ses.c revision 1.5 1 1.5 dante /* $NetBSD: ses.c,v 1.5 2000/05/14 18:20:11 dante Exp $ */
2 1.1 mjacob /*
3 1.1 mjacob * Copyright (C) 2000 National Aeronautics & Space Administration
4 1.1 mjacob * All rights reserved.
5 1.1 mjacob *
6 1.1 mjacob * Redistribution and use in source and binary forms, with or without
7 1.1 mjacob * modification, are permitted provided that the following conditions
8 1.1 mjacob * are met:
9 1.1 mjacob * 1. Redistributions of source code must retain the above copyright
10 1.1 mjacob * notice, this list of conditions and the following disclaimer.
11 1.1 mjacob * 2. The name of the author may not be used to endorse or promote products
12 1.1 mjacob * derived from this software without specific prior written permission
13 1.1 mjacob *
14 1.1 mjacob * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 1.1 mjacob * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 1.1 mjacob * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 1.1 mjacob * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 1.1 mjacob * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 1.1 mjacob * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 1.1 mjacob * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 1.1 mjacob * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 1.1 mjacob * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 1.1 mjacob * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 1.1 mjacob *
25 1.1 mjacob * Author: mjacob (at) nas.nasa.gov
26 1.1 mjacob */
27 1.1 mjacob
28 1.1 mjacob
29 1.1 mjacob #include "opt_scsi.h"
30 1.1 mjacob
31 1.1 mjacob #include <sys/types.h>
32 1.1 mjacob #include <sys/param.h>
33 1.1 mjacob #include <sys/systm.h>
34 1.1 mjacob #include <sys/kernel.h>
35 1.1 mjacob #include <sys/file.h>
36 1.1 mjacob #include <sys/stat.h>
37 1.1 mjacob #include <sys/ioctl.h>
38 1.1 mjacob #include <sys/scsiio.h>
39 1.1 mjacob #include <sys/buf.h>
40 1.1 mjacob #include <sys/uio.h>
41 1.1 mjacob #include <sys/malloc.h>
42 1.1 mjacob #include <sys/errno.h>
43 1.1 mjacob #include <sys/device.h>
44 1.1 mjacob #include <sys/disklabel.h>
45 1.1 mjacob #include <sys/disk.h>
46 1.1 mjacob #include <sys/proc.h>
47 1.1 mjacob #include <sys/conf.h>
48 1.1 mjacob #include <sys/vnode.h>
49 1.1 mjacob #include <machine/stdarg.h>
50 1.1 mjacob
51 1.1 mjacob #include <dev/scsipi/scsipi_all.h>
52 1.1 mjacob #include <dev/scsipi/scsi_all.h>
53 1.1 mjacob #include <dev/scsipi/scsipi_disk.h>
54 1.1 mjacob #include <dev/scsipi/scsi_disk.h>
55 1.1 mjacob #include <dev/scsipi/scsiconf.h>
56 1.1 mjacob #include <dev/scsipi/ses.h>
57 1.1 mjacob
58 1.1 mjacob /*
59 1.1 mjacob * Platform Independent Driver Internal Definitions for SES devices.
60 1.1 mjacob */
61 1.1 mjacob typedef enum {
62 1.1 mjacob SES_NONE,
63 1.1 mjacob SES_SES_SCSI2,
64 1.1 mjacob SES_SES,
65 1.1 mjacob SES_SES_PASSTHROUGH,
66 1.1 mjacob SES_SEN,
67 1.1 mjacob SES_SAFT
68 1.1 mjacob } enctyp;
69 1.1 mjacob
70 1.1 mjacob struct ses_softc;
71 1.1 mjacob typedef struct ses_softc ses_softc_t;
72 1.1 mjacob typedef struct {
73 1.1 mjacob int (*softc_init) __P((ses_softc_t *, int));
74 1.1 mjacob int (*init_enc) __P((ses_softc_t *));
75 1.1 mjacob int (*get_encstat) __P((ses_softc_t *, int));
76 1.1 mjacob int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 1.1 mjacob int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 1.1 mjacob int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 1.1 mjacob } encvec;
80 1.1 mjacob
81 1.1 mjacob #define ENCI_SVALID 0x80
82 1.1 mjacob
83 1.1 mjacob typedef struct {
84 1.1 mjacob uint32_t
85 1.1 mjacob enctype : 8, /* enclosure type */
86 1.1 mjacob subenclosure : 8, /* subenclosure id */
87 1.1 mjacob svalid : 1, /* enclosure information valid */
88 1.1 mjacob priv : 15; /* private data, per object */
89 1.1 mjacob uint8_t encstat[4]; /* state && stats */
90 1.1 mjacob } encobj;
91 1.1 mjacob
92 1.1 mjacob #define SEN_ID "UNISYS SUN_SEN"
93 1.1 mjacob #define SEN_ID_LEN 24
94 1.1 mjacob
95 1.5 dante static enctyp ses_type __P((struct scsipi_inquiry_data *));
96 1.1 mjacob
97 1.1 mjacob
98 1.1 mjacob /* Forward reference to Enclosure Functions */
99 1.1 mjacob static int ses_softc_init __P((ses_softc_t *, int));
100 1.1 mjacob static int ses_init_enc __P((ses_softc_t *));
101 1.1 mjacob static int ses_get_encstat __P((ses_softc_t *, int));
102 1.1 mjacob static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 1.1 mjacob static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 1.1 mjacob static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105 1.1 mjacob
106 1.1 mjacob static int safte_softc_init __P((ses_softc_t *, int));
107 1.1 mjacob static int safte_init_enc __P((ses_softc_t *));
108 1.1 mjacob static int safte_get_encstat __P((ses_softc_t *, int));
109 1.1 mjacob static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 1.1 mjacob static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 1.1 mjacob static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112 1.1 mjacob
113 1.1 mjacob /*
114 1.1 mjacob * Platform implementation defines/functions for SES internal kernel stuff
115 1.1 mjacob */
116 1.1 mjacob
117 1.1 mjacob #define STRNCMP strncmp
118 1.1 mjacob #define PRINTF printf
119 1.1 mjacob #define SES_LOG ses_log
120 1.1 mjacob #if defined(DEBUG) || defined(SCSIDEBUG)
121 1.1 mjacob #define SES_VLOG ses_log
122 1.1 mjacob #else
123 1.1 mjacob #define SES_VLOG if (0) ses_log
124 1.1 mjacob #endif
125 1.1 mjacob #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
126 1.1 mjacob #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
127 1.1 mjacob #define MEMZERO bzero
128 1.1 mjacob #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
129 1.1 mjacob #define RECEIVE_DIAGNOSTIC 0x1c
130 1.1 mjacob #define SEND_DIAGNOSTIC 0x1d
131 1.1 mjacob #define WRITE_BUFFER 0x3b
132 1.1 mjacob #define READ_BUFFER 0x3c
133 1.1 mjacob
134 1.1 mjacob int sesopen __P((dev_t, int, int, struct proc *));
135 1.1 mjacob int sesclose __P((dev_t, int, int, struct proc *));
136 1.1 mjacob int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137 1.1 mjacob
138 1.1 mjacob static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 1.1 mjacob static void ses_log __P((struct ses_softc *, const char *, ...));
140 1.1 mjacob
141 1.1 mjacob /*
142 1.1 mjacob * General NetBSD kernel stuff.
143 1.1 mjacob */
144 1.1 mjacob
145 1.1 mjacob struct ses_softc {
146 1.1 mjacob struct device sc_device;
147 1.1 mjacob struct scsipi_link *sc_link;
148 1.1 mjacob enctyp ses_type; /* type of enclosure */
149 1.1 mjacob encvec ses_vec; /* vector to handlers */
150 1.1 mjacob void * ses_private; /* per-type private data */
151 1.1 mjacob encobj * ses_objmap; /* objects */
152 1.1 mjacob u_int32_t ses_nobjects; /* number of objects */
153 1.1 mjacob ses_encstat ses_encstat; /* overall status */
154 1.1 mjacob u_int8_t ses_flags;
155 1.1 mjacob };
156 1.1 mjacob #define SES_FLAG_INVALID 0x01
157 1.1 mjacob #define SES_FLAG_OPEN 0x02
158 1.1 mjacob #define SES_FLAG_INITIALIZED 0x04
159 1.1 mjacob
160 1.1 mjacob #define SESUNIT(x) (minor((x)))
161 1.1 mjacob
162 1.1 mjacob static int ses_match __P((struct device *, struct cfdata *, void *));
163 1.1 mjacob static void ses_attach __P((struct device *, struct device *, void *));
164 1.1 mjacob static enctyp ses_device_type __P((struct scsipibus_attach_args *));
165 1.1 mjacob
166 1.1 mjacob struct cfattach ses_ca = {
167 1.1 mjacob sizeof (struct ses_softc), ses_match, ses_attach
168 1.1 mjacob };
169 1.1 mjacob extern struct cfdriver ses_cd;
170 1.1 mjacob
171 1.1 mjacob struct scsipi_device ses_switch = {
172 1.1 mjacob NULL,
173 1.1 mjacob NULL,
174 1.1 mjacob NULL,
175 1.1 mjacob NULL
176 1.1 mjacob };
177 1.1 mjacob
178 1.1 mjacob
179 1.1 mjacob int
180 1.1 mjacob ses_match(parent, match, aux)
181 1.1 mjacob struct device *parent;
182 1.1 mjacob struct cfdata *match;
183 1.1 mjacob void *aux;
184 1.1 mjacob {
185 1.1 mjacob struct scsipibus_attach_args *sa = aux;
186 1.2 mjacob
187 1.1 mjacob switch (ses_device_type(sa)) {
188 1.1 mjacob case SES_SES:
189 1.1 mjacob case SES_SES_SCSI2:
190 1.1 mjacob case SES_SEN:
191 1.1 mjacob case SES_SAFT:
192 1.2 mjacob case SES_SES_PASSTHROUGH:
193 1.2 mjacob /*
194 1.2 mjacob * For these devices, it's a perfect match.
195 1.2 mjacob */
196 1.2 mjacob return (24);
197 1.1 mjacob default:
198 1.1 mjacob return (0);
199 1.1 mjacob }
200 1.1 mjacob }
201 1.1 mjacob
202 1.1 mjacob
203 1.1 mjacob /*
204 1.1 mjacob * Complete the attachment.
205 1.1 mjacob *
206 1.1 mjacob * We have to repeat the rerun of INQUIRY data as above because
207 1.1 mjacob * it's not until the return from the match routine that we have
208 1.1 mjacob * the softc available to set stuff in.
209 1.1 mjacob */
210 1.1 mjacob void
211 1.1 mjacob ses_attach(parent, self, aux)
212 1.1 mjacob struct device *parent;
213 1.1 mjacob struct device *self;
214 1.1 mjacob void *aux;
215 1.1 mjacob {
216 1.1 mjacob char *tname;
217 1.1 mjacob struct ses_softc *softc = (void *)self;
218 1.1 mjacob struct scsipibus_attach_args *sa = aux;
219 1.1 mjacob struct scsipi_link *sc_link = sa->sa_sc_link;
220 1.1 mjacob
221 1.1 mjacob SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
222 1.1 mjacob softc->sc_link = sa->sa_sc_link;
223 1.1 mjacob sc_link->device = &ses_switch;
224 1.1 mjacob sc_link->device_softc = softc;
225 1.1 mjacob sc_link->openings = 1;
226 1.1 mjacob
227 1.1 mjacob softc->ses_type = ses_device_type(sa);
228 1.1 mjacob switch (softc->ses_type) {
229 1.1 mjacob case SES_SES:
230 1.1 mjacob case SES_SES_SCSI2:
231 1.1 mjacob case SES_SES_PASSTHROUGH:
232 1.1 mjacob softc->ses_vec.softc_init = ses_softc_init;
233 1.1 mjacob softc->ses_vec.init_enc = ses_init_enc;
234 1.1 mjacob softc->ses_vec.get_encstat = ses_get_encstat;
235 1.1 mjacob softc->ses_vec.set_encstat = ses_set_encstat;
236 1.1 mjacob softc->ses_vec.get_objstat = ses_get_objstat;
237 1.1 mjacob softc->ses_vec.set_objstat = ses_set_objstat;
238 1.1 mjacob break;
239 1.1 mjacob case SES_SAFT:
240 1.1 mjacob softc->ses_vec.softc_init = safte_softc_init;
241 1.1 mjacob softc->ses_vec.init_enc = safte_init_enc;
242 1.1 mjacob softc->ses_vec.get_encstat = safte_get_encstat;
243 1.1 mjacob softc->ses_vec.set_encstat = safte_set_encstat;
244 1.1 mjacob softc->ses_vec.get_objstat = safte_get_objstat;
245 1.1 mjacob softc->ses_vec.set_objstat = safte_set_objstat;
246 1.1 mjacob break;
247 1.1 mjacob case SES_SEN:
248 1.1 mjacob break;
249 1.1 mjacob case SES_NONE:
250 1.1 mjacob default:
251 1.1 mjacob break;
252 1.1 mjacob }
253 1.1 mjacob
254 1.1 mjacob switch (softc->ses_type) {
255 1.1 mjacob default:
256 1.1 mjacob case SES_NONE:
257 1.1 mjacob tname = "No SES device";
258 1.1 mjacob break;
259 1.1 mjacob case SES_SES_SCSI2:
260 1.1 mjacob tname = "SCSI-2 SES Device";
261 1.1 mjacob break;
262 1.1 mjacob case SES_SES:
263 1.1 mjacob tname = "SCSI-3 SES Device";
264 1.1 mjacob break;
265 1.1 mjacob case SES_SES_PASSTHROUGH:
266 1.1 mjacob tname = "SES Passthrough Device";
267 1.1 mjacob break;
268 1.1 mjacob case SES_SEN:
269 1.1 mjacob tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 1.1 mjacob break;
271 1.1 mjacob case SES_SAFT:
272 1.1 mjacob tname = "SAF-TE Compliant Device";
273 1.1 mjacob break;
274 1.1 mjacob }
275 1.1 mjacob printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 1.1 mjacob }
277 1.1 mjacob
278 1.2 mjacob
279 1.1 mjacob static enctyp
280 1.1 mjacob ses_device_type(sa)
281 1.1 mjacob struct scsipibus_attach_args *sa;
282 1.1 mjacob {
283 1.1 mjacob struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284 1.1 mjacob int length;
285 1.1 mjacob
286 1.1 mjacob if (inqp == NULL)
287 1.1 mjacob return (SES_NONE);
288 1.1 mjacob
289 1.5 dante return (ses_type(inqp));
290 1.1 mjacob }
291 1.1 mjacob
292 1.1 mjacob int
293 1.1 mjacob sesopen(dev, flags, fmt, p)
294 1.1 mjacob dev_t dev;
295 1.1 mjacob int flags;
296 1.1 mjacob int fmt;
297 1.1 mjacob struct proc *p;
298 1.1 mjacob {
299 1.1 mjacob struct ses_softc *softc;
300 1.1 mjacob int error, unit;
301 1.1 mjacob
302 1.1 mjacob unit = SESUNIT(dev);
303 1.1 mjacob if (unit >= ses_cd.cd_ndevs)
304 1.1 mjacob return (ENXIO);
305 1.1 mjacob softc = ses_cd.cd_devs[unit];
306 1.1 mjacob if (softc == NULL)
307 1.1 mjacob return (ENXIO);
308 1.1 mjacob
309 1.1 mjacob if (softc->ses_flags & SES_FLAG_INVALID) {
310 1.1 mjacob error = ENXIO;
311 1.1 mjacob goto out;
312 1.1 mjacob }
313 1.1 mjacob if (softc->ses_flags & SES_FLAG_OPEN) {
314 1.1 mjacob error = EBUSY;
315 1.1 mjacob goto out;
316 1.1 mjacob }
317 1.1 mjacob if (softc->ses_vec.softc_init == NULL) {
318 1.1 mjacob error = ENXIO;
319 1.1 mjacob goto out;
320 1.1 mjacob }
321 1.1 mjacob error = scsipi_adapter_addref(softc->sc_link);
322 1.1 mjacob if (error != 0)
323 1.1 mjacob goto out;
324 1.1 mjacob
325 1.1 mjacob
326 1.1 mjacob softc->ses_flags |= SES_FLAG_OPEN;
327 1.1 mjacob if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
328 1.1 mjacob error = (*softc->ses_vec.softc_init)(softc, 1);
329 1.1 mjacob if (error)
330 1.1 mjacob softc->ses_flags &= ~SES_FLAG_OPEN;
331 1.1 mjacob else
332 1.1 mjacob softc->ses_flags |= SES_FLAG_INITIALIZED;
333 1.1 mjacob }
334 1.1 mjacob
335 1.1 mjacob out:
336 1.1 mjacob return (error);
337 1.1 mjacob }
338 1.1 mjacob
339 1.1 mjacob int
340 1.1 mjacob sesclose(dev, flags, fmt, p)
341 1.1 mjacob dev_t dev;
342 1.1 mjacob int flags;
343 1.1 mjacob int fmt;
344 1.1 mjacob struct proc *p;
345 1.1 mjacob {
346 1.1 mjacob struct ses_softc *softc;
347 1.1 mjacob int unit;
348 1.1 mjacob
349 1.1 mjacob unit = SESUNIT(dev);
350 1.1 mjacob if (unit >= ses_cd.cd_ndevs)
351 1.1 mjacob return (ENXIO);
352 1.1 mjacob softc = ses_cd.cd_devs[unit];
353 1.1 mjacob if (softc == NULL)
354 1.1 mjacob return (ENXIO);
355 1.1 mjacob
356 1.1 mjacob scsipi_wait_drain(softc->sc_link);
357 1.1 mjacob scsipi_adapter_delref(softc->sc_link);
358 1.1 mjacob softc->ses_flags &= ~SES_FLAG_OPEN;
359 1.1 mjacob return (0);
360 1.1 mjacob }
361 1.1 mjacob
362 1.1 mjacob int
363 1.1 mjacob sesioctl(dev, cmd, arg_addr, flag, p)
364 1.1 mjacob dev_t dev;
365 1.1 mjacob u_long cmd;
366 1.1 mjacob caddr_t arg_addr;
367 1.1 mjacob int flag;
368 1.1 mjacob struct proc *p;
369 1.1 mjacob {
370 1.1 mjacob ses_encstat tmp;
371 1.1 mjacob ses_objstat objs;
372 1.1 mjacob ses_object obj, *uobj;
373 1.1 mjacob struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
374 1.1 mjacob void *addr;
375 1.1 mjacob int error, i;
376 1.1 mjacob
377 1.1 mjacob
378 1.1 mjacob if (arg_addr)
379 1.1 mjacob addr = *((caddr_t *) arg_addr);
380 1.1 mjacob else
381 1.1 mjacob addr = NULL;
382 1.1 mjacob
383 1.1 mjacob SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
384 1.1 mjacob
385 1.1 mjacob /*
386 1.1 mjacob * Now check to see whether we're initialized or not.
387 1.1 mjacob */
388 1.1 mjacob if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
389 1.1 mjacob return (ENODEV);
390 1.1 mjacob }
391 1.1 mjacob
392 1.1 mjacob error = 0;
393 1.1 mjacob
394 1.1 mjacob /*
395 1.1 mjacob * If this command can change the device's state,
396 1.1 mjacob * we must have the device open for writing.
397 1.1 mjacob */
398 1.1 mjacob switch (cmd) {
399 1.1 mjacob case SESIOC_GETNOBJ:
400 1.1 mjacob case SESIOC_GETOBJMAP:
401 1.1 mjacob case SESIOC_GETENCSTAT:
402 1.1 mjacob case SESIOC_GETOBJSTAT:
403 1.1 mjacob break;
404 1.1 mjacob default:
405 1.1 mjacob if ((flag & FWRITE) == 0) {
406 1.1 mjacob return (EBADF);
407 1.1 mjacob }
408 1.1 mjacob }
409 1.1 mjacob
410 1.1 mjacob switch (cmd) {
411 1.1 mjacob case SESIOC_GETNOBJ:
412 1.1 mjacob error = copyout(&ssc->ses_nobjects, addr,
413 1.1 mjacob sizeof (ssc->ses_nobjects));
414 1.1 mjacob break;
415 1.1 mjacob
416 1.1 mjacob case SESIOC_GETOBJMAP:
417 1.1 mjacob for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
418 1.1 mjacob obj.obj_id = i;
419 1.1 mjacob obj.subencid = ssc->ses_objmap[i].subenclosure;
420 1.1 mjacob obj.object_type = ssc->ses_objmap[i].enctype;
421 1.1 mjacob error = copyout(&obj, uobj, sizeof (ses_object));
422 1.1 mjacob if (error) {
423 1.1 mjacob break;
424 1.1 mjacob }
425 1.1 mjacob }
426 1.1 mjacob break;
427 1.1 mjacob
428 1.1 mjacob case SESIOC_GETENCSTAT:
429 1.1 mjacob error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 1.1 mjacob if (error)
431 1.1 mjacob break;
432 1.1 mjacob tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 1.1 mjacob error = copyout(&tmp, addr, sizeof (ses_encstat));
434 1.1 mjacob ssc->ses_encstat = tmp;
435 1.1 mjacob break;
436 1.1 mjacob
437 1.1 mjacob case SESIOC_SETENCSTAT:
438 1.1 mjacob error = copyin(addr, &tmp, sizeof (ses_encstat));
439 1.1 mjacob if (error)
440 1.1 mjacob break;
441 1.1 mjacob error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
442 1.1 mjacob break;
443 1.1 mjacob
444 1.1 mjacob case SESIOC_GETOBJSTAT:
445 1.1 mjacob error = copyin(addr, &objs, sizeof (ses_objstat));
446 1.1 mjacob if (error)
447 1.1 mjacob break;
448 1.1 mjacob if (objs.obj_id >= ssc->ses_nobjects) {
449 1.1 mjacob error = EINVAL;
450 1.1 mjacob break;
451 1.1 mjacob }
452 1.1 mjacob error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
453 1.1 mjacob if (error)
454 1.1 mjacob break;
455 1.1 mjacob error = copyout(&objs, addr, sizeof (ses_objstat));
456 1.1 mjacob /*
457 1.1 mjacob * Always (for now) invalidate entry.
458 1.1 mjacob */
459 1.1 mjacob ssc->ses_objmap[objs.obj_id].svalid = 0;
460 1.1 mjacob break;
461 1.1 mjacob
462 1.1 mjacob case SESIOC_SETOBJSTAT:
463 1.1 mjacob error = copyin(addr, &objs, sizeof (ses_objstat));
464 1.1 mjacob if (error)
465 1.1 mjacob break;
466 1.1 mjacob
467 1.1 mjacob if (objs.obj_id >= ssc->ses_nobjects) {
468 1.1 mjacob error = EINVAL;
469 1.1 mjacob break;
470 1.1 mjacob }
471 1.1 mjacob error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
472 1.1 mjacob
473 1.1 mjacob /*
474 1.1 mjacob * Always (for now) invalidate entry.
475 1.1 mjacob */
476 1.1 mjacob ssc->ses_objmap[objs.obj_id].svalid = 0;
477 1.1 mjacob break;
478 1.1 mjacob
479 1.1 mjacob case SESIOC_INIT:
480 1.1 mjacob
481 1.1 mjacob error = (*ssc->ses_vec.init_enc)(ssc);
482 1.1 mjacob break;
483 1.1 mjacob
484 1.1 mjacob default:
485 1.1 mjacob error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
486 1.1 mjacob break;
487 1.1 mjacob }
488 1.1 mjacob return (error);
489 1.1 mjacob }
490 1.1 mjacob
491 1.1 mjacob static int
492 1.1 mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
493 1.1 mjacob {
494 1.1 mjacob struct scsipi_generic sgen;
495 1.1 mjacob int dl, flg, error;
496 1.1 mjacob
497 1.1 mjacob if (dptr) {
498 1.1 mjacob if ((dl = *dlenp) < 0) {
499 1.1 mjacob dl = -dl;
500 1.1 mjacob flg = XS_CTL_DATA_OUT;
501 1.1 mjacob } else {
502 1.1 mjacob flg = XS_CTL_DATA_IN;
503 1.1 mjacob }
504 1.1 mjacob } else {
505 1.1 mjacob dl = 0;
506 1.1 mjacob flg = 0;
507 1.1 mjacob }
508 1.1 mjacob
509 1.1 mjacob if (cdbl > sizeof (struct scsipi_generic)) {
510 1.1 mjacob cdbl = sizeof (struct scsipi_generic);
511 1.1 mjacob }
512 1.1 mjacob bcopy(cdb, &sgen, cdbl);
513 1.1 mjacob #ifndef SCSIDEBUG
514 1.1 mjacob flg |= XS_CTL_SILENT;
515 1.1 mjacob #endif
516 1.1 mjacob error = scsipi_command(ssc->sc_link, &sgen, cdbl,
517 1.1 mjacob (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
518 1.1 mjacob
519 1.1 mjacob if (error == 0 && dptr)
520 1.1 mjacob *dlenp = 0;
521 1.1 mjacob
522 1.1 mjacob return (error);
523 1.1 mjacob }
524 1.1 mjacob
525 1.1 mjacob #ifdef __STDC__
526 1.1 mjacob static void
527 1.1 mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
528 1.1 mjacob {
529 1.1 mjacob va_list ap;
530 1.1 mjacob
531 1.1 mjacob printf("%s: ", ssc->sc_device.dv_xname);
532 1.1 mjacob va_start(ap, fmt);
533 1.1 mjacob vprintf(fmt, ap);
534 1.1 mjacob va_end(ap);
535 1.1 mjacob }
536 1.1 mjacob #else
537 1.1 mjacob static void
538 1.1 mjacob ses_log(ssc, fmt, va_alist)
539 1.1 mjacob struct ses_softc *ssc;
540 1.1 mjacob char *fmt;
541 1.1 mjacob va_dcl
542 1.1 mjacob {
543 1.1 mjacob va_list ap;
544 1.1 mjacob
545 1.1 mjacob printf("%s: ", ssc->sc_device.dv_xname);
546 1.1 mjacob va_start(ap, fmt);
547 1.1 mjacob vprintf(fmt, ap);
548 1.1 mjacob va_end(ap);
549 1.1 mjacob }
550 1.1 mjacob #endif
551 1.1 mjacob
552 1.1 mjacob /*
553 1.1 mjacob * The code after this point runs on many platforms,
554 1.1 mjacob * so forgive the slightly awkward and nonconforming
555 1.1 mjacob * appearance.
556 1.1 mjacob */
557 1.1 mjacob
558 1.1 mjacob /*
559 1.1 mjacob * Is this a device that supports enclosure services?
560 1.1 mjacob *
561 1.1 mjacob * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
562 1.1 mjacob * an SES device. If it happens to be an old UNISYS SEN device, we can
563 1.1 mjacob * handle that too.
564 1.1 mjacob */
565 1.3 mjacob
566 1.3 mjacob #define SAFTE_START 44
567 1.3 mjacob #define SAFTE_END 50
568 1.3 mjacob #define SAFTE_LEN SAFTE_END-SAFTE_START
569 1.1 mjacob
570 1.1 mjacob static enctyp
571 1.5 dante ses_type(inqp)
572 1.5 dante struct scsipi_inquiry_data *inqp;
573 1.1 mjacob {
574 1.5 dante size_t given_len = inqp->additional_length + 4;
575 1.1 mjacob
576 1.5 dante if (given_len < 8+SEN_ID_LEN)
577 1.1 mjacob return (SES_NONE);
578 1.1 mjacob
579 1.5 dante if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
580 1.5 dante if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
581 1.1 mjacob return (SES_SEN);
582 1.5 dante } else if ((inqp->version & SID_ANSII) > 2) {
583 1.1 mjacob return (SES_SES);
584 1.1 mjacob } else {
585 1.1 mjacob return (SES_SES_SCSI2);
586 1.1 mjacob }
587 1.1 mjacob return (SES_NONE);
588 1.1 mjacob }
589 1.1 mjacob
590 1.1 mjacob #ifdef SES_ENABLE_PASSTHROUGH
591 1.5 dante if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
592 1.1 mjacob /*
593 1.1 mjacob * PassThrough Device.
594 1.1 mjacob */
595 1.1 mjacob return (SES_SES_PASSTHROUGH);
596 1.1 mjacob }
597 1.1 mjacob #endif
598 1.1 mjacob
599 1.2 mjacob /*
600 1.2 mjacob * The comparison is short for a reason-
601 1.2 mjacob * some vendors were chopping it short.
602 1.2 mjacob */
603 1.2 mjacob
604 1.5 dante if (given_len < SAFTE_END - 2) {
605 1.1 mjacob return (SES_NONE);
606 1.1 mjacob }
607 1.2 mjacob
608 1.5 dante if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
609 1.5 dante SAFTE_LEN - 2) == 0) {
610 1.1 mjacob return (SES_SAFT);
611 1.5 dante
612 1.1 mjacob return (SES_NONE);
613 1.1 mjacob }
614 1.1 mjacob
615 1.1 mjacob /*
616 1.1 mjacob * SES Native Type Device Support
617 1.1 mjacob */
618 1.1 mjacob
619 1.1 mjacob /*
620 1.1 mjacob * SES Diagnostic Page Codes
621 1.1 mjacob */
622 1.1 mjacob
623 1.1 mjacob typedef enum {
624 1.1 mjacob SesConfigPage = 0x1,
625 1.1 mjacob SesControlPage,
626 1.1 mjacob #define SesStatusPage SesControlPage
627 1.1 mjacob SesHelpTxt,
628 1.1 mjacob SesStringOut,
629 1.1 mjacob #define SesStringIn SesStringOut
630 1.1 mjacob SesThresholdOut,
631 1.1 mjacob #define SesThresholdIn SesThresholdOut
632 1.1 mjacob SesArrayControl,
633 1.1 mjacob #define SesArrayStatus SesArrayControl
634 1.1 mjacob SesElementDescriptor,
635 1.1 mjacob SesShortStatus
636 1.1 mjacob } SesDiagPageCodes;
637 1.1 mjacob
638 1.1 mjacob /*
639 1.1 mjacob * minimal amounts
640 1.1 mjacob */
641 1.1 mjacob
642 1.1 mjacob /*
643 1.1 mjacob * Minimum amount of data, starting from byte 0, to have
644 1.1 mjacob * the config header.
645 1.1 mjacob */
646 1.1 mjacob #define SES_CFGHDR_MINLEN 12
647 1.1 mjacob
648 1.1 mjacob /*
649 1.1 mjacob * Minimum amount of data, starting from byte 0, to have
650 1.1 mjacob * the config header and one enclosure header.
651 1.1 mjacob */
652 1.1 mjacob #define SES_ENCHDR_MINLEN 48
653 1.1 mjacob
654 1.1 mjacob /*
655 1.1 mjacob * Take this value, subtract it from VEnclen and you know
656 1.1 mjacob * the length of the vendor unique bytes.
657 1.1 mjacob */
658 1.1 mjacob #define SES_ENCHDR_VMIN 36
659 1.1 mjacob
660 1.1 mjacob /*
661 1.1 mjacob * SES Data Structures
662 1.1 mjacob */
663 1.1 mjacob
664 1.1 mjacob typedef struct {
665 1.1 mjacob uint32_t GenCode; /* Generation Code */
666 1.1 mjacob uint8_t Nsubenc; /* Number of Subenclosures */
667 1.1 mjacob } SesCfgHdr;
668 1.1 mjacob
669 1.1 mjacob typedef struct {
670 1.1 mjacob uint8_t Subencid; /* SubEnclosure Identifier */
671 1.1 mjacob uint8_t Ntypes; /* # of supported types */
672 1.1 mjacob uint8_t VEnclen; /* Enclosure Descriptor Length */
673 1.1 mjacob } SesEncHdr;
674 1.1 mjacob
675 1.1 mjacob typedef struct {
676 1.1 mjacob uint8_t encWWN[8]; /* XXX- Not Right Yet */
677 1.1 mjacob uint8_t encVid[8];
678 1.1 mjacob uint8_t encPid[16];
679 1.1 mjacob uint8_t encRev[4];
680 1.1 mjacob uint8_t encVen[1];
681 1.1 mjacob } SesEncDesc;
682 1.1 mjacob
683 1.1 mjacob typedef struct {
684 1.1 mjacob uint8_t enc_type; /* type of element */
685 1.1 mjacob uint8_t enc_maxelt; /* maximum supported */
686 1.1 mjacob uint8_t enc_subenc; /* in SubEnc # N */
687 1.1 mjacob uint8_t enc_tlen; /* Type Descriptor Text Length */
688 1.1 mjacob } SesThdr;
689 1.1 mjacob
690 1.1 mjacob typedef struct {
691 1.1 mjacob uint8_t comstatus;
692 1.1 mjacob uint8_t comstat[3];
693 1.1 mjacob } SesComStat;
694 1.1 mjacob
695 1.1 mjacob struct typidx {
696 1.1 mjacob int ses_tidx;
697 1.1 mjacob int ses_oidx;
698 1.1 mjacob };
699 1.1 mjacob
700 1.1 mjacob struct sscfg {
701 1.1 mjacob uint8_t ses_ntypes; /* total number of types supported */
702 1.1 mjacob
703 1.1 mjacob /*
704 1.1 mjacob * We need to keep a type index as well as an
705 1.1 mjacob * object index for each object in an enclosure.
706 1.1 mjacob */
707 1.1 mjacob struct typidx *ses_typidx;
708 1.1 mjacob
709 1.1 mjacob /*
710 1.1 mjacob * We also need to keep track of the number of elements
711 1.1 mjacob * per type of element. This is needed later so that we
712 1.1 mjacob * can find precisely in the returned status data the
713 1.1 mjacob * status for the Nth element of the Kth type.
714 1.1 mjacob */
715 1.1 mjacob uint8_t * ses_eltmap;
716 1.1 mjacob };
717 1.1 mjacob
718 1.1 mjacob
719 1.1 mjacob /*
720 1.1 mjacob * (de)canonicalization defines
721 1.1 mjacob */
722 1.1 mjacob #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
723 1.1 mjacob #define sbit(x, bit) (((uint32_t)(x)) << bit)
724 1.1 mjacob #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725 1.1 mjacob
726 1.1 mjacob #define sset16(outp, idx, sval) \
727 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
728 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729 1.1 mjacob
730 1.1 mjacob
731 1.1 mjacob #define sset24(outp, idx, sval) \
732 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
733 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
734 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
735 1.1 mjacob
736 1.1 mjacob
737 1.1 mjacob #define sset32(outp, idx, sval) \
738 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
739 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
740 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
741 1.1 mjacob (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
742 1.1 mjacob
743 1.1 mjacob #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
744 1.1 mjacob #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
745 1.1 mjacob #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
746 1.1 mjacob #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
747 1.1 mjacob
748 1.1 mjacob #define sget16(inp, idx, lval) \
749 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
750 1.1 mjacob (((uint8_t *)(inp))[idx+1]), idx += 2
751 1.1 mjacob
752 1.1 mjacob #define gget16(inp, idx, lval) \
753 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
754 1.1 mjacob (((uint8_t *)(inp))[idx+1])
755 1.1 mjacob
756 1.1 mjacob #define sget24(inp, idx, lval) \
757 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
758 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
759 1.1 mjacob (((uint8_t *)(inp))[idx+2]), idx += 3
760 1.1 mjacob
761 1.1 mjacob #define gget24(inp, idx, lval) \
762 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
763 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
764 1.1 mjacob (((uint8_t *)(inp))[idx+2])
765 1.1 mjacob
766 1.1 mjacob #define sget32(inp, idx, lval) \
767 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
768 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
769 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
770 1.1 mjacob (((uint8_t *)(inp))[idx+3]), idx += 4
771 1.1 mjacob
772 1.1 mjacob #define gget32(inp, idx, lval) \
773 1.1 mjacob lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
774 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
775 1.1 mjacob gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
776 1.1 mjacob (((uint8_t *)(inp))[idx+3])
777 1.1 mjacob
778 1.1 mjacob #define SCSZ 0x2000
779 1.1 mjacob #define CFLEN (256 + SES_ENCHDR_MINLEN)
780 1.1 mjacob
781 1.1 mjacob /*
782 1.1 mjacob * Routines specific && private to SES only
783 1.1 mjacob */
784 1.1 mjacob
785 1.1 mjacob static int ses_getconfig(ses_softc_t *);
786 1.1 mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
787 1.1 mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
788 1.1 mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
789 1.1 mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
790 1.1 mjacob static int ses_getthdr(uint8_t *, int, int, SesThdr *);
791 1.1 mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
792 1.1 mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
793 1.1 mjacob
794 1.1 mjacob static int
795 1.1 mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
796 1.1 mjacob {
797 1.1 mjacob if (doinit == 0) {
798 1.1 mjacob struct sscfg *cc;
799 1.1 mjacob if (ssc->ses_nobjects) {
800 1.1 mjacob SES_FREE(ssc->ses_objmap,
801 1.1 mjacob ssc->ses_nobjects * sizeof (encobj));
802 1.1 mjacob ssc->ses_objmap = NULL;
803 1.1 mjacob }
804 1.1 mjacob if ((cc = ssc->ses_private) != NULL) {
805 1.1 mjacob if (cc->ses_eltmap && cc->ses_ntypes) {
806 1.1 mjacob SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
807 1.1 mjacob cc->ses_eltmap = NULL;
808 1.1 mjacob cc->ses_ntypes = 0;
809 1.1 mjacob }
810 1.1 mjacob if (cc->ses_typidx && ssc->ses_nobjects) {
811 1.1 mjacob SES_FREE(cc->ses_typidx,
812 1.1 mjacob ssc->ses_nobjects * sizeof (struct typidx));
813 1.1 mjacob cc->ses_typidx = NULL;
814 1.1 mjacob }
815 1.1 mjacob SES_FREE(cc, sizeof (struct sscfg));
816 1.1 mjacob ssc->ses_private = NULL;
817 1.1 mjacob }
818 1.1 mjacob ssc->ses_nobjects = 0;
819 1.1 mjacob return (0);
820 1.1 mjacob }
821 1.1 mjacob if (ssc->ses_private == NULL) {
822 1.1 mjacob ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
823 1.1 mjacob }
824 1.1 mjacob if (ssc->ses_private == NULL) {
825 1.1 mjacob return (ENOMEM);
826 1.1 mjacob }
827 1.1 mjacob ssc->ses_nobjects = 0;
828 1.1 mjacob ssc->ses_encstat = 0;
829 1.1 mjacob return (ses_getconfig(ssc));
830 1.1 mjacob }
831 1.1 mjacob
832 1.1 mjacob static int
833 1.1 mjacob ses_init_enc(ses_softc_t *ssc)
834 1.1 mjacob {
835 1.1 mjacob return (0);
836 1.1 mjacob }
837 1.1 mjacob
838 1.1 mjacob static int
839 1.1 mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
840 1.1 mjacob {
841 1.1 mjacob SesComStat ComStat;
842 1.1 mjacob int status;
843 1.1 mjacob
844 1.1 mjacob if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
845 1.1 mjacob return (status);
846 1.1 mjacob }
847 1.1 mjacob ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
848 1.1 mjacob return (0);
849 1.1 mjacob }
850 1.1 mjacob
851 1.1 mjacob static int
852 1.1 mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
853 1.1 mjacob {
854 1.1 mjacob SesComStat ComStat;
855 1.1 mjacob int status;
856 1.1 mjacob
857 1.1 mjacob ComStat.comstatus = encstat & 0xf;
858 1.1 mjacob if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
859 1.1 mjacob return (status);
860 1.1 mjacob }
861 1.1 mjacob ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
862 1.1 mjacob return (0);
863 1.1 mjacob }
864 1.1 mjacob
865 1.1 mjacob static int
866 1.1 mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
867 1.1 mjacob {
868 1.1 mjacob int i = (int)obp->obj_id;
869 1.1 mjacob
870 1.1 mjacob if (ssc->ses_objmap[i].svalid == 0) {
871 1.1 mjacob SesComStat ComStat;
872 1.1 mjacob int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
873 1.1 mjacob if (err)
874 1.1 mjacob return (err);
875 1.1 mjacob ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
876 1.1 mjacob ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
877 1.1 mjacob ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
878 1.1 mjacob ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
879 1.1 mjacob ssc->ses_objmap[i].svalid = 1;
880 1.1 mjacob }
881 1.1 mjacob obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
882 1.1 mjacob obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
883 1.1 mjacob obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
884 1.1 mjacob obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
885 1.1 mjacob return (0);
886 1.1 mjacob }
887 1.1 mjacob
888 1.1 mjacob static int
889 1.1 mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
890 1.1 mjacob {
891 1.1 mjacob SesComStat ComStat;
892 1.1 mjacob int err;
893 1.1 mjacob /*
894 1.1 mjacob * If this is clear, we don't do diddly.
895 1.1 mjacob */
896 1.1 mjacob if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
897 1.1 mjacob return (0);
898 1.1 mjacob }
899 1.1 mjacob ComStat.comstatus = obp->cstat[0];
900 1.1 mjacob ComStat.comstat[0] = obp->cstat[1];
901 1.1 mjacob ComStat.comstat[1] = obp->cstat[2];
902 1.1 mjacob ComStat.comstat[2] = obp->cstat[3];
903 1.1 mjacob err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
904 1.1 mjacob ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
905 1.1 mjacob return (err);
906 1.1 mjacob }
907 1.1 mjacob
908 1.1 mjacob static int
909 1.1 mjacob ses_getconfig(ses_softc_t *ssc)
910 1.1 mjacob {
911 1.1 mjacob struct sscfg *cc;
912 1.1 mjacob SesCfgHdr cf;
913 1.1 mjacob SesEncHdr hd;
914 1.1 mjacob SesEncDesc *cdp;
915 1.1 mjacob SesThdr thdr;
916 1.1 mjacob int err, amt, i, nobj, ntype, maxima;
917 1.1 mjacob char storage[CFLEN], *sdata;
918 1.1 mjacob static char cdb[6] = {
919 1.1 mjacob RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
920 1.1 mjacob };
921 1.1 mjacob
922 1.1 mjacob cc = ssc->ses_private;
923 1.1 mjacob if (cc == NULL) {
924 1.1 mjacob return (ENXIO);
925 1.1 mjacob }
926 1.1 mjacob
927 1.1 mjacob sdata = SES_MALLOC(SCSZ);
928 1.1 mjacob if (sdata == NULL)
929 1.1 mjacob return (ENOMEM);
930 1.1 mjacob
931 1.1 mjacob amt = SCSZ;
932 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
933 1.1 mjacob if (err) {
934 1.1 mjacob SES_FREE(sdata, SCSZ);
935 1.1 mjacob return (err);
936 1.1 mjacob }
937 1.1 mjacob amt = SCSZ - amt;
938 1.1 mjacob
939 1.1 mjacob if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
940 1.1 mjacob SES_LOG(ssc, "Unable to parse SES Config Header\n");
941 1.1 mjacob SES_FREE(sdata, SCSZ);
942 1.1 mjacob return (EIO);
943 1.1 mjacob }
944 1.1 mjacob if (amt < SES_ENCHDR_MINLEN) {
945 1.1 mjacob SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
946 1.1 mjacob SES_FREE(sdata, SCSZ);
947 1.1 mjacob return (EIO);
948 1.1 mjacob }
949 1.1 mjacob
950 1.1 mjacob SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
951 1.1 mjacob
952 1.1 mjacob /*
953 1.1 mjacob * Now waltz through all the subenclosures toting up the
954 1.1 mjacob * number of types available in each. For this, we only
955 1.1 mjacob * really need the enclosure header. However, we get the
956 1.1 mjacob * enclosure descriptor for debug purposes, as well
957 1.1 mjacob * as self-consistency checking purposes.
958 1.1 mjacob */
959 1.1 mjacob
960 1.1 mjacob maxima = cf.Nsubenc + 1;
961 1.1 mjacob cdp = (SesEncDesc *) storage;
962 1.1 mjacob for (ntype = i = 0; i < maxima; i++) {
963 1.1 mjacob MEMZERO((caddr_t)cdp, sizeof (*cdp));
964 1.1 mjacob if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
965 1.1 mjacob SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
966 1.1 mjacob SES_FREE(sdata, SCSZ);
967 1.1 mjacob return (EIO);
968 1.1 mjacob }
969 1.1 mjacob SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
970 1.1 mjacob "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
971 1.1 mjacob
972 1.1 mjacob if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
973 1.1 mjacob SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
974 1.1 mjacob SES_FREE(sdata, SCSZ);
975 1.1 mjacob return (EIO);
976 1.1 mjacob }
977 1.1 mjacob SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
978 1.1 mjacob cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
979 1.1 mjacob cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
980 1.1 mjacob cdp->encWWN[6], cdp->encWWN[7]);
981 1.1 mjacob ntype += hd.Ntypes;
982 1.1 mjacob }
983 1.1 mjacob
984 1.1 mjacob /*
985 1.1 mjacob * Now waltz through all the types that are available, getting
986 1.1 mjacob * the type header so we can start adding up the number of
987 1.1 mjacob * objects available.
988 1.1 mjacob */
989 1.1 mjacob for (nobj = i = 0; i < ntype; i++) {
990 1.1 mjacob if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
991 1.1 mjacob SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
992 1.1 mjacob SES_FREE(sdata, SCSZ);
993 1.1 mjacob return (EIO);
994 1.1 mjacob }
995 1.1 mjacob SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
996 1.1 mjacob "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
997 1.1 mjacob thdr.enc_subenc, thdr.enc_tlen);
998 1.1 mjacob nobj += thdr.enc_maxelt;
999 1.1 mjacob }
1000 1.1 mjacob
1001 1.1 mjacob
1002 1.1 mjacob /*
1003 1.1 mjacob * Now allocate the object array and type map.
1004 1.1 mjacob */
1005 1.1 mjacob
1006 1.1 mjacob ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1007 1.1 mjacob cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1008 1.1 mjacob cc->ses_eltmap = SES_MALLOC(ntype);
1009 1.1 mjacob
1010 1.1 mjacob if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1011 1.1 mjacob cc->ses_eltmap == NULL) {
1012 1.1 mjacob if (ssc->ses_objmap) {
1013 1.1 mjacob SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1014 1.1 mjacob ssc->ses_objmap = NULL;
1015 1.1 mjacob }
1016 1.1 mjacob if (cc->ses_typidx) {
1017 1.1 mjacob SES_FREE(cc->ses_typidx,
1018 1.1 mjacob (nobj * sizeof (struct typidx)));
1019 1.1 mjacob cc->ses_typidx = NULL;
1020 1.1 mjacob }
1021 1.1 mjacob if (cc->ses_eltmap) {
1022 1.1 mjacob SES_FREE(cc->ses_eltmap, ntype);
1023 1.1 mjacob cc->ses_eltmap = NULL;
1024 1.1 mjacob }
1025 1.1 mjacob SES_FREE(sdata, SCSZ);
1026 1.1 mjacob return (ENOMEM);
1027 1.1 mjacob }
1028 1.1 mjacob MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1029 1.1 mjacob MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1030 1.1 mjacob MEMZERO(cc->ses_eltmap, ntype);
1031 1.1 mjacob cc->ses_ntypes = (uint8_t) ntype;
1032 1.1 mjacob ssc->ses_nobjects = nobj;
1033 1.1 mjacob
1034 1.1 mjacob /*
1035 1.1 mjacob * Now waltz through the # of types again to fill in the types
1036 1.1 mjacob * (and subenclosure ids) of the allocated objects.
1037 1.1 mjacob */
1038 1.1 mjacob nobj = 0;
1039 1.1 mjacob for (i = 0; i < ntype; i++) {
1040 1.1 mjacob int j;
1041 1.1 mjacob if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1042 1.1 mjacob continue;
1043 1.1 mjacob }
1044 1.1 mjacob cc->ses_eltmap[i] = thdr.enc_maxelt;
1045 1.1 mjacob for (j = 0; j < thdr.enc_maxelt; j++) {
1046 1.1 mjacob cc->ses_typidx[nobj].ses_tidx = i;
1047 1.1 mjacob cc->ses_typidx[nobj].ses_oidx = j;
1048 1.1 mjacob ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1049 1.1 mjacob ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1050 1.1 mjacob }
1051 1.1 mjacob }
1052 1.1 mjacob SES_FREE(sdata, SCSZ);
1053 1.1 mjacob return (0);
1054 1.1 mjacob }
1055 1.1 mjacob
1056 1.1 mjacob static int
1057 1.1 mjacob ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1058 1.1 mjacob {
1059 1.1 mjacob struct sscfg *cc;
1060 1.1 mjacob int err, amt, bufsiz, tidx, oidx;
1061 1.1 mjacob char cdb[6], *sdata;
1062 1.1 mjacob
1063 1.1 mjacob cc = ssc->ses_private;
1064 1.1 mjacob if (cc == NULL) {
1065 1.1 mjacob return (ENXIO);
1066 1.1 mjacob }
1067 1.1 mjacob
1068 1.1 mjacob /*
1069 1.1 mjacob * If we're just getting overall enclosure status,
1070 1.1 mjacob * we only need 2 bytes of data storage.
1071 1.1 mjacob *
1072 1.1 mjacob * If we're getting anything else, we know how much
1073 1.1 mjacob * storage we need by noting that starting at offset
1074 1.1 mjacob * 8 in returned data, all object status bytes are 4
1075 1.1 mjacob * bytes long, and are stored in chunks of types(M)
1076 1.1 mjacob * and nth+1 instances of type M.
1077 1.1 mjacob */
1078 1.1 mjacob if (objid == -1) {
1079 1.1 mjacob bufsiz = 2;
1080 1.1 mjacob } else {
1081 1.1 mjacob bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1082 1.1 mjacob }
1083 1.1 mjacob sdata = SES_MALLOC(bufsiz);
1084 1.1 mjacob if (sdata == NULL)
1085 1.1 mjacob return (ENOMEM);
1086 1.1 mjacob
1087 1.1 mjacob cdb[0] = RECEIVE_DIAGNOSTIC;
1088 1.1 mjacob cdb[1] = 1;
1089 1.1 mjacob cdb[2] = SesStatusPage;
1090 1.1 mjacob cdb[3] = bufsiz >> 8;
1091 1.1 mjacob cdb[4] = bufsiz & 0xff;
1092 1.1 mjacob cdb[5] = 0;
1093 1.1 mjacob amt = bufsiz;
1094 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1095 1.1 mjacob if (err) {
1096 1.1 mjacob SES_FREE(sdata, bufsiz);
1097 1.1 mjacob return (err);
1098 1.1 mjacob }
1099 1.1 mjacob amt = bufsiz - amt;
1100 1.1 mjacob
1101 1.1 mjacob if (objid == -1) {
1102 1.1 mjacob tidx = -1;
1103 1.1 mjacob oidx = -1;
1104 1.1 mjacob } else {
1105 1.1 mjacob tidx = cc->ses_typidx[objid].ses_tidx;
1106 1.1 mjacob oidx = cc->ses_typidx[objid].ses_oidx;
1107 1.1 mjacob }
1108 1.1 mjacob if (in) {
1109 1.1 mjacob if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1110 1.1 mjacob err = ENODEV;
1111 1.1 mjacob }
1112 1.1 mjacob } else {
1113 1.1 mjacob if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1114 1.1 mjacob err = ENODEV;
1115 1.1 mjacob } else {
1116 1.1 mjacob cdb[0] = SEND_DIAGNOSTIC;
1117 1.1 mjacob cdb[1] = 0x10;
1118 1.1 mjacob cdb[2] = 0;
1119 1.1 mjacob cdb[3] = bufsiz >> 8;
1120 1.1 mjacob cdb[4] = bufsiz & 0xff;
1121 1.1 mjacob cdb[5] = 0;
1122 1.1 mjacob amt = -bufsiz;
1123 1.1 mjacob err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1124 1.1 mjacob }
1125 1.1 mjacob }
1126 1.1 mjacob SES_FREE(sdata, bufsiz);
1127 1.1 mjacob return (0);
1128 1.1 mjacob }
1129 1.1 mjacob
1130 1.1 mjacob
1131 1.1 mjacob /*
1132 1.1 mjacob * Routines to parse returned SES data structures.
1133 1.1 mjacob * Architecture and compiler independent.
1134 1.1 mjacob */
1135 1.1 mjacob
1136 1.1 mjacob static int
1137 1.1 mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1138 1.1 mjacob {
1139 1.1 mjacob if (buflen < SES_CFGHDR_MINLEN) {
1140 1.1 mjacob return (-1);
1141 1.1 mjacob }
1142 1.1 mjacob gget8(buffer, 1, cfp->Nsubenc);
1143 1.1 mjacob gget32(buffer, 4, cfp->GenCode);
1144 1.1 mjacob return (0);
1145 1.1 mjacob }
1146 1.1 mjacob
1147 1.1 mjacob static int
1148 1.1 mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1149 1.1 mjacob {
1150 1.1 mjacob int s, off = 8;
1151 1.1 mjacob for (s = 0; s < SubEncId; s++) {
1152 1.1 mjacob if (off + 3 > amt)
1153 1.1 mjacob return (-1);
1154 1.1 mjacob off += buffer[off+3] + 4;
1155 1.1 mjacob }
1156 1.1 mjacob if (off + 3 > amt) {
1157 1.1 mjacob return (-1);
1158 1.1 mjacob }
1159 1.1 mjacob gget8(buffer, off+1, chp->Subencid);
1160 1.1 mjacob gget8(buffer, off+2, chp->Ntypes);
1161 1.1 mjacob gget8(buffer, off+3, chp->VEnclen);
1162 1.1 mjacob return (0);
1163 1.1 mjacob }
1164 1.1 mjacob
1165 1.1 mjacob static int
1166 1.1 mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1167 1.1 mjacob {
1168 1.1 mjacob int s, e, enclen, off = 8;
1169 1.1 mjacob for (s = 0; s < SubEncId; s++) {
1170 1.1 mjacob if (off + 3 > amt)
1171 1.1 mjacob return (-1);
1172 1.1 mjacob off += buffer[off+3] + 4;
1173 1.1 mjacob }
1174 1.1 mjacob if (off + 3 > amt) {
1175 1.1 mjacob return (-1);
1176 1.1 mjacob }
1177 1.1 mjacob gget8(buffer, off+3, enclen);
1178 1.1 mjacob off += 4;
1179 1.1 mjacob if (off >= amt)
1180 1.1 mjacob return (-1);
1181 1.1 mjacob
1182 1.1 mjacob e = off + enclen;
1183 1.1 mjacob if (e > amt) {
1184 1.1 mjacob e = amt;
1185 1.1 mjacob }
1186 1.1 mjacob MEMCPY(cdp, &buffer[off], e - off);
1187 1.1 mjacob return (0);
1188 1.1 mjacob }
1189 1.1 mjacob
1190 1.1 mjacob static int
1191 1.1 mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1192 1.1 mjacob {
1193 1.1 mjacob int s, off = 8;
1194 1.1 mjacob
1195 1.1 mjacob if (amt < SES_CFGHDR_MINLEN) {
1196 1.1 mjacob return (-1);
1197 1.1 mjacob }
1198 1.1 mjacob for (s = 0; s < buffer[1]; s++) {
1199 1.1 mjacob if (off + 3 > amt)
1200 1.1 mjacob return (-1);
1201 1.1 mjacob off += buffer[off+3] + 4;
1202 1.1 mjacob }
1203 1.1 mjacob if (off + 3 > amt) {
1204 1.1 mjacob return (-1);
1205 1.1 mjacob }
1206 1.1 mjacob off += buffer[off+3] + 4 + (nth * 4);
1207 1.1 mjacob if (amt < (off + 4))
1208 1.1 mjacob return (-1);
1209 1.1 mjacob
1210 1.1 mjacob gget8(buffer, off++, thp->enc_type);
1211 1.1 mjacob gget8(buffer, off++, thp->enc_maxelt);
1212 1.1 mjacob gget8(buffer, off++, thp->enc_subenc);
1213 1.1 mjacob gget8(buffer, off, thp->enc_tlen);
1214 1.1 mjacob return (0);
1215 1.1 mjacob }
1216 1.1 mjacob
1217 1.1 mjacob /*
1218 1.1 mjacob * This function needs a little explanation.
1219 1.1 mjacob *
1220 1.1 mjacob * The arguments are:
1221 1.1 mjacob *
1222 1.1 mjacob *
1223 1.1 mjacob * char *b, int amt
1224 1.1 mjacob *
1225 1.1 mjacob * These describes the raw input SES status data and length.
1226 1.1 mjacob *
1227 1.1 mjacob * uint8_t *ep
1228 1.1 mjacob *
1229 1.1 mjacob * This is a map of the number of types for each element type
1230 1.1 mjacob * in the enclosure.
1231 1.1 mjacob *
1232 1.1 mjacob * int elt
1233 1.1 mjacob *
1234 1.1 mjacob * This is the element type being sought. If elt is -1,
1235 1.1 mjacob * then overall enclosure status is being sought.
1236 1.1 mjacob *
1237 1.1 mjacob * int elm
1238 1.1 mjacob *
1239 1.1 mjacob * This is the ordinal Mth element of type elt being sought.
1240 1.1 mjacob *
1241 1.1 mjacob * SesComStat *sp
1242 1.1 mjacob *
1243 1.1 mjacob * This is the output area to store the status for
1244 1.1 mjacob * the Mth element of type Elt.
1245 1.1 mjacob */
1246 1.1 mjacob
1247 1.1 mjacob static int
1248 1.1 mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1249 1.1 mjacob {
1250 1.1 mjacob int idx, i;
1251 1.1 mjacob
1252 1.1 mjacob /*
1253 1.1 mjacob * If it's overall enclosure status being sought, get that.
1254 1.1 mjacob * We need at least 2 bytes of status data to get that.
1255 1.1 mjacob */
1256 1.1 mjacob if (elt == -1) {
1257 1.1 mjacob if (amt < 2)
1258 1.1 mjacob return (-1);
1259 1.1 mjacob gget8(b, 1, sp->comstatus);
1260 1.1 mjacob sp->comstat[0] = 0;
1261 1.1 mjacob sp->comstat[1] = 0;
1262 1.1 mjacob sp->comstat[2] = 0;
1263 1.1 mjacob return (0);
1264 1.1 mjacob }
1265 1.1 mjacob
1266 1.1 mjacob /*
1267 1.1 mjacob * Check to make sure that the Mth element is legal for type Elt.
1268 1.1 mjacob */
1269 1.1 mjacob
1270 1.1 mjacob if (elm >= ep[elt])
1271 1.1 mjacob return (-1);
1272 1.1 mjacob
1273 1.1 mjacob /*
1274 1.1 mjacob * Starting at offset 8, start skipping over the storage
1275 1.1 mjacob * for the element types we're not interested in.
1276 1.1 mjacob */
1277 1.1 mjacob for (idx = 8, i = 0; i < elt; i++) {
1278 1.1 mjacob idx += ((ep[i] + 1) * 4);
1279 1.1 mjacob }
1280 1.1 mjacob
1281 1.1 mjacob /*
1282 1.1 mjacob * Skip over Overall status for this element type.
1283 1.1 mjacob */
1284 1.1 mjacob idx += 4;
1285 1.1 mjacob
1286 1.1 mjacob /*
1287 1.1 mjacob * And skip to the index for the Mth element that we're going for.
1288 1.1 mjacob */
1289 1.1 mjacob idx += (4 * elm);
1290 1.1 mjacob
1291 1.1 mjacob /*
1292 1.1 mjacob * Make sure we haven't overflowed the buffer.
1293 1.1 mjacob */
1294 1.1 mjacob if (idx+4 > amt)
1295 1.1 mjacob return (-1);
1296 1.1 mjacob
1297 1.1 mjacob /*
1298 1.1 mjacob * Retrieve the status.
1299 1.1 mjacob */
1300 1.1 mjacob gget8(b, idx++, sp->comstatus);
1301 1.1 mjacob gget8(b, idx++, sp->comstat[0]);
1302 1.1 mjacob gget8(b, idx++, sp->comstat[1]);
1303 1.1 mjacob gget8(b, idx++, sp->comstat[2]);
1304 1.1 mjacob #if 0
1305 1.1 mjacob PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1306 1.1 mjacob #endif
1307 1.1 mjacob return (0);
1308 1.1 mjacob }
1309 1.1 mjacob
1310 1.1 mjacob /*
1311 1.1 mjacob * This is the mirror function to ses_decode, but we set the 'select'
1312 1.1 mjacob * bit for the object which we're interested in. All other objects,
1313 1.1 mjacob * after a status fetch, should have that bit off. Hmm. It'd be easy
1314 1.1 mjacob * enough to ensure this, so we will.
1315 1.1 mjacob */
1316 1.1 mjacob
1317 1.1 mjacob static int
1318 1.1 mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1319 1.1 mjacob {
1320 1.1 mjacob int idx, i;
1321 1.1 mjacob
1322 1.1 mjacob /*
1323 1.1 mjacob * If it's overall enclosure status being sought, get that.
1324 1.1 mjacob * We need at least 2 bytes of status data to get that.
1325 1.1 mjacob */
1326 1.1 mjacob if (elt == -1) {
1327 1.1 mjacob if (amt < 2)
1328 1.1 mjacob return (-1);
1329 1.1 mjacob i = 0;
1330 1.1 mjacob sset8(b, i, 0);
1331 1.1 mjacob sset8(b, i, sp->comstatus & 0xf);
1332 1.1 mjacob #if 0
1333 1.1 mjacob PRINTF("set EncStat %x\n", sp->comstatus);
1334 1.1 mjacob #endif
1335 1.1 mjacob return (0);
1336 1.1 mjacob }
1337 1.1 mjacob
1338 1.1 mjacob /*
1339 1.1 mjacob * Check to make sure that the Mth element is legal for type Elt.
1340 1.1 mjacob */
1341 1.1 mjacob
1342 1.1 mjacob if (elm >= ep[elt])
1343 1.1 mjacob return (-1);
1344 1.1 mjacob
1345 1.1 mjacob /*
1346 1.1 mjacob * Starting at offset 8, start skipping over the storage
1347 1.1 mjacob * for the element types we're not interested in.
1348 1.1 mjacob */
1349 1.1 mjacob for (idx = 8, i = 0; i < elt; i++) {
1350 1.1 mjacob idx += ((ep[i] + 1) * 4);
1351 1.1 mjacob }
1352 1.1 mjacob
1353 1.1 mjacob /*
1354 1.1 mjacob * Skip over Overall status for this element type.
1355 1.1 mjacob */
1356 1.1 mjacob idx += 4;
1357 1.1 mjacob
1358 1.1 mjacob /*
1359 1.1 mjacob * And skip to the index for the Mth element that we're going for.
1360 1.1 mjacob */
1361 1.1 mjacob idx += (4 * elm);
1362 1.1 mjacob
1363 1.1 mjacob /*
1364 1.1 mjacob * Make sure we haven't overflowed the buffer.
1365 1.1 mjacob */
1366 1.1 mjacob if (idx+4 > amt)
1367 1.1 mjacob return (-1);
1368 1.1 mjacob
1369 1.1 mjacob /*
1370 1.1 mjacob * Set the status.
1371 1.1 mjacob */
1372 1.1 mjacob sset8(b, idx, sp->comstatus);
1373 1.1 mjacob sset8(b, idx, sp->comstat[0]);
1374 1.1 mjacob sset8(b, idx, sp->comstat[1]);
1375 1.1 mjacob sset8(b, idx, sp->comstat[2]);
1376 1.1 mjacob idx -= 4;
1377 1.1 mjacob
1378 1.1 mjacob #if 0
1379 1.1 mjacob PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1380 1.1 mjacob elt, elm, idx, sp->comstatus, sp->comstat[0],
1381 1.1 mjacob sp->comstat[1], sp->comstat[2]);
1382 1.1 mjacob #endif
1383 1.1 mjacob
1384 1.1 mjacob /*
1385 1.1 mjacob * Now make sure all other 'Select' bits are off.
1386 1.1 mjacob */
1387 1.1 mjacob for (i = 8; i < amt; i += 4) {
1388 1.1 mjacob if (i != idx)
1389 1.1 mjacob b[i] &= ~0x80;
1390 1.1 mjacob }
1391 1.1 mjacob /*
1392 1.1 mjacob * And make sure the INVOP bit is clear.
1393 1.1 mjacob */
1394 1.1 mjacob b[2] &= ~0x10;
1395 1.1 mjacob
1396 1.1 mjacob return (0);
1397 1.1 mjacob }
1398 1.1 mjacob
1399 1.1 mjacob /*
1400 1.1 mjacob * SAF-TE Type Device Emulation
1401 1.1 mjacob */
1402 1.1 mjacob
1403 1.1 mjacob static int safte_getconfig(ses_softc_t *);
1404 1.1 mjacob static int safte_rdstat(ses_softc_t *, int);;
1405 1.1 mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1406 1.1 mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1407 1.1 mjacob static void wrslot_stat(ses_softc_t *, int);
1408 1.1 mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1409 1.1 mjacob
1410 1.1 mjacob #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1411 1.1 mjacob SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1412 1.1 mjacob /*
1413 1.1 mjacob * SAF-TE specific defines- Mandatory ones only...
1414 1.1 mjacob */
1415 1.1 mjacob
1416 1.1 mjacob /*
1417 1.1 mjacob * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1418 1.1 mjacob */
1419 1.1 mjacob #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1420 1.1 mjacob #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1421 1.1 mjacob #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1422 1.1 mjacob
1423 1.1 mjacob /*
1424 1.1 mjacob * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1425 1.1 mjacob */
1426 1.1 mjacob #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1427 1.1 mjacob #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1428 1.1 mjacob #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1429 1.1 mjacob #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1430 1.1 mjacob #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1431 1.1 mjacob
1432 1.1 mjacob
1433 1.1 mjacob #define SAFT_SCRATCH 64
1434 1.1 mjacob #define NPSEUDO_THERM 16
1435 1.1 mjacob #define NPSEUDO_ALARM 1
1436 1.1 mjacob struct scfg {
1437 1.1 mjacob /*
1438 1.1 mjacob * Cached Configuration
1439 1.1 mjacob */
1440 1.1 mjacob uint8_t Nfans; /* Number of Fans */
1441 1.1 mjacob uint8_t Npwr; /* Number of Power Supplies */
1442 1.1 mjacob uint8_t Nslots; /* Number of Device Slots */
1443 1.1 mjacob uint8_t DoorLock; /* Door Lock Installed */
1444 1.1 mjacob uint8_t Ntherm; /* Number of Temperature Sensors */
1445 1.1 mjacob uint8_t Nspkrs; /* Number of Speakers */
1446 1.1 mjacob uint8_t Nalarm; /* Number of Alarms (at least one) */
1447 1.1 mjacob /*
1448 1.1 mjacob * Cached Flag Bytes for Global Status
1449 1.1 mjacob */
1450 1.1 mjacob uint8_t flag1;
1451 1.1 mjacob uint8_t flag2;
1452 1.1 mjacob /*
1453 1.1 mjacob * What object index ID is where various slots start.
1454 1.1 mjacob */
1455 1.1 mjacob uint8_t pwroff;
1456 1.1 mjacob uint8_t slotoff;
1457 1.1 mjacob #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1458 1.1 mjacob };
1459 1.1 mjacob
1460 1.1 mjacob #define SAFT_FLG1_ALARM 0x1
1461 1.1 mjacob #define SAFT_FLG1_GLOBFAIL 0x2
1462 1.1 mjacob #define SAFT_FLG1_GLOBWARN 0x4
1463 1.1 mjacob #define SAFT_FLG1_ENCPWROFF 0x8
1464 1.1 mjacob #define SAFT_FLG1_ENCFANFAIL 0x10
1465 1.1 mjacob #define SAFT_FLG1_ENCPWRFAIL 0x20
1466 1.1 mjacob #define SAFT_FLG1_ENCDRVFAIL 0x40
1467 1.1 mjacob #define SAFT_FLG1_ENCDRVWARN 0x80
1468 1.1 mjacob
1469 1.1 mjacob #define SAFT_FLG2_LOCKDOOR 0x4
1470 1.1 mjacob #define SAFT_PRIVATE sizeof (struct scfg)
1471 1.1 mjacob
1472 1.1 mjacob static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1473 1.1 mjacob #define SAFT_BAIL(r, x, k, l) \
1474 1.1 mjacob if (r >= x) { \
1475 1.1 mjacob SES_LOG(ssc, safte_2little, x, __LINE__);\
1476 1.1 mjacob SES_FREE(k, l); \
1477 1.1 mjacob return (EIO); \
1478 1.1 mjacob }
1479 1.1 mjacob
1480 1.1 mjacob
1481 1.1 mjacob int
1482 1.1 mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
1483 1.1 mjacob {
1484 1.1 mjacob int err, i, r;
1485 1.1 mjacob struct scfg *cc;
1486 1.1 mjacob
1487 1.1 mjacob if (doinit == 0) {
1488 1.1 mjacob if (ssc->ses_nobjects) {
1489 1.1 mjacob if (ssc->ses_objmap) {
1490 1.1 mjacob SES_FREE(ssc->ses_objmap,
1491 1.1 mjacob ssc->ses_nobjects * sizeof (encobj));
1492 1.1 mjacob ssc->ses_objmap = NULL;
1493 1.1 mjacob }
1494 1.1 mjacob ssc->ses_nobjects = 0;
1495 1.1 mjacob }
1496 1.1 mjacob if (ssc->ses_private) {
1497 1.1 mjacob SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1498 1.1 mjacob ssc->ses_private = NULL;
1499 1.1 mjacob }
1500 1.1 mjacob return (0);
1501 1.1 mjacob }
1502 1.1 mjacob
1503 1.1 mjacob if (ssc->ses_private == NULL) {
1504 1.1 mjacob ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1505 1.1 mjacob if (ssc->ses_private == NULL) {
1506 1.1 mjacob return (ENOMEM);
1507 1.1 mjacob }
1508 1.1 mjacob MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1509 1.1 mjacob }
1510 1.1 mjacob
1511 1.1 mjacob ssc->ses_nobjects = 0;
1512 1.1 mjacob ssc->ses_encstat = 0;
1513 1.1 mjacob
1514 1.1 mjacob if ((err = safte_getconfig(ssc)) != 0) {
1515 1.1 mjacob return (err);
1516 1.1 mjacob }
1517 1.1 mjacob
1518 1.1 mjacob /*
1519 1.1 mjacob * The number of objects here, as well as that reported by the
1520 1.1 mjacob * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1521 1.1 mjacob * that get reported during READ_BUFFER/READ_ENC_STATUS.
1522 1.1 mjacob */
1523 1.1 mjacob cc = ssc->ses_private;
1524 1.1 mjacob ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1525 1.1 mjacob cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1526 1.1 mjacob ssc->ses_objmap = (encobj *)
1527 1.1 mjacob SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1528 1.1 mjacob if (ssc->ses_objmap == NULL) {
1529 1.1 mjacob return (ENOMEM);
1530 1.1 mjacob }
1531 1.1 mjacob MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1532 1.1 mjacob
1533 1.1 mjacob r = 0;
1534 1.1 mjacob /*
1535 1.1 mjacob * Note that this is all arranged for the convenience
1536 1.1 mjacob * in later fetches of status.
1537 1.1 mjacob */
1538 1.1 mjacob for (i = 0; i < cc->Nfans; i++)
1539 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1540 1.1 mjacob cc->pwroff = (uint8_t) r;
1541 1.1 mjacob for (i = 0; i < cc->Npwr; i++)
1542 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1543 1.1 mjacob for (i = 0; i < cc->DoorLock; i++)
1544 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1545 1.1 mjacob for (i = 0; i < cc->Nspkrs; i++)
1546 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1547 1.1 mjacob for (i = 0; i < cc->Ntherm; i++)
1548 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1549 1.1 mjacob for (i = 0; i < NPSEUDO_THERM; i++)
1550 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1551 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1552 1.1 mjacob cc->slotoff = (uint8_t) r;
1553 1.1 mjacob for (i = 0; i < cc->Nslots; i++)
1554 1.1 mjacob ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1555 1.1 mjacob return (0);
1556 1.1 mjacob }
1557 1.1 mjacob
1558 1.1 mjacob int
1559 1.1 mjacob safte_init_enc(ses_softc_t *ssc)
1560 1.1 mjacob {
1561 1.1 mjacob int err, amt;
1562 1.1 mjacob char *sdata;
1563 1.4 mjacob static char cdb0[6] = { SEND_DIAGNOSTIC };
1564 1.1 mjacob static char cdb[10] =
1565 1.4 mjacob { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1566 1.1 mjacob
1567 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
1568 1.1 mjacob if (sdata == NULL)
1569 1.1 mjacob return (ENOMEM);
1570 1.1 mjacob
1571 1.4 mjacob err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1572 1.1 mjacob if (err) {
1573 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1574 1.1 mjacob return (err);
1575 1.1 mjacob }
1576 1.1 mjacob sdata[0] = SAFTE_WT_GLOBAL;
1577 1.4 mjacob MEMZERO(&sdata[1], 15);
1578 1.1 mjacob amt = -SAFT_SCRATCH;
1579 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1580 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1581 1.1 mjacob return (err);
1582 1.1 mjacob }
1583 1.1 mjacob
1584 1.1 mjacob int
1585 1.1 mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
1586 1.1 mjacob {
1587 1.1 mjacob return (safte_rdstat(ssc, slpflg));
1588 1.1 mjacob }
1589 1.1 mjacob
1590 1.1 mjacob int
1591 1.1 mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1592 1.1 mjacob {
1593 1.1 mjacob struct scfg *cc = ssc->ses_private;
1594 1.1 mjacob if (cc == NULL)
1595 1.1 mjacob return (0);
1596 1.1 mjacob /*
1597 1.1 mjacob * Since SAF-TE devices aren't necessarily sticky in terms
1598 1.1 mjacob * of state, make our soft copy of enclosure status 'sticky'-
1599 1.1 mjacob * that is, things set in enclosure status stay set (as implied
1600 1.1 mjacob * by conditions set in reading object status) until cleared.
1601 1.1 mjacob */
1602 1.1 mjacob ssc->ses_encstat &= ~ALL_ENC_STAT;
1603 1.1 mjacob ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1604 1.1 mjacob ssc->ses_encstat |= ENCI_SVALID;
1605 1.1 mjacob cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1606 1.1 mjacob if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1607 1.1 mjacob cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1608 1.1 mjacob } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1609 1.1 mjacob cc->flag1 |= SAFT_FLG1_GLOBWARN;
1610 1.1 mjacob }
1611 1.1 mjacob return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1612 1.1 mjacob }
1613 1.1 mjacob
1614 1.1 mjacob int
1615 1.1 mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1616 1.1 mjacob {
1617 1.1 mjacob int i = (int)obp->obj_id;
1618 1.1 mjacob
1619 1.1 mjacob if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1620 1.1 mjacob (ssc->ses_objmap[i].svalid) == 0) {
1621 1.1 mjacob int err = safte_rdstat(ssc, slpflg);
1622 1.1 mjacob if (err)
1623 1.1 mjacob return (err);
1624 1.1 mjacob }
1625 1.1 mjacob obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1626 1.1 mjacob obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1627 1.1 mjacob obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1628 1.1 mjacob obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1629 1.1 mjacob return (0);
1630 1.1 mjacob }
1631 1.1 mjacob
1632 1.1 mjacob
1633 1.1 mjacob int
1634 1.1 mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1635 1.1 mjacob {
1636 1.1 mjacob int idx, err;
1637 1.1 mjacob encobj *ep;
1638 1.1 mjacob struct scfg *cc;
1639 1.1 mjacob
1640 1.1 mjacob
1641 1.1 mjacob SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1642 1.1 mjacob (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1643 1.1 mjacob obp->cstat[3]);
1644 1.1 mjacob
1645 1.1 mjacob /*
1646 1.1 mjacob * If this is clear, we don't do diddly.
1647 1.1 mjacob */
1648 1.1 mjacob if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1649 1.1 mjacob return (0);
1650 1.1 mjacob }
1651 1.1 mjacob
1652 1.1 mjacob err = 0;
1653 1.1 mjacob /*
1654 1.1 mjacob * Check to see if the common bits are set and do them first.
1655 1.1 mjacob */
1656 1.1 mjacob if (obp->cstat[0] & ~SESCTL_CSEL) {
1657 1.1 mjacob err = set_objstat_sel(ssc, obp, slp);
1658 1.1 mjacob if (err)
1659 1.1 mjacob return (err);
1660 1.1 mjacob }
1661 1.1 mjacob
1662 1.1 mjacob cc = ssc->ses_private;
1663 1.1 mjacob if (cc == NULL)
1664 1.1 mjacob return (0);
1665 1.1 mjacob
1666 1.1 mjacob idx = (int)obp->obj_id;
1667 1.1 mjacob ep = &ssc->ses_objmap[idx];
1668 1.1 mjacob
1669 1.1 mjacob switch (ep->enctype) {
1670 1.1 mjacob case SESTYP_DEVICE:
1671 1.1 mjacob {
1672 1.1 mjacob uint8_t slotop = 0;
1673 1.1 mjacob /*
1674 1.1 mjacob * XXX: I should probably cache the previous state
1675 1.1 mjacob * XXX: of SESCTL_DEVOFF so that when it goes from
1676 1.1 mjacob * XXX: true to false I can then set PREPARE FOR OPERATION
1677 1.1 mjacob * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1678 1.1 mjacob */
1679 1.1 mjacob if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1680 1.1 mjacob slotop |= 0x2;
1681 1.1 mjacob }
1682 1.1 mjacob if (obp->cstat[2] & SESCTL_RQSID) {
1683 1.1 mjacob slotop |= 0x4;
1684 1.1 mjacob }
1685 1.1 mjacob err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1686 1.1 mjacob slotop, slp);
1687 1.1 mjacob if (err)
1688 1.1 mjacob return (err);
1689 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSFLT) {
1690 1.1 mjacob ep->priv |= 0x2;
1691 1.1 mjacob } else {
1692 1.1 mjacob ep->priv &= ~0x2;
1693 1.1 mjacob }
1694 1.1 mjacob if (ep->priv & 0xc6) {
1695 1.1 mjacob ep->priv &= ~0x1;
1696 1.1 mjacob } else {
1697 1.1 mjacob ep->priv |= 0x1; /* no errors */
1698 1.1 mjacob }
1699 1.1 mjacob wrslot_stat(ssc, slp);
1700 1.1 mjacob break;
1701 1.1 mjacob }
1702 1.1 mjacob case SESTYP_POWER:
1703 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1704 1.1 mjacob cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1705 1.1 mjacob } else {
1706 1.1 mjacob cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1707 1.1 mjacob }
1708 1.1 mjacob err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1709 1.1 mjacob cc->flag2, 0, slp);
1710 1.1 mjacob if (err)
1711 1.1 mjacob return (err);
1712 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTON) {
1713 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1714 1.1 mjacob idx - cc->pwroff, 0, 0, slp);
1715 1.1 mjacob } else {
1716 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1717 1.1 mjacob idx - cc->pwroff, 0, 1, slp);
1718 1.1 mjacob }
1719 1.1 mjacob break;
1720 1.1 mjacob case SESTYP_FAN:
1721 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1722 1.1 mjacob cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1723 1.1 mjacob } else {
1724 1.1 mjacob cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1725 1.1 mjacob }
1726 1.1 mjacob err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1727 1.1 mjacob cc->flag2, 0, slp);
1728 1.1 mjacob if (err)
1729 1.1 mjacob return (err);
1730 1.1 mjacob if (obp->cstat[3] & SESCTL_RQSTON) {
1731 1.1 mjacob uint8_t fsp;
1732 1.1 mjacob if ((obp->cstat[3] & 0x7) == 7) {
1733 1.1 mjacob fsp = 4;
1734 1.1 mjacob } else if ((obp->cstat[3] & 0x7) == 6) {
1735 1.1 mjacob fsp = 3;
1736 1.1 mjacob } else if ((obp->cstat[3] & 0x7) == 4) {
1737 1.1 mjacob fsp = 2;
1738 1.1 mjacob } else {
1739 1.1 mjacob fsp = 1;
1740 1.1 mjacob }
1741 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1742 1.1 mjacob } else {
1743 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1744 1.1 mjacob }
1745 1.1 mjacob break;
1746 1.1 mjacob case SESTYP_DOORLOCK:
1747 1.1 mjacob if (obp->cstat[3] & 0x1) {
1748 1.1 mjacob cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1749 1.1 mjacob } else {
1750 1.1 mjacob cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1751 1.1 mjacob }
1752 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1753 1.1 mjacob cc->flag2, 0, slp);
1754 1.1 mjacob break;
1755 1.1 mjacob case SESTYP_ALARM:
1756 1.1 mjacob /*
1757 1.1 mjacob * On all nonzero but the 'muted' bit, we turn on the alarm,
1758 1.1 mjacob */
1759 1.1 mjacob obp->cstat[3] &= ~0xa;
1760 1.1 mjacob if (obp->cstat[3] & 0x40) {
1761 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
1762 1.1 mjacob } else if (obp->cstat[3] != 0) {
1763 1.1 mjacob cc->flag2 |= SAFT_FLG1_ALARM;
1764 1.1 mjacob } else {
1765 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
1766 1.1 mjacob }
1767 1.1 mjacob ep->priv = obp->cstat[3];
1768 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1769 1.1 mjacob cc->flag2, 0, slp);
1770 1.1 mjacob break;
1771 1.1 mjacob default:
1772 1.1 mjacob break;
1773 1.1 mjacob }
1774 1.1 mjacob ep->svalid = 0;
1775 1.1 mjacob return (0);
1776 1.1 mjacob }
1777 1.1 mjacob
1778 1.1 mjacob static int
1779 1.1 mjacob safte_getconfig(ses_softc_t *ssc)
1780 1.1 mjacob {
1781 1.1 mjacob struct scfg *cfg;
1782 1.1 mjacob int err, amt;
1783 1.1 mjacob char *sdata;
1784 1.1 mjacob static char cdb[10] =
1785 1.1 mjacob { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1786 1.1 mjacob
1787 1.1 mjacob cfg = ssc->ses_private;
1788 1.1 mjacob if (cfg == NULL)
1789 1.1 mjacob return (ENXIO);
1790 1.1 mjacob
1791 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
1792 1.1 mjacob if (sdata == NULL)
1793 1.1 mjacob return (ENOMEM);
1794 1.1 mjacob
1795 1.1 mjacob amt = SAFT_SCRATCH;
1796 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1797 1.1 mjacob if (err) {
1798 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1799 1.1 mjacob return (err);
1800 1.1 mjacob }
1801 1.1 mjacob amt = SAFT_SCRATCH - amt;
1802 1.1 mjacob if (amt < 6) {
1803 1.1 mjacob SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1804 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1805 1.1 mjacob return (EIO);
1806 1.1 mjacob }
1807 1.1 mjacob SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1808 1.1 mjacob sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1809 1.1 mjacob cfg->Nfans = sdata[0];
1810 1.1 mjacob cfg->Npwr = sdata[1];
1811 1.1 mjacob cfg->Nslots = sdata[2];
1812 1.1 mjacob cfg->DoorLock = sdata[3];
1813 1.1 mjacob cfg->Ntherm = sdata[4];
1814 1.1 mjacob cfg->Nspkrs = sdata[5];
1815 1.1 mjacob cfg->Nalarm = NPSEUDO_ALARM;
1816 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
1817 1.1 mjacob return (0);
1818 1.1 mjacob }
1819 1.1 mjacob
1820 1.1 mjacob static int
1821 1.1 mjacob safte_rdstat(ses_softc_t *ssc, int slpflg)
1822 1.1 mjacob {
1823 1.1 mjacob int err, oid, r, i, hiwater, nitems, amt;
1824 1.1 mjacob uint16_t tempflags;
1825 1.1 mjacob size_t buflen;
1826 1.1 mjacob uint8_t status, oencstat;
1827 1.1 mjacob char *sdata, cdb[10];
1828 1.1 mjacob struct scfg *cc = ssc->ses_private;
1829 1.1 mjacob
1830 1.1 mjacob
1831 1.1 mjacob /*
1832 1.1 mjacob * The number of objects overstates things a bit,
1833 1.1 mjacob * both for the bogus 'thermometer' entries and
1834 1.1 mjacob * the drive status (which isn't read at the same
1835 1.1 mjacob * time as the enclosure status), but that's okay.
1836 1.1 mjacob */
1837 1.1 mjacob buflen = 4 * cc->Nslots;
1838 1.1 mjacob if (ssc->ses_nobjects > buflen)
1839 1.1 mjacob buflen = ssc->ses_nobjects;
1840 1.1 mjacob sdata = SES_MALLOC(buflen);
1841 1.1 mjacob if (sdata == NULL)
1842 1.1 mjacob return (ENOMEM);
1843 1.1 mjacob
1844 1.1 mjacob cdb[0] = READ_BUFFER;
1845 1.1 mjacob cdb[1] = 1;
1846 1.1 mjacob cdb[2] = SAFTE_RD_RDESTS;
1847 1.1 mjacob cdb[3] = 0;
1848 1.1 mjacob cdb[4] = 0;
1849 1.1 mjacob cdb[5] = 0;
1850 1.1 mjacob cdb[6] = 0;
1851 1.1 mjacob cdb[7] = (buflen >> 8) & 0xff;
1852 1.1 mjacob cdb[8] = buflen & 0xff;
1853 1.1 mjacob cdb[9] = 0;
1854 1.1 mjacob amt = buflen;
1855 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1856 1.1 mjacob if (err) {
1857 1.1 mjacob SES_FREE(sdata, buflen);
1858 1.1 mjacob return (err);
1859 1.1 mjacob }
1860 1.1 mjacob hiwater = buflen - amt;
1861 1.1 mjacob
1862 1.1 mjacob
1863 1.1 mjacob /*
1864 1.1 mjacob * invalidate all status bits.
1865 1.1 mjacob */
1866 1.1 mjacob for (i = 0; i < ssc->ses_nobjects; i++)
1867 1.1 mjacob ssc->ses_objmap[i].svalid = 0;
1868 1.1 mjacob oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1869 1.1 mjacob ssc->ses_encstat = 0;
1870 1.1 mjacob
1871 1.1 mjacob
1872 1.1 mjacob /*
1873 1.1 mjacob * Now parse returned buffer.
1874 1.1 mjacob * If we didn't get enough data back,
1875 1.1 mjacob * that's considered a fatal error.
1876 1.1 mjacob */
1877 1.1 mjacob oid = r = 0;
1878 1.1 mjacob
1879 1.1 mjacob for (nitems = i = 0; i < cc->Nfans; i++) {
1880 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1881 1.1 mjacob /*
1882 1.1 mjacob * 0 = Fan Operational
1883 1.1 mjacob * 1 = Fan is malfunctioning
1884 1.1 mjacob * 2 = Fan is not present
1885 1.1 mjacob * 0x80 = Unknown or Not Reportable Status
1886 1.1 mjacob */
1887 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1888 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1889 1.1 mjacob switch ((int)(uint8_t)sdata[r]) {
1890 1.1 mjacob case 0:
1891 1.1 mjacob nitems++;
1892 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1893 1.1 mjacob /*
1894 1.1 mjacob * We could get fancier and cache
1895 1.1 mjacob * fan speeds that we have set, but
1896 1.1 mjacob * that isn't done now.
1897 1.1 mjacob */
1898 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 7;
1899 1.1 mjacob break;
1900 1.1 mjacob
1901 1.1 mjacob case 1:
1902 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1903 1.1 mjacob /*
1904 1.1 mjacob * FAIL and FAN STOPPED synthesized
1905 1.1 mjacob */
1906 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x40;
1907 1.1 mjacob /*
1908 1.1 mjacob * Enclosure marked with CRITICAL error
1909 1.1 mjacob * if only one fan or no thermometers,
1910 1.1 mjacob * else the NONCRITICAL error is set.
1911 1.1 mjacob */
1912 1.1 mjacob if (cc->Nfans == 1 || cc->Ntherm == 0)
1913 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1914 1.1 mjacob else
1915 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1916 1.1 mjacob break;
1917 1.1 mjacob case 2:
1918 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1919 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
1920 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1921 1.1 mjacob /*
1922 1.1 mjacob * Enclosure marked with CRITICAL error
1923 1.1 mjacob * if only one fan or no thermometers,
1924 1.1 mjacob * else the NONCRITICAL error is set.
1925 1.1 mjacob */
1926 1.1 mjacob if (cc->Nfans == 1)
1927 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1928 1.1 mjacob else
1929 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1930 1.1 mjacob break;
1931 1.1 mjacob case 0x80:
1932 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1933 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1934 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1935 1.1 mjacob break;
1936 1.1 mjacob default:
1937 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1938 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
1939 1.1 mjacob SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1940 1.1 mjacob sdata[r] & 0xff);
1941 1.1 mjacob break;
1942 1.1 mjacob }
1943 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
1944 1.1 mjacob r++;
1945 1.1 mjacob }
1946 1.1 mjacob
1947 1.1 mjacob /*
1948 1.1 mjacob * No matter how you cut it, no cooling elements when there
1949 1.1 mjacob * should be some there is critical.
1950 1.1 mjacob */
1951 1.1 mjacob if (cc->Nfans && nitems == 0) {
1952 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1953 1.1 mjacob }
1954 1.1 mjacob
1955 1.1 mjacob
1956 1.1 mjacob for (i = 0; i < cc->Npwr; i++) {
1957 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
1958 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1959 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1960 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1961 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1962 1.1 mjacob switch ((uint8_t)sdata[r]) {
1963 1.1 mjacob case 0x00: /* pws operational and on */
1964 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1965 1.1 mjacob break;
1966 1.1 mjacob case 0x01: /* pws operational and off */
1967 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1968 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x10;
1969 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1970 1.1 mjacob break;
1971 1.1 mjacob case 0x10: /* pws is malfunctioning and commanded on */
1972 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1973 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x61;
1974 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1975 1.1 mjacob break;
1976 1.1 mjacob
1977 1.1 mjacob case 0x11: /* pws is malfunctioning and commanded off */
1978 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1979 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x51;
1980 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1981 1.1 mjacob break;
1982 1.1 mjacob case 0x20: /* pws is not present */
1983 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
1984 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
1985 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1986 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1987 1.1 mjacob break;
1988 1.1 mjacob case 0x21: /* pws is present */
1989 1.1 mjacob /*
1990 1.1 mjacob * This is for enclosures that cannot tell whether the
1991 1.1 mjacob * device is on or malfunctioning, but know that it is
1992 1.1 mjacob * present. Just fall through.
1993 1.1 mjacob */
1994 1.1 mjacob /* FALLTHROUGH */
1995 1.1 mjacob case 0x80: /* Unknown or Not Reportable Status */
1996 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1997 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
1998 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
1999 1.1 mjacob break;
2000 1.1 mjacob default:
2001 1.1 mjacob SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2002 1.1 mjacob i, sdata[r] & 0xff);
2003 1.1 mjacob break;
2004 1.1 mjacob }
2005 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2006 1.1 mjacob r++;
2007 1.1 mjacob }
2008 1.1 mjacob
2009 1.1 mjacob /*
2010 1.1 mjacob * Skip over Slot SCSI IDs
2011 1.1 mjacob */
2012 1.1 mjacob r += cc->Nslots;
2013 1.1 mjacob
2014 1.1 mjacob /*
2015 1.1 mjacob * We always have doorlock status, no matter what,
2016 1.1 mjacob * but we only save the status if we have one.
2017 1.1 mjacob */
2018 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2019 1.1 mjacob if (cc->DoorLock) {
2020 1.1 mjacob /*
2021 1.1 mjacob * 0 = Door Locked
2022 1.1 mjacob * 1 = Door Unlocked, or no Lock Installed
2023 1.1 mjacob * 0x80 = Unknown or Not Reportable Status
2024 1.1 mjacob */
2025 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2026 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2027 1.1 mjacob switch ((uint8_t)sdata[r]) {
2028 1.1 mjacob case 0:
2029 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2030 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2031 1.1 mjacob break;
2032 1.1 mjacob case 1:
2033 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2034 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 1;
2035 1.1 mjacob break;
2036 1.1 mjacob case 0x80:
2037 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2038 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2039 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_INFO;
2040 1.1 mjacob break;
2041 1.1 mjacob default:
2042 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2043 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
2044 1.1 mjacob SES_LOG(ssc, "unknown lock status 0x%x\n",
2045 1.1 mjacob sdata[r] & 0xff);
2046 1.1 mjacob break;
2047 1.1 mjacob }
2048 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2049 1.1 mjacob }
2050 1.1 mjacob r++;
2051 1.1 mjacob
2052 1.1 mjacob /*
2053 1.1 mjacob * We always have speaker status, no matter what,
2054 1.1 mjacob * but we only save the status if we have one.
2055 1.1 mjacob */
2056 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2057 1.1 mjacob if (cc->Nspkrs) {
2058 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2059 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2060 1.1 mjacob if (sdata[r] == 1) {
2061 1.1 mjacob /*
2062 1.1 mjacob * We need to cache tone urgency indicators.
2063 1.1 mjacob * Someday.
2064 1.1 mjacob */
2065 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2066 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x8;
2067 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2068 1.1 mjacob } else if (sdata[r] == 0) {
2069 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2070 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2071 1.1 mjacob } else {
2072 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2073 1.1 mjacob SES_OBJSTAT_UNSUPPORTED;
2074 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2075 1.1 mjacob SES_LOG(ssc, "unknown spkr status 0x%x\n",
2076 1.1 mjacob sdata[r] & 0xff);
2077 1.1 mjacob }
2078 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2079 1.1 mjacob }
2080 1.1 mjacob r++;
2081 1.1 mjacob
2082 1.1 mjacob for (i = 0; i < cc->Ntherm; i++) {
2083 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2084 1.1 mjacob /*
2085 1.1 mjacob * Status is a range from -10 to 245 deg Celsius,
2086 1.1 mjacob * which we need to normalize to -20 to -245 according
2087 1.1 mjacob * to the latest SCSI spec, which makes little
2088 1.1 mjacob * sense since this would overflow an 8bit value.
2089 1.1 mjacob * Well, still, the base normalization is -20,
2090 1.1 mjacob * not -10, so we have to adjust.
2091 1.1 mjacob *
2092 1.1 mjacob * So what's over and under temperature?
2093 1.1 mjacob * Hmm- we'll state that 'normal' operating
2094 1.1 mjacob * is 10 to 40 deg Celsius.
2095 1.1 mjacob */
2096 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2097 1.1 mjacob ssc->ses_objmap[oid].encstat[2] =
2098 1.1 mjacob ((unsigned int) sdata[r]) - 10;
2099 1.1 mjacob if (sdata[r] < 20) {
2100 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2101 1.1 mjacob /*
2102 1.1 mjacob * Set 'under temperature' failure.
2103 1.1 mjacob */
2104 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 2;
2105 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2106 1.1 mjacob } else if (sdata[r] > 30) {
2107 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2108 1.1 mjacob /*
2109 1.1 mjacob * Set 'over temperature' failure.
2110 1.1 mjacob */
2111 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 8;
2112 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2113 1.1 mjacob } else {
2114 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2115 1.1 mjacob }
2116 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2117 1.1 mjacob r++;
2118 1.1 mjacob }
2119 1.1 mjacob
2120 1.1 mjacob /*
2121 1.1 mjacob * Now, for "pseudo" thermometers, we have two bytes
2122 1.1 mjacob * of information in enclosure status- 16 bits. Actually,
2123 1.1 mjacob * the MSB is a single TEMP ALERT flag indicating whether
2124 1.1 mjacob * any other bits are set, but, thanks to fuzzy thinking,
2125 1.1 mjacob * in the SAF-TE spec, this can also be set even if no
2126 1.1 mjacob * other bits are set, thus making this really another
2127 1.1 mjacob * binary temperature sensor.
2128 1.1 mjacob */
2129 1.1 mjacob
2130 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2131 1.1 mjacob tempflags = sdata[r++];
2132 1.1 mjacob SAFT_BAIL(r, hiwater, sdata, buflen);
2133 1.1 mjacob tempflags |= (tempflags << 8) | sdata[r++];
2134 1.1 mjacob
2135 1.1 mjacob for (i = 0; i < NPSEUDO_THERM; i++) {
2136 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = 0;
2137 1.1 mjacob if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2138 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2139 1.1 mjacob ssc->ses_objmap[4].encstat[2] = 0xff;
2140 1.1 mjacob /*
2141 1.1 mjacob * Set 'over temperature' failure.
2142 1.1 mjacob */
2143 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 8;
2144 1.1 mjacob ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2145 1.1 mjacob } else {
2146 1.1 mjacob /*
2147 1.1 mjacob * We used to say 'not available' and synthesize a
2148 1.1 mjacob * nominal 30 deg (C)- that was wrong. Actually,
2149 1.1 mjacob * Just say 'OK', and use the reserved value of
2150 1.1 mjacob * zero.
2151 1.1 mjacob */
2152 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2153 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2154 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2155 1.1 mjacob }
2156 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2157 1.1 mjacob }
2158 1.1 mjacob
2159 1.1 mjacob /*
2160 1.1 mjacob * Get alarm status.
2161 1.1 mjacob */
2162 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2163 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2164 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2165 1.1 mjacob
2166 1.1 mjacob /*
2167 1.1 mjacob * Now get drive slot status
2168 1.1 mjacob */
2169 1.1 mjacob cdb[2] = SAFTE_RD_RDDSTS;
2170 1.1 mjacob amt = buflen;
2171 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2172 1.1 mjacob if (err) {
2173 1.1 mjacob SES_FREE(sdata, buflen);
2174 1.1 mjacob return (err);
2175 1.1 mjacob }
2176 1.1 mjacob hiwater = buflen - amt;
2177 1.1 mjacob for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2178 1.1 mjacob SAFT_BAIL(r+3, hiwater, sdata, buflen);
2179 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2180 1.1 mjacob ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2181 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0;
2182 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0;
2183 1.1 mjacob status = sdata[r+3];
2184 1.1 mjacob if ((status & 0x1) == 0) { /* no device */
2185 1.1 mjacob ssc->ses_objmap[oid].encstat[0] =
2186 1.1 mjacob SES_OBJSTAT_NOTINSTALLED;
2187 1.1 mjacob } else {
2188 1.1 mjacob ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2189 1.1 mjacob }
2190 1.1 mjacob if (status & 0x2) {
2191 1.1 mjacob ssc->ses_objmap[oid].encstat[2] = 0x8;
2192 1.1 mjacob }
2193 1.1 mjacob if ((status & 0x4) == 0) {
2194 1.1 mjacob ssc->ses_objmap[oid].encstat[3] = 0x10;
2195 1.1 mjacob }
2196 1.1 mjacob ssc->ses_objmap[oid++].svalid = 1;
2197 1.1 mjacob }
2198 1.1 mjacob /* see comment below about sticky enclosure status */
2199 1.1 mjacob ssc->ses_encstat |= ENCI_SVALID | oencstat;
2200 1.1 mjacob SES_FREE(sdata, buflen);
2201 1.1 mjacob return (0);
2202 1.1 mjacob }
2203 1.1 mjacob
2204 1.1 mjacob static int
2205 1.1 mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2206 1.1 mjacob {
2207 1.1 mjacob int idx;
2208 1.1 mjacob encobj *ep;
2209 1.1 mjacob struct scfg *cc = ssc->ses_private;
2210 1.1 mjacob
2211 1.1 mjacob if (cc == NULL)
2212 1.1 mjacob return (0);
2213 1.1 mjacob
2214 1.1 mjacob idx = (int)obp->obj_id;
2215 1.1 mjacob ep = &ssc->ses_objmap[idx];
2216 1.1 mjacob
2217 1.1 mjacob switch (ep->enctype) {
2218 1.1 mjacob case SESTYP_DEVICE:
2219 1.1 mjacob if (obp->cstat[0] & SESCTL_PRDFAIL) {
2220 1.1 mjacob ep->priv |= 0x40;
2221 1.1 mjacob }
2222 1.1 mjacob /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2223 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2224 1.1 mjacob ep->priv |= 0x80;
2225 1.1 mjacob /*
2226 1.1 mjacob * Hmm. Try to set the 'No Drive' flag.
2227 1.1 mjacob * Maybe that will count as a 'disable'.
2228 1.1 mjacob */
2229 1.1 mjacob }
2230 1.1 mjacob if (ep->priv & 0xc6) {
2231 1.1 mjacob ep->priv &= ~0x1;
2232 1.1 mjacob } else {
2233 1.1 mjacob ep->priv |= 0x1; /* no errors */
2234 1.1 mjacob }
2235 1.1 mjacob wrslot_stat(ssc, slp);
2236 1.1 mjacob break;
2237 1.1 mjacob case SESTYP_POWER:
2238 1.1 mjacob /*
2239 1.1 mjacob * Okay- the only one that makes sense here is to
2240 1.1 mjacob * do the 'disable' for a power supply.
2241 1.1 mjacob */
2242 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2243 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2244 1.1 mjacob idx - cc->pwroff, 0, 0, slp);
2245 1.1 mjacob }
2246 1.1 mjacob break;
2247 1.1 mjacob case SESTYP_FAN:
2248 1.1 mjacob /*
2249 1.1 mjacob * Okay- the only one that makes sense here is to
2250 1.1 mjacob * set fan speed to zero on disable.
2251 1.1 mjacob */
2252 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2253 1.1 mjacob /* remember- fans are the first items, so idx works */
2254 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2255 1.1 mjacob }
2256 1.1 mjacob break;
2257 1.1 mjacob case SESTYP_DOORLOCK:
2258 1.1 mjacob /*
2259 1.1 mjacob * Well, we can 'disable' the lock.
2260 1.1 mjacob */
2261 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2262 1.1 mjacob cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2263 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2264 1.1 mjacob cc->flag2, 0, slp);
2265 1.1 mjacob }
2266 1.1 mjacob break;
2267 1.1 mjacob case SESTYP_ALARM:
2268 1.1 mjacob /*
2269 1.1 mjacob * Well, we can 'disable' the alarm.
2270 1.1 mjacob */
2271 1.1 mjacob if (obp->cstat[0] & SESCTL_DISABLE) {
2272 1.1 mjacob cc->flag2 &= ~SAFT_FLG1_ALARM;
2273 1.1 mjacob ep->priv |= 0x40; /* Muted */
2274 1.1 mjacob (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2275 1.1 mjacob cc->flag2, 0, slp);
2276 1.1 mjacob }
2277 1.1 mjacob break;
2278 1.1 mjacob default:
2279 1.1 mjacob break;
2280 1.1 mjacob }
2281 1.1 mjacob ep->svalid = 0;
2282 1.1 mjacob return (0);
2283 1.1 mjacob }
2284 1.1 mjacob
2285 1.1 mjacob /*
2286 1.1 mjacob * This function handles all of the 16 byte WRITE BUFFER commands.
2287 1.1 mjacob */
2288 1.1 mjacob static int
2289 1.1 mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2290 1.1 mjacob uint8_t b3, int slp)
2291 1.1 mjacob {
2292 1.1 mjacob int err, amt;
2293 1.1 mjacob char *sdata;
2294 1.1 mjacob struct scfg *cc = ssc->ses_private;
2295 1.1 mjacob static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2296 1.1 mjacob
2297 1.1 mjacob if (cc == NULL)
2298 1.1 mjacob return (0);
2299 1.1 mjacob
2300 1.1 mjacob sdata = SES_MALLOC(16);
2301 1.1 mjacob if (sdata == NULL)
2302 1.1 mjacob return (ENOMEM);
2303 1.1 mjacob
2304 1.1 mjacob SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2305 1.1 mjacob
2306 1.1 mjacob sdata[0] = op;
2307 1.1 mjacob sdata[1] = b1;
2308 1.1 mjacob sdata[2] = b2;
2309 1.1 mjacob sdata[3] = b3;
2310 1.1 mjacob MEMZERO(&sdata[4], 12);
2311 1.1 mjacob amt = -16;
2312 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2313 1.1 mjacob SES_FREE(sdata, 16);
2314 1.1 mjacob return (err);
2315 1.1 mjacob }
2316 1.1 mjacob
2317 1.1 mjacob /*
2318 1.1 mjacob * This function updates the status byte for the device slot described.
2319 1.1 mjacob *
2320 1.1 mjacob * Since this is an optional SAF-TE command, there's no point in
2321 1.1 mjacob * returning an error.
2322 1.1 mjacob */
2323 1.1 mjacob static void
2324 1.1 mjacob wrslot_stat(ses_softc_t *ssc, int slp)
2325 1.1 mjacob {
2326 1.1 mjacob int i, amt;
2327 1.1 mjacob encobj *ep;
2328 1.1 mjacob char cdb[10], *sdata;
2329 1.1 mjacob struct scfg *cc = ssc->ses_private;
2330 1.1 mjacob
2331 1.1 mjacob if (cc == NULL)
2332 1.1 mjacob return;
2333 1.1 mjacob
2334 1.1 mjacob SES_VLOG(ssc, "saf_wrslot\n");
2335 1.1 mjacob cdb[0] = WRITE_BUFFER;
2336 1.1 mjacob cdb[1] = 1;
2337 1.1 mjacob cdb[2] = 0;
2338 1.1 mjacob cdb[3] = 0;
2339 1.1 mjacob cdb[4] = 0;
2340 1.1 mjacob cdb[5] = 0;
2341 1.1 mjacob cdb[6] = 0;
2342 1.1 mjacob cdb[7] = 0;
2343 1.1 mjacob cdb[8] = cc->Nslots * 3 + 1;
2344 1.1 mjacob cdb[9] = 0;
2345 1.1 mjacob
2346 1.1 mjacob sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2347 1.1 mjacob if (sdata == NULL)
2348 1.1 mjacob return;
2349 1.1 mjacob MEMZERO(sdata, cc->Nslots * 3 + 1);
2350 1.1 mjacob
2351 1.1 mjacob sdata[0] = SAFTE_WT_DSTAT;
2352 1.1 mjacob for (i = 0; i < cc->Nslots; i++) {
2353 1.1 mjacob ep = &ssc->ses_objmap[cc->slotoff + i];
2354 1.1 mjacob SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2355 1.1 mjacob sdata[1 + (3 * i)] = ep->priv & 0xff;
2356 1.1 mjacob }
2357 1.1 mjacob amt = -(cc->Nslots * 3 + 1);
2358 1.1 mjacob (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2359 1.1 mjacob SES_FREE(sdata, cc->Nslots * 3 + 1);
2360 1.1 mjacob }
2361 1.1 mjacob
2362 1.1 mjacob /*
2363 1.1 mjacob * This function issues the "PERFORM SLOT OPERATION" command.
2364 1.1 mjacob */
2365 1.1 mjacob static int
2366 1.1 mjacob perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2367 1.1 mjacob {
2368 1.1 mjacob int err, amt;
2369 1.1 mjacob char *sdata;
2370 1.1 mjacob struct scfg *cc = ssc->ses_private;
2371 1.1 mjacob static char cdb[10] =
2372 1.1 mjacob { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2373 1.1 mjacob
2374 1.1 mjacob if (cc == NULL)
2375 1.1 mjacob return (0);
2376 1.1 mjacob
2377 1.1 mjacob sdata = SES_MALLOC(SAFT_SCRATCH);
2378 1.1 mjacob if (sdata == NULL)
2379 1.1 mjacob return (ENOMEM);
2380 1.1 mjacob MEMZERO(sdata, SAFT_SCRATCH);
2381 1.1 mjacob
2382 1.1 mjacob sdata[0] = SAFTE_WT_SLTOP;
2383 1.1 mjacob sdata[1] = slot;
2384 1.1 mjacob sdata[2] = opflag;
2385 1.1 mjacob SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2386 1.1 mjacob amt = -SAFT_SCRATCH;
2387 1.1 mjacob err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2388 1.1 mjacob SES_FREE(sdata, SAFT_SCRATCH);
2389 1.1 mjacob return (err);
2390 1.1 mjacob }
2391