Home | History | Annotate | Line # | Download | only in scsipi
ses.c revision 1.43.2.2
      1  1.43.2.2      yamt /*	$NetBSD: ses.c,v 1.43.2.2 2014/05/22 11:40:35 yamt Exp $ */
      2       1.1    mjacob /*
      3       1.1    mjacob  * Copyright (C) 2000 National Aeronautics & Space Administration
      4       1.1    mjacob  * All rights reserved.
      5       1.1    mjacob  *
      6       1.1    mjacob  * Redistribution and use in source and binary forms, with or without
      7       1.1    mjacob  * modification, are permitted provided that the following conditions
      8       1.1    mjacob  * are met:
      9       1.1    mjacob  * 1. Redistributions of source code must retain the above copyright
     10       1.1    mjacob  *    notice, this list of conditions and the following disclaimer.
     11       1.1    mjacob  * 2. The name of the author may not be used to endorse or promote products
     12       1.1    mjacob  *    derived from this software without specific prior written permission
     13       1.1    mjacob  *
     14       1.1    mjacob  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     15       1.1    mjacob  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     16       1.1    mjacob  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     17       1.1    mjacob  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     18       1.1    mjacob  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     19       1.1    mjacob  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     20       1.1    mjacob  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     21       1.1    mjacob  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22       1.1    mjacob  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     23       1.1    mjacob  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24       1.1    mjacob  *
     25       1.1    mjacob  * Author:	mjacob (at) nas.nasa.gov
     26       1.1    mjacob  */
     27       1.1    mjacob 
     28      1.12     lukem #include <sys/cdefs.h>
     29  1.43.2.2      yamt __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.43.2.2 2014/05/22 11:40:35 yamt Exp $");
     30       1.1    mjacob 
     31       1.1    mjacob #include "opt_scsi.h"
     32       1.1    mjacob 
     33       1.1    mjacob #include <sys/param.h>
     34       1.1    mjacob #include <sys/systm.h>
     35       1.1    mjacob #include <sys/kernel.h>
     36       1.1    mjacob #include <sys/file.h>
     37       1.1    mjacob #include <sys/stat.h>
     38       1.1    mjacob #include <sys/ioctl.h>
     39       1.1    mjacob #include <sys/scsiio.h>
     40       1.1    mjacob #include <sys/buf.h>
     41       1.1    mjacob #include <sys/uio.h>
     42       1.1    mjacob #include <sys/malloc.h>
     43       1.1    mjacob #include <sys/errno.h>
     44       1.1    mjacob #include <sys/device.h>
     45       1.1    mjacob #include <sys/disklabel.h>
     46       1.1    mjacob #include <sys/disk.h>
     47       1.1    mjacob #include <sys/proc.h>
     48       1.1    mjacob #include <sys/conf.h>
     49       1.1    mjacob #include <sys/vnode.h>
     50       1.1    mjacob 
     51       1.1    mjacob #include <dev/scsipi/scsipi_all.h>
     52      1.26   mycroft #include <dev/scsipi/scsipi_disk.h>
     53       1.1    mjacob #include <dev/scsipi/scsi_all.h>
     54       1.1    mjacob #include <dev/scsipi/scsi_disk.h>
     55      1.26   mycroft #include <dev/scsipi/scsipiconf.h>
     56      1.26   mycroft #include <dev/scsipi/scsipi_base.h>
     57       1.1    mjacob #include <dev/scsipi/ses.h>
     58       1.1    mjacob 
     59       1.1    mjacob /*
     60       1.1    mjacob  * Platform Independent Driver Internal Definitions for SES devices.
     61       1.1    mjacob  */
     62       1.1    mjacob typedef enum {
     63       1.1    mjacob 	SES_NONE,
     64       1.1    mjacob 	SES_SES_SCSI2,
     65       1.1    mjacob 	SES_SES,
     66       1.1    mjacob 	SES_SES_PASSTHROUGH,
     67       1.1    mjacob 	SES_SEN,
     68       1.1    mjacob 	SES_SAFT
     69       1.1    mjacob } enctyp;
     70       1.1    mjacob 
     71       1.1    mjacob struct ses_softc;
     72       1.1    mjacob typedef struct ses_softc ses_softc_t;
     73       1.1    mjacob typedef struct {
     74      1.23   thorpej 	int (*softc_init)(ses_softc_t *, int);
     75      1.23   thorpej 	int (*init_enc)(ses_softc_t *);
     76      1.23   thorpej 	int (*get_encstat)(ses_softc_t *, int);
     77      1.23   thorpej 	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
     78      1.23   thorpej 	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
     79      1.23   thorpej 	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
     80       1.1    mjacob } encvec;
     81       1.1    mjacob 
     82       1.1    mjacob #define	ENCI_SVALID	0x80
     83       1.1    mjacob 
     84       1.1    mjacob typedef struct {
     85       1.1    mjacob 	uint32_t
     86       1.1    mjacob 		enctype	: 8,		/* enclosure type */
     87       1.1    mjacob 		subenclosure : 8,	/* subenclosure id */
     88       1.1    mjacob 		svalid	: 1,		/* enclosure information valid */
     89       1.1    mjacob 		priv	: 15;		/* private data, per object */
     90       1.1    mjacob 	uint8_t	encstat[4];	/* state && stats */
     91       1.1    mjacob } encobj;
     92       1.1    mjacob 
     93       1.1    mjacob #define	SEN_ID		"UNISYS           SUN_SEN"
     94       1.1    mjacob #define	SEN_ID_LEN	24
     95       1.1    mjacob 
     96      1.23   thorpej static enctyp ses_type(struct scsipi_inquiry_data *);
     97       1.1    mjacob 
     98       1.1    mjacob 
     99       1.1    mjacob /* Forward reference to Enclosure Functions */
    100      1.23   thorpej static int ses_softc_init(ses_softc_t *, int);
    101      1.23   thorpej static int ses_init_enc(ses_softc_t *);
    102      1.23   thorpej static int ses_get_encstat(ses_softc_t *, int);
    103      1.23   thorpej static int ses_set_encstat(ses_softc_t *, uint8_t, int);
    104      1.23   thorpej static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
    105      1.23   thorpej static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
    106      1.23   thorpej 
    107      1.23   thorpej static int safte_softc_init(ses_softc_t *, int);
    108      1.23   thorpej static int safte_init_enc(ses_softc_t *);
    109      1.23   thorpej static int safte_get_encstat(ses_softc_t *, int);
    110      1.23   thorpej static int safte_set_encstat(ses_softc_t *, uint8_t, int);
    111      1.23   thorpej static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
    112      1.23   thorpej static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
    113       1.1    mjacob 
    114       1.1    mjacob /*
    115       1.1    mjacob  * Platform implementation defines/functions for SES internal kernel stuff
    116       1.1    mjacob  */
    117       1.1    mjacob 
    118       1.1    mjacob #define	STRNCMP			strncmp
    119       1.1    mjacob #define	PRINTF			printf
    120       1.1    mjacob #define	SES_LOG			ses_log
    121       1.1    mjacob #if	defined(DEBUG) || defined(SCSIDEBUG)
    122       1.1    mjacob #define	SES_VLOG		ses_log
    123       1.1    mjacob #else
    124       1.1    mjacob #define	SES_VLOG		if (0) ses_log
    125       1.1    mjacob #endif
    126       1.1    mjacob #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
    127       1.1    mjacob #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
    128      1.10   thorpej #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
    129      1.11   thorpej #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
    130       1.1    mjacob #define	RECEIVE_DIAGNOSTIC	0x1c
    131       1.1    mjacob #define	SEND_DIAGNOSTIC		0x1d
    132       1.1    mjacob #define	WRITE_BUFFER		0x3b
    133       1.1    mjacob #define	READ_BUFFER		0x3c
    134       1.1    mjacob 
    135      1.23   thorpej static dev_type_open(sesopen);
    136      1.23   thorpej static dev_type_close(sesclose);
    137      1.23   thorpej static dev_type_ioctl(sesioctl);
    138      1.14   gehenna 
    139      1.14   gehenna const struct cdevsw ses_cdevsw = {
    140  1.43.2.2      yamt 	.d_open = sesopen,
    141  1.43.2.2      yamt 	.d_close = sesclose,
    142  1.43.2.2      yamt 	.d_read = noread,
    143  1.43.2.2      yamt 	.d_write = nowrite,
    144  1.43.2.2      yamt 	.d_ioctl = sesioctl,
    145  1.43.2.2      yamt 	.d_stop = nostop,
    146  1.43.2.2      yamt 	.d_tty = notty,
    147  1.43.2.2      yamt 	.d_poll = nopoll,
    148  1.43.2.2      yamt 	.d_mmap = nommap,
    149  1.43.2.2      yamt 	.d_kqfilter = nokqfilter,
    150  1.43.2.2      yamt 	.d_flag = D_OTHER
    151      1.14   gehenna };
    152       1.1    mjacob 
    153      1.23   thorpej static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
    154      1.23   thorpej static void ses_log(struct ses_softc *, const char *, ...)
    155       1.7  sommerfe      __attribute__((__format__(__printf__, 2, 3)));
    156       1.1    mjacob 
    157       1.1    mjacob /*
    158       1.1    mjacob  * General NetBSD kernel stuff.
    159       1.1    mjacob  */
    160       1.1    mjacob 
    161       1.1    mjacob struct ses_softc {
    162  1.43.2.1      yamt 	device_t	sc_dev;
    163       1.9    bouyer 	struct scsipi_periph *sc_periph;
    164       1.1    mjacob 	enctyp		ses_type;	/* type of enclosure */
    165       1.1    mjacob 	encvec		ses_vec;	/* vector to handlers */
    166       1.1    mjacob 	void *		ses_private;	/* per-type private data */
    167       1.1    mjacob 	encobj *	ses_objmap;	/* objects */
    168      1.29   reinoud 	u_int32_t	ses_nobjects;	/* number of objects */
    169       1.1    mjacob 	ses_encstat	ses_encstat;	/* overall status */
    170      1.29   reinoud 	u_int8_t	ses_flags;
    171       1.1    mjacob };
    172       1.1    mjacob #define	SES_FLAG_INVALID	0x01
    173       1.1    mjacob #define	SES_FLAG_OPEN		0x02
    174       1.1    mjacob #define	SES_FLAG_INITIALIZED	0x04
    175       1.1    mjacob 
    176       1.1    mjacob #define SESUNIT(x)       (minor((x)))
    177       1.1    mjacob 
    178      1.42    cegger static int ses_match(device_t, cfdata_t, void *);
    179      1.42    cegger static void ses_attach(device_t, device_t, void *);
    180  1.43.2.2      yamt static int ses_detach(device_t, int);
    181      1.23   thorpej static enctyp ses_device_type(struct scsipibus_attach_args *);
    182       1.1    mjacob 
    183  1.43.2.1      yamt CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
    184  1.43.2.2      yamt     ses_match, ses_attach, ses_detach, NULL);
    185      1.16   thorpej 
    186       1.1    mjacob extern struct cfdriver ses_cd;
    187       1.1    mjacob 
    188      1.23   thorpej static const struct scsipi_periphsw ses_switch = {
    189       1.1    mjacob 	NULL,
    190       1.1    mjacob 	NULL,
    191       1.1    mjacob 	NULL,
    192       1.1    mjacob 	NULL
    193       1.1    mjacob };
    194       1.1    mjacob 
    195      1.23   thorpej static int
    196  1.43.2.1      yamt ses_match(device_t parent, cfdata_t match, void *aux)
    197       1.1    mjacob {
    198       1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    199       1.2    mjacob 
    200       1.1    mjacob 	switch (ses_device_type(sa)) {
    201       1.1    mjacob 	case SES_SES:
    202       1.1    mjacob 	case SES_SES_SCSI2:
    203       1.1    mjacob 	case SES_SEN:
    204       1.1    mjacob 	case SES_SAFT:
    205       1.2    mjacob 	case SES_SES_PASSTHROUGH:
    206       1.2    mjacob 		/*
    207       1.2    mjacob 		 * For these devices, it's a perfect match.
    208       1.2    mjacob 		 */
    209       1.2    mjacob 		return (24);
    210       1.1    mjacob 	default:
    211       1.1    mjacob 		return (0);
    212       1.1    mjacob 	}
    213       1.1    mjacob }
    214       1.1    mjacob 
    215       1.1    mjacob 
    216       1.1    mjacob /*
    217       1.1    mjacob  * Complete the attachment.
    218       1.1    mjacob  *
    219       1.1    mjacob  * We have to repeat the rerun of INQUIRY data as above because
    220       1.1    mjacob  * it's not until the return from the match routine that we have
    221       1.1    mjacob  * the softc available to set stuff in.
    222       1.1    mjacob  */
    223      1.23   thorpej static void
    224      1.42    cegger ses_attach(device_t parent, device_t self, void *aux)
    225       1.1    mjacob {
    226      1.31  christos 	const char *tname;
    227      1.33   thorpej 	struct ses_softc *softc = device_private(self);
    228       1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    229       1.9    bouyer 	struct scsipi_periph *periph = sa->sa_periph;
    230       1.1    mjacob 
    231  1.43.2.1      yamt 	softc->sc_dev = self;
    232       1.9    bouyer 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
    233       1.9    bouyer 	softc->sc_periph = periph;
    234  1.43.2.1      yamt 	periph->periph_dev = self;
    235       1.9    bouyer 	periph->periph_switch = &ses_switch;
    236       1.9    bouyer 	periph->periph_openings = 1;
    237       1.1    mjacob 
    238       1.1    mjacob 	softc->ses_type = ses_device_type(sa);
    239       1.1    mjacob 	switch (softc->ses_type) {
    240       1.1    mjacob 	case SES_SES:
    241       1.1    mjacob 	case SES_SES_SCSI2:
    242       1.1    mjacob         case SES_SES_PASSTHROUGH:
    243       1.1    mjacob 		softc->ses_vec.softc_init = ses_softc_init;
    244       1.1    mjacob 		softc->ses_vec.init_enc = ses_init_enc;
    245       1.1    mjacob 		softc->ses_vec.get_encstat = ses_get_encstat;
    246       1.1    mjacob 		softc->ses_vec.set_encstat = ses_set_encstat;
    247       1.1    mjacob 		softc->ses_vec.get_objstat = ses_get_objstat;
    248       1.1    mjacob 		softc->ses_vec.set_objstat = ses_set_objstat;
    249       1.1    mjacob 		break;
    250       1.1    mjacob         case SES_SAFT:
    251       1.1    mjacob 		softc->ses_vec.softc_init = safte_softc_init;
    252       1.1    mjacob 		softc->ses_vec.init_enc = safte_init_enc;
    253       1.1    mjacob 		softc->ses_vec.get_encstat = safte_get_encstat;
    254       1.1    mjacob 		softc->ses_vec.set_encstat = safte_set_encstat;
    255       1.1    mjacob 		softc->ses_vec.get_objstat = safte_get_objstat;
    256       1.1    mjacob 		softc->ses_vec.set_objstat = safte_set_objstat;
    257       1.1    mjacob 		break;
    258       1.1    mjacob         case SES_SEN:
    259       1.1    mjacob 		break;
    260       1.1    mjacob 	case SES_NONE:
    261       1.1    mjacob 	default:
    262       1.1    mjacob 		break;
    263       1.1    mjacob 	}
    264       1.1    mjacob 
    265       1.1    mjacob 	switch (softc->ses_type) {
    266       1.1    mjacob 	default:
    267       1.1    mjacob 	case SES_NONE:
    268       1.1    mjacob 		tname = "No SES device";
    269       1.1    mjacob 		break;
    270       1.1    mjacob 	case SES_SES_SCSI2:
    271       1.1    mjacob 		tname = "SCSI-2 SES Device";
    272       1.1    mjacob 		break;
    273       1.1    mjacob 	case SES_SES:
    274       1.1    mjacob 		tname = "SCSI-3 SES Device";
    275       1.1    mjacob 		break;
    276       1.1    mjacob         case SES_SES_PASSTHROUGH:
    277       1.1    mjacob 		tname = "SES Passthrough Device";
    278       1.1    mjacob 		break;
    279       1.1    mjacob         case SES_SEN:
    280       1.1    mjacob 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
    281       1.1    mjacob 		break;
    282       1.1    mjacob         case SES_SAFT:
    283       1.1    mjacob 		tname = "SAF-TE Compliant Device";
    284       1.1    mjacob 		break;
    285       1.1    mjacob 	}
    286  1.43.2.1      yamt 	printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
    287       1.1    mjacob }
    288       1.1    mjacob 
    289       1.1    mjacob static enctyp
    290      1.23   thorpej ses_device_type(struct scsipibus_attach_args *sa)
    291       1.1    mjacob {
    292       1.1    mjacob 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
    293      1.30     perry 
    294       1.1    mjacob 	if (inqp == NULL)
    295       1.1    mjacob 		return (SES_NONE);
    296       1.1    mjacob 
    297       1.5     dante 	return (ses_type(inqp));
    298       1.1    mjacob }
    299       1.1    mjacob 
    300      1.23   thorpej static int
    301      1.37  christos sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
    302       1.1    mjacob {
    303       1.1    mjacob 	struct ses_softc *softc;
    304       1.1    mjacob 	int error, unit;
    305       1.1    mjacob 
    306       1.1    mjacob 	unit = SESUNIT(dev);
    307      1.40   tsutsui 	softc = device_lookup_private(&ses_cd, unit);
    308       1.1    mjacob 	if (softc == NULL)
    309       1.1    mjacob 		return (ENXIO);
    310       1.1    mjacob 
    311       1.1    mjacob 	if (softc->ses_flags & SES_FLAG_INVALID) {
    312       1.1    mjacob 		error = ENXIO;
    313       1.1    mjacob 		goto out;
    314       1.1    mjacob 	}
    315       1.1    mjacob 	if (softc->ses_flags & SES_FLAG_OPEN) {
    316       1.1    mjacob 		error = EBUSY;
    317       1.1    mjacob 		goto out;
    318       1.1    mjacob 	}
    319       1.1    mjacob 	if (softc->ses_vec.softc_init == NULL) {
    320       1.1    mjacob 		error = ENXIO;
    321       1.1    mjacob 		goto out;
    322       1.1    mjacob 	}
    323       1.9    bouyer 	error = scsipi_adapter_addref(
    324       1.9    bouyer 	    softc->sc_periph->periph_channel->chan_adapter);
    325       1.1    mjacob 	if (error != 0)
    326       1.1    mjacob                 goto out;
    327       1.1    mjacob 
    328       1.1    mjacob 
    329       1.1    mjacob 	softc->ses_flags |= SES_FLAG_OPEN;
    330       1.1    mjacob 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    331       1.1    mjacob 		error = (*softc->ses_vec.softc_init)(softc, 1);
    332       1.1    mjacob 		if (error)
    333       1.1    mjacob 			softc->ses_flags &= ~SES_FLAG_OPEN;
    334       1.1    mjacob 		else
    335       1.1    mjacob 			softc->ses_flags |= SES_FLAG_INITIALIZED;
    336       1.1    mjacob 	}
    337       1.1    mjacob 
    338       1.1    mjacob out:
    339       1.1    mjacob 	return (error);
    340       1.1    mjacob }
    341       1.1    mjacob 
    342      1.23   thorpej static int
    343      1.37  christos sesclose(dev_t dev, int flags, int fmt,
    344      1.37  christos     struct lwp *l)
    345       1.1    mjacob {
    346       1.1    mjacob 	struct ses_softc *softc;
    347       1.1    mjacob 	int unit;
    348       1.1    mjacob 
    349       1.1    mjacob 	unit = SESUNIT(dev);
    350      1.40   tsutsui 	softc = device_lookup_private(&ses_cd, unit);
    351       1.1    mjacob 	if (softc == NULL)
    352       1.1    mjacob 		return (ENXIO);
    353       1.1    mjacob 
    354       1.9    bouyer 	scsipi_wait_drain(softc->sc_periph);
    355       1.9    bouyer 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
    356       1.1    mjacob 	softc->ses_flags &= ~SES_FLAG_OPEN;
    357       1.1    mjacob 	return (0);
    358       1.1    mjacob }
    359       1.1    mjacob 
    360      1.23   thorpej static int
    361      1.38  christos sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
    362       1.1    mjacob {
    363       1.1    mjacob 	ses_encstat tmp;
    364       1.1    mjacob 	ses_objstat objs;
    365       1.1    mjacob 	ses_object obj, *uobj;
    366      1.40   tsutsui 	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
    367       1.1    mjacob 	void *addr;
    368       1.1    mjacob 	int error, i;
    369       1.1    mjacob 
    370       1.1    mjacob 
    371       1.1    mjacob 	if (arg_addr)
    372      1.38  christos 		addr = *((void **) arg_addr);
    373       1.1    mjacob 	else
    374       1.1    mjacob 		addr = NULL;
    375       1.1    mjacob 
    376       1.9    bouyer 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
    377       1.1    mjacob 
    378       1.1    mjacob 	/*
    379       1.1    mjacob 	 * Now check to see whether we're initialized or not.
    380       1.1    mjacob 	 */
    381       1.1    mjacob 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    382       1.1    mjacob 		return (ENODEV);
    383       1.1    mjacob 	}
    384       1.1    mjacob 
    385       1.1    mjacob 	error = 0;
    386       1.1    mjacob 
    387       1.1    mjacob 	/*
    388       1.1    mjacob 	 * If this command can change the device's state,
    389       1.1    mjacob 	 * we must have the device open for writing.
    390       1.1    mjacob 	 */
    391       1.1    mjacob 	switch (cmd) {
    392       1.1    mjacob 	case SESIOC_GETNOBJ:
    393       1.1    mjacob 	case SESIOC_GETOBJMAP:
    394       1.1    mjacob 	case SESIOC_GETENCSTAT:
    395       1.1    mjacob 	case SESIOC_GETOBJSTAT:
    396       1.1    mjacob 		break;
    397       1.1    mjacob 	default:
    398       1.1    mjacob 		if ((flag & FWRITE) == 0) {
    399       1.1    mjacob 			return (EBADF);
    400       1.1    mjacob 		}
    401       1.1    mjacob 	}
    402       1.1    mjacob 
    403       1.1    mjacob 	switch (cmd) {
    404       1.1    mjacob 	case SESIOC_GETNOBJ:
    405      1.34  christos 		if (addr == NULL)
    406      1.34  christos 			return EINVAL;
    407       1.1    mjacob 		error = copyout(&ssc->ses_nobjects, addr,
    408       1.1    mjacob 		    sizeof (ssc->ses_nobjects));
    409       1.1    mjacob 		break;
    410      1.30     perry 
    411       1.1    mjacob 	case SESIOC_GETOBJMAP:
    412      1.34  christos 		if (addr == NULL)
    413      1.34  christos 			return EINVAL;
    414       1.1    mjacob 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
    415       1.1    mjacob 			obj.obj_id = i;
    416       1.1    mjacob 			obj.subencid = ssc->ses_objmap[i].subenclosure;
    417       1.1    mjacob 			obj.object_type = ssc->ses_objmap[i].enctype;
    418       1.1    mjacob 			error = copyout(&obj, uobj, sizeof (ses_object));
    419       1.1    mjacob 			if (error) {
    420       1.1    mjacob 				break;
    421       1.1    mjacob 			}
    422       1.1    mjacob 		}
    423       1.1    mjacob 		break;
    424       1.1    mjacob 
    425       1.1    mjacob 	case SESIOC_GETENCSTAT:
    426      1.34  christos 		if (addr == NULL)
    427      1.34  christos 			return EINVAL;
    428       1.1    mjacob 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
    429       1.1    mjacob 		if (error)
    430       1.1    mjacob 			break;
    431       1.1    mjacob 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
    432       1.1    mjacob 		error = copyout(&tmp, addr, sizeof (ses_encstat));
    433       1.1    mjacob 		ssc->ses_encstat = tmp;
    434       1.1    mjacob 		break;
    435       1.1    mjacob 
    436       1.1    mjacob 	case SESIOC_SETENCSTAT:
    437      1.34  christos 		if (addr == NULL)
    438      1.34  christos 			return EINVAL;
    439       1.1    mjacob 		error = copyin(addr, &tmp, sizeof (ses_encstat));
    440       1.1    mjacob 		if (error)
    441       1.1    mjacob 			break;
    442       1.1    mjacob 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
    443       1.1    mjacob 		break;
    444       1.1    mjacob 
    445       1.1    mjacob 	case SESIOC_GETOBJSTAT:
    446      1.34  christos 		if (addr == NULL)
    447      1.34  christos 			return EINVAL;
    448       1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    449       1.1    mjacob 		if (error)
    450       1.1    mjacob 			break;
    451       1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    452       1.1    mjacob 			error = EINVAL;
    453       1.1    mjacob 			break;
    454       1.1    mjacob 		}
    455       1.1    mjacob 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
    456       1.1    mjacob 		if (error)
    457       1.1    mjacob 			break;
    458       1.1    mjacob 		error = copyout(&objs, addr, sizeof (ses_objstat));
    459       1.1    mjacob 		/*
    460       1.1    mjacob 		 * Always (for now) invalidate entry.
    461       1.1    mjacob 		 */
    462       1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    463       1.1    mjacob 		break;
    464       1.1    mjacob 
    465       1.1    mjacob 	case SESIOC_SETOBJSTAT:
    466      1.34  christos 		if (addr == NULL)
    467      1.34  christos 			return EINVAL;
    468       1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    469       1.1    mjacob 		if (error)
    470       1.1    mjacob 			break;
    471       1.1    mjacob 
    472       1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    473       1.1    mjacob 			error = EINVAL;
    474       1.1    mjacob 			break;
    475       1.1    mjacob 		}
    476       1.1    mjacob 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
    477       1.1    mjacob 
    478       1.1    mjacob 		/*
    479       1.1    mjacob 		 * Always (for now) invalidate entry.
    480       1.1    mjacob 		 */
    481       1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    482       1.1    mjacob 		break;
    483       1.1    mjacob 
    484       1.1    mjacob 	case SESIOC_INIT:
    485       1.1    mjacob 
    486       1.1    mjacob 		error = (*ssc->ses_vec.init_enc)(ssc);
    487       1.1    mjacob 		break;
    488       1.1    mjacob 
    489       1.1    mjacob 	default:
    490       1.9    bouyer 		error = scsipi_do_ioctl(ssc->sc_periph,
    491      1.32  christos 			    dev, cmd, arg_addr, flag, l);
    492       1.1    mjacob 		break;
    493       1.1    mjacob 	}
    494       1.1    mjacob 	return (error);
    495       1.1    mjacob }
    496       1.1    mjacob 
    497       1.1    mjacob static int
    498       1.1    mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
    499       1.1    mjacob {
    500       1.1    mjacob 	struct scsipi_generic sgen;
    501       1.1    mjacob 	int dl, flg, error;
    502       1.1    mjacob 
    503       1.1    mjacob 	if (dptr) {
    504       1.1    mjacob 		if ((dl = *dlenp) < 0) {
    505       1.1    mjacob 			dl = -dl;
    506       1.1    mjacob 			flg = XS_CTL_DATA_OUT;
    507       1.1    mjacob 		} else {
    508       1.1    mjacob 			flg = XS_CTL_DATA_IN;
    509       1.1    mjacob 		}
    510       1.1    mjacob 	} else {
    511       1.1    mjacob 		dl = 0;
    512       1.1    mjacob 		flg = 0;
    513       1.1    mjacob 	}
    514       1.1    mjacob 
    515       1.1    mjacob 	if (cdbl > sizeof (struct scsipi_generic)) {
    516       1.1    mjacob 		cdbl = sizeof (struct scsipi_generic);
    517       1.1    mjacob 	}
    518      1.11   thorpej 	memcpy(&sgen, cdb, cdbl);
    519       1.1    mjacob #ifndef	SCSIDEBUG
    520       1.1    mjacob 	flg |= XS_CTL_SILENT;
    521       1.1    mjacob #endif
    522      1.25   mycroft 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
    523      1.29   reinoud 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
    524       1.1    mjacob 
    525       1.1    mjacob 	if (error == 0 && dptr)
    526       1.1    mjacob 		*dlenp = 0;
    527       1.1    mjacob 
    528       1.1    mjacob 	return (error);
    529       1.1    mjacob }
    530       1.1    mjacob 
    531       1.1    mjacob static void
    532       1.1    mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
    533       1.1    mjacob {
    534       1.1    mjacob 	va_list ap;
    535       1.1    mjacob 
    536  1.43.2.1      yamt 	printf("%s: ", device_xname(ssc->sc_dev));
    537       1.1    mjacob 	va_start(ap, fmt);
    538       1.1    mjacob 	vprintf(fmt, ap);
    539       1.1    mjacob 	va_end(ap);
    540       1.1    mjacob }
    541       1.1    mjacob 
    542       1.1    mjacob /*
    543       1.1    mjacob  * The code after this point runs on many platforms,
    544       1.1    mjacob  * so forgive the slightly awkward and nonconforming
    545       1.1    mjacob  * appearance.
    546       1.1    mjacob  */
    547       1.1    mjacob 
    548       1.1    mjacob /*
    549       1.1    mjacob  * Is this a device that supports enclosure services?
    550       1.1    mjacob  *
    551       1.1    mjacob  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
    552       1.1    mjacob  * an SES device. If it happens to be an old UNISYS SEN device, we can
    553       1.1    mjacob  * handle that too.
    554       1.1    mjacob  */
    555       1.3    mjacob 
    556       1.3    mjacob #define	SAFTE_START	44
    557       1.3    mjacob #define	SAFTE_END	50
    558       1.3    mjacob #define	SAFTE_LEN	SAFTE_END-SAFTE_START
    559       1.1    mjacob 
    560       1.1    mjacob static enctyp
    561      1.23   thorpej ses_type(struct scsipi_inquiry_data *inqp)
    562       1.1    mjacob {
    563       1.5     dante 	size_t	given_len = inqp->additional_length + 4;
    564       1.1    mjacob 
    565       1.5     dante 	if (given_len < 8+SEN_ID_LEN)
    566       1.1    mjacob 		return (SES_NONE);
    567       1.1    mjacob 
    568       1.5     dante 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
    569       1.5     dante 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
    570       1.1    mjacob 			return (SES_SEN);
    571       1.5     dante 		} else if ((inqp->version & SID_ANSII) > 2) {
    572       1.1    mjacob 			return (SES_SES);
    573       1.1    mjacob 		} else {
    574       1.1    mjacob 			return (SES_SES_SCSI2);
    575       1.1    mjacob 		}
    576       1.1    mjacob 		return (SES_NONE);
    577       1.1    mjacob 	}
    578       1.1    mjacob 
    579       1.1    mjacob #ifdef	SES_ENABLE_PASSTHROUGH
    580       1.5     dante 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
    581       1.1    mjacob 		/*
    582       1.1    mjacob 		 * PassThrough Device.
    583       1.1    mjacob 		 */
    584       1.1    mjacob 		return (SES_SES_PASSTHROUGH);
    585       1.1    mjacob 	}
    586       1.1    mjacob #endif
    587       1.1    mjacob 
    588       1.2    mjacob 	/*
    589       1.2    mjacob 	 * The comparison is short for a reason-
    590       1.2    mjacob 	 * some vendors were chopping it short.
    591       1.2    mjacob 	 */
    592       1.2    mjacob 
    593       1.5     dante 	if (given_len < SAFTE_END - 2) {
    594       1.1    mjacob 		return (SES_NONE);
    595       1.1    mjacob 	}
    596       1.2    mjacob 
    597       1.5     dante 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
    598       1.5     dante 			SAFTE_LEN - 2) == 0) {
    599       1.1    mjacob 		return (SES_SAFT);
    600       1.6   thorpej 	}
    601       1.5     dante 
    602       1.1    mjacob 	return (SES_NONE);
    603       1.1    mjacob }
    604       1.1    mjacob 
    605       1.1    mjacob /*
    606       1.1    mjacob  * SES Native Type Device Support
    607       1.1    mjacob  */
    608       1.1    mjacob 
    609       1.1    mjacob /*
    610       1.1    mjacob  * SES Diagnostic Page Codes
    611       1.1    mjacob  */
    612       1.1    mjacob 
    613       1.1    mjacob typedef enum {
    614       1.1    mjacob 	SesConfigPage = 0x1,
    615       1.1    mjacob 	SesControlPage,
    616       1.1    mjacob #define	SesStatusPage SesControlPage
    617       1.1    mjacob 	SesHelpTxt,
    618       1.1    mjacob 	SesStringOut,
    619       1.1    mjacob #define	SesStringIn	SesStringOut
    620       1.1    mjacob 	SesThresholdOut,
    621       1.1    mjacob #define	SesThresholdIn SesThresholdOut
    622       1.1    mjacob 	SesArrayControl,
    623       1.1    mjacob #define	SesArrayStatus	SesArrayControl
    624       1.1    mjacob 	SesElementDescriptor,
    625       1.1    mjacob 	SesShortStatus
    626       1.1    mjacob } SesDiagPageCodes;
    627       1.1    mjacob 
    628       1.1    mjacob /*
    629       1.1    mjacob  * minimal amounts
    630       1.1    mjacob  */
    631       1.1    mjacob 
    632       1.1    mjacob /*
    633       1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    634       1.1    mjacob  * the config header.
    635       1.1    mjacob  */
    636       1.1    mjacob #define	SES_CFGHDR_MINLEN	12
    637       1.1    mjacob 
    638       1.1    mjacob /*
    639       1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    640       1.1    mjacob  * the config header and one enclosure header.
    641       1.1    mjacob  */
    642       1.1    mjacob #define	SES_ENCHDR_MINLEN	48
    643       1.1    mjacob 
    644       1.1    mjacob /*
    645       1.1    mjacob  * Take this value, subtract it from VEnclen and you know
    646       1.1    mjacob  * the length of the vendor unique bytes.
    647       1.1    mjacob  */
    648       1.1    mjacob #define	SES_ENCHDR_VMIN		36
    649       1.1    mjacob 
    650       1.1    mjacob /*
    651       1.1    mjacob  * SES Data Structures
    652       1.1    mjacob  */
    653       1.1    mjacob 
    654       1.1    mjacob typedef struct {
    655       1.1    mjacob 	uint32_t GenCode;	/* Generation Code */
    656       1.1    mjacob 	uint8_t	Nsubenc;	/* Number of Subenclosures */
    657       1.1    mjacob } SesCfgHdr;
    658       1.1    mjacob 
    659       1.1    mjacob typedef struct {
    660       1.1    mjacob 	uint8_t	Subencid;	/* SubEnclosure Identifier */
    661       1.1    mjacob 	uint8_t	Ntypes;		/* # of supported types */
    662       1.1    mjacob 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
    663       1.1    mjacob } SesEncHdr;
    664       1.1    mjacob 
    665       1.1    mjacob typedef struct {
    666       1.1    mjacob 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
    667       1.1    mjacob 	uint8_t	encVid[8];
    668       1.1    mjacob 	uint8_t	encPid[16];
    669       1.1    mjacob 	uint8_t	encRev[4];
    670       1.1    mjacob 	uint8_t	encVen[1];
    671       1.1    mjacob } SesEncDesc;
    672       1.1    mjacob 
    673       1.1    mjacob typedef struct {
    674       1.1    mjacob 	uint8_t	enc_type;		/* type of element */
    675       1.1    mjacob 	uint8_t	enc_maxelt;		/* maximum supported */
    676       1.1    mjacob 	uint8_t	enc_subenc;		/* in SubEnc # N */
    677       1.1    mjacob 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
    678       1.1    mjacob } SesThdr;
    679       1.1    mjacob 
    680       1.1    mjacob typedef struct {
    681       1.1    mjacob 	uint8_t	comstatus;
    682       1.1    mjacob 	uint8_t	comstat[3];
    683       1.1    mjacob } SesComStat;
    684       1.1    mjacob 
    685       1.1    mjacob struct typidx {
    686       1.1    mjacob 	int ses_tidx;
    687       1.1    mjacob 	int ses_oidx;
    688       1.1    mjacob };
    689       1.1    mjacob 
    690       1.1    mjacob struct sscfg {
    691       1.1    mjacob 	uint8_t ses_ntypes;	/* total number of types supported */
    692       1.1    mjacob 
    693       1.1    mjacob 	/*
    694       1.1    mjacob 	 * We need to keep a type index as well as an
    695       1.1    mjacob 	 * object index for each object in an enclosure.
    696       1.1    mjacob 	 */
    697       1.1    mjacob 	struct typidx *ses_typidx;
    698       1.1    mjacob 
    699       1.1    mjacob 	/*
    700       1.1    mjacob 	 * We also need to keep track of the number of elements
    701       1.1    mjacob 	 * per type of element. This is needed later so that we
    702       1.1    mjacob 	 * can find precisely in the returned status data the
    703       1.1    mjacob 	 * status for the Nth element of the Kth type.
    704       1.1    mjacob 	 */
    705       1.1    mjacob 	uint8_t *	ses_eltmap;
    706       1.1    mjacob };
    707       1.1    mjacob 
    708       1.1    mjacob 
    709       1.1    mjacob /*
    710       1.1    mjacob  * (de)canonicalization defines
    711       1.1    mjacob  */
    712       1.1    mjacob #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
    713       1.1    mjacob #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
    714       1.1    mjacob #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    715       1.1    mjacob 
    716       1.1    mjacob #define	sset16(outp, idx, sval)	\
    717       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    718       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    719       1.1    mjacob 
    720       1.1    mjacob 
    721       1.1    mjacob #define	sset24(outp, idx, sval)	\
    722       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    723       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    724       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    725       1.1    mjacob 
    726       1.1    mjacob 
    727       1.1    mjacob #define	sset32(outp, idx, sval)	\
    728       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
    729       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    730       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    731       1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    732       1.1    mjacob 
    733       1.1    mjacob #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
    734       1.1    mjacob #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
    735       1.1    mjacob #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
    736       1.1    mjacob #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
    737       1.1    mjacob 
    738       1.1    mjacob #define	sget16(inp, idx, lval)	\
    739       1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    740       1.1    mjacob 		(((uint8_t *)(inp))[idx+1]), idx += 2
    741       1.1    mjacob 
    742       1.1    mjacob #define	gget16(inp, idx, lval)	\
    743       1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    744       1.1    mjacob 		(((uint8_t *)(inp))[idx+1])
    745       1.1    mjacob 
    746       1.1    mjacob #define	sget24(inp, idx, lval)	\
    747       1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    748       1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    749       1.1    mjacob 			(((uint8_t *)(inp))[idx+2]), idx += 3
    750       1.1    mjacob 
    751       1.1    mjacob #define	gget24(inp, idx, lval)	\
    752       1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    753       1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    754       1.1    mjacob 			(((uint8_t *)(inp))[idx+2])
    755       1.1    mjacob 
    756       1.1    mjacob #define	sget32(inp, idx, lval)	\
    757       1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    758       1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    759       1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    760       1.1    mjacob 			(((uint8_t *)(inp))[idx+3]), idx += 4
    761       1.1    mjacob 
    762       1.1    mjacob #define	gget32(inp, idx, lval)	\
    763       1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    764       1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    765       1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    766       1.1    mjacob 			(((uint8_t *)(inp))[idx+3])
    767       1.1    mjacob 
    768       1.1    mjacob #define	SCSZ	0x2000
    769       1.1    mjacob #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
    770       1.1    mjacob 
    771       1.1    mjacob /*
    772       1.1    mjacob  * Routines specific && private to SES only
    773       1.1    mjacob  */
    774       1.1    mjacob 
    775       1.1    mjacob static int ses_getconfig(ses_softc_t *);
    776       1.1    mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
    777       1.1    mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
    778       1.1    mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
    779       1.1    mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
    780       1.1    mjacob static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
    781       1.1    mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
    782       1.1    mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
    783       1.1    mjacob 
    784       1.1    mjacob static int
    785       1.1    mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
    786       1.1    mjacob {
    787       1.1    mjacob 	if (doinit == 0) {
    788       1.1    mjacob 		struct sscfg *cc;
    789       1.1    mjacob 		if (ssc->ses_nobjects) {
    790       1.1    mjacob 			SES_FREE(ssc->ses_objmap,
    791       1.1    mjacob 			    ssc->ses_nobjects * sizeof (encobj));
    792       1.1    mjacob 			ssc->ses_objmap = NULL;
    793       1.1    mjacob 		}
    794       1.1    mjacob 		if ((cc = ssc->ses_private) != NULL) {
    795       1.1    mjacob 			if (cc->ses_eltmap && cc->ses_ntypes) {
    796       1.1    mjacob 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
    797       1.1    mjacob 				cc->ses_eltmap = NULL;
    798       1.1    mjacob 				cc->ses_ntypes = 0;
    799       1.1    mjacob 			}
    800       1.1    mjacob 			if (cc->ses_typidx && ssc->ses_nobjects) {
    801       1.1    mjacob 				SES_FREE(cc->ses_typidx,
    802       1.1    mjacob 				    ssc->ses_nobjects * sizeof (struct typidx));
    803       1.1    mjacob 				cc->ses_typidx = NULL;
    804       1.1    mjacob 			}
    805       1.1    mjacob 			SES_FREE(cc, sizeof (struct sscfg));
    806       1.1    mjacob 			ssc->ses_private = NULL;
    807       1.1    mjacob 		}
    808       1.1    mjacob 		ssc->ses_nobjects = 0;
    809       1.1    mjacob 		return (0);
    810       1.1    mjacob 	}
    811       1.1    mjacob 	if (ssc->ses_private == NULL) {
    812       1.1    mjacob 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
    813       1.1    mjacob 	}
    814       1.1    mjacob 	if (ssc->ses_private == NULL) {
    815       1.1    mjacob 		return (ENOMEM);
    816       1.1    mjacob 	}
    817       1.1    mjacob 	ssc->ses_nobjects = 0;
    818       1.1    mjacob 	ssc->ses_encstat = 0;
    819       1.1    mjacob 	return (ses_getconfig(ssc));
    820       1.1    mjacob }
    821       1.1    mjacob 
    822       1.1    mjacob static int
    823  1.43.2.2      yamt ses_detach(device_t self, int flags)
    824  1.43.2.2      yamt {
    825  1.43.2.2      yamt 	struct ses_softc *ssc = device_private(self);
    826  1.43.2.2      yamt 	struct sscfg *cc = ssc->ses_private;
    827  1.43.2.2      yamt 
    828  1.43.2.2      yamt 	if (ssc->ses_objmap) {
    829  1.43.2.2      yamt 		SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
    830  1.43.2.2      yamt 	}
    831  1.43.2.2      yamt 	if (cc != NULL) {
    832  1.43.2.2      yamt 		if (cc->ses_typidx) {
    833  1.43.2.2      yamt 			SES_FREE(cc->ses_typidx,
    834  1.43.2.2      yamt 			    (nobj * sizeof (struct typidx)));
    835  1.43.2.2      yamt 		}
    836  1.43.2.2      yamt 		if (cc->ses_eltmap) {
    837  1.43.2.2      yamt 			SES_FREE(cc->ses_eltmap, ntype);
    838  1.43.2.2      yamt 		}
    839  1.43.2.2      yamt 		SES_FREE(cc, sizeof (struct sscfg));
    840  1.43.2.2      yamt 	}
    841  1.43.2.2      yamt 
    842  1.43.2.2      yamt 	return 0;
    843  1.43.2.2      yamt }
    844  1.43.2.2      yamt 
    845  1.43.2.2      yamt static int
    846      1.37  christos ses_init_enc(ses_softc_t *ssc)
    847       1.1    mjacob {
    848       1.1    mjacob 	return (0);
    849       1.1    mjacob }
    850       1.1    mjacob 
    851       1.1    mjacob static int
    852       1.1    mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
    853       1.1    mjacob {
    854       1.1    mjacob 	SesComStat ComStat;
    855       1.1    mjacob 	int status;
    856       1.1    mjacob 
    857       1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
    858       1.1    mjacob 		return (status);
    859       1.1    mjacob 	}
    860       1.1    mjacob 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
    861       1.1    mjacob 	return (0);
    862       1.1    mjacob }
    863       1.1    mjacob 
    864       1.1    mjacob static int
    865       1.1    mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
    866       1.1    mjacob {
    867       1.1    mjacob 	SesComStat ComStat;
    868       1.1    mjacob 	int status;
    869       1.1    mjacob 
    870       1.1    mjacob 	ComStat.comstatus = encstat & 0xf;
    871       1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
    872       1.1    mjacob 		return (status);
    873       1.1    mjacob 	}
    874       1.1    mjacob 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
    875       1.1    mjacob 	return (0);
    876       1.1    mjacob }
    877       1.1    mjacob 
    878       1.1    mjacob static int
    879       1.1    mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    880       1.1    mjacob {
    881       1.1    mjacob 	int i = (int)obp->obj_id;
    882       1.1    mjacob 
    883       1.1    mjacob 	if (ssc->ses_objmap[i].svalid == 0) {
    884       1.1    mjacob 		SesComStat ComStat;
    885       1.1    mjacob 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
    886       1.1    mjacob 		if (err)
    887       1.1    mjacob 			return (err);
    888       1.1    mjacob 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
    889       1.1    mjacob 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
    890       1.1    mjacob 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
    891       1.1    mjacob 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
    892       1.1    mjacob 		ssc->ses_objmap[i].svalid = 1;
    893       1.1    mjacob 	}
    894       1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
    895       1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
    896       1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
    897       1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
    898       1.1    mjacob 	return (0);
    899       1.1    mjacob }
    900       1.1    mjacob 
    901       1.1    mjacob static int
    902       1.1    mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    903       1.1    mjacob {
    904       1.1    mjacob 	SesComStat ComStat;
    905       1.1    mjacob 	int err;
    906       1.1    mjacob 	/*
    907       1.1    mjacob 	 * If this is clear, we don't do diddly.
    908       1.1    mjacob 	 */
    909       1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
    910       1.1    mjacob 		return (0);
    911       1.1    mjacob 	}
    912       1.1    mjacob 	ComStat.comstatus = obp->cstat[0];
    913       1.1    mjacob 	ComStat.comstat[0] = obp->cstat[1];
    914       1.1    mjacob 	ComStat.comstat[1] = obp->cstat[2];
    915       1.1    mjacob 	ComStat.comstat[2] = obp->cstat[3];
    916       1.1    mjacob 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
    917       1.1    mjacob 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
    918       1.1    mjacob 	return (err);
    919       1.1    mjacob }
    920       1.1    mjacob 
    921       1.1    mjacob static int
    922       1.1    mjacob ses_getconfig(ses_softc_t *ssc)
    923       1.1    mjacob {
    924       1.1    mjacob 	struct sscfg *cc;
    925       1.1    mjacob 	SesCfgHdr cf;
    926       1.1    mjacob 	SesEncHdr hd;
    927       1.1    mjacob 	SesEncDesc *cdp;
    928       1.1    mjacob 	SesThdr thdr;
    929       1.1    mjacob 	int err, amt, i, nobj, ntype, maxima;
    930       1.1    mjacob 	char storage[CFLEN], *sdata;
    931       1.1    mjacob 	static char cdb[6] = {
    932       1.1    mjacob 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
    933       1.1    mjacob 	};
    934       1.1    mjacob 
    935       1.1    mjacob 	cc = ssc->ses_private;
    936       1.1    mjacob 	if (cc == NULL) {
    937       1.1    mjacob 		return (ENXIO);
    938       1.1    mjacob 	}
    939       1.1    mjacob 
    940       1.1    mjacob 	sdata = SES_MALLOC(SCSZ);
    941       1.1    mjacob 	if (sdata == NULL)
    942       1.1    mjacob 		return (ENOMEM);
    943       1.1    mjacob 
    944       1.1    mjacob 	amt = SCSZ;
    945       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
    946       1.1    mjacob 	if (err) {
    947       1.1    mjacob 		SES_FREE(sdata, SCSZ);
    948       1.1    mjacob 		return (err);
    949       1.1    mjacob 	}
    950       1.1    mjacob 	amt = SCSZ - amt;
    951       1.1    mjacob 
    952       1.1    mjacob 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
    953       1.1    mjacob 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
    954       1.1    mjacob 		SES_FREE(sdata, SCSZ);
    955       1.1    mjacob 		return (EIO);
    956       1.1    mjacob 	}
    957       1.1    mjacob 	if (amt < SES_ENCHDR_MINLEN) {
    958       1.1    mjacob 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
    959       1.1    mjacob 		SES_FREE(sdata, SCSZ);
    960       1.1    mjacob 		return (EIO);
    961       1.1    mjacob 	}
    962       1.1    mjacob 
    963       1.1    mjacob 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
    964       1.1    mjacob 
    965       1.1    mjacob 	/*
    966       1.1    mjacob 	 * Now waltz through all the subenclosures toting up the
    967       1.1    mjacob 	 * number of types available in each. For this, we only
    968       1.1    mjacob 	 * really need the enclosure header. However, we get the
    969       1.1    mjacob 	 * enclosure descriptor for debug purposes, as well
    970       1.1    mjacob 	 * as self-consistency checking purposes.
    971       1.1    mjacob 	 */
    972       1.1    mjacob 
    973       1.1    mjacob 	maxima = cf.Nsubenc + 1;
    974       1.1    mjacob 	cdp = (SesEncDesc *) storage;
    975       1.1    mjacob 	for (ntype = i = 0; i < maxima; i++) {
    976      1.38  christos 		MEMZERO((void *)cdp, sizeof (*cdp));
    977       1.1    mjacob 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
    978       1.1    mjacob 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
    979       1.1    mjacob 			SES_FREE(sdata, SCSZ);
    980       1.1    mjacob 			return (EIO);
    981       1.1    mjacob 		}
    982       1.1    mjacob 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
    983       1.1    mjacob 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
    984       1.1    mjacob 
    985       1.1    mjacob 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
    986       1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
    987       1.1    mjacob 			SES_FREE(sdata, SCSZ);
    988       1.1    mjacob 			return (EIO);
    989       1.1    mjacob 		}
    990       1.1    mjacob 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
    991       1.1    mjacob 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
    992       1.1    mjacob 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
    993       1.1    mjacob 		    cdp->encWWN[6], cdp->encWWN[7]);
    994       1.1    mjacob 		ntype += hd.Ntypes;
    995       1.1    mjacob 	}
    996       1.1    mjacob 
    997       1.1    mjacob 	/*
    998       1.1    mjacob 	 * Now waltz through all the types that are available, getting
    999       1.1    mjacob 	 * the type header so we can start adding up the number of
   1000       1.1    mjacob 	 * objects available.
   1001       1.1    mjacob 	 */
   1002       1.1    mjacob 	for (nobj = i = 0; i < ntype; i++) {
   1003       1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
   1004       1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
   1005       1.1    mjacob 			SES_FREE(sdata, SCSZ);
   1006       1.1    mjacob 			return (EIO);
   1007       1.1    mjacob 		}
   1008       1.1    mjacob 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
   1009       1.1    mjacob 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
   1010       1.1    mjacob 		    thdr.enc_subenc, thdr.enc_tlen);
   1011       1.1    mjacob 		nobj += thdr.enc_maxelt;
   1012       1.1    mjacob 	}
   1013       1.1    mjacob 
   1014       1.1    mjacob 
   1015       1.1    mjacob 	/*
   1016       1.1    mjacob 	 * Now allocate the object array and type map.
   1017       1.1    mjacob 	 */
   1018       1.1    mjacob 
   1019       1.1    mjacob 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
   1020       1.1    mjacob 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
   1021       1.1    mjacob 	cc->ses_eltmap = SES_MALLOC(ntype);
   1022       1.1    mjacob 
   1023       1.1    mjacob 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
   1024       1.1    mjacob 	    cc->ses_eltmap == NULL) {
   1025       1.1    mjacob 		if (ssc->ses_objmap) {
   1026       1.1    mjacob 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
   1027       1.1    mjacob 			ssc->ses_objmap = NULL;
   1028       1.1    mjacob 		}
   1029       1.1    mjacob 		if (cc->ses_typidx) {
   1030       1.1    mjacob 			SES_FREE(cc->ses_typidx,
   1031       1.1    mjacob 			    (nobj * sizeof (struct typidx)));
   1032       1.1    mjacob 			cc->ses_typidx = NULL;
   1033       1.1    mjacob 		}
   1034       1.1    mjacob 		if (cc->ses_eltmap) {
   1035       1.1    mjacob 			SES_FREE(cc->ses_eltmap, ntype);
   1036       1.1    mjacob 			cc->ses_eltmap = NULL;
   1037       1.1    mjacob 		}
   1038       1.1    mjacob 		SES_FREE(sdata, SCSZ);
   1039       1.1    mjacob 		return (ENOMEM);
   1040       1.1    mjacob 	}
   1041       1.1    mjacob 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
   1042       1.1    mjacob 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
   1043       1.1    mjacob 	MEMZERO(cc->ses_eltmap, ntype);
   1044       1.1    mjacob 	cc->ses_ntypes = (uint8_t) ntype;
   1045       1.1    mjacob 	ssc->ses_nobjects = nobj;
   1046       1.1    mjacob 
   1047       1.1    mjacob 	/*
   1048       1.1    mjacob 	 * Now waltz through the # of types again to fill in the types
   1049       1.1    mjacob 	 * (and subenclosure ids) of the allocated objects.
   1050       1.1    mjacob 	 */
   1051       1.1    mjacob 	nobj = 0;
   1052       1.1    mjacob 	for (i = 0; i < ntype; i++) {
   1053       1.1    mjacob 		int j;
   1054       1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
   1055       1.1    mjacob 			continue;
   1056       1.1    mjacob 		}
   1057       1.1    mjacob 		cc->ses_eltmap[i] = thdr.enc_maxelt;
   1058       1.1    mjacob 		for (j = 0; j < thdr.enc_maxelt; j++) {
   1059       1.1    mjacob 			cc->ses_typidx[nobj].ses_tidx = i;
   1060       1.1    mjacob 			cc->ses_typidx[nobj].ses_oidx = j;
   1061       1.1    mjacob 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
   1062       1.1    mjacob 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
   1063       1.1    mjacob 		}
   1064       1.1    mjacob 	}
   1065       1.1    mjacob 	SES_FREE(sdata, SCSZ);
   1066       1.1    mjacob 	return (0);
   1067       1.1    mjacob }
   1068       1.1    mjacob 
   1069       1.1    mjacob static int
   1070      1.37  christos ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
   1071      1.36  christos     int in)
   1072       1.1    mjacob {
   1073       1.1    mjacob 	struct sscfg *cc;
   1074       1.1    mjacob 	int err, amt, bufsiz, tidx, oidx;
   1075       1.1    mjacob 	char cdb[6], *sdata;
   1076       1.1    mjacob 
   1077       1.1    mjacob 	cc = ssc->ses_private;
   1078       1.1    mjacob 	if (cc == NULL) {
   1079       1.1    mjacob 		return (ENXIO);
   1080       1.1    mjacob 	}
   1081       1.1    mjacob 
   1082       1.1    mjacob 	/*
   1083       1.1    mjacob 	 * If we're just getting overall enclosure status,
   1084       1.1    mjacob 	 * we only need 2 bytes of data storage.
   1085       1.1    mjacob 	 *
   1086       1.1    mjacob 	 * If we're getting anything else, we know how much
   1087       1.1    mjacob 	 * storage we need by noting that starting at offset
   1088       1.1    mjacob 	 * 8 in returned data, all object status bytes are 4
   1089       1.1    mjacob 	 * bytes long, and are stored in chunks of types(M)
   1090       1.1    mjacob 	 * and nth+1 instances of type M.
   1091       1.1    mjacob 	 */
   1092       1.1    mjacob 	if (objid == -1) {
   1093       1.1    mjacob 		bufsiz = 2;
   1094       1.1    mjacob 	} else {
   1095       1.1    mjacob 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
   1096       1.1    mjacob 	}
   1097       1.1    mjacob 	sdata = SES_MALLOC(bufsiz);
   1098       1.1    mjacob 	if (sdata == NULL)
   1099       1.1    mjacob 		return (ENOMEM);
   1100       1.1    mjacob 
   1101       1.1    mjacob 	cdb[0] = RECEIVE_DIAGNOSTIC;
   1102       1.1    mjacob 	cdb[1] = 1;
   1103       1.1    mjacob 	cdb[2] = SesStatusPage;
   1104       1.1    mjacob 	cdb[3] = bufsiz >> 8;
   1105       1.1    mjacob 	cdb[4] = bufsiz & 0xff;
   1106       1.1    mjacob 	cdb[5] = 0;
   1107       1.1    mjacob 	amt = bufsiz;
   1108       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1109       1.1    mjacob 	if (err) {
   1110       1.1    mjacob 		SES_FREE(sdata, bufsiz);
   1111       1.1    mjacob 		return (err);
   1112       1.1    mjacob 	}
   1113       1.1    mjacob 	amt = bufsiz - amt;
   1114       1.1    mjacob 
   1115       1.1    mjacob 	if (objid == -1) {
   1116       1.1    mjacob 		tidx = -1;
   1117       1.1    mjacob 		oidx = -1;
   1118       1.1    mjacob 	} else {
   1119       1.1    mjacob 		tidx = cc->ses_typidx[objid].ses_tidx;
   1120       1.1    mjacob 		oidx = cc->ses_typidx[objid].ses_oidx;
   1121       1.1    mjacob 	}
   1122       1.1    mjacob 	if (in) {
   1123       1.1    mjacob 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1124       1.1    mjacob 			err = ENODEV;
   1125       1.1    mjacob 		}
   1126       1.1    mjacob 	} else {
   1127       1.1    mjacob 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1128       1.1    mjacob 			err = ENODEV;
   1129       1.1    mjacob 		} else {
   1130       1.1    mjacob 			cdb[0] = SEND_DIAGNOSTIC;
   1131       1.1    mjacob 			cdb[1] = 0x10;
   1132       1.1    mjacob 			cdb[2] = 0;
   1133       1.1    mjacob 			cdb[3] = bufsiz >> 8;
   1134       1.1    mjacob 			cdb[4] = bufsiz & 0xff;
   1135       1.1    mjacob 			cdb[5] = 0;
   1136       1.1    mjacob 			amt = -bufsiz;
   1137      1.30     perry 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1138       1.1    mjacob 		}
   1139       1.1    mjacob 	}
   1140       1.1    mjacob 	SES_FREE(sdata, bufsiz);
   1141       1.1    mjacob 	return (0);
   1142       1.1    mjacob }
   1143       1.1    mjacob 
   1144       1.1    mjacob 
   1145       1.1    mjacob /*
   1146       1.1    mjacob  * Routines to parse returned SES data structures.
   1147       1.1    mjacob  * Architecture and compiler independent.
   1148       1.1    mjacob  */
   1149       1.1    mjacob 
   1150       1.1    mjacob static int
   1151       1.1    mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
   1152       1.1    mjacob {
   1153       1.1    mjacob 	if (buflen < SES_CFGHDR_MINLEN) {
   1154       1.1    mjacob 		return (-1);
   1155       1.1    mjacob 	}
   1156       1.1    mjacob 	gget8(buffer, 1, cfp->Nsubenc);
   1157       1.1    mjacob 	gget32(buffer, 4, cfp->GenCode);
   1158       1.1    mjacob 	return (0);
   1159       1.1    mjacob }
   1160       1.1    mjacob 
   1161       1.1    mjacob static int
   1162       1.1    mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
   1163       1.1    mjacob {
   1164       1.1    mjacob 	int s, off = 8;
   1165       1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1166       1.1    mjacob 		if (off + 3 > amt)
   1167       1.1    mjacob 			return (-1);
   1168       1.1    mjacob 		off += buffer[off+3] + 4;
   1169       1.1    mjacob 	}
   1170       1.1    mjacob 	if (off + 3 > amt) {
   1171       1.1    mjacob 		return (-1);
   1172       1.1    mjacob 	}
   1173       1.1    mjacob 	gget8(buffer, off+1, chp->Subencid);
   1174       1.1    mjacob 	gget8(buffer, off+2, chp->Ntypes);
   1175       1.1    mjacob 	gget8(buffer, off+3, chp->VEnclen);
   1176       1.1    mjacob 	return (0);
   1177       1.1    mjacob }
   1178       1.1    mjacob 
   1179       1.1    mjacob static int
   1180       1.1    mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
   1181       1.1    mjacob {
   1182       1.1    mjacob 	int s, e, enclen, off = 8;
   1183       1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1184       1.1    mjacob 		if (off + 3 > amt)
   1185       1.1    mjacob 			return (-1);
   1186       1.1    mjacob 		off += buffer[off+3] + 4;
   1187       1.1    mjacob 	}
   1188       1.1    mjacob 	if (off + 3 > amt) {
   1189       1.1    mjacob 		return (-1);
   1190       1.1    mjacob 	}
   1191       1.1    mjacob 	gget8(buffer, off+3, enclen);
   1192       1.1    mjacob 	off += 4;
   1193       1.1    mjacob 	if (off  >= amt)
   1194       1.1    mjacob 		return (-1);
   1195       1.1    mjacob 
   1196       1.1    mjacob 	e = off + enclen;
   1197       1.1    mjacob 	if (e > amt) {
   1198       1.1    mjacob 		e = amt;
   1199       1.1    mjacob 	}
   1200       1.1    mjacob 	MEMCPY(cdp, &buffer[off], e - off);
   1201       1.1    mjacob 	return (0);
   1202       1.1    mjacob }
   1203       1.1    mjacob 
   1204       1.1    mjacob static int
   1205       1.1    mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
   1206       1.1    mjacob {
   1207       1.1    mjacob 	int s, off = 8;
   1208       1.1    mjacob 
   1209       1.1    mjacob 	if (amt < SES_CFGHDR_MINLEN) {
   1210       1.1    mjacob 		return (-1);
   1211       1.1    mjacob 	}
   1212       1.1    mjacob 	for (s = 0; s < buffer[1]; s++) {
   1213       1.1    mjacob 		if (off + 3 > amt)
   1214       1.1    mjacob 			return (-1);
   1215       1.1    mjacob 		off += buffer[off+3] + 4;
   1216       1.1    mjacob 	}
   1217       1.1    mjacob 	if (off + 3 > amt) {
   1218       1.1    mjacob 		return (-1);
   1219       1.1    mjacob 	}
   1220       1.1    mjacob 	off += buffer[off+3] + 4 + (nth * 4);
   1221       1.1    mjacob 	if (amt < (off + 4))
   1222       1.1    mjacob 		return (-1);
   1223       1.1    mjacob 
   1224       1.1    mjacob 	gget8(buffer, off++, thp->enc_type);
   1225       1.1    mjacob 	gget8(buffer, off++, thp->enc_maxelt);
   1226       1.1    mjacob 	gget8(buffer, off++, thp->enc_subenc);
   1227       1.1    mjacob 	gget8(buffer, off, thp->enc_tlen);
   1228       1.1    mjacob 	return (0);
   1229       1.1    mjacob }
   1230       1.1    mjacob 
   1231       1.1    mjacob /*
   1232       1.1    mjacob  * This function needs a little explanation.
   1233       1.1    mjacob  *
   1234       1.1    mjacob  * The arguments are:
   1235       1.1    mjacob  *
   1236       1.1    mjacob  *
   1237       1.1    mjacob  *	char *b, int amt
   1238       1.1    mjacob  *
   1239       1.1    mjacob  *		These describes the raw input SES status data and length.
   1240       1.1    mjacob  *
   1241       1.1    mjacob  *	uint8_t *ep
   1242       1.1    mjacob  *
   1243       1.1    mjacob  *		This is a map of the number of types for each element type
   1244       1.1    mjacob  *		in the enclosure.
   1245       1.1    mjacob  *
   1246       1.1    mjacob  *	int elt
   1247       1.1    mjacob  *
   1248       1.1    mjacob  *		This is the element type being sought. If elt is -1,
   1249       1.1    mjacob  *		then overall enclosure status is being sought.
   1250       1.1    mjacob  *
   1251       1.1    mjacob  *	int elm
   1252       1.1    mjacob  *
   1253       1.1    mjacob  *		This is the ordinal Mth element of type elt being sought.
   1254       1.1    mjacob  *
   1255       1.1    mjacob  *	SesComStat *sp
   1256       1.1    mjacob  *
   1257       1.1    mjacob  *		This is the output area to store the status for
   1258       1.1    mjacob  *		the Mth element of type Elt.
   1259       1.1    mjacob  */
   1260       1.1    mjacob 
   1261       1.1    mjacob static int
   1262       1.1    mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1263       1.1    mjacob {
   1264       1.1    mjacob 	int idx, i;
   1265       1.1    mjacob 
   1266       1.1    mjacob 	/*
   1267       1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1268       1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1269       1.1    mjacob 	 */
   1270       1.1    mjacob 	if (elt == -1) {
   1271       1.1    mjacob 		if (amt < 2)
   1272       1.1    mjacob 			return (-1);
   1273       1.1    mjacob 		gget8(b, 1, sp->comstatus);
   1274       1.1    mjacob 		sp->comstat[0] = 0;
   1275       1.1    mjacob 		sp->comstat[1] = 0;
   1276       1.1    mjacob 		sp->comstat[2] = 0;
   1277       1.1    mjacob 		return (0);
   1278       1.1    mjacob 	}
   1279       1.1    mjacob 
   1280       1.1    mjacob 	/*
   1281       1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1282       1.1    mjacob 	 */
   1283       1.1    mjacob 
   1284       1.1    mjacob 	if (elm >= ep[elt])
   1285       1.1    mjacob 		return (-1);
   1286       1.1    mjacob 
   1287       1.1    mjacob 	/*
   1288       1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1289       1.1    mjacob 	 * for the element types we're not interested in.
   1290       1.1    mjacob 	 */
   1291       1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1292       1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1293       1.1    mjacob 	}
   1294       1.1    mjacob 
   1295       1.1    mjacob 	/*
   1296       1.1    mjacob 	 * Skip over Overall status for this element type.
   1297       1.1    mjacob 	 */
   1298       1.1    mjacob 	idx += 4;
   1299       1.1    mjacob 
   1300       1.1    mjacob 	/*
   1301       1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1302       1.1    mjacob 	 */
   1303       1.1    mjacob 	idx += (4 * elm);
   1304       1.1    mjacob 
   1305       1.1    mjacob 	/*
   1306       1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1307       1.1    mjacob 	 */
   1308       1.1    mjacob 	if (idx+4 > amt)
   1309       1.1    mjacob 		return (-1);
   1310       1.1    mjacob 
   1311       1.1    mjacob 	/*
   1312       1.1    mjacob 	 * Retrieve the status.
   1313       1.1    mjacob 	 */
   1314       1.1    mjacob 	gget8(b, idx++, sp->comstatus);
   1315       1.1    mjacob 	gget8(b, idx++, sp->comstat[0]);
   1316       1.1    mjacob 	gget8(b, idx++, sp->comstat[1]);
   1317       1.1    mjacob 	gget8(b, idx++, sp->comstat[2]);
   1318       1.1    mjacob #if	0
   1319       1.1    mjacob 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
   1320       1.1    mjacob #endif
   1321       1.1    mjacob 	return (0);
   1322       1.1    mjacob }
   1323       1.1    mjacob 
   1324       1.1    mjacob /*
   1325       1.1    mjacob  * This is the mirror function to ses_decode, but we set the 'select'
   1326       1.1    mjacob  * bit for the object which we're interested in. All other objects,
   1327       1.1    mjacob  * after a status fetch, should have that bit off. Hmm. It'd be easy
   1328       1.1    mjacob  * enough to ensure this, so we will.
   1329       1.1    mjacob  */
   1330       1.1    mjacob 
   1331       1.1    mjacob static int
   1332       1.1    mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1333       1.1    mjacob {
   1334       1.1    mjacob 	int idx, i;
   1335       1.1    mjacob 
   1336       1.1    mjacob 	/*
   1337       1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1338       1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1339       1.1    mjacob 	 */
   1340       1.1    mjacob 	if (elt == -1) {
   1341       1.1    mjacob 		if (amt < 2)
   1342       1.1    mjacob 			return (-1);
   1343       1.1    mjacob 		i = 0;
   1344       1.1    mjacob 		sset8(b, i, 0);
   1345       1.1    mjacob 		sset8(b, i, sp->comstatus & 0xf);
   1346       1.1    mjacob #if	0
   1347       1.1    mjacob 		PRINTF("set EncStat %x\n", sp->comstatus);
   1348       1.1    mjacob #endif
   1349       1.1    mjacob 		return (0);
   1350       1.1    mjacob 	}
   1351       1.1    mjacob 
   1352       1.1    mjacob 	/*
   1353       1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1354       1.1    mjacob 	 */
   1355       1.1    mjacob 
   1356       1.1    mjacob 	if (elm >= ep[elt])
   1357       1.1    mjacob 		return (-1);
   1358       1.1    mjacob 
   1359       1.1    mjacob 	/*
   1360       1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1361       1.1    mjacob 	 * for the element types we're not interested in.
   1362       1.1    mjacob 	 */
   1363       1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1364       1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1365       1.1    mjacob 	}
   1366       1.1    mjacob 
   1367       1.1    mjacob 	/*
   1368       1.1    mjacob 	 * Skip over Overall status for this element type.
   1369       1.1    mjacob 	 */
   1370       1.1    mjacob 	idx += 4;
   1371       1.1    mjacob 
   1372       1.1    mjacob 	/*
   1373       1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1374       1.1    mjacob 	 */
   1375       1.1    mjacob 	idx += (4 * elm);
   1376       1.1    mjacob 
   1377       1.1    mjacob 	/*
   1378       1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1379       1.1    mjacob 	 */
   1380       1.1    mjacob 	if (idx+4 > amt)
   1381       1.1    mjacob 		return (-1);
   1382       1.1    mjacob 
   1383       1.1    mjacob 	/*
   1384       1.1    mjacob 	 * Set the status.
   1385       1.1    mjacob 	 */
   1386       1.1    mjacob 	sset8(b, idx, sp->comstatus);
   1387       1.1    mjacob 	sset8(b, idx, sp->comstat[0]);
   1388       1.1    mjacob 	sset8(b, idx, sp->comstat[1]);
   1389       1.1    mjacob 	sset8(b, idx, sp->comstat[2]);
   1390       1.1    mjacob 	idx -= 4;
   1391       1.1    mjacob 
   1392       1.1    mjacob #if	0
   1393       1.1    mjacob 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
   1394       1.1    mjacob 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
   1395       1.1    mjacob 	    sp->comstat[1], sp->comstat[2]);
   1396       1.1    mjacob #endif
   1397       1.1    mjacob 
   1398       1.1    mjacob 	/*
   1399       1.1    mjacob 	 * Now make sure all other 'Select' bits are off.
   1400       1.1    mjacob 	 */
   1401       1.1    mjacob 	for (i = 8; i < amt; i += 4) {
   1402       1.1    mjacob 		if (i != idx)
   1403       1.1    mjacob 			b[i] &= ~0x80;
   1404       1.1    mjacob 	}
   1405       1.1    mjacob 	/*
   1406       1.1    mjacob 	 * And make sure the INVOP bit is clear.
   1407       1.1    mjacob 	 */
   1408       1.1    mjacob 	b[2] &= ~0x10;
   1409       1.1    mjacob 
   1410       1.1    mjacob 	return (0);
   1411       1.1    mjacob }
   1412       1.1    mjacob 
   1413       1.1    mjacob /*
   1414       1.1    mjacob  * SAF-TE Type Device Emulation
   1415       1.1    mjacob  */
   1416       1.1    mjacob 
   1417       1.1    mjacob static int safte_getconfig(ses_softc_t *);
   1418      1.19    simonb static int safte_rdstat(ses_softc_t *, int);
   1419       1.1    mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
   1420       1.1    mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
   1421       1.1    mjacob static void wrslot_stat(ses_softc_t *, int);
   1422       1.1    mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
   1423       1.1    mjacob 
   1424       1.1    mjacob #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
   1425       1.1    mjacob 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
   1426       1.1    mjacob /*
   1427       1.1    mjacob  * SAF-TE specific defines- Mandatory ones only...
   1428       1.1    mjacob  */
   1429       1.1    mjacob 
   1430       1.1    mjacob /*
   1431       1.1    mjacob  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
   1432       1.1    mjacob  */
   1433       1.1    mjacob #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
   1434       1.1    mjacob #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
   1435       1.1    mjacob #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
   1436       1.1    mjacob 
   1437       1.1    mjacob /*
   1438       1.1    mjacob  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
   1439       1.1    mjacob  */
   1440       1.1    mjacob #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
   1441       1.1    mjacob #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
   1442       1.1    mjacob #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
   1443       1.1    mjacob #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
   1444       1.1    mjacob #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
   1445       1.1    mjacob 
   1446       1.1    mjacob 
   1447       1.1    mjacob #define	SAFT_SCRATCH	64
   1448       1.1    mjacob #define	NPSEUDO_THERM	16
   1449       1.1    mjacob #define	NPSEUDO_ALARM	1
   1450       1.1    mjacob struct scfg {
   1451       1.1    mjacob 	/*
   1452       1.1    mjacob 	 * Cached Configuration
   1453       1.1    mjacob 	 */
   1454       1.1    mjacob 	uint8_t	Nfans;		/* Number of Fans */
   1455       1.1    mjacob 	uint8_t	Npwr;		/* Number of Power Supplies */
   1456       1.1    mjacob 	uint8_t	Nslots;		/* Number of Device Slots */
   1457       1.1    mjacob 	uint8_t	DoorLock;	/* Door Lock Installed */
   1458       1.1    mjacob 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
   1459       1.1    mjacob 	uint8_t	Nspkrs;		/* Number of Speakers */
   1460       1.1    mjacob 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
   1461       1.1    mjacob 	/*
   1462       1.1    mjacob 	 * Cached Flag Bytes for Global Status
   1463       1.1    mjacob 	 */
   1464       1.1    mjacob 	uint8_t	flag1;
   1465       1.1    mjacob 	uint8_t	flag2;
   1466       1.1    mjacob 	/*
   1467       1.1    mjacob 	 * What object index ID is where various slots start.
   1468       1.1    mjacob 	 */
   1469       1.1    mjacob 	uint8_t	pwroff;
   1470       1.1    mjacob 	uint8_t	slotoff;
   1471       1.1    mjacob #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
   1472       1.1    mjacob };
   1473       1.1    mjacob 
   1474       1.1    mjacob #define	SAFT_FLG1_ALARM		0x1
   1475       1.1    mjacob #define	SAFT_FLG1_GLOBFAIL	0x2
   1476       1.1    mjacob #define	SAFT_FLG1_GLOBWARN	0x4
   1477       1.1    mjacob #define	SAFT_FLG1_ENCPWROFF	0x8
   1478       1.1    mjacob #define	SAFT_FLG1_ENCFANFAIL	0x10
   1479       1.1    mjacob #define	SAFT_FLG1_ENCPWRFAIL	0x20
   1480       1.1    mjacob #define	SAFT_FLG1_ENCDRVFAIL	0x40
   1481       1.1    mjacob #define	SAFT_FLG1_ENCDRVWARN	0x80
   1482       1.1    mjacob 
   1483       1.1    mjacob #define	SAFT_FLG2_LOCKDOOR	0x4
   1484       1.1    mjacob #define	SAFT_PRIVATE		sizeof (struct scfg)
   1485       1.1    mjacob 
   1486       1.7  sommerfe static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
   1487       1.1    mjacob #define	SAFT_BAIL(r, x, k, l)	\
   1488       1.1    mjacob 	if (r >= x) { \
   1489       1.1    mjacob 		SES_LOG(ssc, safte_2little, x, __LINE__);\
   1490       1.1    mjacob 		SES_FREE(k, l); \
   1491       1.1    mjacob 		return (EIO); \
   1492       1.1    mjacob 	}
   1493       1.1    mjacob 
   1494       1.1    mjacob 
   1495      1.23   thorpej static int
   1496       1.1    mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
   1497       1.1    mjacob {
   1498       1.1    mjacob 	int err, i, r;
   1499       1.1    mjacob 	struct scfg *cc;
   1500       1.1    mjacob 
   1501       1.1    mjacob 	if (doinit == 0) {
   1502       1.1    mjacob 		if (ssc->ses_nobjects) {
   1503       1.1    mjacob 			if (ssc->ses_objmap) {
   1504       1.1    mjacob 				SES_FREE(ssc->ses_objmap,
   1505       1.1    mjacob 				    ssc->ses_nobjects * sizeof (encobj));
   1506       1.1    mjacob 				ssc->ses_objmap = NULL;
   1507       1.1    mjacob 			}
   1508       1.1    mjacob 			ssc->ses_nobjects = 0;
   1509       1.1    mjacob 		}
   1510       1.1    mjacob 		if (ssc->ses_private) {
   1511       1.1    mjacob 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
   1512       1.1    mjacob 			ssc->ses_private = NULL;
   1513       1.1    mjacob 		}
   1514       1.1    mjacob 		return (0);
   1515       1.1    mjacob 	}
   1516       1.1    mjacob 
   1517       1.1    mjacob 	if (ssc->ses_private == NULL) {
   1518       1.1    mjacob 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
   1519       1.1    mjacob 		if (ssc->ses_private == NULL) {
   1520       1.1    mjacob 			return (ENOMEM);
   1521       1.1    mjacob 		}
   1522       1.1    mjacob 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
   1523       1.1    mjacob 	}
   1524       1.1    mjacob 
   1525       1.1    mjacob 	ssc->ses_nobjects = 0;
   1526       1.1    mjacob 	ssc->ses_encstat = 0;
   1527       1.1    mjacob 
   1528       1.1    mjacob 	if ((err = safte_getconfig(ssc)) != 0) {
   1529       1.1    mjacob 		return (err);
   1530       1.1    mjacob 	}
   1531       1.1    mjacob 
   1532       1.1    mjacob 	/*
   1533       1.1    mjacob 	 * The number of objects here, as well as that reported by the
   1534       1.1    mjacob 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
   1535       1.1    mjacob 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
   1536       1.1    mjacob 	 */
   1537       1.1    mjacob 	cc = ssc->ses_private;
   1538       1.1    mjacob 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
   1539       1.1    mjacob 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
   1540       1.1    mjacob 	ssc->ses_objmap = (encobj *)
   1541       1.1    mjacob 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
   1542       1.1    mjacob 	if (ssc->ses_objmap == NULL) {
   1543       1.1    mjacob 		return (ENOMEM);
   1544       1.1    mjacob 	}
   1545       1.1    mjacob 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
   1546       1.1    mjacob 
   1547       1.1    mjacob 	r = 0;
   1548       1.1    mjacob 	/*
   1549       1.1    mjacob 	 * Note that this is all arranged for the convenience
   1550       1.1    mjacob 	 * in later fetches of status.
   1551       1.1    mjacob 	 */
   1552       1.1    mjacob 	for (i = 0; i < cc->Nfans; i++)
   1553       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
   1554       1.1    mjacob 	cc->pwroff = (uint8_t) r;
   1555       1.1    mjacob 	for (i = 0; i < cc->Npwr; i++)
   1556       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
   1557       1.1    mjacob 	for (i = 0; i < cc->DoorLock; i++)
   1558       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
   1559       1.1    mjacob 	for (i = 0; i < cc->Nspkrs; i++)
   1560       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1561       1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++)
   1562       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1563       1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++)
   1564       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1565       1.1    mjacob 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1566       1.1    mjacob 	cc->slotoff = (uint8_t) r;
   1567       1.1    mjacob 	for (i = 0; i < cc->Nslots; i++)
   1568       1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
   1569       1.1    mjacob 	return (0);
   1570       1.1    mjacob }
   1571       1.1    mjacob 
   1572      1.23   thorpej static int
   1573       1.1    mjacob safte_init_enc(ses_softc_t *ssc)
   1574       1.1    mjacob {
   1575       1.1    mjacob 	int err, amt;
   1576       1.1    mjacob 	char *sdata;
   1577       1.4    mjacob 	static char cdb0[6] = { SEND_DIAGNOSTIC };
   1578       1.1    mjacob 	static char cdb[10] =
   1579       1.4    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   1580       1.1    mjacob 
   1581       1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1582       1.1    mjacob 	if (sdata == NULL)
   1583       1.1    mjacob 		return (ENOMEM);
   1584       1.1    mjacob 
   1585       1.4    mjacob 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
   1586       1.1    mjacob 	if (err) {
   1587       1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1588       1.1    mjacob 		return (err);
   1589       1.1    mjacob 	}
   1590       1.1    mjacob 	sdata[0] = SAFTE_WT_GLOBAL;
   1591       1.4    mjacob 	MEMZERO(&sdata[1], 15);
   1592       1.1    mjacob 	amt = -SAFT_SCRATCH;
   1593       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1594       1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1595       1.1    mjacob 	return (err);
   1596       1.1    mjacob }
   1597       1.1    mjacob 
   1598      1.23   thorpej static int
   1599       1.1    mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
   1600       1.1    mjacob {
   1601       1.1    mjacob 	return (safte_rdstat(ssc, slpflg));
   1602       1.1    mjacob }
   1603       1.1    mjacob 
   1604      1.23   thorpej static int
   1605       1.1    mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
   1606       1.1    mjacob {
   1607       1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1608       1.1    mjacob 	if (cc == NULL)
   1609       1.1    mjacob 		return (0);
   1610       1.1    mjacob 	/*
   1611       1.1    mjacob 	 * Since SAF-TE devices aren't necessarily sticky in terms
   1612       1.1    mjacob 	 * of state, make our soft copy of enclosure status 'sticky'-
   1613       1.1    mjacob 	 * that is, things set in enclosure status stay set (as implied
   1614       1.1    mjacob 	 * by conditions set in reading object status) until cleared.
   1615       1.1    mjacob 	 */
   1616       1.1    mjacob 	ssc->ses_encstat &= ~ALL_ENC_STAT;
   1617       1.1    mjacob 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
   1618       1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID;
   1619       1.1    mjacob 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
   1620       1.1    mjacob 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
   1621       1.1    mjacob 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
   1622       1.1    mjacob 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
   1623       1.1    mjacob 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
   1624       1.1    mjacob 	}
   1625       1.1    mjacob 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
   1626       1.1    mjacob }
   1627       1.1    mjacob 
   1628      1.23   thorpej static int
   1629       1.1    mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
   1630       1.1    mjacob {
   1631       1.1    mjacob 	int i = (int)obp->obj_id;
   1632       1.1    mjacob 
   1633       1.1    mjacob 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
   1634       1.1    mjacob 	    (ssc->ses_objmap[i].svalid) == 0) {
   1635       1.1    mjacob 		int err = safte_rdstat(ssc, slpflg);
   1636       1.1    mjacob 		if (err)
   1637       1.1    mjacob 			return (err);
   1638       1.1    mjacob 	}
   1639       1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
   1640       1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
   1641       1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
   1642       1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
   1643       1.1    mjacob 	return (0);
   1644       1.1    mjacob }
   1645       1.1    mjacob 
   1646       1.1    mjacob 
   1647      1.23   thorpej static int
   1648       1.1    mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
   1649       1.1    mjacob {
   1650       1.1    mjacob 	int idx, err;
   1651       1.1    mjacob 	encobj *ep;
   1652       1.1    mjacob 	struct scfg *cc;
   1653       1.1    mjacob 
   1654       1.1    mjacob 
   1655       1.1    mjacob 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
   1656       1.1    mjacob 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
   1657       1.1    mjacob 	    obp->cstat[3]);
   1658       1.1    mjacob 
   1659       1.1    mjacob 	/*
   1660       1.1    mjacob 	 * If this is clear, we don't do diddly.
   1661       1.1    mjacob 	 */
   1662       1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
   1663       1.1    mjacob 		return (0);
   1664       1.1    mjacob 	}
   1665       1.1    mjacob 
   1666       1.1    mjacob 	err = 0;
   1667       1.1    mjacob 	/*
   1668       1.1    mjacob 	 * Check to see if the common bits are set and do them first.
   1669       1.1    mjacob 	 */
   1670       1.1    mjacob 	if (obp->cstat[0] & ~SESCTL_CSEL) {
   1671       1.1    mjacob 		err = set_objstat_sel(ssc, obp, slp);
   1672       1.1    mjacob 		if (err)
   1673       1.1    mjacob 			return (err);
   1674       1.1    mjacob 	}
   1675       1.1    mjacob 
   1676       1.1    mjacob 	cc = ssc->ses_private;
   1677       1.1    mjacob 	if (cc == NULL)
   1678       1.1    mjacob 		return (0);
   1679       1.1    mjacob 
   1680       1.1    mjacob 	idx = (int)obp->obj_id;
   1681       1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   1682       1.1    mjacob 
   1683       1.1    mjacob 	switch (ep->enctype) {
   1684       1.1    mjacob 	case SESTYP_DEVICE:
   1685       1.1    mjacob 	{
   1686       1.1    mjacob 		uint8_t slotop = 0;
   1687       1.1    mjacob 		/*
   1688       1.1    mjacob 		 * XXX: I should probably cache the previous state
   1689       1.1    mjacob 		 * XXX: of SESCTL_DEVOFF so that when it goes from
   1690       1.1    mjacob 		 * XXX: true to false I can then set PREPARE FOR OPERATION
   1691       1.1    mjacob 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
   1692       1.1    mjacob 		 */
   1693       1.1    mjacob 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
   1694       1.1    mjacob 			slotop |= 0x2;
   1695       1.1    mjacob 		}
   1696       1.1    mjacob 		if (obp->cstat[2] & SESCTL_RQSID) {
   1697       1.1    mjacob 			slotop |= 0x4;
   1698       1.1    mjacob 		}
   1699       1.1    mjacob 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
   1700       1.1    mjacob 		    slotop, slp);
   1701       1.1    mjacob 		if (err)
   1702       1.1    mjacob 			return (err);
   1703       1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSFLT) {
   1704       1.1    mjacob 			ep->priv |= 0x2;
   1705       1.1    mjacob 		} else {
   1706       1.1    mjacob 			ep->priv &= ~0x2;
   1707       1.1    mjacob 		}
   1708       1.1    mjacob 		if (ep->priv & 0xc6) {
   1709       1.1    mjacob 			ep->priv &= ~0x1;
   1710       1.1    mjacob 		} else {
   1711       1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   1712       1.1    mjacob 		}
   1713       1.1    mjacob 		wrslot_stat(ssc, slp);
   1714       1.1    mjacob 		break;
   1715       1.1    mjacob 	}
   1716       1.1    mjacob 	case SESTYP_POWER:
   1717       1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1718       1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
   1719       1.1    mjacob 		} else {
   1720       1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
   1721       1.1    mjacob 		}
   1722       1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1723       1.1    mjacob 		    cc->flag2, 0, slp);
   1724       1.1    mjacob 		if (err)
   1725       1.1    mjacob 			return (err);
   1726       1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1727       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1728       1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   1729       1.1    mjacob 		} else {
   1730       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1731       1.1    mjacob 				idx - cc->pwroff, 0, 1, slp);
   1732       1.1    mjacob 		}
   1733       1.1    mjacob 		break;
   1734       1.1    mjacob 	case SESTYP_FAN:
   1735       1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1736       1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
   1737       1.1    mjacob 		} else {
   1738       1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
   1739       1.1    mjacob 		}
   1740       1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1741       1.1    mjacob 		    cc->flag2, 0, slp);
   1742       1.1    mjacob 		if (err)
   1743       1.1    mjacob 			return (err);
   1744       1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1745       1.1    mjacob 			uint8_t fsp;
   1746       1.1    mjacob 			if ((obp->cstat[3] & 0x7) == 7) {
   1747       1.1    mjacob 				fsp = 4;
   1748       1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 6) {
   1749       1.1    mjacob 				fsp = 3;
   1750       1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 4) {
   1751       1.1    mjacob 				fsp = 2;
   1752       1.1    mjacob 			} else {
   1753       1.1    mjacob 				fsp = 1;
   1754       1.1    mjacob 			}
   1755       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
   1756       1.1    mjacob 		} else {
   1757       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   1758       1.1    mjacob 		}
   1759       1.1    mjacob 		break;
   1760       1.1    mjacob 	case SESTYP_DOORLOCK:
   1761       1.1    mjacob 		if (obp->cstat[3] & 0x1) {
   1762       1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   1763       1.1    mjacob 		} else {
   1764       1.1    mjacob 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
   1765       1.1    mjacob 		}
   1766       1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1767       1.1    mjacob 		    cc->flag2, 0, slp);
   1768       1.1    mjacob 		break;
   1769       1.1    mjacob 	case SESTYP_ALARM:
   1770       1.1    mjacob 		/*
   1771       1.1    mjacob 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
   1772       1.1    mjacob 		 */
   1773       1.1    mjacob 		obp->cstat[3] &= ~0xa;
   1774       1.1    mjacob 		if (obp->cstat[3] & 0x40) {
   1775       1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1776       1.1    mjacob 		} else if (obp->cstat[3] != 0) {
   1777       1.1    mjacob 			cc->flag2 |= SAFT_FLG1_ALARM;
   1778       1.1    mjacob 		} else {
   1779       1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1780       1.1    mjacob 		}
   1781       1.1    mjacob 		ep->priv = obp->cstat[3];
   1782       1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1783       1.1    mjacob 			cc->flag2, 0, slp);
   1784       1.1    mjacob 		break;
   1785       1.1    mjacob 	default:
   1786       1.1    mjacob 		break;
   1787       1.1    mjacob 	}
   1788       1.1    mjacob 	ep->svalid = 0;
   1789       1.1    mjacob 	return (0);
   1790       1.1    mjacob }
   1791       1.1    mjacob 
   1792       1.1    mjacob static int
   1793       1.1    mjacob safte_getconfig(ses_softc_t *ssc)
   1794       1.1    mjacob {
   1795       1.1    mjacob 	struct scfg *cfg;
   1796       1.1    mjacob 	int err, amt;
   1797       1.1    mjacob 	char *sdata;
   1798       1.1    mjacob 	static char cdb[10] =
   1799       1.1    mjacob 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   1800       1.1    mjacob 
   1801       1.1    mjacob 	cfg = ssc->ses_private;
   1802       1.1    mjacob 	if (cfg == NULL)
   1803       1.1    mjacob 		return (ENXIO);
   1804       1.1    mjacob 
   1805       1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1806       1.1    mjacob 	if (sdata == NULL)
   1807       1.1    mjacob 		return (ENOMEM);
   1808       1.1    mjacob 
   1809       1.1    mjacob 	amt = SAFT_SCRATCH;
   1810       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1811       1.1    mjacob 	if (err) {
   1812       1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1813       1.1    mjacob 		return (err);
   1814       1.1    mjacob 	}
   1815       1.1    mjacob 	amt = SAFT_SCRATCH - amt;
   1816       1.1    mjacob 	if (amt < 6) {
   1817       1.1    mjacob 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
   1818       1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1819       1.1    mjacob 		return (EIO);
   1820       1.1    mjacob 	}
   1821       1.1    mjacob 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
   1822       1.1    mjacob 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
   1823       1.1    mjacob 	cfg->Nfans = sdata[0];
   1824       1.1    mjacob 	cfg->Npwr = sdata[1];
   1825       1.1    mjacob 	cfg->Nslots = sdata[2];
   1826       1.1    mjacob 	cfg->DoorLock = sdata[3];
   1827       1.1    mjacob 	cfg->Ntherm = sdata[4];
   1828       1.1    mjacob 	cfg->Nspkrs = sdata[5];
   1829       1.1    mjacob 	cfg->Nalarm = NPSEUDO_ALARM;
   1830       1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1831       1.1    mjacob 	return (0);
   1832       1.1    mjacob }
   1833       1.1    mjacob 
   1834       1.1    mjacob static int
   1835      1.37  christos safte_rdstat(ses_softc_t *ssc, int slpflg)
   1836       1.1    mjacob {
   1837       1.1    mjacob 	int err, oid, r, i, hiwater, nitems, amt;
   1838       1.1    mjacob 	uint16_t tempflags;
   1839       1.1    mjacob 	size_t buflen;
   1840       1.1    mjacob 	uint8_t status, oencstat;
   1841       1.1    mjacob 	char *sdata, cdb[10];
   1842       1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1843       1.1    mjacob 
   1844       1.1    mjacob 
   1845       1.1    mjacob 	/*
   1846       1.1    mjacob 	 * The number of objects overstates things a bit,
   1847       1.1    mjacob 	 * both for the bogus 'thermometer' entries and
   1848       1.1    mjacob 	 * the drive status (which isn't read at the same
   1849       1.1    mjacob 	 * time as the enclosure status), but that's okay.
   1850       1.1    mjacob 	 */
   1851       1.1    mjacob 	buflen = 4 * cc->Nslots;
   1852       1.1    mjacob 	if (ssc->ses_nobjects > buflen)
   1853       1.1    mjacob 		buflen = ssc->ses_nobjects;
   1854       1.1    mjacob 	sdata = SES_MALLOC(buflen);
   1855       1.1    mjacob 	if (sdata == NULL)
   1856       1.1    mjacob 		return (ENOMEM);
   1857       1.1    mjacob 
   1858       1.1    mjacob 	cdb[0] = READ_BUFFER;
   1859       1.1    mjacob 	cdb[1] = 1;
   1860       1.1    mjacob 	cdb[2] = SAFTE_RD_RDESTS;
   1861       1.1    mjacob 	cdb[3] = 0;
   1862       1.1    mjacob 	cdb[4] = 0;
   1863       1.1    mjacob 	cdb[5] = 0;
   1864       1.1    mjacob 	cdb[6] = 0;
   1865       1.1    mjacob 	cdb[7] = (buflen >> 8) & 0xff;
   1866       1.1    mjacob 	cdb[8] = buflen & 0xff;
   1867       1.1    mjacob 	cdb[9] = 0;
   1868       1.1    mjacob 	amt = buflen;
   1869       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1870       1.1    mjacob 	if (err) {
   1871       1.1    mjacob 		SES_FREE(sdata, buflen);
   1872       1.1    mjacob 		return (err);
   1873       1.1    mjacob 	}
   1874       1.1    mjacob 	hiwater = buflen - amt;
   1875       1.1    mjacob 
   1876       1.1    mjacob 
   1877       1.1    mjacob 	/*
   1878       1.1    mjacob 	 * invalidate all status bits.
   1879       1.1    mjacob 	 */
   1880       1.1    mjacob 	for (i = 0; i < ssc->ses_nobjects; i++)
   1881       1.1    mjacob 		ssc->ses_objmap[i].svalid = 0;
   1882       1.1    mjacob 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
   1883       1.1    mjacob 	ssc->ses_encstat = 0;
   1884       1.1    mjacob 
   1885       1.1    mjacob 
   1886       1.1    mjacob 	/*
   1887       1.1    mjacob 	 * Now parse returned buffer.
   1888       1.1    mjacob 	 * If we didn't get enough data back,
   1889       1.1    mjacob 	 * that's considered a fatal error.
   1890       1.1    mjacob 	 */
   1891       1.1    mjacob 	oid = r = 0;
   1892       1.1    mjacob 
   1893       1.1    mjacob 	for (nitems = i = 0; i < cc->Nfans; i++) {
   1894       1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1895       1.1    mjacob 		/*
   1896       1.1    mjacob 		 * 0 = Fan Operational
   1897       1.1    mjacob 		 * 1 = Fan is malfunctioning
   1898       1.1    mjacob 		 * 2 = Fan is not present
   1899       1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   1900       1.1    mjacob 		 */
   1901       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1902       1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1903       1.1    mjacob 		switch ((int)(uint8_t)sdata[r]) {
   1904       1.1    mjacob 		case 0:
   1905       1.1    mjacob 			nitems++;
   1906       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1907       1.1    mjacob 			/*
   1908       1.1    mjacob 			 * We could get fancier and cache
   1909       1.1    mjacob 			 * fan speeds that we have set, but
   1910       1.1    mjacob 			 * that isn't done now.
   1911       1.1    mjacob 			 */
   1912       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 7;
   1913       1.1    mjacob 			break;
   1914       1.1    mjacob 
   1915       1.1    mjacob 		case 1:
   1916       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1917       1.1    mjacob 			/*
   1918       1.1    mjacob 			 * FAIL and FAN STOPPED synthesized
   1919       1.1    mjacob 			 */
   1920       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x40;
   1921       1.1    mjacob 			/*
   1922       1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1923       1.1    mjacob 			 * if only one fan or no thermometers,
   1924       1.1    mjacob 			 * else the NONCRITICAL error is set.
   1925       1.1    mjacob 			 */
   1926       1.1    mjacob 			if (cc->Nfans == 1 || cc->Ntherm == 0)
   1927       1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1928       1.1    mjacob 			else
   1929       1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1930       1.1    mjacob 			break;
   1931       1.1    mjacob 		case 2:
   1932       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1933       1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1934       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1935       1.1    mjacob 			/*
   1936       1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1937       1.1    mjacob 			 * if only one fan or no thermometers,
   1938       1.1    mjacob 			 * else the NONCRITICAL error is set.
   1939       1.1    mjacob 			 */
   1940       1.1    mjacob 			if (cc->Nfans == 1)
   1941       1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1942       1.1    mjacob 			else
   1943       1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1944       1.1    mjacob 			break;
   1945       1.1    mjacob 		case 0x80:
   1946       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1947       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1948       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1949       1.1    mjacob 			break;
   1950       1.1    mjacob 		default:
   1951       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1952       1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   1953       1.1    mjacob 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
   1954       1.1    mjacob 			    sdata[r] & 0xff);
   1955       1.1    mjacob 			break;
   1956       1.1    mjacob 		}
   1957       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   1958       1.1    mjacob 		r++;
   1959       1.1    mjacob 	}
   1960       1.1    mjacob 
   1961       1.1    mjacob 	/*
   1962       1.1    mjacob 	 * No matter how you cut it, no cooling elements when there
   1963       1.1    mjacob 	 * should be some there is critical.
   1964       1.1    mjacob 	 */
   1965       1.1    mjacob 	if (cc->Nfans && nitems == 0) {
   1966       1.1    mjacob 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1967       1.1    mjacob 	}
   1968       1.1    mjacob 
   1969       1.1    mjacob 
   1970       1.1    mjacob 	for (i = 0; i < cc->Npwr; i++) {
   1971       1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1972       1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1973       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1974       1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1975       1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
   1976       1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   1977       1.1    mjacob 		case 0x00:	/* pws operational and on */
   1978       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1979       1.1    mjacob 			break;
   1980       1.1    mjacob 		case 0x01:	/* pws operational and off */
   1981       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1982       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   1983       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1984       1.1    mjacob 			break;
   1985       1.1    mjacob 		case 0x10:	/* pws is malfunctioning and commanded on */
   1986       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1987       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x61;
   1988       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1989       1.1    mjacob 			break;
   1990       1.1    mjacob 
   1991       1.1    mjacob 		case 0x11:	/* pws is malfunctioning and commanded off */
   1992       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   1993       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x51;
   1994       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1995       1.1    mjacob 			break;
   1996       1.1    mjacob 		case 0x20:	/* pws is not present */
   1997       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1998       1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1999       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2000       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2001       1.1    mjacob 			break;
   2002       1.1    mjacob 		case 0x21:	/* pws is present */
   2003       1.1    mjacob 			/*
   2004       1.1    mjacob 			 * This is for enclosures that cannot tell whether the
   2005       1.1    mjacob 			 * device is on or malfunctioning, but know that it is
   2006       1.1    mjacob 			 * present. Just fall through.
   2007       1.1    mjacob 			 */
   2008       1.1    mjacob 			/* FALLTHROUGH */
   2009       1.1    mjacob 		case 0x80:	/* Unknown or Not Reportable Status */
   2010       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   2011       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2012       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2013       1.1    mjacob 			break;
   2014       1.1    mjacob 		default:
   2015       1.1    mjacob 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
   2016       1.1    mjacob 			    i, sdata[r] & 0xff);
   2017       1.1    mjacob 			break;
   2018       1.1    mjacob 		}
   2019       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2020       1.1    mjacob 		r++;
   2021       1.1    mjacob 	}
   2022       1.1    mjacob 
   2023       1.1    mjacob 	/*
   2024       1.1    mjacob 	 * Skip over Slot SCSI IDs
   2025       1.1    mjacob 	 */
   2026       1.1    mjacob 	r += cc->Nslots;
   2027       1.1    mjacob 
   2028       1.1    mjacob 	/*
   2029       1.1    mjacob 	 * We always have doorlock status, no matter what,
   2030       1.1    mjacob 	 * but we only save the status if we have one.
   2031       1.1    mjacob 	 */
   2032       1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2033       1.1    mjacob 	if (cc->DoorLock) {
   2034       1.1    mjacob 		/*
   2035       1.1    mjacob 		 * 0 = Door Locked
   2036       1.1    mjacob 		 * 1 = Door Unlocked, or no Lock Installed
   2037       1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   2038       1.1    mjacob 		 */
   2039       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2040       1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2041       1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   2042       1.1    mjacob 		case 0:
   2043       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2044       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2045       1.1    mjacob 			break;
   2046       1.1    mjacob 		case 1:
   2047       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2048       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 1;
   2049       1.1    mjacob 			break;
   2050       1.1    mjacob 		case 0x80:
   2051       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   2052       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2053       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2054       1.1    mjacob 			break;
   2055       1.1    mjacob 		default:
   2056       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2057       1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2058       1.1    mjacob 			SES_LOG(ssc, "unknown lock status 0x%x\n",
   2059       1.1    mjacob 			    sdata[r] & 0xff);
   2060       1.1    mjacob 			break;
   2061       1.1    mjacob 		}
   2062       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2063       1.1    mjacob 	}
   2064       1.1    mjacob 	r++;
   2065       1.1    mjacob 
   2066       1.1    mjacob 	/*
   2067       1.1    mjacob 	 * We always have speaker status, no matter what,
   2068       1.1    mjacob 	 * but we only save the status if we have one.
   2069       1.1    mjacob 	 */
   2070       1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2071       1.1    mjacob 	if (cc->Nspkrs) {
   2072       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2073       1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2074       1.1    mjacob 		if (sdata[r] == 1) {
   2075       1.1    mjacob 			/*
   2076       1.1    mjacob 			 * We need to cache tone urgency indicators.
   2077       1.1    mjacob 			 * Someday.
   2078       1.1    mjacob 			 */
   2079       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   2080       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x8;
   2081       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   2082       1.1    mjacob 		} else if (sdata[r] == 0) {
   2083       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2084       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2085       1.1    mjacob 		} else {
   2086       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2087       1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2088       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2089       1.1    mjacob 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
   2090       1.1    mjacob 			    sdata[r] & 0xff);
   2091       1.1    mjacob 		}
   2092       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2093       1.1    mjacob 	}
   2094       1.1    mjacob 	r++;
   2095       1.1    mjacob 
   2096       1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++) {
   2097       1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   2098       1.1    mjacob 		/*
   2099       1.1    mjacob 		 * Status is a range from -10 to 245 deg Celsius,
   2100       1.1    mjacob 		 * which we need to normalize to -20 to -245 according
   2101       1.1    mjacob 		 * to the latest SCSI spec, which makes little
   2102       1.1    mjacob 		 * sense since this would overflow an 8bit value.
   2103       1.1    mjacob 		 * Well, still, the base normalization is -20,
   2104       1.1    mjacob 		 * not -10, so we have to adjust.
   2105       1.1    mjacob 		 *
   2106       1.1    mjacob 		 * So what's over and under temperature?
   2107       1.1    mjacob 		 * Hmm- we'll state that 'normal' operating
   2108       1.1    mjacob 		 * is 10 to 40 deg Celsius.
   2109       1.1    mjacob 		 */
   2110       1.8    mjacob 
   2111       1.8    mjacob 		/*
   2112       1.8    mjacob 		 * Actually.... All of the units that people out in the world
   2113       1.8    mjacob 		 * seem to have do not come even close to setting a value that
   2114       1.8    mjacob 		 * complies with this spec.
   2115       1.8    mjacob 		 *
   2116       1.8    mjacob 		 * The closest explanation I could find was in an
   2117       1.8    mjacob 		 * LSI-Logic manual, which seemed to indicate that
   2118       1.8    mjacob 		 * this value would be set by whatever the I2C code
   2119       1.8    mjacob 		 * would interpolate from the output of an LM75
   2120       1.8    mjacob 		 * temperature sensor.
   2121       1.8    mjacob 		 *
   2122       1.8    mjacob 		 * This means that it is impossible to use the actual
   2123       1.8    mjacob 		 * numeric value to predict anything. But we don't want
   2124       1.8    mjacob 		 * to lose the value. So, we'll propagate the *uncorrected*
   2125       1.8    mjacob 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
   2126       1.8    mjacob 		 * temperature flags for warnings.
   2127       1.8    mjacob 		 */
   2128       1.8    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
   2129       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2130       1.8    mjacob 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
   2131      1.19    simonb 		ssc->ses_objmap[oid].encstat[3] = 0;
   2132       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2133       1.1    mjacob 		r++;
   2134       1.1    mjacob 	}
   2135       1.1    mjacob 
   2136       1.1    mjacob 	/*
   2137       1.1    mjacob 	 * Now, for "pseudo" thermometers, we have two bytes
   2138       1.1    mjacob 	 * of information in enclosure status- 16 bits. Actually,
   2139       1.1    mjacob 	 * the MSB is a single TEMP ALERT flag indicating whether
   2140       1.1    mjacob 	 * any other bits are set, but, thanks to fuzzy thinking,
   2141       1.1    mjacob 	 * in the SAF-TE spec, this can also be set even if no
   2142       1.1    mjacob 	 * other bits are set, thus making this really another
   2143       1.1    mjacob 	 * binary temperature sensor.
   2144       1.1    mjacob 	 */
   2145       1.1    mjacob 
   2146       1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2147       1.1    mjacob 	tempflags = sdata[r++];
   2148       1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2149       1.1    mjacob 	tempflags |= (tempflags << 8) | sdata[r++];
   2150       1.1    mjacob 
   2151       1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++) {
   2152       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2153       1.1    mjacob 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
   2154       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   2155       1.1    mjacob 			ssc->ses_objmap[4].encstat[2] = 0xff;
   2156       1.1    mjacob 			/*
   2157       1.1    mjacob 			 * Set 'over temperature' failure.
   2158       1.1    mjacob 			 */
   2159       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 8;
   2160       1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   2161       1.1    mjacob 		} else {
   2162       1.1    mjacob 			/*
   2163       1.1    mjacob 			 * We used to say 'not available' and synthesize a
   2164       1.1    mjacob 			 * nominal 30 deg (C)- that was wrong. Actually,
   2165       1.1    mjacob 			 * Just say 'OK', and use the reserved value of
   2166       1.1    mjacob 			 * zero.
   2167       1.1    mjacob 			 */
   2168       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2169       1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0;
   2170       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2171       1.1    mjacob 		}
   2172       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2173       1.1    mjacob 	}
   2174       1.1    mjacob 
   2175       1.1    mjacob 	/*
   2176       1.1    mjacob 	 * Get alarm status.
   2177       1.1    mjacob 	 */
   2178       1.1    mjacob 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2179       1.1    mjacob 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
   2180       1.1    mjacob 	ssc->ses_objmap[oid++].svalid = 1;
   2181       1.1    mjacob 
   2182       1.1    mjacob 	/*
   2183       1.1    mjacob 	 * Now get drive slot status
   2184       1.1    mjacob 	 */
   2185       1.1    mjacob 	cdb[2] = SAFTE_RD_RDDSTS;
   2186       1.1    mjacob 	amt = buflen;
   2187       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2188       1.1    mjacob 	if (err) {
   2189       1.1    mjacob 		SES_FREE(sdata, buflen);
   2190       1.1    mjacob 		return (err);
   2191       1.1    mjacob 	}
   2192       1.1    mjacob 	hiwater = buflen - amt;
   2193       1.1    mjacob 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
   2194       1.1    mjacob 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
   2195       1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
   2196       1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
   2197       1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2198       1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0;
   2199       1.1    mjacob 		status = sdata[r+3];
   2200       1.1    mjacob 		if ((status & 0x1) == 0) {	/* no device */
   2201       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2202       1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   2203       1.1    mjacob 		} else {
   2204       1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2205       1.1    mjacob 		}
   2206       1.1    mjacob 		if (status & 0x2) {
   2207       1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0x8;
   2208       1.1    mjacob 		}
   2209       1.1    mjacob 		if ((status & 0x4) == 0) {
   2210       1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   2211       1.1    mjacob 		}
   2212       1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2213       1.1    mjacob 	}
   2214       1.1    mjacob 	/* see comment below about sticky enclosure status */
   2215       1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
   2216       1.1    mjacob 	SES_FREE(sdata, buflen);
   2217       1.1    mjacob 	return (0);
   2218       1.1    mjacob }
   2219       1.1    mjacob 
   2220       1.1    mjacob static int
   2221       1.1    mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
   2222       1.1    mjacob {
   2223       1.1    mjacob 	int idx;
   2224       1.1    mjacob 	encobj *ep;
   2225       1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2226       1.1    mjacob 
   2227       1.1    mjacob 	if (cc == NULL)
   2228       1.1    mjacob 		return (0);
   2229       1.1    mjacob 
   2230       1.1    mjacob 	idx = (int)obp->obj_id;
   2231       1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   2232       1.1    mjacob 
   2233       1.1    mjacob 	switch (ep->enctype) {
   2234       1.1    mjacob 	case SESTYP_DEVICE:
   2235       1.1    mjacob 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
   2236       1.1    mjacob 			ep->priv |= 0x40;
   2237       1.1    mjacob 		}
   2238       1.1    mjacob 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
   2239       1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2240       1.1    mjacob 			ep->priv |= 0x80;
   2241       1.1    mjacob 			/*
   2242       1.1    mjacob 			 * Hmm. Try to set the 'No Drive' flag.
   2243       1.1    mjacob 			 * Maybe that will count as a 'disable'.
   2244       1.1    mjacob 			 */
   2245       1.1    mjacob 		}
   2246       1.1    mjacob 		if (ep->priv & 0xc6) {
   2247       1.1    mjacob 			ep->priv &= ~0x1;
   2248       1.1    mjacob 		} else {
   2249       1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   2250       1.1    mjacob 		}
   2251       1.1    mjacob 		wrslot_stat(ssc, slp);
   2252       1.1    mjacob 		break;
   2253       1.1    mjacob 	case SESTYP_POWER:
   2254       1.1    mjacob 		/*
   2255       1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2256       1.1    mjacob 		 * do the 'disable' for a power supply.
   2257       1.1    mjacob 		 */
   2258       1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2259       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   2260       1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   2261       1.1    mjacob 		}
   2262       1.1    mjacob 		break;
   2263       1.1    mjacob 	case SESTYP_FAN:
   2264       1.1    mjacob 		/*
   2265       1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2266       1.1    mjacob 		 * set fan speed to zero on disable.
   2267       1.1    mjacob 		 */
   2268       1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2269       1.1    mjacob 			/* remember- fans are the first items, so idx works */
   2270       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   2271       1.1    mjacob 		}
   2272       1.1    mjacob 		break;
   2273       1.1    mjacob 	case SESTYP_DOORLOCK:
   2274       1.1    mjacob 		/*
   2275       1.1    mjacob 		 * Well, we can 'disable' the lock.
   2276       1.1    mjacob 		 */
   2277       1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2278       1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   2279       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2280       1.1    mjacob 				cc->flag2, 0, slp);
   2281       1.1    mjacob 		}
   2282       1.1    mjacob 		break;
   2283       1.1    mjacob 	case SESTYP_ALARM:
   2284       1.1    mjacob 		/*
   2285       1.1    mjacob 		 * Well, we can 'disable' the alarm.
   2286       1.1    mjacob 		 */
   2287       1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2288       1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   2289       1.1    mjacob 			ep->priv |= 0x40;	/* Muted */
   2290       1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2291       1.1    mjacob 				cc->flag2, 0, slp);
   2292       1.1    mjacob 		}
   2293       1.1    mjacob 		break;
   2294       1.1    mjacob 	default:
   2295       1.1    mjacob 		break;
   2296       1.1    mjacob 	}
   2297       1.1    mjacob 	ep->svalid = 0;
   2298       1.1    mjacob 	return (0);
   2299       1.1    mjacob }
   2300       1.1    mjacob 
   2301       1.1    mjacob /*
   2302       1.1    mjacob  * This function handles all of the 16 byte WRITE BUFFER commands.
   2303       1.1    mjacob  */
   2304       1.1    mjacob static int
   2305       1.1    mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
   2306      1.37  christos     uint8_t b3, int slp)
   2307       1.1    mjacob {
   2308       1.1    mjacob 	int err, amt;
   2309       1.1    mjacob 	char *sdata;
   2310       1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2311       1.1    mjacob 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   2312       1.1    mjacob 
   2313       1.1    mjacob 	if (cc == NULL)
   2314       1.1    mjacob 		return (0);
   2315       1.1    mjacob 
   2316       1.1    mjacob 	sdata = SES_MALLOC(16);
   2317       1.1    mjacob 	if (sdata == NULL)
   2318       1.1    mjacob 		return (ENOMEM);
   2319       1.1    mjacob 
   2320       1.1    mjacob 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
   2321       1.1    mjacob 
   2322       1.1    mjacob 	sdata[0] = op;
   2323       1.1    mjacob 	sdata[1] = b1;
   2324       1.1    mjacob 	sdata[2] = b2;
   2325       1.1    mjacob 	sdata[3] = b3;
   2326       1.1    mjacob 	MEMZERO(&sdata[4], 12);
   2327       1.1    mjacob 	amt = -16;
   2328       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2329       1.1    mjacob 	SES_FREE(sdata, 16);
   2330       1.1    mjacob 	return (err);
   2331       1.1    mjacob }
   2332       1.1    mjacob 
   2333       1.1    mjacob /*
   2334       1.1    mjacob  * This function updates the status byte for the device slot described.
   2335       1.1    mjacob  *
   2336       1.1    mjacob  * Since this is an optional SAF-TE command, there's no point in
   2337       1.1    mjacob  * returning an error.
   2338       1.1    mjacob  */
   2339       1.1    mjacob static void
   2340      1.37  christos wrslot_stat(ses_softc_t *ssc, int slp)
   2341       1.1    mjacob {
   2342       1.1    mjacob 	int i, amt;
   2343       1.1    mjacob 	encobj *ep;
   2344       1.1    mjacob 	char cdb[10], *sdata;
   2345       1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2346       1.1    mjacob 
   2347       1.1    mjacob 	if (cc == NULL)
   2348       1.1    mjacob 		return;
   2349       1.1    mjacob 
   2350       1.1    mjacob 	SES_VLOG(ssc, "saf_wrslot\n");
   2351       1.1    mjacob 	cdb[0] = WRITE_BUFFER;
   2352       1.1    mjacob 	cdb[1] = 1;
   2353       1.1    mjacob 	cdb[2] = 0;
   2354       1.1    mjacob 	cdb[3] = 0;
   2355       1.1    mjacob 	cdb[4] = 0;
   2356       1.1    mjacob 	cdb[5] = 0;
   2357       1.1    mjacob 	cdb[6] = 0;
   2358       1.1    mjacob 	cdb[7] = 0;
   2359       1.1    mjacob 	cdb[8] = cc->Nslots * 3 + 1;
   2360       1.1    mjacob 	cdb[9] = 0;
   2361       1.1    mjacob 
   2362       1.1    mjacob 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
   2363       1.1    mjacob 	if (sdata == NULL)
   2364       1.1    mjacob 		return;
   2365       1.1    mjacob 	MEMZERO(sdata, cc->Nslots * 3 + 1);
   2366       1.1    mjacob 
   2367       1.1    mjacob 	sdata[0] = SAFTE_WT_DSTAT;
   2368       1.1    mjacob 	for (i = 0; i < cc->Nslots; i++) {
   2369       1.1    mjacob 		ep = &ssc->ses_objmap[cc->slotoff + i];
   2370       1.1    mjacob 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
   2371       1.1    mjacob 		sdata[1 + (3 * i)] = ep->priv & 0xff;
   2372       1.1    mjacob 	}
   2373       1.1    mjacob 	amt = -(cc->Nslots * 3 + 1);
   2374       1.1    mjacob 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2375       1.1    mjacob 	SES_FREE(sdata, cc->Nslots * 3 + 1);
   2376       1.1    mjacob }
   2377       1.1    mjacob 
   2378       1.1    mjacob /*
   2379       1.1    mjacob  * This function issues the "PERFORM SLOT OPERATION" command.
   2380       1.1    mjacob  */
   2381       1.1    mjacob static int
   2382      1.37  christos perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
   2383       1.1    mjacob {
   2384       1.1    mjacob 	int err, amt;
   2385       1.1    mjacob 	char *sdata;
   2386       1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2387       1.1    mjacob 	static char cdb[10] =
   2388       1.1    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   2389       1.1    mjacob 
   2390       1.1    mjacob 	if (cc == NULL)
   2391       1.1    mjacob 		return (0);
   2392       1.1    mjacob 
   2393       1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   2394       1.1    mjacob 	if (sdata == NULL)
   2395       1.1    mjacob 		return (ENOMEM);
   2396       1.1    mjacob 	MEMZERO(sdata, SAFT_SCRATCH);
   2397       1.1    mjacob 
   2398       1.1    mjacob 	sdata[0] = SAFTE_WT_SLTOP;
   2399       1.1    mjacob 	sdata[1] = slot;
   2400       1.1    mjacob 	sdata[2] = opflag;
   2401       1.1    mjacob 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
   2402       1.1    mjacob 	amt = -SAFT_SCRATCH;
   2403       1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2404       1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   2405       1.1    mjacob 	return (err);
   2406       1.1    mjacob }
   2407