1    mjacob 	}
    510  1.11   thorpej 	memcpy(&sgen, cdb, cdbl);
    511   1.1    mjacob #ifndef	SCSIDEBUG
    512   1.1    mjacob 	flg |= XS_CTL_SILENT;
    513   1.1    mjacob #endif
    514  1.25   mycroft 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
    515  1.29   reinoud 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
    516   1.1    mjacob 
    517   1.1    mjacob 	if (error == 0 && dptr)
    518   1.1    mjacob 		*dlenp = 0;
    519   1.1    mjacob 
    520   1.1    mjacob 	return (error);
    521   1.1    mjacob }
    522   1.1    mjacob 
    523   1.1    mjacob static void
    524   1.1    mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
    525   1.1    mjacob {
    526   1.1    mjacob 	va_list ap;
    527   1.1    mjacob 
    528  1.39    cegger 	printf("%s: ", device_xname(&ssc->sc_device));
    529   1.1    mjacob 	va_start(ap, fmt);
    530   1.1    mjacob 	vprintf(fmt, ap);
    531   1.1    mjacob 	va_end(ap);
    532   1.1    mjacob }
    533   1.1    mjacob 
    534   1.1    mjacob /*
    535   1.1    mjacob  * The code after this point runs on many platforms,
    536   1.1    mjacob  * so forgive the slightly awkward and nonconforming
    537   1.1    mjacob  * appearance.
    538   1.1    mjacob  */
    539   1.1    mjacob 
    540   1.1    mjacob /*
    541   1.1    mjacob  * Is this a device that supports enclosure services?
    542   1.1    mjacob  *
    543   1.1    mjacob  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
    544   1.1    mjacob  * an SES device. If it happens to be an old UNISYS SEN device, we can
    545   1.1    mjacob  * handle that too.
    546   1.1    mjacob  */
    547   1.3    mjacob 
    548   1.3    mjacob #define	SAFTE_START	44
    549   1.3    mjacob #define	SAFTE_END	50
    550   1.3    mjacob #define	SAFTE_LEN	SAFTE_END-SAFTE_START
    551   1.1    mjacob 
    552   1.1    mjacob static enctyp
    553  1.23   thorpej ses_type(struct scsipi_inquiry_data *inqp)
    554   1.1    mjacob {
    555   1.5     dante 	size_t	given_len = inqp->additional_length + 4;
    556   1.1    mjacob 
    557   1.5     dante 	if (given_len < 8+SEN_ID_LEN)
    558   1.1    mjacob 		return (SES_NONE);
    559   1.1    mjacob 
    560   1.5     dante 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
    561   1.5     dante 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
    562   1.1    mjacob 			return (SES_SEN);
    563   1.5     dante 		} else if ((inqp->version & SID_ANSII) > 2) {
    564   1.1    mjacob 			return (SES_SES);
    565   1.1    mjacob 		} else {
    566   1.1    mjacob 			return (SES_SES_SCSI2);
    567   1.1    mjacob 		}
    568   1.1    mjacob 		return (SES_NONE);
    569   1.1    mjacob 	}
    570   1.1    mjacob 
    571   1.1    mjacob #ifdef	SES_ENABLE_PASSTHROUGH
    572   1.5     dante 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
    573   1.1    mjacob 		/*
    574   1.1    mjacob 		 * PassThrough Device.
    575   1.1    mjacob 		 */
    576   1.1    mjacob 		return (SES_SES_PASSTHROUGH);
    577   1.1    mjacob 	}
    578   1.1    mjacob #endif
    579   1.1    mjacob 
    580   1.2    mjacob 	/*
    581   1.2    mjacob 	 * The comparison is short for a reason-
    582   1.2    mjacob 	 * some vendors were chopping it short.
    583   1.2    mjacob 	 */
    584   1.2    mjacob 
    585   1.5     dante 	if (given_len < SAFTE_END - 2) {
    586   1.1    mjacob 		return (SES_NONE);
    587   1.1    mjacob 	}
    588   1.2    mjacob 
    589   1.5     dante 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
    590   1.5     dante 			SAFTE_LEN - 2) == 0) {
    591   1.1    mjacob 		return (SES_SAFT);
    592   1.6   thorpej 	}
    593   1.5     dante 
    594   1.1    mjacob 	return (SES_NONE);
    595   1.1    mjacob }
    596   1.1    mjacob 
    597   1.1    mjacob /*
    598   1.1    mjacob  * SES Native Type Device Support
    599   1.1    mjacob  */
    600   1.1    mjacob 
    601   1.1    mjacob /*
    602   1.1    mjacob  * SES Diagnostic Page Codes
    603   1.1    mjacob  */
    604   1.1    mjacob 
    605   1.1    mjacob typedef enum {
    606   1.1    mjacob 	SesConfigPage = 0x1,
    607   1.1    mjacob 	SesControlPage,
    608   1.1    mjacob #define	SesStatusPage SesControlPage
    609   1.1    mjacob 	SesHelpTxt,
    610   1.1    mjacob 	SesStringOut,
    611   1.1    mjacob #define	SesStringIn	SesStringOut
    612   1.1    mjacob 	SesThresholdOut,
    613   1.1    mjacob #define	SesThresholdIn SesThresholdOut
    614   1.1    mjacob 	SesArrayControl,
    615   1.1    mjacob #define	SesArrayStatus	SesArrayControl
    616   1.1    mjacob 	SesElementDescriptor,
    617   1.1    mjacob 	SesShortStatus
    618   1.1    mjacob } SesDiagPageCodes;
    619   1.1    mjacob 
    620   1.1    mjacob /*
    621   1.1    mjacob  * minimal amounts
    622   1.1    mjacob  */
    623   1.1    mjacob 
    624   1.1    mjacob /*
    625   1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    626   1.1    mjacob  * the config header.
    627   1.1    mjacob  */
    628   1.1    mjacob #define	SES_CFGHDR_MINLEN	12
    629   1.1    mjacob 
    630   1.1    mjacob /*
    631   1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    632   1.1    mjacob  * the config header and one enclosure header.
    633   1.1    mjacob  */
    634   1.1    mjacob #define	SES_ENCHDR_MINLEN	48
    635   1.1    mjacob 
    636   1.1    mjacob /*
    637   1.1    mjacob  * Take this value, subtract it from VEnclen and you know
    638   1.1    mjacob  * the length of the vendor unique bytes.
    639   1.1    mjacob  */
    640   1.1    mjacob #define	SES_ENCHDR_VMIN		36
    641   1.1    mjacob 
    642   1.1    mjacob /*
    643   1.1    mjacob  * SES Data Structures
    644   1.1    mjacob  */
    645   1.1    mjacob 
    646   1.1    mjacob typedef struct {
    647   1.1    mjacob 	uint32_t GenCode;	/* Generation Code */
    648   1.1    mjacob 	uint8_t	Nsubenc;	/* Number of Subenclosures */
    649   1.1    mjacob } SesCfgHdr;
    650   1.1    mjacob 
    651   1.1    mjacob typedef struct {
    652   1.1    mjacob 	uint8_t	Subencid;	/* SubEnclosure Identifier */
    653   1.1    mjacob 	uint8_t	Ntypes;		/* # of supported types */
    654   1.1    mjacob 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
    655   1.1    mjacob } SesEncHdr;
    656   1.1    mjacob 
    657   1.1    mjacob typedef struct {
    658   1.1    mjacob 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
    659   1.1    mjacob 	uint8_t	encVid[8];
    660   1.1    mjacob 	uint8_t	encPid[16];
    661   1.1    mjacob 	uint8_t	encRev[4];
    662   1.1    mjacob 	uint8_t	encVen[1];
    663   1.1    mjacob } SesEncDesc;
    664   1.1    mjacob 
    665   1.1    mjacob typedef struct {
    666   1.1    mjacob 	uint8_t	enc_type;		/* type of element */
    667   1.1    mjacob 	uint8_t	enc_maxelt;		/* maximum supported */
    668   1.1    mjacob 	uint8_t	enc_subenc;		/* in SubEnc # N */
    669   1.1    mjacob 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
    670   1.1    mjacob } SesThdr;
    671   1.1    mjacob 
    672   1.1    mjacob typedef struct {
    673   1.1    mjacob 	uint8_t	comstatus;
    674   1.1    mjacob 	uint8_t	comstat[3];
    675   1.1    mjacob } SesComStat;
    676   1.1    mjacob 
    677   1.1    mjacob struct typidx {
    678   1.1    mjacob 	int ses_tidx;
    679   1.1    mjacob 	int ses_oidx;
    680   1.1    mjacob };
    681   1.1    mjacob 
    682   1.1    mjacob struct sscfg {
    683   1.1    mjacob 	uint8_t ses_ntypes;	/* total number of types supported */
    684   1.1    mjacob 
    685   1.1    mjacob 	/*
    686   1.1    mjacob 	 * We need to keep a type index as well as an
    687   1.1    mjacob 	 * object index for each object in an enclosure.
    688   1.1    mjacob 	 */
    689   1.1    mjacob 	struct typidx *ses_typidx;
    690   1.1    mjacob 
    691   1.1    mjacob 	/*
    692   1.1    mjacob 	 * We also need to keep track of the number of elements
    693   1.1    mjacob 	 * per type of element. This is needed later so that we
    694   1.1    mjacob 	 * can find precisely in the returned status data the
    695   1.1    mjacob 	 * status for the Nth element of the Kth type.
    696   1.1    mjacob 	 */
    697   1.1    mjacob 	uint8_t *	ses_eltmap;
    698   1.1    mjacob };
    699   1.1    mjacob 
    700   1.1    mjacob 
    701   1.1    mjacob /*
    702   1.1    mjacob  * (de)canonicalization defines
    703   1.1    mjacob  */
    704   1.1    mjacob #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
    705   1.1    mjacob #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
    706   1.1    mjacob #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    707   1.1    mjacob 
    708   1.1    mjacob #define	sset16(outp, idx, sval)	\
    709   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    710   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    711   1.1    mjacob 
    712   1.1    mjacob 
    713   1.1    mjacob #define	sset24(outp, idx, sval)	\
    714   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    715   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    716   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    717   1.1    mjacob 
    718   1.1    mjacob 
    719   1.1    mjacob #define	sset32(outp, idx, sval)	\
    720   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
    721   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    722   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    723   1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    724   1.1    mjacob 
    725   1.1    mjacob #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
    726   1.1    mjacob #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
    727   1.1    mjacob #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
    728   1.1    mjacob #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
    729   1.1    mjacob 
    730   1.1    mjacob #define	sget16(inp, idx, lval)	\
    731   1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    732   1.1    mjacob 		(((uint8_t *)(inp))[idx+1]), idx += 2
    733   1.1    mjacob 
    734   1.1    mjacob #define	gget16(inp, idx, lval)	\
    735   1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    736   1.1    mjacob 		(((uint8_t *)(inp))[idx+1])
    737   1.1    mjacob 
    738   1.1    mjacob #define	sget24(inp, idx, lval)	\
    739   1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    740   1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    741   1.1    mjacob 			(((uint8_t *)(inp))[idx+2]), idx += 3
    742   1.1    mjacob 
    743   1.1    mjacob #define	gget24(inp, idx, lval)	\
    744   1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    745   1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    746   1.1    mjacob 			(((uint8_t *)(inp))[idx+2])
    747   1.1    mjacob 
    748   1.1    mjacob #define	sget32(inp, idx, lval)	\
    749   1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    750   1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    751   1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    752   1.1    mjacob 			(((uint8_t *)(inp))[idx+3]), idx += 4
    753   1.1    mjacob 
    754   1.1    mjacob #define	gget32(inp, idx, lval)	\
    755   1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    756   1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    757   1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    758   1.1    mjacob 			(((uint8_t *)(inp))[idx+3])
    759   1.1    mjacob 
    760   1.1    mjacob #define	SCSZ	0x2000
    761   1.1    mjacob #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
    762   1.1    mjacob 
    763   1.1    mjacob /*
    764   1.1    mjacob  * Routines specific && private to SES only
    765   1.1    mjacob  */
    766   1.1    mjacob 
    767   1.1    mjacob static int ses_getconfig(ses_softc_t *);
    768   1.1    mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
    769   1.1    mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
    770   1.1    mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
    771   1.1    mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
    772   1.1    mjacob static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
    773   1.1    mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
    774   1.1    mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
    775   1.1    mjacob 
    776   1.1    mjacob static int
    777   1.1    mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
    778   1.1    mjacob {
    779   1.1    mjacob 	if (doinit == 0) {
    780   1.1    mjacob 		struct sscfg *cc;
    781   1.1    mjacob 		if (ssc->ses_nobjects) {
    782   1.1    mjacob 			SES_FREE(ssc->ses_objmap,
    783   1.1    mjacob 			    ssc->ses_nobjects * sizeof (encobj));
    784   1.1    mjacob 			ssc->ses_objmap = NULL;
    785   1.1    mjacob 		}
    786   1.1    mjacob 		if ((cc = ssc->ses_private) != NULL) {
    787   1.1    mjacob 			if (cc->ses_eltmap && cc->ses_ntypes) {
    788   1.1    mjacob 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
    789   1.1    mjacob 				cc->ses_eltmap = NULL;
    790   1.1    mjacob 				cc->ses_ntypes = 0;
    791   1.1    mjacob 			}
    792   1.1    mjacob 			if (cc->ses_typidx && ssc->ses_nobjects) {
    793   1.1    mjacob 				SES_FREE(cc->ses_typidx,
    794   1.1    mjacob 				    ssc->ses_nobjects * sizeof (struct typidx));
    795   1.1    mjacob 				cc->ses_typidx = NULL;
    796   1.1    mjacob 			}
    797   1.1    mjacob 			SES_FREE(cc, sizeof (struct sscfg));
    798   1.1    mjacob 			ssc->ses_private = NULL;
    799   1.1    mjacob 		}
    800   1.1    mjacob 		ssc->ses_nobjects = 0;
    801   1.1    mjacob 		return (0);
    802   1.1    mjacob 	}
    803   1.1    mjacob 	if (ssc->ses_private == NULL) {
    804   1.1    mjacob 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
    805   1.1    mjacob 	}
    806   1.1    mjacob 	if (ssc->ses_private == NULL) {
    807   1.1    mjacob 		return (ENOMEM);
    808   1.1    mjacob 	}
    809   1.1    mjacob 	ssc->ses_nobjects = 0;
    810   1.1    mjacob 	ssc->ses_encstat = 0;
    811   1.1    mjacob 	return (ses_getconfig(ssc));
    812   1.1    mjacob }
    813   1.1    mjacob 
    814   1.1    mjacob static int
    815  1.37  christos ses_init_enc(ses_softc_t *ssc)
    816   1.1    mjacob {
    817   1.1    mjacob 	return (0);
    818   1.1    mjacob }
    819   1.1    mjacob 
    820   1.1    mjacob static int
    821   1.1    mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
    822   1.1    mjacob {
    823   1.1    mjacob 	SesComStat ComStat;
    824   1.1    mjacob 	int status;
    825   1.1    mjacob 
    826   1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
    827   1.1    mjacob 		return (status);
    828   1.1    mjacob 	}
    829   1.1    mjacob 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
    830   1.1    mjacob 	return (0);
    831   1.1    mjacob }
    832   1.1    mjacob 
    833   1.1    mjacob static int
    834   1.1    mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
    835   1.1    mjacob {
    836   1.1    mjacob 	SesComStat ComStat;
    837   1.1    mjacob 	int status;
    838   1.1    mjacob 
    839   1.1    mjacob 	ComStat.comstatus = encstat & 0xf;
    840   1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
    841   1.1    mjacob 		return (status);
    842   1.1    mjacob 	}
    843   1.1    mjacob 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
    844   1.1    mjacob 	return (0);
    845   1.1    mjacob }
    846   1.1    mjacob 
    847   1.1    mjacob static int
    848   1.1    mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    849   1.1    mjacob {
    850   1.1    mjacob 	int i = (int)obp->obj_id;
    851   1.1    mjacob 
    852   1.1    mjacob 	if (ssc->ses_objmap[i].svalid == 0) {
    853   1.1    mjacob 		SesComStat ComStat;
    854   1.1    mjacob 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
    855   1.1    mjacob 		if (err)
    856   1.1    mjacob 			return (err);
    857   1.1    mjacob 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
    858   1.1    mjacob 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
    859   1.1    mjacob 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
    860   1.1    mjacob 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
    861   1.1    mjacob 		ssc->ses_objmap[i].svalid = 1;
    862   1.1    mjacob 	}
    863   1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
    864   1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
    865   1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
    866   1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
    867   1.1    mjacob 	return (0);
    868   1.1    mjacob }
    869   1.1    mjacob 
    870   1.1    mjacob static int
    871   1.1    mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    872   1.1    mjacob {
    873   1.1    mjacob 	SesComStat ComStat;
    874   1.1    mjacob 	int err;
    875   1.1    mjacob 	/*
    876   1.1    mjacob 	 * If this is clear, we don't do diddly.
    877   1.1    mjacob 	 */
    878   1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
    879   1.1    mjacob 		return (0);
    880   1.1    mjacob 	}
    881   1.1    mjacob 	ComStat.comstatus = obp->cstat[0];
    882   1.1    mjacob 	ComStat.comstat[0] = obp->cstat[1];
    883   1.1    mjacob 	ComStat.comstat[1] = obp->cstat[2];
    884   1.1    mjacob 	ComStat.comstat[2] = obp->cstat[3];
    885   1.1    mjacob 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
    886   1.1    mjacob 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
    887   1.1    mjacob 	return (err);
    888   1.1    mjacob }
    889   1.1    mjacob 
    890   1.1    mjacob static int
    891   1.1    mjacob ses_getconfig(ses_softc_t *ssc)
    892   1.1    mjacob {
    893   1.1    mjacob 	struct sscfg *cc;
    894   1.1    mjacob 	SesCfgHdr cf;
    895   1.1    mjacob 	SesEncHdr hd;
    896   1.1    mjacob 	SesEncDesc *cdp;
    897   1.1    mjacob 	SesThdr thdr;
    898   1.1    mjacob 	int err, amt, i, nobj, ntype, maxima;
    899   1.1    mjacob 	char storage[CFLEN], *sdata;
    900   1.1    mjacob 	static char cdb[6] = {
    901   1.1    mjacob 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
    902   1.1    mjacob 	};
    903   1.1    mjacob 
    904   1.1    mjacob 	cc = ssc->ses_private;
    905   1.1    mjacob 	if (cc == NULL) {
    906   1.1    mjacob 		return (ENXIO);
    907   1.1    mjacob 	}
    908   1.1    mjacob 
    909   1.1    mjacob 	sdata = SES_MALLOC(SCSZ);
    910   1.1    mjacob 	if (sdata == NULL)
    911   1.1    mjacob 		return (ENOMEM);
    912   1.1    mjacob 
    913   1.1    mjacob 	amt = SCSZ;
    914   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
    915   1.1    mjacob 	if (err) {
    916   1.1    mjacob 		SES_FREE(sdata, SCSZ);
    917   1.1    mjacob 		return (err);
    918   1.1    mjacob 	}
    919   1.1    mjacob 	amt = SCSZ - amt;
    920   1.1    mjacob 
    921   1.1    mjacob 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
    922   1.1    mjacob 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
    923   1.1    mjacob 		SES_FREE(sdata, SCSZ);
    924   1.1    mjacob 		return (EIO);
    925   1.1    mjacob 	}
    926   1.1    mjacob 	if (amt < SES_ENCHDR_MINLEN) {
    927   1.1    mjacob 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
    928   1.1    mjacob 		SES_FREE(sdata, SCSZ);
    929   1.1    mjacob 		return (EIO);
    930   1.1    mjacob 	}
    931   1.1    mjacob 
    932   1.1    mjacob 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
    933   1.1    mjacob 
    934   1.1    mjacob 	/*
    935   1.1    mjacob 	 * Now waltz through all the subenclosures toting up the
    936   1.1    mjacob 	 * number of types available in each. For this, we only
    937   1.1    mjacob 	 * really need the enclosure header. However, we get the
    938   1.1    mjacob 	 * enclosure descriptor for debug purposes, as well
    939   1.1    mjacob 	 * as self-consistency checking purposes.
    940   1.1    mjacob 	 */
    941   1.1    mjacob 
    942   1.1    mjacob 	maxima = cf.Nsubenc + 1;
    943   1.1    mjacob 	cdp = (SesEncDesc *) storage;
    944   1.1    mjacob 	for (ntype = i = 0; i < maxima; i++) {
    945  1.38  christos 		MEMZERO((void *)cdp, sizeof (*cdp));
    946   1.1    mjacob 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
    947   1.1    mjacob 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
    948   1.1    mjacob 			SES_FREE(sdata, SCSZ);
    949   1.1    mjacob 			return (EIO);
    950   1.1    mjacob 		}
    951   1.1    mjacob 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
    952   1.1    mjacob 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
    953   1.1    mjacob 
    954   1.1    mjacob 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
    955   1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
    956   1.1    mjacob 			SES_FREE(sdata, SCSZ);
    957   1.1    mjacob 			return (EIO);
    958   1.1    mjacob 		}
    959   1.1    mjacob 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
    960   1.1    mjacob 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
    961   1.1    mjacob 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
    962   1.1    mjacob 		    cdp->encWWN[6], cdp->encWWN[7]);
    963   1.1    mjacob 		ntype += hd.Ntypes;
    964   1.1    mjacob 	}
    965   1.1    mjacob 
    966   1.1    mjacob 	/*
    967   1.1    mjacob 	 * Now waltz through all the types that are available, getting
    968   1.1    mjacob 	 * the type header so we can start adding up the number of
    969   1.1    mjacob 	 * objects available.
    970   1.1    mjacob 	 */
    971   1.1    mjacob 	for (nobj = i = 0; i < ntype; i++) {
    972   1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
    973   1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
    974   1.1    mjacob 			SES_FREE(sdata, SCSZ);
    975   1.1    mjacob 			return (EIO);
    976   1.1    mjacob 		}
    977   1.1    mjacob 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
    978   1.1    mjacob 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
    979   1.1    mjacob 		    thdr.enc_subenc, thdr.enc_tlen);
    980   1.1    mjacob 		nobj += thdr.enc_maxelt;
    981   1.1    mjacob 	}
    982   1.1    mjacob 
    983   1.1    mjacob 
    984   1.1    mjacob 	/*
    985   1.1    mjacob 	 * Now allocate the object array and type map.
    986   1.1    mjacob 	 */
    987   1.1    mjacob 
    988   1.1    mjacob 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
    989   1.1    mjacob 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
    990   1.1    mjacob 	cc->ses_eltmap = SES_MALLOC(ntype);
    991   1.1    mjacob 
    992   1.1    mjacob 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
    993   1.1    mjacob 	    cc->ses_eltmap == NULL) {
    994   1.1    mjacob 		if (ssc->ses_objmap) {
    995   1.1    mjacob 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
    996   1.1    mjacob 			ssc->ses_objmap = NULL;
    997   1.1    mjacob 		}
    998   1.1    mjacob 		if (cc->ses_typidx) {
    999   1.1    mjacob 			SES_FREE(cc->ses_typidx,
   1000   1.1    mjacob 			    (nobj * sizeof (struct typidx)));
   1001   1.1    mjacob 			cc->ses_typidx = NULL;
   1002   1.1    mjacob 		}
   1003   1.1    mjacob 		if (cc->ses_eltmap) {
   1004   1.1    mjacob 			SES_FREE(cc->ses_eltmap, ntype);
   1005   1.1    mjacob 			cc->ses_eltmap = NULL;
   1006   1.1    mjacob 		}
   1007   1.1    mjacob 		SES_FREE(sdata, SCSZ);
   1008   1.1    mjacob 		return (ENOMEM);
   1009   1.1    mjacob 	}
   1010   1.1    mjacob 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
   1011   1.1    mjacob 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
   1012   1.1    mjacob 	MEMZERO(cc->ses_eltmap, ntype);
   1013   1.1    mjacob 	cc->ses_ntypes = (uint8_t) ntype;
   1014   1.1    mjacob 	ssc->ses_nobjects = nobj;
   1015   1.1    mjacob 
   1016   1.1    mjacob 	/*
   1017   1.1    mjacob 	 * Now waltz through the # of types again to fill in the types
   1018   1.1    mjacob 	 * (and subenclosure ids) of the allocated objects.
   1019   1.1    mjacob 	 */
   1020   1.1    mjacob 	nobj = 0;
   1021   1.1    mjacob 	for (i = 0; i < ntype; i++) {
   1022   1.1    mjacob 		int j;
   1023   1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
   1024   1.1    mjacob 			continue;
   1025   1.1    mjacob 		}
   1026   1.1    mjacob 		cc->ses_eltmap[i] = thdr.enc_maxelt;
   1027   1.1    mjacob 		for (j = 0; j < thdr.enc_maxelt; j++) {
   1028   1.1    mjacob 			cc->ses_typidx[nobj].ses_tidx = i;
   1029   1.1    mjacob 			cc->ses_typidx[nobj].ses_oidx = j;
   1030   1.1    mjacob 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
   1031   1.1    mjacob 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
   1032   1.1    mjacob 		}
   1033   1.1    mjacob 	}
   1034   1.1    mjacob 	SES_FREE(sdata, SCSZ);
   1035   1.1    mjacob 	return (0);
   1036   1.1    mjacob }
   1037   1.1    mjacob 
   1038   1.1    mjacob static int
   1039  1.37  christos ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
   1040  1.36  christos     int in)
   1041   1.1    mjacob {
   1042   1.1    mjacob 	struct sscfg *cc;
   1043   1.1    mjacob 	int err, amt, bufsiz, tidx, oidx;
   1044   1.1    mjacob 	char cdb[6], *sdata;
   1045   1.1    mjacob 
   1046   1.1    mjacob 	cc = ssc->ses_private;
   1047   1.1    mjacob 	if (cc == NULL) {
   1048   1.1    mjacob 		return (ENXIO);
   1049   1.1    mjacob 	}
   1050   1.1    mjacob 
   1051   1.1    mjacob 	/*
   1052   1.1    mjacob 	 * If we're just getting overall enclosure status,
   1053   1.1    mjacob 	 * we only need 2 bytes of data storage.
   1054   1.1    mjacob 	 *
   1055   1.1    mjacob 	 * If we're getting anything else, we know how much
   1056   1.1    mjacob 	 * storage we need by noting that starting at offset
   1057   1.1    mjacob 	 * 8 in returned data, all object status bytes are 4
   1058   1.1    mjacob 	 * bytes long, and are stored in chunks of types(M)
   1059   1.1    mjacob 	 * and nth+1 instances of type M.
   1060   1.1    mjacob 	 */
   1061   1.1    mjacob 	if (objid == -1) {
   1062   1.1    mjacob 		bufsiz = 2;
   1063   1.1    mjacob 	} else {
   1064   1.1    mjacob 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
   1065   1.1    mjacob 	}
   1066   1.1    mjacob 	sdata = SES_MALLOC(bufsiz);
   1067   1.1    mjacob 	if (sdata == NULL)
   1068   1.1    mjacob 		return (ENOMEM);
   1069   1.1    mjacob 
   1070   1.1    mjacob 	cdb[0] = RECEIVE_DIAGNOSTIC;
   1071   1.1    mjacob 	cdb[1] = 1;
   1072   1.1    mjacob 	cdb[2] = SesStatusPage;
   1073   1.1    mjacob 	cdb[3] = bufsiz >> 8;
   1074   1.1    mjacob 	cdb[4] = bufsiz & 0xff;
   1075   1.1    mjacob 	cdb[5] = 0;
   1076   1.1    mjacob 	amt = bufsiz;
   1077   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1078   1.1    mjacob 	if (err) {
   1079   1.1    mjacob 		SES_FREE(sdata, bufsiz);
   1080   1.1    mjacob 		return (err);
   1081   1.1    mjacob 	}
   1082   1.1    mjacob 	amt = bufsiz - amt;
   1083   1.1    mjacob 
   1084   1.1    mjacob 	if (objid == -1) {
   1085   1.1    mjacob 		tidx = -1;
   1086   1.1    mjacob 		oidx = -1;
   1087   1.1    mjacob 	} else {
   1088   1.1    mjacob 		tidx = cc->ses_typidx[objid].ses_tidx;
   1089   1.1    mjacob 		oidx = cc->ses_typidx[objid].ses_oidx;
   1090   1.1    mjacob 	}
   1091   1.1    mjacob 	if (in) {
   1092   1.1    mjacob 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1093   1.1    mjacob 			err = ENODEV;
   1094   1.1    mjacob 		}
   1095   1.1    mjacob 	} else {
   1096   1.1    mjacob 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1097   1.1    mjacob 			err = ENODEV;
   1098   1.1    mjacob 		} else {
   1099   1.1    mjacob 			cdb[0] = SEND_DIAGNOSTIC;
   1100   1.1    mjacob 			cdb[1] = 0x10;
   1101   1.1    mjacob 			cdb[2] = 0;
   1102   1.1    mjacob 			cdb[3] = bufsiz >> 8;
   1103   1.1    mjacob 			cdb[4] = bufsiz & 0xff;
   1104   1.1    mjacob 			cdb[5] = 0;
   1105   1.1    mjacob 			amt = -bufsiz;
   1106  1.30     perry 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1107   1.1    mjacob 		}
   1108   1.1    mjacob 	}
   1109   1.1    mjacob 	SES_FREE(sdata, bufsiz);
   1110   1.1    mjacob 	return (0);
   1111   1.1    mjacob }
   1112   1.1    mjacob 
   1113   1.1    mjacob 
   1114   1.1    mjacob /*
   1115   1.1    mjacob  * Routines to parse returned SES data structures.
   1116   1.1    mjacob  * Architecture and compiler independent.
   1117   1.1    mjacob  */
   1118   1.1    mjacob 
   1119   1.1    mjacob static int
   1120   1.1    mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
   1121   1.1    mjacob {
   1122   1.1    mjacob 	if (buflen < SES_CFGHDR_MINLEN) {
   1123   1.1    mjacob 		return (-1);
   1124   1.1    mjacob 	}
   1125   1.1    mjacob 	gget8(buffer, 1, cfp->Nsubenc);
   1126   1.1    mjacob 	gget32(buffer, 4, cfp->GenCode);
   1127   1.1    mjacob 	return (0);
   1128   1.1    mjacob }
   1129   1.1    mjacob 
   1130   1.1    mjacob static int
   1131   1.1    mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
   1132   1.1    mjacob {
   1133   1.1    mjacob 	int s, off = 8;
   1134   1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1135   1.1    mjacob 		if (off + 3 > amt)
   1136   1.1    mjacob 			return (-1);
   1137   1.1    mjacob 		off += buffer[off+3] + 4;
   1138   1.1    mjacob 	}
   1139   1.1    mjacob 	if (off + 3 > amt) {
   1140   1.1    mjacob 		return (-1);
   1141   1.1    mjacob 	}
   1142   1.1    mjacob 	gget8(buffer, off+1, chp->Subencid);
   1143   1.1    mjacob 	gget8(buffer, off+2, chp->Ntypes);
   1144   1.1    mjacob 	gget8(buffer, off+3, chp->VEnclen);
   1145   1.1    mjacob 	return (0);
   1146   1.1    mjacob }
   1147   1.1    mjacob 
   1148   1.1    mjacob static int
   1149   1.1    mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
   1150   1.1    mjacob {
   1151   1.1    mjacob 	int s, e, enclen, off = 8;
   1152   1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1153   1.1    mjacob 		if (off + 3 > amt)
   1154   1.1    mjacob 			return (-1);
   1155   1.1    mjacob 		off += buffer[off+3] + 4;
   1156   1.1    mjacob 	}
   1157   1.1    mjacob 	if (off + 3 > amt) {
   1158   1.1    mjacob 		return (-1);
   1159   1.1    mjacob 	}
   1160   1.1    mjacob 	gget8(buffer, off+3, enclen);
   1161   1.1    mjacob 	off += 4;
   1162   1.1    mjacob 	if (off  >= amt)
   1163   1.1    mjacob 		return (-1);
   1164   1.1    mjacob 
   1165   1.1    mjacob 	e = off + enclen;
   1166   1.1    mjacob 	if (e > amt) {
   1167   1.1    mjacob 		e = amt;
   1168   1.1    mjacob 	}
   1169   1.1    mjacob 	MEMCPY(cdp, &buffer[off], e - off);
   1170   1.1    mjacob 	return (0);
   1171   1.1    mjacob }
   1172   1.1    mjacob 
   1173   1.1    mjacob static int
   1174   1.1    mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
   1175   1.1    mjacob {
   1176   1.1    mjacob 	int s, off = 8;
   1177   1.1    mjacob 
   1178   1.1    mjacob 	if (amt < SES_CFGHDR_MINLEN) {
   1179   1.1    mjacob 		return (-1);
   1180   1.1    mjacob 	}
   1181   1.1    mjacob 	for (s = 0; s < buffer[1]; s++) {
   1182   1.1    mjacob 		if (off + 3 > amt)
   1183   1.1    mjacob 			return (-1);
   1184   1.1    mjacob 		off += buffer[off+3] + 4;
   1185   1.1    mjacob 	}
   1186   1.1    mjacob 	if (off + 3 > amt) {
   1187   1.1    mjacob 		return (-1);
   1188   1.1    mjacob 	}
   1189   1.1    mjacob 	off += buffer[off+3] + 4 + (nth * 4);
   1190   1.1    mjacob 	if (amt < (off + 4))
   1191   1.1    mjacob 		return (-1);
   1192   1.1    mjacob 
   1193   1.1    mjacob 	gget8(buffer, off++, thp->enc_type);
   1194   1.1    mjacob 	gget8(buffer, off++, thp->enc_maxelt);
   1195   1.1    mjacob 	gget8(buffer, off++, thp->enc_subenc);
   1196   1.1    mjacob 	gget8(buffer, off, thp->enc_tlen);
   1197   1.1    mjacob 	return (0);
   1198   1.1    mjacob }
   1199   1.1    mjacob 
   1200   1.1    mjacob /*
   1201   1.1    mjacob  * This function needs a little explanation.
   1202   1.1    mjacob  *
   1203   1.1    mjacob  * The arguments are:
   1204   1.1    mjacob  *
   1205   1.1    mjacob  *
   1206   1.1    mjacob  *	char *b, int amt
   1207   1.1    mjacob  *
   1208   1.1    mjacob  *		These describes the raw input SES status data and length.
   1209   1.1    mjacob  *
   1210   1.1    mjacob  *	uint8_t *ep
   1211   1.1    mjacob  *
   1212   1.1    mjacob  *		This is a map of the number of types for each element type
   1213   1.1    mjacob  *		in the enclosure.
   1214   1.1    mjacob  *
   1215   1.1    mjacob  *	int elt
   1216   1.1    mjacob  *
   1217   1.1    mjacob  *		This is the element type being sought. If elt is -1,
   1218   1.1    mjacob  *		then overall enclosure status is being sought.
   1219   1.1    mjacob  *
   1220   1.1    mjacob  *	int elm
   1221   1.1    mjacob  *
   1222   1.1    mjacob  *		This is the ordinal Mth element of type elt being sought.
   1223   1.1    mjacob  *
   1224   1.1    mjacob  *	SesComStat *sp
   1225   1.1    mjacob  *
   1226   1.1    mjacob  *		This is the output area to store the status for
   1227   1.1    mjacob  *		the Mth element of type Elt.
   1228   1.1    mjacob  */
   1229   1.1    mjacob 
   1230   1.1    mjacob static int
   1231   1.1    mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1232   1.1    mjacob {
   1233   1.1    mjacob 	int idx, i;
   1234   1.1    mjacob 
   1235   1.1    mjacob 	/*
   1236   1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1237   1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1238   1.1    mjacob 	 */
   1239   1.1    mjacob 	if (elt == -1) {
   1240   1.1    mjacob 		if (amt < 2)
   1241   1.1    mjacob 			return (-1);
   1242   1.1    mjacob 		gget8(b, 1, sp->comstatus);
   1243   1.1    mjacob 		sp->comstat[0] = 0;
   1244   1.1    mjacob 		sp->comstat[1] = 0;
   1245   1.1    mjacob 		sp->comstat[2] = 0;
   1246   1.1    mjacob 		return (0);
   1247   1.1    mjacob 	}
   1248   1.1    mjacob 
   1249   1.1    mjacob 	/*
   1250   1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1251   1.1    mjacob 	 */
   1252   1.1    mjacob 
   1253   1.1    mjacob 	if (elm >= ep[elt])
   1254   1.1    mjacob 		return (-1);
   1255   1.1    mjacob 
   1256   1.1    mjacob 	/*
   1257   1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1258   1.1    mjacob 	 * for the element types we're not interested in.
   1259   1.1    mjacob 	 */
   1260   1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1261   1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1262   1.1    mjacob 	}
   1263   1.1    mjacob 
   1264   1.1    mjacob 	/*
   1265   1.1    mjacob 	 * Skip over Overall status for this element type.
   1266   1.1    mjacob 	 */
   1267   1.1    mjacob 	idx += 4;
   1268   1.1    mjacob 
   1269   1.1    mjacob 	/*
   1270   1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1271   1.1    mjacob 	 */
   1272   1.1    mjacob 	idx += (4 * elm);
   1273   1.1    mjacob 
   1274   1.1    mjacob 	/*
   1275   1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1276   1.1    mjacob 	 */
   1277   1.1    mjacob 	if (idx+4 > amt)
   1278   1.1    mjacob 		return (-1);
   1279   1.1    mjacob 
   1280   1.1    mjacob 	/*
   1281   1.1    mjacob 	 * Retrieve the status.
   1282   1.1    mjacob 	 */
   1283   1.1    mjacob 	gget8(b, idx++, sp->comstatus);
   1284   1.1    mjacob 	gget8(b, idx++, sp->comstat[0]);
   1285   1.1    mjacob 	gget8(b, idx++, sp->comstat[1]);
   1286   1.1    mjacob 	gget8(b, idx++, sp->comstat[2]);
   1287   1.1    mjacob #if	0
   1288   1.1    mjacob 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
   1289   1.1    mjacob #endif
   1290   1.1    mjacob 	return (0);
   1291   1.1    mjacob }
   1292   1.1    mjacob 
   1293   1.1    mjacob /*
   1294   1.1    mjacob  * This is the mirror function to ses_decode, but we set the 'select'
   1295   1.1    mjacob  * bit for the object which we're interested in. All other objects,
   1296   1.1    mjacob  * after a status fetch, should have that bit off. Hmm. It'd be easy
   1297   1.1    mjacob  * enough to ensure this, so we will.
   1298   1.1    mjacob  */
   1299   1.1    mjacob 
   1300   1.1    mjacob static int
   1301   1.1    mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1302   1.1    mjacob {
   1303   1.1    mjacob 	int idx, i;
   1304   1.1    mjacob 
   1305   1.1    mjacob 	/*
   1306   1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1307   1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1308   1.1    mjacob 	 */
   1309   1.1    mjacob 	if (elt == -1) {
   1310   1.1    mjacob 		if (amt < 2)
   1311   1.1    mjacob 			return (-1);
   1312   1.1    mjacob 		i = 0;
   1313   1.1    mjacob 		sset8(b, i, 0);
   1314   1.1    mjacob 		sset8(b, i, sp->comstatus & 0xf);
   1315   1.1    mjacob #if	0
   1316   1.1    mjacob 		PRINTF("set EncStat %x\n", sp->comstatus);
   1317   1.1    mjacob #endif
   1318   1.1    mjacob 		return (0);
   1319   1.1    mjacob 	}
   1320   1.1    mjacob 
   1321   1.1    mjacob 	/*
   1322   1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1323   1.1    mjacob 	 */
   1324   1.1    mjacob 
   1325   1.1    mjacob 	if (elm >= ep[elt])
   1326   1.1    mjacob 		return (-1);
   1327   1.1    mjacob 
   1328   1.1    mjacob 	/*
   1329   1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1330   1.1    mjacob 	 * for the element types we're not interested in.
   1331   1.1    mjacob 	 */
   1332   1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1333   1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1334   1.1    mjacob 	}
   1335   1.1    mjacob 
   1336   1.1    mjacob 	/*
   1337   1.1    mjacob 	 * Skip over Overall status for this element type.
   1338   1.1    mjacob 	 */
   1339   1.1    mjacob 	idx += 4;
   1340   1.1    mjacob 
   1341   1.1    mjacob 	/*
   1342   1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1343   1.1    mjacob 	 */
   1344   1.1    mjacob 	idx += (4 * elm);
   1345   1.1    mjacob 
   1346   1.1    mjacob 	/*
   1347   1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1348   1.1    mjacob 	 */
   1349   1.1    mjacob 	if (idx+4 > amt)
   1350   1.1    mjacob 		return (-1);
   1351   1.1    mjacob 
   1352   1.1    mjacob 	/*
   1353   1.1    mjacob 	 * Set the status.
   1354   1.1    mjacob 	 */
   1355   1.1    mjacob 	sset8(b, idx, sp->comstatus);
   1356   1.1    mjacob 	sset8(b, idx, sp->comstat[0]);
   1357   1.1    mjacob 	sset8(b, idx, sp->comstat[1]);
   1358   1.1    mjacob 	sset8(b, idx, sp->comstat[2]);
   1359   1.1    mjacob 	idx -= 4;
   1360   1.1    mjacob 
   1361   1.1    mjacob #if	0
   1362   1.1    mjacob 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
   1363   1.1    mjacob 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
   1364   1.1    mjacob 	    sp->comstat[1], sp->comstat[2]);
   1365   1.1    mjacob #endif
   1366   1.1    mjacob 
   1367   1.1    mjacob 	/*
   1368   1.1    mjacob 	 * Now make sure all other 'Select' bits are off.
   1369   1.1    mjacob 	 */
   1370   1.1    mjacob 	for (i = 8; i < amt; i += 4) {
   1371   1.1    mjacob 		if (i != idx)
   1372   1.1    mjacob 			b[i] &= ~0x80;
   1373   1.1    mjacob 	}
   1374   1.1    mjacob 	/*
   1375   1.1    mjacob 	 * And make sure the INVOP bit is clear.
   1376   1.1    mjacob 	 */
   1377   1.1    mjacob 	b[2] &= ~0x10;
   1378   1.1    mjacob 
   1379   1.1    mjacob 	return (0);
   1380   1.1    mjacob }
   1381   1.1    mjacob 
   1382   1.1    mjacob /*
   1383   1.1    mjacob  * SAF-TE Type Device Emulation
   1384   1.1    mjacob  */
   1385   1.1    mjacob 
   1386   1.1    mjacob static int safte_getconfig(ses_softc_t *);
   1387  1.19    simonb static int safte_rdstat(ses_softc_t *, int);
   1388   1.1    mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
   1389   1.1    mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
   1390   1.1    mjacob static void wrslot_stat(ses_softc_t *, int);
   1391   1.1    mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
   1392   1.1    mjacob 
   1393   1.1    mjacob #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
   1394   1.1    mjacob 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
   1395   1.1    mjacob /*
   1396   1.1    mjacob  * SAF-TE specific defines- Mandatory ones only...
   1397   1.1    mjacob  */
   1398   1.1    mjacob 
   1399   1.1    mjacob /*
   1400   1.1    mjacob  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
   1401   1.1    mjacob  */
   1402   1.1    mjacob #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
   1403   1.1    mjacob #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
   1404   1.1    mjacob #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
   1405   1.1    mjacob 
   1406   1.1    mjacob /*
   1407   1.1    mjacob  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
   1408   1.1    mjacob  */
   1409   1.1    mjacob #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
   1410   1.1    mjacob #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
   1411   1.1    mjacob #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
   1412   1.1    mjacob #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
   1413   1.1    mjacob #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
   1414   1.1    mjacob 
   1415   1.1    mjacob 
   1416   1.1    mjacob #define	SAFT_SCRATCH	64
   1417   1.1    mjacob #define	NPSEUDO_THERM	16
   1418   1.1    mjacob #define	NPSEUDO_ALARM	1
   1419   1.1    mjacob struct scfg {
   1420   1.1    mjacob 	/*
   1421   1.1    mjacob 	 * Cached Configuration
   1422   1.1    mjacob 	 */
   1423   1.1    mjacob 	uint8_t	Nfans;		/* Number of Fans */
   1424   1.1    mjacob 	uint8_t	Npwr;		/* Number of Power Supplies */
   1425   1.1    mjacob 	uint8_t	Nslots;		/* Number of Device Slots */
   1426   1.1    mjacob 	uint8_t	DoorLock;	/* Door Lock Installed */
   1427   1.1    mjacob 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
   1428   1.1    mjacob 	uint8_t	Nspkrs;		/* Number of Speakers */
   1429   1.1    mjacob 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
   1430   1.1    mjacob 	/*
   1431   1.1    mjacob 	 * Cached Flag Bytes for Global Status
   1432   1.1    mjacob 	 */
   1433   1.1    mjacob 	uint8_t	flag1;
   1434   1.1    mjacob 	uint8_t	flag2;
   1435   1.1    mjacob 	/*
   1436   1.1    mjacob 	 * What object index ID is where various slots start.
   1437   1.1    mjacob 	 */
   1438   1.1    mjacob 	uint8_t	pwroff;
   1439   1.1    mjacob 	uint8_t	slotoff;
   1440   1.1    mjacob #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
   1441   1.1    mjacob };
   1442   1.1    mjacob 
   1443   1.1    mjacob #define	SAFT_FLG1_ALARM		0x1
   1444   1.1    mjacob #define	SAFT_FLG1_GLOBFAIL	0x2
   1445   1.1    mjacob #define	SAFT_FLG1_GLOBWARN	0x4
   1446   1.1    mjacob #define	SAFT_FLG1_ENCPWROFF	0x8
   1447   1.1    mjacob #define	SAFT_FLG1_ENCFANFAIL	0x10
   1448   1.1    mjacob #define	SAFT_FLG1_ENCPWRFAIL	0x20
   1449   1.1    mjacob #define	SAFT_FLG1_ENCDRVFAIL	0x40
   1450   1.1    mjacob #define	SAFT_FLG1_ENCDRVWARN	0x80
   1451   1.1    mjacob 
   1452   1.1    mjacob #define	SAFT_FLG2_LOCKDOOR	0x4
   1453   1.1    mjacob #define	SAFT_PRIVATE		sizeof (struct scfg)
   1454   1.1    mjacob 
   1455   1.7  sommerfe static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
   1456   1.1    mjacob #define	SAFT_BAIL(r, x, k, l)	\
   1457   1.1    mjacob 	if (r >= x) { \
   1458   1.1    mjacob 		SES_LOG(ssc, safte_2little, x, __LINE__);\
   1459   1.1    mjacob 		SES_FREE(k, l); \
   1460   1.1    mjacob 		return (EIO); \
   1461   1.1    mjacob 	}
   1462   1.1    mjacob 
   1463   1.1    mjacob 
   1464  1.23   thorpej static int
   1465   1.1    mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
   1466   1.1    mjacob {
   1467   1.1    mjacob 	int err, i, r;
   1468   1.1    mjacob 	struct scfg *cc;
   1469   1.1    mjacob 
   1470   1.1    mjacob 	if (doinit == 0) {
   1471   1.1    mjacob 		if (ssc->ses_nobjects) {
   1472   1.1    mjacob 			if (ssc->ses_objmap) {
   1473   1.1    mjacob 				SES_FREE(ssc->ses_objmap,
   1474   1.1    mjacob 				    ssc->ses_nobjects * sizeof (encobj));
   1475   1.1    mjacob 				ssc->ses_objmap = NULL;
   1476   1.1    mjacob 			}
   1477   1.1    mjacob 			ssc->ses_nobjects = 0;
   1478   1.1    mjacob 		}
   1479   1.1    mjacob 		if (ssc->ses_private) {
   1480   1.1    mjacob 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
   1481   1.1    mjacob 			ssc->ses_private = NULL;
   1482   1.1    mjacob 		}
   1483   1.1    mjacob 		return (0);
   1484   1.1    mjacob 	}
   1485   1.1    mjacob 
   1486   1.1    mjacob 	if (ssc->ses_private == NULL) {
   1487   1.1    mjacob 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
   1488   1.1    mjacob 		if (ssc->ses_private == NULL) {
   1489   1.1    mjacob 			return (ENOMEM);
   1490   1.1    mjacob 		}
   1491   1.1    mjacob 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
   1492   1.1    mjacob 	}
   1493   1.1    mjacob 
   1494   1.1    mjacob 	ssc->ses_nobjects = 0;
   1495   1.1    mjacob 	ssc->ses_encstat = 0;
   1496   1.1    mjacob 
   1497   1.1    mjacob 	if ((err = safte_getconfig(ssc)) != 0) {
   1498   1.1    mjacob 		return (err);
   1499   1.1    mjacob 	}
   1500   1.1    mjacob 
   1501   1.1    mjacob 	/*
   1502   1.1    mjacob 	 * The number of objects here, as well as that reported by the
   1503   1.1    mjacob 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
   1504   1.1    mjacob 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
   1505   1.1    mjacob 	 */
   1506   1.1    mjacob 	cc = ssc->ses_private;
   1507   1.1    mjacob 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
   1508   1.1    mjacob 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
   1509   1.1    mjacob 	ssc->ses_objmap = (encobj *)
   1510   1.1    mjacob 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
   1511   1.1    mjacob 	if (ssc->ses_objmap == NULL) {
   1512   1.1    mjacob 		return (ENOMEM);
   1513   1.1    mjacob 	}
   1514   1.1    mjacob 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
   1515   1.1    mjacob 
   1516   1.1    mjacob 	r = 0;
   1517   1.1    mjacob 	/*
   1518   1.1    mjacob 	 * Note that this is all arranged for the convenience
   1519   1.1    mjacob 	 * in later fetches of status.
   1520   1.1    mjacob 	 */
   1521   1.1    mjacob 	for (i = 0; i < cc->Nfans; i++)
   1522   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
   1523   1.1    mjacob 	cc->pwroff = (uint8_t) r;
   1524   1.1    mjacob 	for (i = 0; i < cc->Npwr; i++)
   1525   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
   1526   1.1    mjacob 	for (i = 0; i < cc->DoorLock; i++)
   1527   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
   1528   1.1    mjacob 	for (i = 0; i < cc->Nspkrs; i++)
   1529   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1530   1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++)
   1531   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1532   1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++)
   1533   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1534   1.1    mjacob 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1535   1.1    mjacob 	cc->slotoff = (uint8_t) r;
   1536   1.1    mjacob 	for (i = 0; i < cc->Nslots; i++)
   1537   1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
   1538   1.1    mjacob 	return (0);
   1539   1.1    mjacob }
   1540   1.1    mjacob 
   1541  1.23   thorpej static int
   1542   1.1    mjacob safte_init_enc(ses_softc_t *ssc)
   1543   1.1    mjacob {
   1544   1.1    mjacob 	int err, amt;
   1545   1.1    mjacob 	char *sdata;
   1546   1.4    mjacob 	static char cdb0[6] = { SEND_DIAGNOSTIC };
   1547   1.1    mjacob 	static char cdb[10] =
   1548   1.4    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   1549   1.1    mjacob 
   1550   1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1551   1.1    mjacob 	if (sdata == NULL)
   1552   1.1    mjacob 		return (ENOMEM);
   1553   1.1    mjacob 
   1554   1.4    mjacob 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
   1555   1.1    mjacob 	if (err) {
   1556   1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1557   1.1    mjacob 		return (err);
   1558   1.1    mjacob 	}
   1559   1.1    mjacob 	sdata[0] = SAFTE_WT_GLOBAL;
   1560   1.4    mjacob 	MEMZERO(&sdata[1], 15);
   1561   1.1    mjacob 	amt = -SAFT_SCRATCH;
   1562   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1563   1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1564   1.1    mjacob 	return (err);
   1565   1.1    mjacob }
   1566   1.1    mjacob 
   1567  1.23   thorpej static int
   1568   1.1    mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
   1569   1.1    mjacob {
   1570   1.1    mjacob 	return (safte_rdstat(ssc, slpflg));
   1571   1.1    mjacob }
   1572   1.1    mjacob 
   1573  1.23   thorpej static int
   1574   1.1    mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
   1575   1.1    mjacob {
   1576   1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1577   1.1    mjacob 	if (cc == NULL)
   1578   1.1    mjacob 		return (0);
   1579   1.1    mjacob 	/*
   1580   1.1    mjacob 	 * Since SAF-TE devices aren't necessarily sticky in terms
   1581   1.1    mjacob 	 * of state, make our soft copy of enclosure status 'sticky'-
   1582   1.1    mjacob 	 * that is, things set in enclosure status stay set (as implied
   1583   1.1    mjacob 	 * by conditions set in reading object status) until cleared.
   1584   1.1    mjacob 	 */
   1585   1.1    mjacob 	ssc->ses_encstat &= ~ALL_ENC_STAT;
   1586   1.1    mjacob 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
   1587   1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID;
   1588   1.1    mjacob 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
   1589   1.1    mjacob 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
   1590   1.1    mjacob 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
   1591   1.1    mjacob 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
   1592   1.1    mjacob 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
   1593   1.1    mjacob 	}
   1594   1.1    mjacob 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
   1595   1.1    mjacob }
   1596   1.1    mjacob 
   1597  1.23   thorpej static int
   1598   1.1    mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
   1599   1.1    mjacob {
   1600   1.1    mjacob 	int i = (int)obp->obj_id;
   1601   1.1    mjacob 
   1602   1.1    mjacob 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
   1603   1.1    mjacob 	    (ssc->ses_objmap[i].svalid) == 0) {
   1604   1.1    mjacob 		int err = safte_rdstat(ssc, slpflg);
   1605   1.1    mjacob 		if (err)
   1606   1.1    mjacob 			return (err);
   1607   1.1    mjacob 	}
   1608   1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
   1609   1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
   1610   1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
   1611   1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
   1612   1.1    mjacob 	return (0);
   1613   1.1    mjacob }
   1614   1.1    mjacob 
   1615   1.1    mjacob 
   1616  1.23   thorpej static int
   1617   1.1    mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
   1618   1.1    mjacob {
   1619   1.1    mjacob 	int idx, err;
   1620   1.1    mjacob 	encobj *ep;
   1621   1.1    mjacob 	struct scfg *cc;
   1622   1.1    mjacob 
   1623   1.1    mjacob 
   1624   1.1    mjacob 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
   1625   1.1    mjacob 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
   1626   1.1    mjacob 	    obp->cstat[3]);
   1627   1.1    mjacob 
   1628   1.1    mjacob 	/*
   1629   1.1    mjacob 	 * If this is clear, we don't do diddly.
   1630   1.1    mjacob 	 */
   1631   1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
   1632   1.1    mjacob 		return (0);
   1633   1.1    mjacob 	}
   1634   1.1    mjacob 
   1635   1.1    mjacob 	err = 0;
   1636   1.1    mjacob 	/*
   1637   1.1    mjacob 	 * Check to see if the common bits are set and do them first.
   1638   1.1    mjacob 	 */
   1639   1.1    mjacob 	if (obp->cstat[0] & ~SESCTL_CSEL) {
   1640   1.1    mjacob 		err = set_objstat_sel(ssc, obp, slp);
   1641   1.1    mjacob 		if (err)
   1642   1.1    mjacob 			return (err);
   1643   1.1    mjacob 	}
   1644   1.1    mjacob 
   1645   1.1    mjacob 	cc = ssc->ses_private;
   1646   1.1    mjacob 	if (cc == NULL)
   1647   1.1    mjacob 		return (0);
   1648   1.1    mjacob 
   1649   1.1    mjacob 	idx = (int)obp->obj_id;
   1650   1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   1651   1.1    mjacob 
   1652   1.1    mjacob 	switch (ep->enctype) {
   1653   1.1    mjacob 	case SESTYP_DEVICE:
   1654   1.1    mjacob 	{
   1655   1.1    mjacob 		uint8_t slotop = 0;
   1656   1.1    mjacob 		/*
   1657   1.1    mjacob 		 * XXX: I should probably cache the previous state
   1658   1.1    mjacob 		 * XXX: of SESCTL_DEVOFF so that when it goes from
   1659   1.1    mjacob 		 * XXX: true to false I can then set PREPARE FOR OPERATION
   1660   1.1    mjacob 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
   1661   1.1    mjacob 		 */
   1662   1.1    mjacob 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
   1663   1.1    mjacob 			slotop |= 0x2;
   1664   1.1    mjacob 		}
   1665   1.1    mjacob 		if (obp->cstat[2] & SESCTL_RQSID) {
   1666   1.1    mjacob 			slotop |= 0x4;
   1667   1.1    mjacob 		}
   1668   1.1    mjacob 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
   1669   1.1    mjacob 		    slotop, slp);
   1670   1.1    mjacob 		if (err)
   1671   1.1    mjacob 			return (err);
   1672   1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSFLT) {
   1673   1.1    mjacob 			ep->priv |= 0x2;
   1674   1.1    mjacob 		} else {
   1675   1.1    mjacob 			ep->priv &= ~0x2;
   1676   1.1    mjacob 		}
   1677   1.1    mjacob 		if (ep->priv & 0xc6) {
   1678   1.1    mjacob 			ep->priv &= ~0x1;
   1679   1.1    mjacob 		} else {
   1680   1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   1681   1.1    mjacob 		}
   1682   1.1    mjacob 		wrslot_stat(ssc, slp);
   1683   1.1    mjacob 		break;
   1684   1.1    mjacob 	}
   1685   1.1    mjacob 	case SESTYP_POWER:
   1686   1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1687   1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
   1688   1.1    mjacob 		} else {
   1689   1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
   1690   1.1    mjacob 		}
   1691   1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1692   1.1    mjacob 		    cc->flag2, 0, slp);
   1693   1.1    mjacob 		if (err)
   1694   1.1    mjacob 			return (err);
   1695   1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1696   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1697   1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   1698   1.1    mjacob 		} else {
   1699   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1700   1.1    mjacob 				idx - cc->pwroff, 0, 1, slp);
   1701   1.1    mjacob 		}
   1702   1.1    mjacob 		break;
   1703   1.1    mjacob 	case SESTYP_FAN:
   1704   1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1705   1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
   1706   1.1    mjacob 		} else {
   1707   1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
   1708   1.1    mjacob 		}
   1709   1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1710   1.1    mjacob 		    cc->flag2, 0, slp);
   1711   1.1    mjacob 		if (err)
   1712   1.1    mjacob 			return (err);
   1713   1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1714   1.1    mjacob 			uint8_t fsp;
   1715   1.1    mjacob 			if ((obp->cstat[3] & 0x7) == 7) {
   1716   1.1    mjacob 				fsp = 4;
   1717   1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 6) {
   1718   1.1    mjacob 				fsp = 3;
   1719   1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 4) {
   1720   1.1    mjacob 				fsp = 2;
   1721   1.1    mjacob 			} else {
   1722   1.1    mjacob 				fsp = 1;
   1723   1.1    mjacob 			}
   1724   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
   1725   1.1    mjacob 		} else {
   1726   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   1727   1.1    mjacob 		}
   1728   1.1    mjacob 		break;
   1729   1.1    mjacob 	case SESTYP_DOORLOCK:
   1730   1.1    mjacob 		if (obp->cstat[3] & 0x1) {
   1731   1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   1732   1.1    mjacob 		} else {
   1733   1.1    mjacob 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
   1734   1.1    mjacob 		}
   1735   1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1736   1.1    mjacob 		    cc->flag2, 0, slp);
   1737   1.1    mjacob 		break;
   1738   1.1    mjacob 	case SESTYP_ALARM:
   1739   1.1    mjacob 		/*
   1740   1.1    mjacob 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
   1741   1.1    mjacob 		 */
   1742   1.1    mjacob 		obp->cstat[3] &= ~0xa;
   1743   1.1    mjacob 		if (obp->cstat[3] & 0x40) {
   1744   1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1745   1.1    mjacob 		} else if (obp->cstat[3] != 0) {
   1746   1.1    mjacob 			cc->flag2 |= SAFT_FLG1_ALARM;
   1747   1.1    mjacob 		} else {
   1748   1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1749   1.1    mjacob 		}
   1750   1.1    mjacob 		ep->priv = obp->cstat[3];
   1751   1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1752   1.1    mjacob 			cc->flag2, 0, slp);
   1753   1.1    mjacob 		break;
   1754   1.1    mjacob 	default:
   1755   1.1    mjacob 		break;
   1756   1.1    mjacob 	}
   1757   1.1    mjacob 	ep->svalid = 0;
   1758   1.1    mjacob 	return (0);
   1759   1.1    mjacob }
   1760   1.1    mjacob 
   1761   1.1    mjacob static int
   1762   1.1    mjacob safte_getconfig(ses_softc_t *ssc)
   1763   1.1    mjacob {
   1764   1.1    mjacob 	struct scfg *cfg;
   1765   1.1    mjacob 	int err, amt;
   1766   1.1    mjacob 	char *sdata;
   1767   1.1    mjacob 	static char cdb[10] =
   1768   1.1    mjacob 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   1769   1.1    mjacob 
   1770   1.1    mjacob 	cfg = ssc->ses_private;
   1771   1.1    mjacob 	if (cfg == NULL)
   1772   1.1    mjacob 		return (ENXIO);
   1773   1.1    mjacob 
   1774   1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1775   1.1    mjacob 	if (sdata == NULL)
   1776   1.1    mjacob 		return (ENOMEM);
   1777   1.1    mjacob 
   1778   1.1    mjacob 	amt = SAFT_SCRATCH;
   1779   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1780   1.1    mjacob 	if (err) {
   1781   1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1782   1.1    mjacob 		return (err);
   1783   1.1    mjacob 	}
   1784   1.1    mjacob 	amt = SAFT_SCRATCH - amt;
   1785   1.1    mjacob 	if (amt < 6) {
   1786   1.1    mjacob 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
   1787   1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1788   1.1    mjacob 		return (EIO);
   1789   1.1    mjacob 	}
   1790   1.1    mjacob 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
   1791   1.1    mjacob 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
   1792   1.1    mjacob 	cfg->Nfans = sdata[0];
   1793   1.1    mjacob 	cfg->Npwr = sdata[1];
   1794   1.1    mjacob 	cfg->Nslots = sdata[2];
   1795   1.1    mjacob 	cfg->DoorLock = sdata[3];
   1796   1.1    mjacob 	cfg->Ntherm = sdata[4];
   1797   1.1    mjacob 	cfg->Nspkrs = sdata[5];
   1798   1.1    mjacob 	cfg->Nalarm = NPSEUDO_ALARM;
   1799   1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1800   1.1    mjacob 	return (0);
   1801   1.1    mjacob }
   1802   1.1    mjacob 
   1803   1.1    mjacob static int
   1804  1.37  christos safte_rdstat(ses_softc_t *ssc, int slpflg)
   1805   1.1    mjacob {
   1806   1.1    mjacob 	int err, oid, r, i, hiwater, nitems, amt;
   1807   1.1    mjacob 	uint16_t tempflags;
   1808   1.1    mjacob 	size_t buflen;
   1809   1.1    mjacob 	uint8_t status, oencstat;
   1810   1.1    mjacob 	char *sdata, cdb[10];
   1811   1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1812   1.1    mjacob 
   1813   1.1    mjacob 
   1814   1.1    mjacob 	/*
   1815   1.1    mjacob 	 * The number of objects overstates things a bit,
   1816   1.1    mjacob 	 * both for the bogus 'thermometer' entries and
   1817   1.1    mjacob 	 * the drive status (which isn't read at the same
   1818   1.1    mjacob 	 * time as the enclosure status), but that's okay.
   1819   1.1    mjacob 	 */
   1820   1.1    mjacob 	buflen = 4 * cc->Nslots;
   1821   1.1    mjacob 	if (ssc->ses_nobjects > buflen)
   1822   1.1    mjacob 		buflen = ssc->ses_nobjects;
   1823   1.1    mjacob 	sdata = SES_MALLOC(buflen);
   1824   1.1    mjacob 	if (sdata == NULL)
   1825   1.1    mjacob 		return (ENOMEM);
   1826   1.1    mjacob 
   1827   1.1    mjacob 	cdb[0] = READ_BUFFER;
   1828   1.1    mjacob 	cdb[1] = 1;
   1829   1.1    mjacob 	cdb[2] = SAFTE_RD_RDESTS;
   1830   1.1    mjacob 	cdb[3] = 0;
   1831   1.1    mjacob 	cdb[4] = 0;
   1832   1.1    mjacob 	cdb[5] = 0;
   1833   1.1    mjacob 	cdb[6] = 0;
   1834   1.1    mjacob 	cdb[7] = (buflen >> 8) & 0xff;
   1835   1.1    mjacob 	cdb[8] = buflen & 0xff;
   1836   1.1    mjacob 	cdb[9] = 0;
   1837   1.1    mjacob 	amt = buflen;
   1838   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1839   1.1    mjacob 	if (err) {
   1840   1.1    mjacob 		SES_FREE(sdata, buflen);
   1841   1.1    mjacob 		return (err);
   1842   1.1    mjacob 	}
   1843   1.1    mjacob 	hiwater = buflen - amt;
   1844   1.1    mjacob 
   1845   1.1    mjacob 
   1846   1.1    mjacob 	/*
   1847   1.1    mjacob 	 * invalidate all status bits.
   1848   1.1    mjacob 	 */
   1849   1.1    mjacob 	for (i = 0; i < ssc->ses_nobjects; i++)
   1850   1.1    mjacob 		ssc->ses_objmap[i].svalid = 0;
   1851   1.1    mjacob 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
   1852   1.1    mjacob 	ssc->ses_encstat = 0;
   1853   1.1    mjacob 
   1854   1.1    mjacob 
   1855   1.1    mjacob 	/*
   1856   1.1    mjacob 	 * Now parse returned buffer.
   1857   1.1    mjacob 	 * If we didn't get enough data back,
   1858   1.1    mjacob 	 * that's considered a fatal error.
   1859   1.1    mjacob 	 */
   1860   1.1    mjacob 	oid = r = 0;
   1861   1.1    mjacob 
   1862   1.1    mjacob 	for (nitems = i = 0; i < cc->Nfans; i++) {
   1863   1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1864   1.1    mjacob 		/*
   1865   1.1    mjacob 		 * 0 = Fan Operational
   1866   1.1    mjacob 		 * 1 = Fan is malfunctioning
   1867   1.1    mjacob 		 * 2 = Fan is not present
   1868   1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   1869   1.1    mjacob 		 */
   1870   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1871   1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1872   1.1    mjacob 		switch ((int)(uint8_t)sdata[r]) {
   1873   1.1    mjacob 		case 0:
   1874   1.1    mjacob 			nitems++;
   1875   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1876   1.1    mjacob 			/*
   1877   1.1    mjacob 			 * We could get fancier and cache
   1878   1.1    mjacob 			 * fan speeds that we have set, but
   1879   1.1    mjacob 			 * that isn't done now.
   1880   1.1    mjacob 			 */
   1881   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 7;
   1882   1.1    mjacob 			break;
   1883   1.1    mjacob 
   1884   1.1    mjacob 		case 1:
   1885   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1886   1.1    mjacob 			/*
   1887   1.1    mjacob 			 * FAIL and FAN STOPPED synthesized
   1888   1.1    mjacob 			 */
   1889   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x40;
   1890   1.1    mjacob 			/*
   1891   1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1892   1.1    mjacob 			 * if only one fan or no thermometers,
   1893   1.1    mjacob 			 * else the NONCRITICAL error is set.
   1894   1.1    mjacob 			 */
   1895   1.1    mjacob 			if (cc->Nfans == 1 || cc->Ntherm == 0)
   1896   1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1897   1.1    mjacob 			else
   1898   1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1899   1.1    mjacob 			break;
   1900   1.1    mjacob 		case 2:
   1901   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1902   1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1903   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1904   1.1    mjacob 			/*
   1905   1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1906   1.1    mjacob 			 * if only one fan or no thermometers,
   1907   1.1    mjacob 			 * else the NONCRITICAL error is set.
   1908   1.1    mjacob 			 */
   1909   1.1    mjacob 			if (cc->Nfans == 1)
   1910   1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1911   1.1    mjacob 			else
   1912   1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1913   1.1    mjacob 			break;
   1914   1.1    mjacob 		case 0x80:
   1915   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1916   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1917   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1918   1.1    mjacob 			break;
   1919   1.1    mjacob 		default:
   1920   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1921   1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   1922   1.1    mjacob 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
   1923   1.1    mjacob 			    sdata[r] & 0xff);
   1924   1.1    mjacob 			break;
   1925   1.1    mjacob 		}
   1926   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   1927   1.1    mjacob 		r++;
   1928   1.1    mjacob 	}
   1929   1.1    mjacob 
   1930   1.1    mjacob 	/*
   1931   1.1    mjacob 	 * No matter how you cut it, no cooling elements when there
   1932   1.1    mjacob 	 * should be some there is critical.
   1933   1.1    mjacob 	 */
   1934   1.1    mjacob 	if (cc->Nfans && nitems == 0) {
   1935   1.1    mjacob 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1936   1.1    mjacob 	}
   1937   1.1    mjacob 
   1938   1.1    mjacob 
   1939   1.1    mjacob 	for (i = 0; i < cc->Npwr; i++) {
   1940   1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1941   1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1942   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1943   1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1944   1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
   1945   1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   1946   1.1    mjacob 		case 0x00:	/* pws operational and on */
   1947   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1948   1.1    mjacob 			break;
   1949   1.1    mjacob 		case 0x01:	/* pws operational and off */
   1950   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1951   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   1952   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1953   1.1    mjacob 			break;
   1954   1.1    mjacob 		case 0x10:	/* pws is malfunctioning and commanded on */
   1955   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1956   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x61;
   1957   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1958   1.1    mjacob 			break;
   1959   1.1    mjacob 
   1960   1.1    mjacob 		case 0x11:	/* pws is malfunctioning and commanded off */
   1961   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   1962   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x51;
   1963   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1964   1.1    mjacob 			break;
   1965   1.1    mjacob 		case 0x20:	/* pws is not present */
   1966   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1967   1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1968   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1969   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1970   1.1    mjacob 			break;
   1971   1.1    mjacob 		case 0x21:	/* pws is present */
   1972   1.1    mjacob 			/*
   1973   1.1    mjacob 			 * This is for enclosures that cannot tell whether the
   1974   1.1    mjacob 			 * device is on or malfunctioning, but know that it is
   1975   1.1    mjacob 			 * present. Just fall through.
   1976   1.1    mjacob 			 */
   1977   1.1    mjacob 			/* FALLTHROUGH */
   1978   1.1    mjacob 		case 0x80:	/* Unknown or Not Reportable Status */
   1979   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1980   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1981   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1982   1.1    mjacob 			break;
   1983   1.1    mjacob 		default:
   1984   1.1    mjacob 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
   1985   1.1    mjacob 			    i, sdata[r] & 0xff);
   1986   1.1    mjacob 			break;
   1987   1.1    mjacob 		}
   1988   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   1989   1.1    mjacob 		r++;
   1990   1.1    mjacob 	}
   1991   1.1    mjacob 
   1992   1.1    mjacob 	/*
   1993   1.1    mjacob 	 * Skip over Slot SCSI IDs
   1994   1.1    mjacob 	 */
   1995   1.1    mjacob 	r += cc->Nslots;
   1996   1.1    mjacob 
   1997   1.1    mjacob 	/*
   1998   1.1    mjacob 	 * We always have doorlock status, no matter what,
   1999   1.1    mjacob 	 * but we only save the status if we have one.
   2000   1.1    mjacob 	 */
   2001   1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2002   1.1    mjacob 	if (cc->DoorLock) {
   2003   1.1    mjacob 		/*
   2004   1.1    mjacob 		 * 0 = Door Locked
   2005   1.1    mjacob 		 * 1 = Door Unlocked, or no Lock Installed
   2006   1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   2007   1.1    mjacob 		 */
   2008   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2009   1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2010   1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   2011   1.1    mjacob 		case 0:
   2012   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2013   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2014   1.1    mjacob 			break;
   2015   1.1    mjacob 		case 1:
   2016   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2017   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 1;
   2018   1.1    mjacob 			break;
   2019   1.1    mjacob 		case 0x80:
   2020   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   2021   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2022   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2023   1.1    mjacob 			break;
   2024   1.1    mjacob 		default:
   2025   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2026   1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2027   1.1    mjacob 			SES_LOG(ssc, "unknown lock status 0x%x\n",
   2028   1.1    mjacob 			    sdata[r] & 0xff);
   2029   1.1    mjacob 			break;
   2030   1.1    mjacob 		}
   2031   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2032   1.1    mjacob 	}
   2033   1.1    mjacob 	r++;
   2034   1.1    mjacob 
   2035   1.1    mjacob 	/*
   2036   1.1    mjacob 	 * We always have speaker status, no matter what,
   2037   1.1    mjacob 	 * but we only save the status if we have one.
   2038   1.1    mjacob 	 */
   2039   1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2040   1.1    mjacob 	if (cc->Nspkrs) {
   2041   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2042   1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2043   1.1    mjacob 		if (sdata[r] == 1) {
   2044   1.1    mjacob 			/*
   2045   1.1    mjacob 			 * We need to cache tone urgency indicators.
   2046   1.1    mjacob 			 * Someday.
   2047   1.1    mjacob 			 */
   2048   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   2049   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x8;
   2050   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   2051   1.1    mjacob 		} else if (sdata[r] == 0) {
   2052   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2053   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2054   1.1    mjacob 		} else {
   2055   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2056   1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2057   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2058   1.1    mjacob 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
   2059   1.1    mjacob 			    sdata[r] & 0xff);
   2060   1.1    mjacob 		}
   2061   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2062   1.1    mjacob 	}
   2063   1.1    mjacob 	r++;
   2064   1.1    mjacob 
   2065   1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++) {
   2066   1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   2067   1.1    mjacob 		/*
   2068   1.1    mjacob 		 * Status is a range from -10 to 245 deg Celsius,
   2069   1.1    mjacob 		 * which we need to normalize to -20 to -245 according
   2070   1.1    mjacob 		 * to the latest SCSI spec, which makes little
   2071   1.1    mjacob 		 * sense since this would overflow an 8bit value.
   2072   1.1    mjacob 		 * Well, still, the base normalization is -20,
   2073   1.1    mjacob 		 * not -10, so we have to adjust.
   2074   1.1    mjacob 		 *
   2075   1.1    mjacob 		 * So what's over and under temperature?
   2076   1.1    mjacob 		 * Hmm- we'll state that 'normal' operating
   2077   1.1    mjacob 		 * is 10 to 40 deg Celsius.
   2078   1.1    mjacob 		 */
   2079   1.8    mjacob 
   2080   1.8    mjacob 		/*
   2081   1.8    mjacob 		 * Actually.... All of the units that people out in the world
   2082   1.8    mjacob 		 * seem to have do not come even close to setting a value that
   2083   1.8    mjacob 		 * complies with this spec.
   2084   1.8    mjacob 		 *
   2085   1.8    mjacob 		 * The closest explanation I could find was in an
   2086   1.8    mjacob 		 * LSI-Logic manual, which seemed to indicate that
   2087   1.8    mjacob 		 * this value would be set by whatever the I2C code
   2088   1.8    mjacob 		 * would interpolate from the output of an LM75
   2089   1.8    mjacob 		 * temperature sensor.
   2090   1.8    mjacob 		 *
   2091   1.8    mjacob 		 * This means that it is impossible to use the actual
   2092   1.8    mjacob 		 * numeric value to predict anything. But we don't want
   2093   1.8    mjacob 		 * to lose the value. So, we'll propagate the *uncorrected*
   2094   1.8    mjacob 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
   2095   1.8    mjacob 		 * temperature flags for warnings.
   2096   1.8    mjacob 		 */
   2097   1.8    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
   2098   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2099   1.8    mjacob 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
   2100  1.19    simonb 		ssc->ses_objmap[oid].encstat[3] = 0;
   2101   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2102   1.1    mjacob 		r++;
   2103   1.1    mjacob 	}
   2104   1.1    mjacob 
   2105   1.1    mjacob 	/*
   2106   1.1    mjacob 	 * Now, for "pseudo" thermometers, we have two bytes
   2107   1.1    mjacob 	 * of information in enclosure status- 16 bits. Actually,
   2108   1.1    mjacob 	 * the MSB is a single TEMP ALERT flag indicating whether
   2109   1.1    mjacob 	 * any other bits are set, but, thanks to fuzzy thinking,
   2110   1.1    mjacob 	 * in the SAF-TE spec, this can also be set even if no
   2111   1.1    mjacob 	 * other bits are set, thus making this really another
   2112   1.1    mjacob 	 * binary temperature sensor.
   2113   1.1    mjacob 	 */
   2114   1.1    mjacob 
   2115   1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2116   1.1    mjacob 	tempflags = sdata[r++];
   2117   1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2118   1.1    mjacob 	tempflags |= (tempflags << 8) | sdata[r++];
   2119   1.1    mjacob 
   2120   1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++) {
   2121   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2122   1.1    mjacob 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
   2123   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   2124   1.1    mjacob 			ssc->ses_objmap[4].encstat[2] = 0xff;
   2125   1.1    mjacob 			/*
   2126   1.1    mjacob 			 * Set 'over temperature' failure.
   2127   1.1    mjacob 			 */
   2128   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 8;
   2129   1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   2130   1.1    mjacob 		} else {
   2131   1.1    mjacob 			/*
   2132   1.1    mjacob 			 * We used to say 'not available' and synthesize a
   2133   1.1    mjacob 			 * nominal 30 deg (C)- that was wrong. Actually,
   2134   1.1    mjacob 			 * Just say 'OK', and use the reserved value of
   2135   1.1    mjacob 			 * zero.
   2136   1.1    mjacob 			 */
   2137   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2138   1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0;
   2139   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2140   1.1    mjacob 		}
   2141   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2142   1.1    mjacob 	}
   2143   1.1    mjacob 
   2144   1.1    mjacob 	/*
   2145   1.1    mjacob 	 * Get alarm status.
   2146   1.1    mjacob 	 */
   2147   1.1    mjacob 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2148   1.1    mjacob 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
   2149   1.1    mjacob 	ssc->ses_objmap[oid++].svalid = 1;
   2150   1.1    mjacob 
   2151   1.1    mjacob 	/*
   2152   1.1    mjacob 	 * Now get drive slot status
   2153   1.1    mjacob 	 */
   2154   1.1    mjacob 	cdb[2] = SAFTE_RD_RDDSTS;
   2155   1.1    mjacob 	amt = buflen;
   2156   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2157   1.1    mjacob 	if (err) {
   2158   1.1    mjacob 		SES_FREE(sdata, buflen);
   2159   1.1    mjacob 		return (err);
   2160   1.1    mjacob 	}
   2161   1.1    mjacob 	hiwater = buflen - amt;
   2162   1.1    mjacob 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
   2163   1.1    mjacob 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
   2164   1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
   2165   1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
   2166   1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2167   1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0;
   2168   1.1    mjacob 		status = sdata[r+3];
   2169   1.1    mjacob 		if ((status & 0x1) == 0) {	/* no device */
   2170   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2171   1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   2172   1.1    mjacob 		} else {
   2173   1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2174   1.1    mjacob 		}
   2175   1.1    mjacob 		if (status & 0x2) {
   2176   1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0x8;
   2177   1.1    mjacob 		}
   2178   1.1    mjacob 		if ((status & 0x4) == 0) {
   2179   1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   2180   1.1    mjacob 		}
   2181   1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2182   1.1    mjacob 	}
   2183   1.1    mjacob 	/* see comment below about sticky enclosure status */
   2184   1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
   2185   1.1    mjacob 	SES_FREE(sdata, buflen);
   2186   1.1    mjacob 	return (0);
   2187   1.1    mjacob }
   2188   1.1    mjacob 
   2189   1.1    mjacob static int
   2190   1.1    mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
   2191   1.1    mjacob {
   2192   1.1    mjacob 	int idx;
   2193   1.1    mjacob 	encobj *ep;
   2194   1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2195   1.1    mjacob 
   2196   1.1    mjacob 	if (cc == NULL)
   2197   1.1    mjacob 		return (0);
   2198   1.1    mjacob 
   2199   1.1    mjacob 	idx = (int)obp->obj_id;
   2200   1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   2201   1.1    mjacob 
   2202   1.1    mjacob 	switch (ep->enctype) {
   2203   1.1    mjacob 	case SESTYP_DEVICE:
   2204   1.1    mjacob 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
   2205   1.1    mjacob 			ep->priv |= 0x40;
   2206   1.1    mjacob 		}
   2207   1.1    mjacob 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
   2208   1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2209   1.1    mjacob 			ep->priv |= 0x80;
   2210   1.1    mjacob 			/*
   2211   1.1    mjacob 			 * Hmm. Try to set the 'No Drive' flag.
   2212   1.1    mjacob 			 * Maybe that will count as a 'disable'.
   2213   1.1    mjacob 			 */
   2214   1.1    mjacob 		}
   2215   1.1    mjacob 		if (ep->priv & 0xc6) {
   2216   1.1    mjacob 			ep->priv &= ~0x1;
   2217   1.1    mjacob 		} else {
   2218   1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   2219   1.1    mjacob 		}
   2220   1.1    mjacob 		wrslot_stat(ssc, slp);
   2221   1.1    mjacob 		break;
   2222   1.1    mjacob 	case SESTYP_POWER:
   2223   1.1    mjacob 		/*
   2224   1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2225   1.1    mjacob 		 * do the 'disable' for a power supply.
   2226   1.1    mjacob 		 */
   2227   1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2228   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   2229   1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   2230   1.1    mjacob 		}
   2231   1.1    mjacob 		break;
   2232   1.1    mjacob 	case SESTYP_FAN:
   2233   1.1    mjacob 		/*
   2234   1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2235   1.1    mjacob 		 * set fan speed to zero on disable.
   2236   1.1    mjacob 		 */
   2237   1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2238   1.1    mjacob 			/* remember- fans are the first items, so idx works */
   2239   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   2240   1.1    mjacob 		}
   2241   1.1    mjacob 		break;
   2242   1.1    mjacob 	case SESTYP_DOORLOCK:
   2243   1.1    mjacob 		/*
   2244   1.1    mjacob 		 * Well, we can 'disable' the lock.
   2245   1.1    mjacob 		 */
   2246   1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2247   1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   2248   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2249   1.1    mjacob 				cc->flag2, 0, slp);
   2250   1.1    mjacob 		}
   2251   1.1    mjacob 		break;
   2252   1.1    mjacob 	case SESTYP_ALARM:
   2253   1.1    mjacob 		/*
   2254   1.1    mjacob 		 * Well, we can 'disable' the alarm.
   2255   1.1    mjacob 		 */
   2256   1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2257   1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   2258   1.1    mjacob 			ep->priv |= 0x40;	/* Muted */
   2259   1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2260   1.1    mjacob 				cc->flag2, 0, slp);
   2261   1.1    mjacob 		}
   2262   1.1    mjacob 		break;
   2263   1.1    mjacob 	default:
   2264   1.1    mjacob 		break;
   2265   1.1    mjacob 	}
   2266   1.1    mjacob 	ep->svalid = 0;
   2267   1.1    mjacob 	return (0);
   2268   1.1    mjacob }
   2269   1.1    mjacob 
   2270   1.1    mjacob /*
   2271   1.1    mjacob  * This function handles all of the 16 byte WRITE BUFFER commands.
   2272   1.1    mjacob  */
   2273   1.1    mjacob static int
   2274   1.1    mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
   2275  1.37  christos     uint8_t b3, int slp)
   2276   1.1    mjacob {
   2277   1.1    mjacob 	int err, amt;
   2278   1.1    mjacob 	char *sdata;
   2279   1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2280   1.1    mjacob 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   2281   1.1    mjacob 
   2282   1.1    mjacob 	if (cc == NULL)
   2283   1.1    mjacob 		return (0);
   2284   1.1    mjacob 
   2285   1.1    mjacob 	sdata = SES_MALLOC(16);
   2286   1.1    mjacob 	if (sdata == NULL)
   2287   1.1    mjacob 		return (ENOMEM);
   2288   1.1    mjacob 
   2289   1.1    mjacob 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
   2290   1.1    mjacob 
   2291   1.1    mjacob 	sdata[0] = op;
   2292   1.1    mjacob 	sdata[1] = b1;
   2293   1.1    mjacob 	sdata[2] = b2;
   2294   1.1    mjacob 	sdata[3] = b3;
   2295   1.1    mjacob 	MEMZERO(&sdata[4], 12);
   2296   1.1    mjacob 	amt = -16;
   2297   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2298   1.1    mjacob 	SES_FREE(sdata, 16);
   2299   1.1    mjacob 	return (err);
   2300   1.1    mjacob }
   2301   1.1    mjacob 
   2302   1.1    mjacob /*
   2303   1.1    mjacob  * This function updates the status byte for the device slot described.
   2304   1.1    mjacob  *
   2305   1.1    mjacob  * Since this is an optional SAF-TE command, there's no point in
   2306   1.1    mjacob  * returning an error.
   2307   1.1    mjacob  */
   2308   1.1    mjacob static void
   2309  1.37  christos wrslot_stat(ses_softc_t *ssc, int slp)
   2310   1.1    mjacob {
   2311   1.1    mjacob 	int i, amt;
   2312   1.1    mjacob 	encobj *ep;
   2313   1.1    mjacob 	char cdb[10], *sdata;
   2314   1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2315   1.1    mjacob 
   2316   1.1    mjacob 	if (cc == NULL)
   2317   1.1    mjacob 		return;
   2318   1.1    mjacob 
   2319   1.1    mjacob 	SES_VLOG(ssc, "saf_wrslot\n");
   2320   1.1    mjacob 	cdb[0] = WRITE_BUFFER;
   2321   1.1    mjacob 	cdb[1] = 1;
   2322   1.1    mjacob 	cdb[2] = 0;
   2323   1.1    mjacob 	cdb[3] = 0;
   2324   1.1    mjacob 	cdb[4] = 0;
   2325   1.1    mjacob 	cdb[5] = 0;
   2326   1.1    mjacob 	cdb[6] = 0;
   2327   1.1    mjacob 	cdb[7] = 0;
   2328   1.1    mjacob 	cdb[8] = cc->Nslots * 3 + 1;
   2329   1.1    mjacob 	cdb[9] = 0;
   2330   1.1    mjacob 
   2331   1.1    mjacob 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
   2332   1.1    mjacob 	if (sdata == NULL)
   2333   1.1    mjacob 		return;
   2334   1.1    mjacob 	MEMZERO(sdata, cc->Nslots * 3 + 1);
   2335   1.1    mjacob 
   2336   1.1    mjacob 	sdata[0] = SAFTE_WT_DSTAT;
   2337   1.1    mjacob 	for (i = 0; i < cc->Nslots; i++) {
   2338   1.1    mjacob 		ep = &ssc->ses_objmap[cc->slotoff + i];
   2339   1.1    mjacob 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
   2340   1.1    mjacob 		sdata[1 + (3 * i)] = ep->priv & 0xff;
   2341   1.1    mjacob 	}
   2342   1.1    mjacob 	amt = -(cc->Nslots * 3 + 1);
   2343   1.1    mjacob 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2344   1.1    mjacob 	SES_FREE(sdata, cc->Nslots * 3 + 1);
   2345   1.1    mjacob }
   2346   1.1    mjacob 
   2347   1.1    mjacob /*
   2348   1.1    mjacob  * This function issues the "PERFORM SLOT OPERATION" command.
   2349   1.1    mjacob  */
   2350   1.1    mjacob static int
   2351  1.37  christos perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
   2352   1.1    mjacob {
   2353   1.1    mjacob 	int err, amt;
   2354   1.1    mjacob 	char *sdata;
   2355   1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2356   1.1    mjacob 	static char cdb[10] =
   2357   1.1    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   2358   1.1    mjacob 
   2359   1.1    mjacob 	if (cc == NULL)
   2360   1.1    mjacob 		return (0);
   2361   1.1    mjacob 
   2362   1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   2363   1.1    mjacob 	if (sdata == NULL)
   2364   1.1    mjacob 		return (ENOMEM);
   2365   1.1    mjacob 	MEMZERO(sdata, SAFT_SCRATCH);
   2366   1.1    mjacob 
   2367   1.1    mjacob 	sdata[0] = SAFTE_WT_SLTOP;
   2368   1.1    mjacob 	sdata[1] = slot;
   2369   1.1    mjacob 	sdata[2] = opflag;
   2370   1.1    mjacob 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
   2371   1.1    mjacob 	amt = -SAFT_SCRATCH;
   2372   1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2373   1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   2374   1.1    mjacob 	return (err);
   2375   1.1    mjacob }
   2376