Home | History | Annotate | Line # | Download | only in scsipi
ses.c revision 1.8.4.2
      1  1.8.4.2   nathanw /*	$NetBSD: ses.c,v 1.8.4.2 2001/08/24 00:10:54 nathanw Exp $ */
      2      1.1    mjacob /*
      3      1.1    mjacob  * Copyright (C) 2000 National Aeronautics & Space Administration
      4      1.1    mjacob  * All rights reserved.
      5      1.1    mjacob  *
      6      1.1    mjacob  * Redistribution and use in source and binary forms, with or without
      7      1.1    mjacob  * modification, are permitted provided that the following conditions
      8      1.1    mjacob  * are met:
      9      1.1    mjacob  * 1. Redistributions of source code must retain the above copyright
     10      1.1    mjacob  *    notice, this list of conditions and the following disclaimer.
     11      1.1    mjacob  * 2. The name of the author may not be used to endorse or promote products
     12      1.1    mjacob  *    derived from this software without specific prior written permission
     13      1.1    mjacob  *
     14      1.1    mjacob  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     15      1.1    mjacob  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     16      1.1    mjacob  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     17      1.1    mjacob  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     18      1.1    mjacob  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     19      1.1    mjacob  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     20      1.1    mjacob  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     21      1.1    mjacob  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22      1.1    mjacob  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     23      1.1    mjacob  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24      1.1    mjacob  *
     25      1.1    mjacob  * Author:	mjacob (at) nas.nasa.gov
     26      1.1    mjacob  */
     27      1.1    mjacob 
     28      1.1    mjacob 
     29      1.1    mjacob #include "opt_scsi.h"
     30      1.1    mjacob 
     31      1.1    mjacob #include <sys/types.h>
     32      1.1    mjacob #include <sys/param.h>
     33      1.1    mjacob #include <sys/systm.h>
     34      1.1    mjacob #include <sys/kernel.h>
     35      1.1    mjacob #include <sys/file.h>
     36      1.1    mjacob #include <sys/stat.h>
     37      1.1    mjacob #include <sys/ioctl.h>
     38      1.1    mjacob #include <sys/scsiio.h>
     39      1.1    mjacob #include <sys/buf.h>
     40      1.1    mjacob #include <sys/uio.h>
     41      1.1    mjacob #include <sys/malloc.h>
     42      1.1    mjacob #include <sys/errno.h>
     43      1.1    mjacob #include <sys/device.h>
     44      1.1    mjacob #include <sys/disklabel.h>
     45      1.1    mjacob #include <sys/disk.h>
     46      1.1    mjacob #include <sys/proc.h>
     47      1.1    mjacob #include <sys/conf.h>
     48      1.1    mjacob #include <sys/vnode.h>
     49      1.1    mjacob #include <machine/stdarg.h>
     50      1.1    mjacob 
     51      1.1    mjacob #include <dev/scsipi/scsipi_all.h>
     52      1.1    mjacob #include <dev/scsipi/scsi_all.h>
     53      1.1    mjacob #include <dev/scsipi/scsipi_disk.h>
     54      1.1    mjacob #include <dev/scsipi/scsi_disk.h>
     55      1.1    mjacob #include <dev/scsipi/scsiconf.h>
     56      1.1    mjacob #include <dev/scsipi/ses.h>
     57      1.1    mjacob 
     58      1.1    mjacob /*
     59      1.1    mjacob  * Platform Independent Driver Internal Definitions for SES devices.
     60      1.1    mjacob  */
     61      1.1    mjacob typedef enum {
     62      1.1    mjacob 	SES_NONE,
     63      1.1    mjacob 	SES_SES_SCSI2,
     64      1.1    mjacob 	SES_SES,
     65      1.1    mjacob 	SES_SES_PASSTHROUGH,
     66      1.1    mjacob 	SES_SEN,
     67      1.1    mjacob 	SES_SAFT
     68      1.1    mjacob } enctyp;
     69      1.1    mjacob 
     70      1.1    mjacob struct ses_softc;
     71      1.1    mjacob typedef struct ses_softc ses_softc_t;
     72      1.1    mjacob typedef struct {
     73      1.1    mjacob 	int (*softc_init) 	__P((ses_softc_t *, int));
     74      1.1    mjacob 	int (*init_enc)		__P((ses_softc_t *));
     75      1.1    mjacob 	int (*get_encstat)	__P((ses_softc_t *, int));
     76      1.1    mjacob 	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
     77      1.1    mjacob 	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
     78      1.1    mjacob 	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
     79      1.1    mjacob } encvec;
     80      1.1    mjacob 
     81      1.1    mjacob #define	ENCI_SVALID	0x80
     82      1.1    mjacob 
     83      1.1    mjacob typedef struct {
     84      1.1    mjacob 	uint32_t
     85      1.1    mjacob 		enctype	: 8,		/* enclosure type */
     86      1.1    mjacob 		subenclosure : 8,	/* subenclosure id */
     87      1.1    mjacob 		svalid	: 1,		/* enclosure information valid */
     88      1.1    mjacob 		priv	: 15;		/* private data, per object */
     89      1.1    mjacob 	uint8_t	encstat[4];	/* state && stats */
     90      1.1    mjacob } encobj;
     91      1.1    mjacob 
     92      1.1    mjacob #define	SEN_ID		"UNISYS           SUN_SEN"
     93      1.1    mjacob #define	SEN_ID_LEN	24
     94      1.1    mjacob 
     95      1.5     dante static enctyp ses_type __P((struct scsipi_inquiry_data *));
     96      1.1    mjacob 
     97      1.1    mjacob 
     98      1.1    mjacob /* Forward reference to Enclosure Functions */
     99      1.1    mjacob static int ses_softc_init __P((ses_softc_t *, int));
    100      1.1    mjacob static int ses_init_enc __P((ses_softc_t *));
    101      1.1    mjacob static int ses_get_encstat __P((ses_softc_t *, int));
    102      1.1    mjacob static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
    103      1.1    mjacob static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
    104      1.1    mjacob static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
    105      1.1    mjacob 
    106      1.1    mjacob static int safte_softc_init __P((ses_softc_t *, int));
    107      1.1    mjacob static int safte_init_enc __P((ses_softc_t *));
    108      1.1    mjacob static int safte_get_encstat __P((ses_softc_t *, int));
    109      1.1    mjacob static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
    110      1.1    mjacob static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
    111      1.1    mjacob static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
    112      1.1    mjacob 
    113      1.1    mjacob /*
    114      1.1    mjacob  * Platform implementation defines/functions for SES internal kernel stuff
    115      1.1    mjacob  */
    116      1.1    mjacob 
    117      1.1    mjacob #define	STRNCMP			strncmp
    118      1.1    mjacob #define	PRINTF			printf
    119      1.1    mjacob #define	SES_LOG			ses_log
    120      1.1    mjacob #if	defined(DEBUG) || defined(SCSIDEBUG)
    121      1.1    mjacob #define	SES_VLOG		ses_log
    122      1.1    mjacob #else
    123      1.1    mjacob #define	SES_VLOG		if (0) ses_log
    124      1.1    mjacob #endif
    125      1.1    mjacob #define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
    126      1.1    mjacob #define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
    127  1.8.4.2   nathanw #define	MEMZERO(dest, amt)	memset(dest, 0, amt)
    128  1.8.4.2   nathanw #define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
    129      1.1    mjacob #define	RECEIVE_DIAGNOSTIC	0x1c
    130      1.1    mjacob #define	SEND_DIAGNOSTIC		0x1d
    131      1.1    mjacob #define	WRITE_BUFFER		0x3b
    132      1.1    mjacob #define	READ_BUFFER		0x3c
    133      1.1    mjacob 
    134      1.1    mjacob int sesopen __P((dev_t, int, int, struct proc *));
    135      1.1    mjacob int sesclose __P((dev_t, int, int, struct proc *));
    136      1.1    mjacob int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
    137      1.1    mjacob 
    138      1.1    mjacob static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
    139      1.7  sommerfe static void ses_log	__P((struct ses_softc *, const char *, ...))
    140      1.7  sommerfe      __attribute__((__format__(__printf__, 2, 3)));
    141      1.1    mjacob 
    142      1.1    mjacob /*
    143      1.1    mjacob  * General NetBSD kernel stuff.
    144      1.1    mjacob  */
    145      1.1    mjacob 
    146      1.1    mjacob struct ses_softc {
    147      1.1    mjacob 	struct device	sc_device;
    148  1.8.4.1   nathanw 	struct scsipi_periph *sc_periph;
    149      1.1    mjacob 	enctyp		ses_type;	/* type of enclosure */
    150      1.1    mjacob 	encvec		ses_vec;	/* vector to handlers */
    151      1.1    mjacob 	void *		ses_private;	/* per-type private data */
    152      1.1    mjacob 	encobj *	ses_objmap;	/* objects */
    153      1.1    mjacob 	u_int32_t	ses_nobjects;	/* number of objects */
    154      1.1    mjacob 	ses_encstat	ses_encstat;	/* overall status */
    155      1.1    mjacob 	u_int8_t	ses_flags;
    156      1.1    mjacob };
    157      1.1    mjacob #define	SES_FLAG_INVALID	0x01
    158      1.1    mjacob #define	SES_FLAG_OPEN		0x02
    159      1.1    mjacob #define	SES_FLAG_INITIALIZED	0x04
    160      1.1    mjacob 
    161      1.1    mjacob #define SESUNIT(x)       (minor((x)))
    162      1.1    mjacob 
    163      1.1    mjacob static int ses_match __P((struct device *, struct cfdata *, void *));
    164      1.1    mjacob static void ses_attach __P((struct device *, struct device *, void *));
    165      1.1    mjacob static enctyp ses_device_type __P((struct scsipibus_attach_args *));
    166      1.1    mjacob 
    167      1.1    mjacob struct cfattach ses_ca = {
    168      1.1    mjacob 	sizeof (struct ses_softc), ses_match, ses_attach
    169      1.1    mjacob };
    170      1.1    mjacob extern struct cfdriver ses_cd;
    171      1.1    mjacob 
    172  1.8.4.1   nathanw const struct scsipi_periphsw ses_switch = {
    173      1.1    mjacob 	NULL,
    174      1.1    mjacob 	NULL,
    175      1.1    mjacob 	NULL,
    176      1.1    mjacob 	NULL
    177      1.1    mjacob };
    178      1.1    mjacob 
    179      1.1    mjacob 
    180      1.1    mjacob int
    181      1.1    mjacob ses_match(parent, match, aux)
    182      1.1    mjacob 	struct device *parent;
    183      1.1    mjacob 	struct cfdata *match;
    184      1.1    mjacob 	void *aux;
    185      1.1    mjacob {
    186      1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    187      1.2    mjacob 
    188      1.1    mjacob 	switch (ses_device_type(sa)) {
    189      1.1    mjacob 	case SES_SES:
    190      1.1    mjacob 	case SES_SES_SCSI2:
    191      1.1    mjacob 	case SES_SEN:
    192      1.1    mjacob 	case SES_SAFT:
    193      1.2    mjacob 	case SES_SES_PASSTHROUGH:
    194      1.2    mjacob 		/*
    195      1.2    mjacob 		 * For these devices, it's a perfect match.
    196      1.2    mjacob 		 */
    197      1.2    mjacob 		return (24);
    198      1.1    mjacob 	default:
    199      1.1    mjacob 		return (0);
    200      1.1    mjacob 	}
    201      1.1    mjacob }
    202      1.1    mjacob 
    203      1.1    mjacob 
    204      1.1    mjacob /*
    205      1.1    mjacob  * Complete the attachment.
    206      1.1    mjacob  *
    207      1.1    mjacob  * We have to repeat the rerun of INQUIRY data as above because
    208      1.1    mjacob  * it's not until the return from the match routine that we have
    209      1.1    mjacob  * the softc available to set stuff in.
    210      1.1    mjacob  */
    211      1.1    mjacob void
    212      1.1    mjacob ses_attach(parent, self, aux)
    213      1.1    mjacob 	struct device *parent;
    214      1.1    mjacob 	struct device *self;
    215      1.1    mjacob 	void *aux;
    216      1.1    mjacob {
    217      1.1    mjacob 	char *tname;
    218      1.1    mjacob 	struct ses_softc *softc = (void *)self;
    219      1.1    mjacob 	struct scsipibus_attach_args *sa = aux;
    220  1.8.4.1   nathanw 	struct scsipi_periph *periph = sa->sa_periph;
    221      1.1    mjacob 
    222  1.8.4.1   nathanw 	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
    223  1.8.4.1   nathanw 	softc->sc_periph = periph;
    224  1.8.4.1   nathanw 	periph->periph_dev = &softc->sc_device;
    225  1.8.4.1   nathanw 	periph->periph_switch = &ses_switch;
    226  1.8.4.1   nathanw 	periph->periph_openings = 1;
    227      1.1    mjacob 
    228      1.1    mjacob 	softc->ses_type = ses_device_type(sa);
    229      1.1    mjacob 	switch (softc->ses_type) {
    230      1.1    mjacob 	case SES_SES:
    231      1.1    mjacob 	case SES_SES_SCSI2:
    232      1.1    mjacob         case SES_SES_PASSTHROUGH:
    233      1.1    mjacob 		softc->ses_vec.softc_init = ses_softc_init;
    234      1.1    mjacob 		softc->ses_vec.init_enc = ses_init_enc;
    235      1.1    mjacob 		softc->ses_vec.get_encstat = ses_get_encstat;
    236      1.1    mjacob 		softc->ses_vec.set_encstat = ses_set_encstat;
    237      1.1    mjacob 		softc->ses_vec.get_objstat = ses_get_objstat;
    238      1.1    mjacob 		softc->ses_vec.set_objstat = ses_set_objstat;
    239      1.1    mjacob 		break;
    240      1.1    mjacob         case SES_SAFT:
    241      1.1    mjacob 		softc->ses_vec.softc_init = safte_softc_init;
    242      1.1    mjacob 		softc->ses_vec.init_enc = safte_init_enc;
    243      1.1    mjacob 		softc->ses_vec.get_encstat = safte_get_encstat;
    244      1.1    mjacob 		softc->ses_vec.set_encstat = safte_set_encstat;
    245      1.1    mjacob 		softc->ses_vec.get_objstat = safte_get_objstat;
    246      1.1    mjacob 		softc->ses_vec.set_objstat = safte_set_objstat;
    247      1.1    mjacob 		break;
    248      1.1    mjacob         case SES_SEN:
    249      1.1    mjacob 		break;
    250      1.1    mjacob 	case SES_NONE:
    251      1.1    mjacob 	default:
    252      1.1    mjacob 		break;
    253      1.1    mjacob 	}
    254      1.1    mjacob 
    255      1.1    mjacob 	switch (softc->ses_type) {
    256      1.1    mjacob 	default:
    257      1.1    mjacob 	case SES_NONE:
    258      1.1    mjacob 		tname = "No SES device";
    259      1.1    mjacob 		break;
    260      1.1    mjacob 	case SES_SES_SCSI2:
    261      1.1    mjacob 		tname = "SCSI-2 SES Device";
    262      1.1    mjacob 		break;
    263      1.1    mjacob 	case SES_SES:
    264      1.1    mjacob 		tname = "SCSI-3 SES Device";
    265      1.1    mjacob 		break;
    266      1.1    mjacob         case SES_SES_PASSTHROUGH:
    267      1.1    mjacob 		tname = "SES Passthrough Device";
    268      1.1    mjacob 		break;
    269      1.1    mjacob         case SES_SEN:
    270      1.1    mjacob 		tname = "UNISYS SEN Device (NOT HANDLED YET)";
    271      1.1    mjacob 		break;
    272      1.1    mjacob         case SES_SAFT:
    273      1.1    mjacob 		tname = "SAF-TE Compliant Device";
    274      1.1    mjacob 		break;
    275      1.1    mjacob 	}
    276      1.1    mjacob 	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
    277      1.1    mjacob }
    278      1.1    mjacob 
    279      1.2    mjacob 
    280      1.1    mjacob static enctyp
    281      1.1    mjacob ses_device_type(sa)
    282      1.1    mjacob 	struct scsipibus_attach_args *sa;
    283      1.1    mjacob {
    284      1.1    mjacob 	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
    285      1.1    mjacob 
    286      1.1    mjacob 	if (inqp == NULL)
    287      1.1    mjacob 		return (SES_NONE);
    288      1.1    mjacob 
    289      1.5     dante 	return (ses_type(inqp));
    290      1.1    mjacob }
    291      1.1    mjacob 
    292      1.1    mjacob int
    293      1.1    mjacob sesopen(dev, flags, fmt, p)
    294      1.1    mjacob 	dev_t dev;
    295      1.1    mjacob 	int flags;
    296      1.1    mjacob 	int fmt;
    297      1.1    mjacob 	struct proc *p;
    298      1.1    mjacob {
    299      1.1    mjacob 	struct ses_softc *softc;
    300      1.1    mjacob 	int error, unit;
    301      1.1    mjacob 
    302      1.1    mjacob 	unit = SESUNIT(dev);
    303      1.1    mjacob 	if (unit >= ses_cd.cd_ndevs)
    304      1.1    mjacob 		return (ENXIO);
    305      1.1    mjacob 	softc = ses_cd.cd_devs[unit];
    306      1.1    mjacob 	if (softc == NULL)
    307      1.1    mjacob 		return (ENXIO);
    308      1.1    mjacob 
    309      1.1    mjacob 	if (softc->ses_flags & SES_FLAG_INVALID) {
    310      1.1    mjacob 		error = ENXIO;
    311      1.1    mjacob 		goto out;
    312      1.1    mjacob 	}
    313      1.1    mjacob 	if (softc->ses_flags & SES_FLAG_OPEN) {
    314      1.1    mjacob 		error = EBUSY;
    315      1.1    mjacob 		goto out;
    316      1.1    mjacob 	}
    317      1.1    mjacob 	if (softc->ses_vec.softc_init == NULL) {
    318      1.1    mjacob 		error = ENXIO;
    319      1.1    mjacob 		goto out;
    320      1.1    mjacob 	}
    321  1.8.4.1   nathanw 	error = scsipi_adapter_addref(
    322  1.8.4.1   nathanw 	    softc->sc_periph->periph_channel->chan_adapter);
    323      1.1    mjacob 	if (error != 0)
    324      1.1    mjacob                 goto out;
    325      1.1    mjacob 
    326      1.1    mjacob 
    327      1.1    mjacob 	softc->ses_flags |= SES_FLAG_OPEN;
    328      1.1    mjacob 	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    329      1.1    mjacob 		error = (*softc->ses_vec.softc_init)(softc, 1);
    330      1.1    mjacob 		if (error)
    331      1.1    mjacob 			softc->ses_flags &= ~SES_FLAG_OPEN;
    332      1.1    mjacob 		else
    333      1.1    mjacob 			softc->ses_flags |= SES_FLAG_INITIALIZED;
    334      1.1    mjacob 	}
    335      1.1    mjacob 
    336      1.1    mjacob out:
    337      1.1    mjacob 	return (error);
    338      1.1    mjacob }
    339      1.1    mjacob 
    340      1.1    mjacob int
    341      1.1    mjacob sesclose(dev, flags, fmt, p)
    342      1.1    mjacob 	dev_t dev;
    343      1.1    mjacob 	int flags;
    344      1.1    mjacob 	int fmt;
    345      1.1    mjacob 	struct proc *p;
    346      1.1    mjacob {
    347      1.1    mjacob 	struct ses_softc *softc;
    348      1.1    mjacob 	int unit;
    349      1.1    mjacob 
    350      1.1    mjacob 	unit = SESUNIT(dev);
    351      1.1    mjacob 	if (unit >= ses_cd.cd_ndevs)
    352      1.1    mjacob 		return (ENXIO);
    353      1.1    mjacob 	softc = ses_cd.cd_devs[unit];
    354      1.1    mjacob 	if (softc == NULL)
    355      1.1    mjacob 		return (ENXIO);
    356      1.1    mjacob 
    357  1.8.4.1   nathanw 	scsipi_wait_drain(softc->sc_periph);
    358  1.8.4.1   nathanw 	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
    359      1.1    mjacob 	softc->ses_flags &= ~SES_FLAG_OPEN;
    360      1.1    mjacob 	return (0);
    361      1.1    mjacob }
    362      1.1    mjacob 
    363      1.1    mjacob int
    364      1.1    mjacob sesioctl(dev, cmd, arg_addr, flag, p)
    365      1.1    mjacob 	dev_t dev;
    366      1.1    mjacob 	u_long cmd;
    367      1.1    mjacob 	caddr_t arg_addr;
    368      1.1    mjacob 	int flag;
    369      1.1    mjacob 	struct proc *p;
    370      1.1    mjacob {
    371      1.1    mjacob 	ses_encstat tmp;
    372      1.1    mjacob 	ses_objstat objs;
    373      1.1    mjacob 	ses_object obj, *uobj;
    374      1.1    mjacob 	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
    375      1.1    mjacob 	void *addr;
    376      1.1    mjacob 	int error, i;
    377      1.1    mjacob 
    378      1.1    mjacob 
    379      1.1    mjacob 	if (arg_addr)
    380      1.1    mjacob 		addr = *((caddr_t *) arg_addr);
    381      1.1    mjacob 	else
    382      1.1    mjacob 		addr = NULL;
    383      1.1    mjacob 
    384  1.8.4.1   nathanw 	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
    385      1.1    mjacob 
    386      1.1    mjacob 	/*
    387      1.1    mjacob 	 * Now check to see whether we're initialized or not.
    388      1.1    mjacob 	 */
    389      1.1    mjacob 	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
    390      1.1    mjacob 		return (ENODEV);
    391      1.1    mjacob 	}
    392      1.1    mjacob 
    393      1.1    mjacob 	error = 0;
    394      1.1    mjacob 
    395      1.1    mjacob 	/*
    396      1.1    mjacob 	 * If this command can change the device's state,
    397      1.1    mjacob 	 * we must have the device open for writing.
    398      1.1    mjacob 	 */
    399      1.1    mjacob 	switch (cmd) {
    400      1.1    mjacob 	case SESIOC_GETNOBJ:
    401      1.1    mjacob 	case SESIOC_GETOBJMAP:
    402      1.1    mjacob 	case SESIOC_GETENCSTAT:
    403      1.1    mjacob 	case SESIOC_GETOBJSTAT:
    404      1.1    mjacob 		break;
    405      1.1    mjacob 	default:
    406      1.1    mjacob 		if ((flag & FWRITE) == 0) {
    407      1.1    mjacob 			return (EBADF);
    408      1.1    mjacob 		}
    409      1.1    mjacob 	}
    410      1.1    mjacob 
    411      1.1    mjacob 	switch (cmd) {
    412      1.1    mjacob 	case SESIOC_GETNOBJ:
    413      1.1    mjacob 		error = copyout(&ssc->ses_nobjects, addr,
    414      1.1    mjacob 		    sizeof (ssc->ses_nobjects));
    415      1.1    mjacob 		break;
    416      1.1    mjacob 
    417      1.1    mjacob 	case SESIOC_GETOBJMAP:
    418      1.1    mjacob 		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
    419      1.1    mjacob 			obj.obj_id = i;
    420      1.1    mjacob 			obj.subencid = ssc->ses_objmap[i].subenclosure;
    421      1.1    mjacob 			obj.object_type = ssc->ses_objmap[i].enctype;
    422      1.1    mjacob 			error = copyout(&obj, uobj, sizeof (ses_object));
    423      1.1    mjacob 			if (error) {
    424      1.1    mjacob 				break;
    425      1.1    mjacob 			}
    426      1.1    mjacob 		}
    427      1.1    mjacob 		break;
    428      1.1    mjacob 
    429      1.1    mjacob 	case SESIOC_GETENCSTAT:
    430      1.1    mjacob 		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
    431      1.1    mjacob 		if (error)
    432      1.1    mjacob 			break;
    433      1.1    mjacob 		tmp = ssc->ses_encstat & ~ENCI_SVALID;
    434      1.1    mjacob 		error = copyout(&tmp, addr, sizeof (ses_encstat));
    435      1.1    mjacob 		ssc->ses_encstat = tmp;
    436      1.1    mjacob 		break;
    437      1.1    mjacob 
    438      1.1    mjacob 	case SESIOC_SETENCSTAT:
    439      1.1    mjacob 		error = copyin(addr, &tmp, sizeof (ses_encstat));
    440      1.1    mjacob 		if (error)
    441      1.1    mjacob 			break;
    442      1.1    mjacob 		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
    443      1.1    mjacob 		break;
    444      1.1    mjacob 
    445      1.1    mjacob 	case SESIOC_GETOBJSTAT:
    446      1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    447      1.1    mjacob 		if (error)
    448      1.1    mjacob 			break;
    449      1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    450      1.1    mjacob 			error = EINVAL;
    451      1.1    mjacob 			break;
    452      1.1    mjacob 		}
    453      1.1    mjacob 		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
    454      1.1    mjacob 		if (error)
    455      1.1    mjacob 			break;
    456      1.1    mjacob 		error = copyout(&objs, addr, sizeof (ses_objstat));
    457      1.1    mjacob 		/*
    458      1.1    mjacob 		 * Always (for now) invalidate entry.
    459      1.1    mjacob 		 */
    460      1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    461      1.1    mjacob 		break;
    462      1.1    mjacob 
    463      1.1    mjacob 	case SESIOC_SETOBJSTAT:
    464      1.1    mjacob 		error = copyin(addr, &objs, sizeof (ses_objstat));
    465      1.1    mjacob 		if (error)
    466      1.1    mjacob 			break;
    467      1.1    mjacob 
    468      1.1    mjacob 		if (objs.obj_id >= ssc->ses_nobjects) {
    469      1.1    mjacob 			error = EINVAL;
    470      1.1    mjacob 			break;
    471      1.1    mjacob 		}
    472      1.1    mjacob 		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
    473      1.1    mjacob 
    474      1.1    mjacob 		/*
    475      1.1    mjacob 		 * Always (for now) invalidate entry.
    476      1.1    mjacob 		 */
    477      1.1    mjacob 		ssc->ses_objmap[objs.obj_id].svalid = 0;
    478      1.1    mjacob 		break;
    479      1.1    mjacob 
    480      1.1    mjacob 	case SESIOC_INIT:
    481      1.1    mjacob 
    482      1.1    mjacob 		error = (*ssc->ses_vec.init_enc)(ssc);
    483      1.1    mjacob 		break;
    484      1.1    mjacob 
    485      1.1    mjacob 	default:
    486  1.8.4.1   nathanw 		error = scsipi_do_ioctl(ssc->sc_periph,
    487  1.8.4.1   nathanw 			    dev, cmd, addr, flag, p);
    488      1.1    mjacob 		break;
    489      1.1    mjacob 	}
    490      1.1    mjacob 	return (error);
    491      1.1    mjacob }
    492      1.1    mjacob 
    493      1.1    mjacob static int
    494      1.1    mjacob ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
    495      1.1    mjacob {
    496      1.1    mjacob 	struct scsipi_generic sgen;
    497      1.1    mjacob 	int dl, flg, error;
    498      1.1    mjacob 
    499      1.1    mjacob 	if (dptr) {
    500      1.1    mjacob 		if ((dl = *dlenp) < 0) {
    501      1.1    mjacob 			dl = -dl;
    502      1.1    mjacob 			flg = XS_CTL_DATA_OUT;
    503      1.1    mjacob 		} else {
    504      1.1    mjacob 			flg = XS_CTL_DATA_IN;
    505      1.1    mjacob 		}
    506      1.1    mjacob 	} else {
    507      1.1    mjacob 		dl = 0;
    508      1.1    mjacob 		flg = 0;
    509      1.1    mjacob 	}
    510      1.1    mjacob 
    511      1.1    mjacob 	if (cdbl > sizeof (struct scsipi_generic)) {
    512      1.1    mjacob 		cdbl = sizeof (struct scsipi_generic);
    513      1.1    mjacob 	}
    514  1.8.4.2   nathanw 	memcpy(&sgen, cdb, cdbl);
    515      1.1    mjacob #ifndef	SCSIDEBUG
    516      1.1    mjacob 	flg |= XS_CTL_SILENT;
    517      1.1    mjacob #endif
    518  1.8.4.1   nathanw 	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
    519      1.1    mjacob 	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
    520      1.1    mjacob 
    521      1.1    mjacob 	if (error == 0 && dptr)
    522      1.1    mjacob 		*dlenp = 0;
    523      1.1    mjacob 
    524      1.1    mjacob 	return (error);
    525      1.1    mjacob }
    526      1.1    mjacob 
    527      1.1    mjacob #ifdef	__STDC__
    528      1.1    mjacob static void
    529      1.1    mjacob ses_log(struct ses_softc *ssc, const char *fmt, ...)
    530      1.1    mjacob {
    531      1.1    mjacob 	va_list ap;
    532      1.1    mjacob 
    533      1.1    mjacob 	printf("%s: ", ssc->sc_device.dv_xname);
    534      1.1    mjacob 	va_start(ap, fmt);
    535      1.1    mjacob 	vprintf(fmt, ap);
    536      1.1    mjacob 	va_end(ap);
    537      1.1    mjacob }
    538      1.1    mjacob #else
    539      1.1    mjacob static void
    540      1.1    mjacob ses_log(ssc, fmt, va_alist)
    541      1.1    mjacob 	struct ses_softc *ssc;
    542      1.1    mjacob 	char *fmt;
    543      1.1    mjacob 	va_dcl
    544      1.1    mjacob {
    545      1.1    mjacob 	va_list ap;
    546      1.1    mjacob 
    547      1.1    mjacob 	printf("%s: ", ssc->sc_device.dv_xname);
    548      1.1    mjacob 	va_start(ap, fmt);
    549      1.1    mjacob 	vprintf(fmt, ap);
    550      1.1    mjacob 	va_end(ap);
    551      1.1    mjacob }
    552      1.1    mjacob #endif
    553      1.1    mjacob 
    554      1.1    mjacob /*
    555      1.1    mjacob  * The code after this point runs on many platforms,
    556      1.1    mjacob  * so forgive the slightly awkward and nonconforming
    557      1.1    mjacob  * appearance.
    558      1.1    mjacob  */
    559      1.1    mjacob 
    560      1.1    mjacob /*
    561      1.1    mjacob  * Is this a device that supports enclosure services?
    562      1.1    mjacob  *
    563      1.1    mjacob  * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
    564      1.1    mjacob  * an SES device. If it happens to be an old UNISYS SEN device, we can
    565      1.1    mjacob  * handle that too.
    566      1.1    mjacob  */
    567      1.3    mjacob 
    568      1.3    mjacob #define	SAFTE_START	44
    569      1.3    mjacob #define	SAFTE_END	50
    570      1.3    mjacob #define	SAFTE_LEN	SAFTE_END-SAFTE_START
    571      1.1    mjacob 
    572      1.1    mjacob static enctyp
    573      1.5     dante ses_type(inqp)
    574      1.5     dante 	struct scsipi_inquiry_data *inqp;
    575      1.1    mjacob {
    576      1.5     dante 	size_t	given_len = inqp->additional_length + 4;
    577      1.1    mjacob 
    578      1.5     dante 	if (given_len < 8+SEN_ID_LEN)
    579      1.1    mjacob 		return (SES_NONE);
    580      1.1    mjacob 
    581      1.5     dante 	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
    582      1.5     dante 		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
    583      1.1    mjacob 			return (SES_SEN);
    584      1.5     dante 		} else if ((inqp->version & SID_ANSII) > 2) {
    585      1.1    mjacob 			return (SES_SES);
    586      1.1    mjacob 		} else {
    587      1.1    mjacob 			return (SES_SES_SCSI2);
    588      1.1    mjacob 		}
    589      1.1    mjacob 		return (SES_NONE);
    590      1.1    mjacob 	}
    591      1.1    mjacob 
    592      1.1    mjacob #ifdef	SES_ENABLE_PASSTHROUGH
    593      1.5     dante 	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
    594      1.1    mjacob 		/*
    595      1.1    mjacob 		 * PassThrough Device.
    596      1.1    mjacob 		 */
    597      1.1    mjacob 		return (SES_SES_PASSTHROUGH);
    598      1.1    mjacob 	}
    599      1.1    mjacob #endif
    600      1.1    mjacob 
    601      1.2    mjacob 	/*
    602      1.2    mjacob 	 * The comparison is short for a reason-
    603      1.2    mjacob 	 * some vendors were chopping it short.
    604      1.2    mjacob 	 */
    605      1.2    mjacob 
    606      1.5     dante 	if (given_len < SAFTE_END - 2) {
    607      1.1    mjacob 		return (SES_NONE);
    608      1.1    mjacob 	}
    609      1.2    mjacob 
    610      1.5     dante 	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
    611      1.5     dante 			SAFTE_LEN - 2) == 0) {
    612      1.1    mjacob 		return (SES_SAFT);
    613      1.6   thorpej 	}
    614      1.5     dante 
    615      1.1    mjacob 	return (SES_NONE);
    616      1.1    mjacob }
    617      1.1    mjacob 
    618      1.1    mjacob /*
    619      1.1    mjacob  * SES Native Type Device Support
    620      1.1    mjacob  */
    621      1.1    mjacob 
    622      1.1    mjacob /*
    623      1.1    mjacob  * SES Diagnostic Page Codes
    624      1.1    mjacob  */
    625      1.1    mjacob 
    626      1.1    mjacob typedef enum {
    627      1.1    mjacob 	SesConfigPage = 0x1,
    628      1.1    mjacob 	SesControlPage,
    629      1.1    mjacob #define	SesStatusPage SesControlPage
    630      1.1    mjacob 	SesHelpTxt,
    631      1.1    mjacob 	SesStringOut,
    632      1.1    mjacob #define	SesStringIn	SesStringOut
    633      1.1    mjacob 	SesThresholdOut,
    634      1.1    mjacob #define	SesThresholdIn SesThresholdOut
    635      1.1    mjacob 	SesArrayControl,
    636      1.1    mjacob #define	SesArrayStatus	SesArrayControl
    637      1.1    mjacob 	SesElementDescriptor,
    638      1.1    mjacob 	SesShortStatus
    639      1.1    mjacob } SesDiagPageCodes;
    640      1.1    mjacob 
    641      1.1    mjacob /*
    642      1.1    mjacob  * minimal amounts
    643      1.1    mjacob  */
    644      1.1    mjacob 
    645      1.1    mjacob /*
    646      1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    647      1.1    mjacob  * the config header.
    648      1.1    mjacob  */
    649      1.1    mjacob #define	SES_CFGHDR_MINLEN	12
    650      1.1    mjacob 
    651      1.1    mjacob /*
    652      1.1    mjacob  * Minimum amount of data, starting from byte 0, to have
    653      1.1    mjacob  * the config header and one enclosure header.
    654      1.1    mjacob  */
    655      1.1    mjacob #define	SES_ENCHDR_MINLEN	48
    656      1.1    mjacob 
    657      1.1    mjacob /*
    658      1.1    mjacob  * Take this value, subtract it from VEnclen and you know
    659      1.1    mjacob  * the length of the vendor unique bytes.
    660      1.1    mjacob  */
    661      1.1    mjacob #define	SES_ENCHDR_VMIN		36
    662      1.1    mjacob 
    663      1.1    mjacob /*
    664      1.1    mjacob  * SES Data Structures
    665      1.1    mjacob  */
    666      1.1    mjacob 
    667      1.1    mjacob typedef struct {
    668      1.1    mjacob 	uint32_t GenCode;	/* Generation Code */
    669      1.1    mjacob 	uint8_t	Nsubenc;	/* Number of Subenclosures */
    670      1.1    mjacob } SesCfgHdr;
    671      1.1    mjacob 
    672      1.1    mjacob typedef struct {
    673      1.1    mjacob 	uint8_t	Subencid;	/* SubEnclosure Identifier */
    674      1.1    mjacob 	uint8_t	Ntypes;		/* # of supported types */
    675      1.1    mjacob 	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
    676      1.1    mjacob } SesEncHdr;
    677      1.1    mjacob 
    678      1.1    mjacob typedef struct {
    679      1.1    mjacob 	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
    680      1.1    mjacob 	uint8_t	encVid[8];
    681      1.1    mjacob 	uint8_t	encPid[16];
    682      1.1    mjacob 	uint8_t	encRev[4];
    683      1.1    mjacob 	uint8_t	encVen[1];
    684      1.1    mjacob } SesEncDesc;
    685      1.1    mjacob 
    686      1.1    mjacob typedef struct {
    687      1.1    mjacob 	uint8_t	enc_type;		/* type of element */
    688      1.1    mjacob 	uint8_t	enc_maxelt;		/* maximum supported */
    689      1.1    mjacob 	uint8_t	enc_subenc;		/* in SubEnc # N */
    690      1.1    mjacob 	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
    691      1.1    mjacob } SesThdr;
    692      1.1    mjacob 
    693      1.1    mjacob typedef struct {
    694      1.1    mjacob 	uint8_t	comstatus;
    695      1.1    mjacob 	uint8_t	comstat[3];
    696      1.1    mjacob } SesComStat;
    697      1.1    mjacob 
    698      1.1    mjacob struct typidx {
    699      1.1    mjacob 	int ses_tidx;
    700      1.1    mjacob 	int ses_oidx;
    701      1.1    mjacob };
    702      1.1    mjacob 
    703      1.1    mjacob struct sscfg {
    704      1.1    mjacob 	uint8_t ses_ntypes;	/* total number of types supported */
    705      1.1    mjacob 
    706      1.1    mjacob 	/*
    707      1.1    mjacob 	 * We need to keep a type index as well as an
    708      1.1    mjacob 	 * object index for each object in an enclosure.
    709      1.1    mjacob 	 */
    710      1.1    mjacob 	struct typidx *ses_typidx;
    711      1.1    mjacob 
    712      1.1    mjacob 	/*
    713      1.1    mjacob 	 * We also need to keep track of the number of elements
    714      1.1    mjacob 	 * per type of element. This is needed later so that we
    715      1.1    mjacob 	 * can find precisely in the returned status data the
    716      1.1    mjacob 	 * status for the Nth element of the Kth type.
    717      1.1    mjacob 	 */
    718      1.1    mjacob 	uint8_t *	ses_eltmap;
    719      1.1    mjacob };
    720      1.1    mjacob 
    721      1.1    mjacob 
    722      1.1    mjacob /*
    723      1.1    mjacob  * (de)canonicalization defines
    724      1.1    mjacob  */
    725      1.1    mjacob #define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
    726      1.1    mjacob #define	sbit(x, bit)		(((uint32_t)(x)) << bit)
    727      1.1    mjacob #define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    728      1.1    mjacob 
    729      1.1    mjacob #define	sset16(outp, idx, sval)	\
    730      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    731      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    732      1.1    mjacob 
    733      1.1    mjacob 
    734      1.1    mjacob #define	sset24(outp, idx, sval)	\
    735      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    736      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    737      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    738      1.1    mjacob 
    739      1.1    mjacob 
    740      1.1    mjacob #define	sset32(outp, idx, sval)	\
    741      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
    742      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
    743      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
    744      1.1    mjacob 	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
    745      1.1    mjacob 
    746      1.1    mjacob #define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
    747      1.1    mjacob #define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
    748      1.1    mjacob #define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
    749      1.1    mjacob #define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
    750      1.1    mjacob 
    751      1.1    mjacob #define	sget16(inp, idx, lval)	\
    752      1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    753      1.1    mjacob 		(((uint8_t *)(inp))[idx+1]), idx += 2
    754      1.1    mjacob 
    755      1.1    mjacob #define	gget16(inp, idx, lval)	\
    756      1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
    757      1.1    mjacob 		(((uint8_t *)(inp))[idx+1])
    758      1.1    mjacob 
    759      1.1    mjacob #define	sget24(inp, idx, lval)	\
    760      1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    761      1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    762      1.1    mjacob 			(((uint8_t *)(inp))[idx+2]), idx += 3
    763      1.1    mjacob 
    764      1.1    mjacob #define	gget24(inp, idx, lval)	\
    765      1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
    766      1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
    767      1.1    mjacob 			(((uint8_t *)(inp))[idx+2])
    768      1.1    mjacob 
    769      1.1    mjacob #define	sget32(inp, idx, lval)	\
    770      1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    771      1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    772      1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    773      1.1    mjacob 			(((uint8_t *)(inp))[idx+3]), idx += 4
    774      1.1    mjacob 
    775      1.1    mjacob #define	gget32(inp, idx, lval)	\
    776      1.1    mjacob 	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
    777      1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
    778      1.1    mjacob 		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
    779      1.1    mjacob 			(((uint8_t *)(inp))[idx+3])
    780      1.1    mjacob 
    781      1.1    mjacob #define	SCSZ	0x2000
    782      1.1    mjacob #define	CFLEN	(256 + SES_ENCHDR_MINLEN)
    783      1.1    mjacob 
    784      1.1    mjacob /*
    785      1.1    mjacob  * Routines specific && private to SES only
    786      1.1    mjacob  */
    787      1.1    mjacob 
    788      1.1    mjacob static int ses_getconfig(ses_softc_t *);
    789      1.1    mjacob static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
    790      1.1    mjacob static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
    791      1.1    mjacob static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
    792      1.1    mjacob static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
    793      1.1    mjacob static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
    794      1.1    mjacob static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
    795      1.1    mjacob static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
    796      1.1    mjacob 
    797      1.1    mjacob static int
    798      1.1    mjacob ses_softc_init(ses_softc_t *ssc, int doinit)
    799      1.1    mjacob {
    800      1.1    mjacob 	if (doinit == 0) {
    801      1.1    mjacob 		struct sscfg *cc;
    802      1.1    mjacob 		if (ssc->ses_nobjects) {
    803      1.1    mjacob 			SES_FREE(ssc->ses_objmap,
    804      1.1    mjacob 			    ssc->ses_nobjects * sizeof (encobj));
    805      1.1    mjacob 			ssc->ses_objmap = NULL;
    806      1.1    mjacob 		}
    807      1.1    mjacob 		if ((cc = ssc->ses_private) != NULL) {
    808      1.1    mjacob 			if (cc->ses_eltmap && cc->ses_ntypes) {
    809      1.1    mjacob 				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
    810      1.1    mjacob 				cc->ses_eltmap = NULL;
    811      1.1    mjacob 				cc->ses_ntypes = 0;
    812      1.1    mjacob 			}
    813      1.1    mjacob 			if (cc->ses_typidx && ssc->ses_nobjects) {
    814      1.1    mjacob 				SES_FREE(cc->ses_typidx,
    815      1.1    mjacob 				    ssc->ses_nobjects * sizeof (struct typidx));
    816      1.1    mjacob 				cc->ses_typidx = NULL;
    817      1.1    mjacob 			}
    818      1.1    mjacob 			SES_FREE(cc, sizeof (struct sscfg));
    819      1.1    mjacob 			ssc->ses_private = NULL;
    820      1.1    mjacob 		}
    821      1.1    mjacob 		ssc->ses_nobjects = 0;
    822      1.1    mjacob 		return (0);
    823      1.1    mjacob 	}
    824      1.1    mjacob 	if (ssc->ses_private == NULL) {
    825      1.1    mjacob 		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
    826      1.1    mjacob 	}
    827      1.1    mjacob 	if (ssc->ses_private == NULL) {
    828      1.1    mjacob 		return (ENOMEM);
    829      1.1    mjacob 	}
    830      1.1    mjacob 	ssc->ses_nobjects = 0;
    831      1.1    mjacob 	ssc->ses_encstat = 0;
    832      1.1    mjacob 	return (ses_getconfig(ssc));
    833      1.1    mjacob }
    834      1.1    mjacob 
    835      1.1    mjacob static int
    836      1.1    mjacob ses_init_enc(ses_softc_t *ssc)
    837      1.1    mjacob {
    838      1.1    mjacob 	return (0);
    839      1.1    mjacob }
    840      1.1    mjacob 
    841      1.1    mjacob static int
    842      1.1    mjacob ses_get_encstat(ses_softc_t *ssc, int slpflag)
    843      1.1    mjacob {
    844      1.1    mjacob 	SesComStat ComStat;
    845      1.1    mjacob 	int status;
    846      1.1    mjacob 
    847      1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
    848      1.1    mjacob 		return (status);
    849      1.1    mjacob 	}
    850      1.1    mjacob 	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
    851      1.1    mjacob 	return (0);
    852      1.1    mjacob }
    853      1.1    mjacob 
    854      1.1    mjacob static int
    855      1.1    mjacob ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
    856      1.1    mjacob {
    857      1.1    mjacob 	SesComStat ComStat;
    858      1.1    mjacob 	int status;
    859      1.1    mjacob 
    860      1.1    mjacob 	ComStat.comstatus = encstat & 0xf;
    861      1.1    mjacob 	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
    862      1.1    mjacob 		return (status);
    863      1.1    mjacob 	}
    864      1.1    mjacob 	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
    865      1.1    mjacob 	return (0);
    866      1.1    mjacob }
    867      1.1    mjacob 
    868      1.1    mjacob static int
    869      1.1    mjacob ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    870      1.1    mjacob {
    871      1.1    mjacob 	int i = (int)obp->obj_id;
    872      1.1    mjacob 
    873      1.1    mjacob 	if (ssc->ses_objmap[i].svalid == 0) {
    874      1.1    mjacob 		SesComStat ComStat;
    875      1.1    mjacob 		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
    876      1.1    mjacob 		if (err)
    877      1.1    mjacob 			return (err);
    878      1.1    mjacob 		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
    879      1.1    mjacob 		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
    880      1.1    mjacob 		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
    881      1.1    mjacob 		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
    882      1.1    mjacob 		ssc->ses_objmap[i].svalid = 1;
    883      1.1    mjacob 	}
    884      1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
    885      1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
    886      1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
    887      1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
    888      1.1    mjacob 	return (0);
    889      1.1    mjacob }
    890      1.1    mjacob 
    891      1.1    mjacob static int
    892      1.1    mjacob ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
    893      1.1    mjacob {
    894      1.1    mjacob 	SesComStat ComStat;
    895      1.1    mjacob 	int err;
    896      1.1    mjacob 	/*
    897      1.1    mjacob 	 * If this is clear, we don't do diddly.
    898      1.1    mjacob 	 */
    899      1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
    900      1.1    mjacob 		return (0);
    901      1.1    mjacob 	}
    902      1.1    mjacob 	ComStat.comstatus = obp->cstat[0];
    903      1.1    mjacob 	ComStat.comstat[0] = obp->cstat[1];
    904      1.1    mjacob 	ComStat.comstat[1] = obp->cstat[2];
    905      1.1    mjacob 	ComStat.comstat[2] = obp->cstat[3];
    906      1.1    mjacob 	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
    907      1.1    mjacob 	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
    908      1.1    mjacob 	return (err);
    909      1.1    mjacob }
    910      1.1    mjacob 
    911      1.1    mjacob static int
    912      1.1    mjacob ses_getconfig(ses_softc_t *ssc)
    913      1.1    mjacob {
    914      1.1    mjacob 	struct sscfg *cc;
    915      1.1    mjacob 	SesCfgHdr cf;
    916      1.1    mjacob 	SesEncHdr hd;
    917      1.1    mjacob 	SesEncDesc *cdp;
    918      1.1    mjacob 	SesThdr thdr;
    919      1.1    mjacob 	int err, amt, i, nobj, ntype, maxima;
    920      1.1    mjacob 	char storage[CFLEN], *sdata;
    921      1.1    mjacob 	static char cdb[6] = {
    922      1.1    mjacob 	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
    923      1.1    mjacob 	};
    924      1.1    mjacob 
    925      1.1    mjacob 	cc = ssc->ses_private;
    926      1.1    mjacob 	if (cc == NULL) {
    927      1.1    mjacob 		return (ENXIO);
    928      1.1    mjacob 	}
    929      1.1    mjacob 
    930      1.1    mjacob 	sdata = SES_MALLOC(SCSZ);
    931      1.1    mjacob 	if (sdata == NULL)
    932      1.1    mjacob 		return (ENOMEM);
    933      1.1    mjacob 
    934      1.1    mjacob 	amt = SCSZ;
    935      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
    936      1.1    mjacob 	if (err) {
    937      1.1    mjacob 		SES_FREE(sdata, SCSZ);
    938      1.1    mjacob 		return (err);
    939      1.1    mjacob 	}
    940      1.1    mjacob 	amt = SCSZ - amt;
    941      1.1    mjacob 
    942      1.1    mjacob 	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
    943      1.1    mjacob 		SES_LOG(ssc, "Unable to parse SES Config Header\n");
    944      1.1    mjacob 		SES_FREE(sdata, SCSZ);
    945      1.1    mjacob 		return (EIO);
    946      1.1    mjacob 	}
    947      1.1    mjacob 	if (amt < SES_ENCHDR_MINLEN) {
    948      1.1    mjacob 		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
    949      1.1    mjacob 		SES_FREE(sdata, SCSZ);
    950      1.1    mjacob 		return (EIO);
    951      1.1    mjacob 	}
    952      1.1    mjacob 
    953      1.1    mjacob 	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
    954      1.1    mjacob 
    955      1.1    mjacob 	/*
    956      1.1    mjacob 	 * Now waltz through all the subenclosures toting up the
    957      1.1    mjacob 	 * number of types available in each. For this, we only
    958      1.1    mjacob 	 * really need the enclosure header. However, we get the
    959      1.1    mjacob 	 * enclosure descriptor for debug purposes, as well
    960      1.1    mjacob 	 * as self-consistency checking purposes.
    961      1.1    mjacob 	 */
    962      1.1    mjacob 
    963      1.1    mjacob 	maxima = cf.Nsubenc + 1;
    964      1.1    mjacob 	cdp = (SesEncDesc *) storage;
    965      1.1    mjacob 	for (ntype = i = 0; i < maxima; i++) {
    966      1.1    mjacob 		MEMZERO((caddr_t)cdp, sizeof (*cdp));
    967      1.1    mjacob 		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
    968      1.1    mjacob 			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
    969      1.1    mjacob 			SES_FREE(sdata, SCSZ);
    970      1.1    mjacob 			return (EIO);
    971      1.1    mjacob 		}
    972      1.1    mjacob 		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
    973      1.1    mjacob 		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
    974      1.1    mjacob 
    975      1.1    mjacob 		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
    976      1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
    977      1.1    mjacob 			SES_FREE(sdata, SCSZ);
    978      1.1    mjacob 			return (EIO);
    979      1.1    mjacob 		}
    980      1.1    mjacob 		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
    981      1.1    mjacob 		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
    982      1.1    mjacob 		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
    983      1.1    mjacob 		    cdp->encWWN[6], cdp->encWWN[7]);
    984      1.1    mjacob 		ntype += hd.Ntypes;
    985      1.1    mjacob 	}
    986      1.1    mjacob 
    987      1.1    mjacob 	/*
    988      1.1    mjacob 	 * Now waltz through all the types that are available, getting
    989      1.1    mjacob 	 * the type header so we can start adding up the number of
    990      1.1    mjacob 	 * objects available.
    991      1.1    mjacob 	 */
    992      1.1    mjacob 	for (nobj = i = 0; i < ntype; i++) {
    993      1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
    994      1.1    mjacob 			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
    995      1.1    mjacob 			SES_FREE(sdata, SCSZ);
    996      1.1    mjacob 			return (EIO);
    997      1.1    mjacob 		}
    998      1.1    mjacob 		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
    999      1.1    mjacob 		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
   1000      1.1    mjacob 		    thdr.enc_subenc, thdr.enc_tlen);
   1001      1.1    mjacob 		nobj += thdr.enc_maxelt;
   1002      1.1    mjacob 	}
   1003      1.1    mjacob 
   1004      1.1    mjacob 
   1005      1.1    mjacob 	/*
   1006      1.1    mjacob 	 * Now allocate the object array and type map.
   1007      1.1    mjacob 	 */
   1008      1.1    mjacob 
   1009      1.1    mjacob 	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
   1010      1.1    mjacob 	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
   1011      1.1    mjacob 	cc->ses_eltmap = SES_MALLOC(ntype);
   1012      1.1    mjacob 
   1013      1.1    mjacob 	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
   1014      1.1    mjacob 	    cc->ses_eltmap == NULL) {
   1015      1.1    mjacob 		if (ssc->ses_objmap) {
   1016      1.1    mjacob 			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
   1017      1.1    mjacob 			ssc->ses_objmap = NULL;
   1018      1.1    mjacob 		}
   1019      1.1    mjacob 		if (cc->ses_typidx) {
   1020      1.1    mjacob 			SES_FREE(cc->ses_typidx,
   1021      1.1    mjacob 			    (nobj * sizeof (struct typidx)));
   1022      1.1    mjacob 			cc->ses_typidx = NULL;
   1023      1.1    mjacob 		}
   1024      1.1    mjacob 		if (cc->ses_eltmap) {
   1025      1.1    mjacob 			SES_FREE(cc->ses_eltmap, ntype);
   1026      1.1    mjacob 			cc->ses_eltmap = NULL;
   1027      1.1    mjacob 		}
   1028      1.1    mjacob 		SES_FREE(sdata, SCSZ);
   1029      1.1    mjacob 		return (ENOMEM);
   1030      1.1    mjacob 	}
   1031      1.1    mjacob 	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
   1032      1.1    mjacob 	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
   1033      1.1    mjacob 	MEMZERO(cc->ses_eltmap, ntype);
   1034      1.1    mjacob 	cc->ses_ntypes = (uint8_t) ntype;
   1035      1.1    mjacob 	ssc->ses_nobjects = nobj;
   1036      1.1    mjacob 
   1037      1.1    mjacob 	/*
   1038      1.1    mjacob 	 * Now waltz through the # of types again to fill in the types
   1039      1.1    mjacob 	 * (and subenclosure ids) of the allocated objects.
   1040      1.1    mjacob 	 */
   1041      1.1    mjacob 	nobj = 0;
   1042      1.1    mjacob 	for (i = 0; i < ntype; i++) {
   1043      1.1    mjacob 		int j;
   1044      1.1    mjacob 		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
   1045      1.1    mjacob 			continue;
   1046      1.1    mjacob 		}
   1047      1.1    mjacob 		cc->ses_eltmap[i] = thdr.enc_maxelt;
   1048      1.1    mjacob 		for (j = 0; j < thdr.enc_maxelt; j++) {
   1049      1.1    mjacob 			cc->ses_typidx[nobj].ses_tidx = i;
   1050      1.1    mjacob 			cc->ses_typidx[nobj].ses_oidx = j;
   1051      1.1    mjacob 			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
   1052      1.1    mjacob 			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
   1053      1.1    mjacob 		}
   1054      1.1    mjacob 	}
   1055      1.1    mjacob 	SES_FREE(sdata, SCSZ);
   1056      1.1    mjacob 	return (0);
   1057      1.1    mjacob }
   1058      1.1    mjacob 
   1059      1.1    mjacob static int
   1060      1.1    mjacob ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
   1061      1.1    mjacob {
   1062      1.1    mjacob 	struct sscfg *cc;
   1063      1.1    mjacob 	int err, amt, bufsiz, tidx, oidx;
   1064      1.1    mjacob 	char cdb[6], *sdata;
   1065      1.1    mjacob 
   1066      1.1    mjacob 	cc = ssc->ses_private;
   1067      1.1    mjacob 	if (cc == NULL) {
   1068      1.1    mjacob 		return (ENXIO);
   1069      1.1    mjacob 	}
   1070      1.1    mjacob 
   1071      1.1    mjacob 	/*
   1072      1.1    mjacob 	 * If we're just getting overall enclosure status,
   1073      1.1    mjacob 	 * we only need 2 bytes of data storage.
   1074      1.1    mjacob 	 *
   1075      1.1    mjacob 	 * If we're getting anything else, we know how much
   1076      1.1    mjacob 	 * storage we need by noting that starting at offset
   1077      1.1    mjacob 	 * 8 in returned data, all object status bytes are 4
   1078      1.1    mjacob 	 * bytes long, and are stored in chunks of types(M)
   1079      1.1    mjacob 	 * and nth+1 instances of type M.
   1080      1.1    mjacob 	 */
   1081      1.1    mjacob 	if (objid == -1) {
   1082      1.1    mjacob 		bufsiz = 2;
   1083      1.1    mjacob 	} else {
   1084      1.1    mjacob 		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
   1085      1.1    mjacob 	}
   1086      1.1    mjacob 	sdata = SES_MALLOC(bufsiz);
   1087      1.1    mjacob 	if (sdata == NULL)
   1088      1.1    mjacob 		return (ENOMEM);
   1089      1.1    mjacob 
   1090      1.1    mjacob 	cdb[0] = RECEIVE_DIAGNOSTIC;
   1091      1.1    mjacob 	cdb[1] = 1;
   1092      1.1    mjacob 	cdb[2] = SesStatusPage;
   1093      1.1    mjacob 	cdb[3] = bufsiz >> 8;
   1094      1.1    mjacob 	cdb[4] = bufsiz & 0xff;
   1095      1.1    mjacob 	cdb[5] = 0;
   1096      1.1    mjacob 	amt = bufsiz;
   1097      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1098      1.1    mjacob 	if (err) {
   1099      1.1    mjacob 		SES_FREE(sdata, bufsiz);
   1100      1.1    mjacob 		return (err);
   1101      1.1    mjacob 	}
   1102      1.1    mjacob 	amt = bufsiz - amt;
   1103      1.1    mjacob 
   1104      1.1    mjacob 	if (objid == -1) {
   1105      1.1    mjacob 		tidx = -1;
   1106      1.1    mjacob 		oidx = -1;
   1107      1.1    mjacob 	} else {
   1108      1.1    mjacob 		tidx = cc->ses_typidx[objid].ses_tidx;
   1109      1.1    mjacob 		oidx = cc->ses_typidx[objid].ses_oidx;
   1110      1.1    mjacob 	}
   1111      1.1    mjacob 	if (in) {
   1112      1.1    mjacob 		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1113      1.1    mjacob 			err = ENODEV;
   1114      1.1    mjacob 		}
   1115      1.1    mjacob 	} else {
   1116      1.1    mjacob 		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
   1117      1.1    mjacob 			err = ENODEV;
   1118      1.1    mjacob 		} else {
   1119      1.1    mjacob 			cdb[0] = SEND_DIAGNOSTIC;
   1120      1.1    mjacob 			cdb[1] = 0x10;
   1121      1.1    mjacob 			cdb[2] = 0;
   1122      1.1    mjacob 			cdb[3] = bufsiz >> 8;
   1123      1.1    mjacob 			cdb[4] = bufsiz & 0xff;
   1124      1.1    mjacob 			cdb[5] = 0;
   1125      1.1    mjacob 			amt = -bufsiz;
   1126      1.1    mjacob 			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
   1127      1.1    mjacob 		}
   1128      1.1    mjacob 	}
   1129      1.1    mjacob 	SES_FREE(sdata, bufsiz);
   1130      1.1    mjacob 	return (0);
   1131      1.1    mjacob }
   1132      1.1    mjacob 
   1133      1.1    mjacob 
   1134      1.1    mjacob /*
   1135      1.1    mjacob  * Routines to parse returned SES data structures.
   1136      1.1    mjacob  * Architecture and compiler independent.
   1137      1.1    mjacob  */
   1138      1.1    mjacob 
   1139      1.1    mjacob static int
   1140      1.1    mjacob ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
   1141      1.1    mjacob {
   1142      1.1    mjacob 	if (buflen < SES_CFGHDR_MINLEN) {
   1143      1.1    mjacob 		return (-1);
   1144      1.1    mjacob 	}
   1145      1.1    mjacob 	gget8(buffer, 1, cfp->Nsubenc);
   1146      1.1    mjacob 	gget32(buffer, 4, cfp->GenCode);
   1147      1.1    mjacob 	return (0);
   1148      1.1    mjacob }
   1149      1.1    mjacob 
   1150      1.1    mjacob static int
   1151      1.1    mjacob ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
   1152      1.1    mjacob {
   1153      1.1    mjacob 	int s, off = 8;
   1154      1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1155      1.1    mjacob 		if (off + 3 > amt)
   1156      1.1    mjacob 			return (-1);
   1157      1.1    mjacob 		off += buffer[off+3] + 4;
   1158      1.1    mjacob 	}
   1159      1.1    mjacob 	if (off + 3 > amt) {
   1160      1.1    mjacob 		return (-1);
   1161      1.1    mjacob 	}
   1162      1.1    mjacob 	gget8(buffer, off+1, chp->Subencid);
   1163      1.1    mjacob 	gget8(buffer, off+2, chp->Ntypes);
   1164      1.1    mjacob 	gget8(buffer, off+3, chp->VEnclen);
   1165      1.1    mjacob 	return (0);
   1166      1.1    mjacob }
   1167      1.1    mjacob 
   1168      1.1    mjacob static int
   1169      1.1    mjacob ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
   1170      1.1    mjacob {
   1171      1.1    mjacob 	int s, e, enclen, off = 8;
   1172      1.1    mjacob 	for (s = 0; s < SubEncId; s++) {
   1173      1.1    mjacob 		if (off + 3 > amt)
   1174      1.1    mjacob 			return (-1);
   1175      1.1    mjacob 		off += buffer[off+3] + 4;
   1176      1.1    mjacob 	}
   1177      1.1    mjacob 	if (off + 3 > amt) {
   1178      1.1    mjacob 		return (-1);
   1179      1.1    mjacob 	}
   1180      1.1    mjacob 	gget8(buffer, off+3, enclen);
   1181      1.1    mjacob 	off += 4;
   1182      1.1    mjacob 	if (off  >= amt)
   1183      1.1    mjacob 		return (-1);
   1184      1.1    mjacob 
   1185      1.1    mjacob 	e = off + enclen;
   1186      1.1    mjacob 	if (e > amt) {
   1187      1.1    mjacob 		e = amt;
   1188      1.1    mjacob 	}
   1189      1.1    mjacob 	MEMCPY(cdp, &buffer[off], e - off);
   1190      1.1    mjacob 	return (0);
   1191      1.1    mjacob }
   1192      1.1    mjacob 
   1193      1.1    mjacob static int
   1194      1.1    mjacob ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
   1195      1.1    mjacob {
   1196      1.1    mjacob 	int s, off = 8;
   1197      1.1    mjacob 
   1198      1.1    mjacob 	if (amt < SES_CFGHDR_MINLEN) {
   1199      1.1    mjacob 		return (-1);
   1200      1.1    mjacob 	}
   1201      1.1    mjacob 	for (s = 0; s < buffer[1]; s++) {
   1202      1.1    mjacob 		if (off + 3 > amt)
   1203      1.1    mjacob 			return (-1);
   1204      1.1    mjacob 		off += buffer[off+3] + 4;
   1205      1.1    mjacob 	}
   1206      1.1    mjacob 	if (off + 3 > amt) {
   1207      1.1    mjacob 		return (-1);
   1208      1.1    mjacob 	}
   1209      1.1    mjacob 	off += buffer[off+3] + 4 + (nth * 4);
   1210      1.1    mjacob 	if (amt < (off + 4))
   1211      1.1    mjacob 		return (-1);
   1212      1.1    mjacob 
   1213      1.1    mjacob 	gget8(buffer, off++, thp->enc_type);
   1214      1.1    mjacob 	gget8(buffer, off++, thp->enc_maxelt);
   1215      1.1    mjacob 	gget8(buffer, off++, thp->enc_subenc);
   1216      1.1    mjacob 	gget8(buffer, off, thp->enc_tlen);
   1217      1.1    mjacob 	return (0);
   1218      1.1    mjacob }
   1219      1.1    mjacob 
   1220      1.1    mjacob /*
   1221      1.1    mjacob  * This function needs a little explanation.
   1222      1.1    mjacob  *
   1223      1.1    mjacob  * The arguments are:
   1224      1.1    mjacob  *
   1225      1.1    mjacob  *
   1226      1.1    mjacob  *	char *b, int amt
   1227      1.1    mjacob  *
   1228      1.1    mjacob  *		These describes the raw input SES status data and length.
   1229      1.1    mjacob  *
   1230      1.1    mjacob  *	uint8_t *ep
   1231      1.1    mjacob  *
   1232      1.1    mjacob  *		This is a map of the number of types for each element type
   1233      1.1    mjacob  *		in the enclosure.
   1234      1.1    mjacob  *
   1235      1.1    mjacob  *	int elt
   1236      1.1    mjacob  *
   1237      1.1    mjacob  *		This is the element type being sought. If elt is -1,
   1238      1.1    mjacob  *		then overall enclosure status is being sought.
   1239      1.1    mjacob  *
   1240      1.1    mjacob  *	int elm
   1241      1.1    mjacob  *
   1242      1.1    mjacob  *		This is the ordinal Mth element of type elt being sought.
   1243      1.1    mjacob  *
   1244      1.1    mjacob  *	SesComStat *sp
   1245      1.1    mjacob  *
   1246      1.1    mjacob  *		This is the output area to store the status for
   1247      1.1    mjacob  *		the Mth element of type Elt.
   1248      1.1    mjacob  */
   1249      1.1    mjacob 
   1250      1.1    mjacob static int
   1251      1.1    mjacob ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1252      1.1    mjacob {
   1253      1.1    mjacob 	int idx, i;
   1254      1.1    mjacob 
   1255      1.1    mjacob 	/*
   1256      1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1257      1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1258      1.1    mjacob 	 */
   1259      1.1    mjacob 	if (elt == -1) {
   1260      1.1    mjacob 		if (amt < 2)
   1261      1.1    mjacob 			return (-1);
   1262      1.1    mjacob 		gget8(b, 1, sp->comstatus);
   1263      1.1    mjacob 		sp->comstat[0] = 0;
   1264      1.1    mjacob 		sp->comstat[1] = 0;
   1265      1.1    mjacob 		sp->comstat[2] = 0;
   1266      1.1    mjacob 		return (0);
   1267      1.1    mjacob 	}
   1268      1.1    mjacob 
   1269      1.1    mjacob 	/*
   1270      1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1271      1.1    mjacob 	 */
   1272      1.1    mjacob 
   1273      1.1    mjacob 	if (elm >= ep[elt])
   1274      1.1    mjacob 		return (-1);
   1275      1.1    mjacob 
   1276      1.1    mjacob 	/*
   1277      1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1278      1.1    mjacob 	 * for the element types we're not interested in.
   1279      1.1    mjacob 	 */
   1280      1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1281      1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1282      1.1    mjacob 	}
   1283      1.1    mjacob 
   1284      1.1    mjacob 	/*
   1285      1.1    mjacob 	 * Skip over Overall status for this element type.
   1286      1.1    mjacob 	 */
   1287      1.1    mjacob 	idx += 4;
   1288      1.1    mjacob 
   1289      1.1    mjacob 	/*
   1290      1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1291      1.1    mjacob 	 */
   1292      1.1    mjacob 	idx += (4 * elm);
   1293      1.1    mjacob 
   1294      1.1    mjacob 	/*
   1295      1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1296      1.1    mjacob 	 */
   1297      1.1    mjacob 	if (idx+4 > amt)
   1298      1.1    mjacob 		return (-1);
   1299      1.1    mjacob 
   1300      1.1    mjacob 	/*
   1301      1.1    mjacob 	 * Retrieve the status.
   1302      1.1    mjacob 	 */
   1303      1.1    mjacob 	gget8(b, idx++, sp->comstatus);
   1304      1.1    mjacob 	gget8(b, idx++, sp->comstat[0]);
   1305      1.1    mjacob 	gget8(b, idx++, sp->comstat[1]);
   1306      1.1    mjacob 	gget8(b, idx++, sp->comstat[2]);
   1307      1.1    mjacob #if	0
   1308      1.1    mjacob 	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
   1309      1.1    mjacob #endif
   1310      1.1    mjacob 	return (0);
   1311      1.1    mjacob }
   1312      1.1    mjacob 
   1313      1.1    mjacob /*
   1314      1.1    mjacob  * This is the mirror function to ses_decode, but we set the 'select'
   1315      1.1    mjacob  * bit for the object which we're interested in. All other objects,
   1316      1.1    mjacob  * after a status fetch, should have that bit off. Hmm. It'd be easy
   1317      1.1    mjacob  * enough to ensure this, so we will.
   1318      1.1    mjacob  */
   1319      1.1    mjacob 
   1320      1.1    mjacob static int
   1321      1.1    mjacob ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
   1322      1.1    mjacob {
   1323      1.1    mjacob 	int idx, i;
   1324      1.1    mjacob 
   1325      1.1    mjacob 	/*
   1326      1.1    mjacob 	 * If it's overall enclosure status being sought, get that.
   1327      1.1    mjacob 	 * We need at least 2 bytes of status data to get that.
   1328      1.1    mjacob 	 */
   1329      1.1    mjacob 	if (elt == -1) {
   1330      1.1    mjacob 		if (amt < 2)
   1331      1.1    mjacob 			return (-1);
   1332      1.1    mjacob 		i = 0;
   1333      1.1    mjacob 		sset8(b, i, 0);
   1334      1.1    mjacob 		sset8(b, i, sp->comstatus & 0xf);
   1335      1.1    mjacob #if	0
   1336      1.1    mjacob 		PRINTF("set EncStat %x\n", sp->comstatus);
   1337      1.1    mjacob #endif
   1338      1.1    mjacob 		return (0);
   1339      1.1    mjacob 	}
   1340      1.1    mjacob 
   1341      1.1    mjacob 	/*
   1342      1.1    mjacob 	 * Check to make sure that the Mth element is legal for type Elt.
   1343      1.1    mjacob 	 */
   1344      1.1    mjacob 
   1345      1.1    mjacob 	if (elm >= ep[elt])
   1346      1.1    mjacob 		return (-1);
   1347      1.1    mjacob 
   1348      1.1    mjacob 	/*
   1349      1.1    mjacob 	 * Starting at offset 8, start skipping over the storage
   1350      1.1    mjacob 	 * for the element types we're not interested in.
   1351      1.1    mjacob 	 */
   1352      1.1    mjacob 	for (idx = 8, i = 0; i < elt; i++) {
   1353      1.1    mjacob 		idx += ((ep[i] + 1) * 4);
   1354      1.1    mjacob 	}
   1355      1.1    mjacob 
   1356      1.1    mjacob 	/*
   1357      1.1    mjacob 	 * Skip over Overall status for this element type.
   1358      1.1    mjacob 	 */
   1359      1.1    mjacob 	idx += 4;
   1360      1.1    mjacob 
   1361      1.1    mjacob 	/*
   1362      1.1    mjacob 	 * And skip to the index for the Mth element that we're going for.
   1363      1.1    mjacob 	 */
   1364      1.1    mjacob 	idx += (4 * elm);
   1365      1.1    mjacob 
   1366      1.1    mjacob 	/*
   1367      1.1    mjacob 	 * Make sure we haven't overflowed the buffer.
   1368      1.1    mjacob 	 */
   1369      1.1    mjacob 	if (idx+4 > amt)
   1370      1.1    mjacob 		return (-1);
   1371      1.1    mjacob 
   1372      1.1    mjacob 	/*
   1373      1.1    mjacob 	 * Set the status.
   1374      1.1    mjacob 	 */
   1375      1.1    mjacob 	sset8(b, idx, sp->comstatus);
   1376      1.1    mjacob 	sset8(b, idx, sp->comstat[0]);
   1377      1.1    mjacob 	sset8(b, idx, sp->comstat[1]);
   1378      1.1    mjacob 	sset8(b, idx, sp->comstat[2]);
   1379      1.1    mjacob 	idx -= 4;
   1380      1.1    mjacob 
   1381      1.1    mjacob #if	0
   1382      1.1    mjacob 	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
   1383      1.1    mjacob 	    elt, elm, idx, sp->comstatus, sp->comstat[0],
   1384      1.1    mjacob 	    sp->comstat[1], sp->comstat[2]);
   1385      1.1    mjacob #endif
   1386      1.1    mjacob 
   1387      1.1    mjacob 	/*
   1388      1.1    mjacob 	 * Now make sure all other 'Select' bits are off.
   1389      1.1    mjacob 	 */
   1390      1.1    mjacob 	for (i = 8; i < amt; i += 4) {
   1391      1.1    mjacob 		if (i != idx)
   1392      1.1    mjacob 			b[i] &= ~0x80;
   1393      1.1    mjacob 	}
   1394      1.1    mjacob 	/*
   1395      1.1    mjacob 	 * And make sure the INVOP bit is clear.
   1396      1.1    mjacob 	 */
   1397      1.1    mjacob 	b[2] &= ~0x10;
   1398      1.1    mjacob 
   1399      1.1    mjacob 	return (0);
   1400      1.1    mjacob }
   1401      1.1    mjacob 
   1402      1.1    mjacob /*
   1403      1.1    mjacob  * SAF-TE Type Device Emulation
   1404      1.1    mjacob  */
   1405      1.1    mjacob 
   1406      1.1    mjacob static int safte_getconfig(ses_softc_t *);
   1407      1.1    mjacob static int safte_rdstat(ses_softc_t *, int);;
   1408      1.1    mjacob static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
   1409      1.1    mjacob static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
   1410      1.1    mjacob static void wrslot_stat(ses_softc_t *, int);
   1411      1.1    mjacob static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
   1412      1.1    mjacob 
   1413      1.1    mjacob #define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
   1414      1.1    mjacob 	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
   1415      1.1    mjacob /*
   1416      1.1    mjacob  * SAF-TE specific defines- Mandatory ones only...
   1417      1.1    mjacob  */
   1418      1.1    mjacob 
   1419      1.1    mjacob /*
   1420      1.1    mjacob  * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
   1421      1.1    mjacob  */
   1422      1.1    mjacob #define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
   1423      1.1    mjacob #define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
   1424      1.1    mjacob #define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
   1425      1.1    mjacob 
   1426      1.1    mjacob /*
   1427      1.1    mjacob  * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
   1428      1.1    mjacob  */
   1429      1.1    mjacob #define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
   1430      1.1    mjacob #define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
   1431      1.1    mjacob #define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
   1432      1.1    mjacob #define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
   1433      1.1    mjacob #define	SAFTE_WT_GLOBAL	0x15	/* send global command */
   1434      1.1    mjacob 
   1435      1.1    mjacob 
   1436      1.1    mjacob #define	SAFT_SCRATCH	64
   1437      1.1    mjacob #define	NPSEUDO_THERM	16
   1438      1.1    mjacob #define	NPSEUDO_ALARM	1
   1439      1.1    mjacob struct scfg {
   1440      1.1    mjacob 	/*
   1441      1.1    mjacob 	 * Cached Configuration
   1442      1.1    mjacob 	 */
   1443      1.1    mjacob 	uint8_t	Nfans;		/* Number of Fans */
   1444      1.1    mjacob 	uint8_t	Npwr;		/* Number of Power Supplies */
   1445      1.1    mjacob 	uint8_t	Nslots;		/* Number of Device Slots */
   1446      1.1    mjacob 	uint8_t	DoorLock;	/* Door Lock Installed */
   1447      1.1    mjacob 	uint8_t	Ntherm;		/* Number of Temperature Sensors */
   1448      1.1    mjacob 	uint8_t	Nspkrs;		/* Number of Speakers */
   1449      1.1    mjacob 	uint8_t Nalarm;		/* Number of Alarms (at least one) */
   1450      1.1    mjacob 	/*
   1451      1.1    mjacob 	 * Cached Flag Bytes for Global Status
   1452      1.1    mjacob 	 */
   1453      1.1    mjacob 	uint8_t	flag1;
   1454      1.1    mjacob 	uint8_t	flag2;
   1455      1.1    mjacob 	/*
   1456      1.1    mjacob 	 * What object index ID is where various slots start.
   1457      1.1    mjacob 	 */
   1458      1.1    mjacob 	uint8_t	pwroff;
   1459      1.1    mjacob 	uint8_t	slotoff;
   1460      1.1    mjacob #define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
   1461      1.1    mjacob };
   1462      1.1    mjacob 
   1463      1.1    mjacob #define	SAFT_FLG1_ALARM		0x1
   1464      1.1    mjacob #define	SAFT_FLG1_GLOBFAIL	0x2
   1465      1.1    mjacob #define	SAFT_FLG1_GLOBWARN	0x4
   1466      1.1    mjacob #define	SAFT_FLG1_ENCPWROFF	0x8
   1467      1.1    mjacob #define	SAFT_FLG1_ENCFANFAIL	0x10
   1468      1.1    mjacob #define	SAFT_FLG1_ENCPWRFAIL	0x20
   1469      1.1    mjacob #define	SAFT_FLG1_ENCDRVFAIL	0x40
   1470      1.1    mjacob #define	SAFT_FLG1_ENCDRVWARN	0x80
   1471      1.1    mjacob 
   1472      1.1    mjacob #define	SAFT_FLG2_LOCKDOOR	0x4
   1473      1.1    mjacob #define	SAFT_PRIVATE		sizeof (struct scfg)
   1474      1.1    mjacob 
   1475      1.7  sommerfe static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
   1476      1.1    mjacob #define	SAFT_BAIL(r, x, k, l)	\
   1477      1.1    mjacob 	if (r >= x) { \
   1478      1.1    mjacob 		SES_LOG(ssc, safte_2little, x, __LINE__);\
   1479      1.1    mjacob 		SES_FREE(k, l); \
   1480      1.1    mjacob 		return (EIO); \
   1481      1.1    mjacob 	}
   1482      1.1    mjacob 
   1483      1.1    mjacob 
   1484      1.1    mjacob int
   1485      1.1    mjacob safte_softc_init(ses_softc_t *ssc, int doinit)
   1486      1.1    mjacob {
   1487      1.1    mjacob 	int err, i, r;
   1488      1.1    mjacob 	struct scfg *cc;
   1489      1.1    mjacob 
   1490      1.1    mjacob 	if (doinit == 0) {
   1491      1.1    mjacob 		if (ssc->ses_nobjects) {
   1492      1.1    mjacob 			if (ssc->ses_objmap) {
   1493      1.1    mjacob 				SES_FREE(ssc->ses_objmap,
   1494      1.1    mjacob 				    ssc->ses_nobjects * sizeof (encobj));
   1495      1.1    mjacob 				ssc->ses_objmap = NULL;
   1496      1.1    mjacob 			}
   1497      1.1    mjacob 			ssc->ses_nobjects = 0;
   1498      1.1    mjacob 		}
   1499      1.1    mjacob 		if (ssc->ses_private) {
   1500      1.1    mjacob 			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
   1501      1.1    mjacob 			ssc->ses_private = NULL;
   1502      1.1    mjacob 		}
   1503      1.1    mjacob 		return (0);
   1504      1.1    mjacob 	}
   1505      1.1    mjacob 
   1506      1.1    mjacob 	if (ssc->ses_private == NULL) {
   1507      1.1    mjacob 		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
   1508      1.1    mjacob 		if (ssc->ses_private == NULL) {
   1509      1.1    mjacob 			return (ENOMEM);
   1510      1.1    mjacob 		}
   1511      1.1    mjacob 		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
   1512      1.1    mjacob 	}
   1513      1.1    mjacob 
   1514      1.1    mjacob 	ssc->ses_nobjects = 0;
   1515      1.1    mjacob 	ssc->ses_encstat = 0;
   1516      1.1    mjacob 
   1517      1.1    mjacob 	if ((err = safte_getconfig(ssc)) != 0) {
   1518      1.1    mjacob 		return (err);
   1519      1.1    mjacob 	}
   1520      1.1    mjacob 
   1521      1.1    mjacob 	/*
   1522      1.1    mjacob 	 * The number of objects here, as well as that reported by the
   1523      1.1    mjacob 	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
   1524      1.1    mjacob 	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
   1525      1.1    mjacob 	 */
   1526      1.1    mjacob 	cc = ssc->ses_private;
   1527      1.1    mjacob 	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
   1528      1.1    mjacob 	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
   1529      1.1    mjacob 	ssc->ses_objmap = (encobj *)
   1530      1.1    mjacob 	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
   1531      1.1    mjacob 	if (ssc->ses_objmap == NULL) {
   1532      1.1    mjacob 		return (ENOMEM);
   1533      1.1    mjacob 	}
   1534      1.1    mjacob 	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
   1535      1.1    mjacob 
   1536      1.1    mjacob 	r = 0;
   1537      1.1    mjacob 	/*
   1538      1.1    mjacob 	 * Note that this is all arranged for the convenience
   1539      1.1    mjacob 	 * in later fetches of status.
   1540      1.1    mjacob 	 */
   1541      1.1    mjacob 	for (i = 0; i < cc->Nfans; i++)
   1542      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
   1543      1.1    mjacob 	cc->pwroff = (uint8_t) r;
   1544      1.1    mjacob 	for (i = 0; i < cc->Npwr; i++)
   1545      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
   1546      1.1    mjacob 	for (i = 0; i < cc->DoorLock; i++)
   1547      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
   1548      1.1    mjacob 	for (i = 0; i < cc->Nspkrs; i++)
   1549      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1550      1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++)
   1551      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1552      1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++)
   1553      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
   1554      1.1    mjacob 	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
   1555      1.1    mjacob 	cc->slotoff = (uint8_t) r;
   1556      1.1    mjacob 	for (i = 0; i < cc->Nslots; i++)
   1557      1.1    mjacob 		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
   1558      1.1    mjacob 	return (0);
   1559      1.1    mjacob }
   1560      1.1    mjacob 
   1561      1.1    mjacob int
   1562      1.1    mjacob safte_init_enc(ses_softc_t *ssc)
   1563      1.1    mjacob {
   1564      1.1    mjacob 	int err, amt;
   1565      1.1    mjacob 	char *sdata;
   1566      1.4    mjacob 	static char cdb0[6] = { SEND_DIAGNOSTIC };
   1567      1.1    mjacob 	static char cdb[10] =
   1568      1.4    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   1569      1.1    mjacob 
   1570      1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1571      1.1    mjacob 	if (sdata == NULL)
   1572      1.1    mjacob 		return (ENOMEM);
   1573      1.1    mjacob 
   1574      1.4    mjacob 	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
   1575      1.1    mjacob 	if (err) {
   1576      1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1577      1.1    mjacob 		return (err);
   1578      1.1    mjacob 	}
   1579      1.1    mjacob 	sdata[0] = SAFTE_WT_GLOBAL;
   1580      1.4    mjacob 	MEMZERO(&sdata[1], 15);
   1581      1.1    mjacob 	amt = -SAFT_SCRATCH;
   1582      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1583      1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1584      1.1    mjacob 	return (err);
   1585      1.1    mjacob }
   1586      1.1    mjacob 
   1587      1.1    mjacob int
   1588      1.1    mjacob safte_get_encstat(ses_softc_t *ssc, int slpflg)
   1589      1.1    mjacob {
   1590      1.1    mjacob 	return (safte_rdstat(ssc, slpflg));
   1591      1.1    mjacob }
   1592      1.1    mjacob 
   1593      1.1    mjacob int
   1594      1.1    mjacob safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
   1595      1.1    mjacob {
   1596      1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1597      1.1    mjacob 	if (cc == NULL)
   1598      1.1    mjacob 		return (0);
   1599      1.1    mjacob 	/*
   1600      1.1    mjacob 	 * Since SAF-TE devices aren't necessarily sticky in terms
   1601      1.1    mjacob 	 * of state, make our soft copy of enclosure status 'sticky'-
   1602      1.1    mjacob 	 * that is, things set in enclosure status stay set (as implied
   1603      1.1    mjacob 	 * by conditions set in reading object status) until cleared.
   1604      1.1    mjacob 	 */
   1605      1.1    mjacob 	ssc->ses_encstat &= ~ALL_ENC_STAT;
   1606      1.1    mjacob 	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
   1607      1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID;
   1608      1.1    mjacob 	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
   1609      1.1    mjacob 	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
   1610      1.1    mjacob 		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
   1611      1.1    mjacob 	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
   1612      1.1    mjacob 		cc->flag1 |= SAFT_FLG1_GLOBWARN;
   1613      1.1    mjacob 	}
   1614      1.1    mjacob 	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
   1615      1.1    mjacob }
   1616      1.1    mjacob 
   1617      1.1    mjacob int
   1618      1.1    mjacob safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
   1619      1.1    mjacob {
   1620      1.1    mjacob 	int i = (int)obp->obj_id;
   1621      1.1    mjacob 
   1622      1.1    mjacob 	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
   1623      1.1    mjacob 	    (ssc->ses_objmap[i].svalid) == 0) {
   1624      1.1    mjacob 		int err = safte_rdstat(ssc, slpflg);
   1625      1.1    mjacob 		if (err)
   1626      1.1    mjacob 			return (err);
   1627      1.1    mjacob 	}
   1628      1.1    mjacob 	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
   1629      1.1    mjacob 	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
   1630      1.1    mjacob 	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
   1631      1.1    mjacob 	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
   1632      1.1    mjacob 	return (0);
   1633      1.1    mjacob }
   1634      1.1    mjacob 
   1635      1.1    mjacob 
   1636      1.1    mjacob int
   1637      1.1    mjacob safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
   1638      1.1    mjacob {
   1639      1.1    mjacob 	int idx, err;
   1640      1.1    mjacob 	encobj *ep;
   1641      1.1    mjacob 	struct scfg *cc;
   1642      1.1    mjacob 
   1643      1.1    mjacob 
   1644      1.1    mjacob 	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
   1645      1.1    mjacob 	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
   1646      1.1    mjacob 	    obp->cstat[3]);
   1647      1.1    mjacob 
   1648      1.1    mjacob 	/*
   1649      1.1    mjacob 	 * If this is clear, we don't do diddly.
   1650      1.1    mjacob 	 */
   1651      1.1    mjacob 	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
   1652      1.1    mjacob 		return (0);
   1653      1.1    mjacob 	}
   1654      1.1    mjacob 
   1655      1.1    mjacob 	err = 0;
   1656      1.1    mjacob 	/*
   1657      1.1    mjacob 	 * Check to see if the common bits are set and do them first.
   1658      1.1    mjacob 	 */
   1659      1.1    mjacob 	if (obp->cstat[0] & ~SESCTL_CSEL) {
   1660      1.1    mjacob 		err = set_objstat_sel(ssc, obp, slp);
   1661      1.1    mjacob 		if (err)
   1662      1.1    mjacob 			return (err);
   1663      1.1    mjacob 	}
   1664      1.1    mjacob 
   1665      1.1    mjacob 	cc = ssc->ses_private;
   1666      1.1    mjacob 	if (cc == NULL)
   1667      1.1    mjacob 		return (0);
   1668      1.1    mjacob 
   1669      1.1    mjacob 	idx = (int)obp->obj_id;
   1670      1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   1671      1.1    mjacob 
   1672      1.1    mjacob 	switch (ep->enctype) {
   1673      1.1    mjacob 	case SESTYP_DEVICE:
   1674      1.1    mjacob 	{
   1675      1.1    mjacob 		uint8_t slotop = 0;
   1676      1.1    mjacob 		/*
   1677      1.1    mjacob 		 * XXX: I should probably cache the previous state
   1678      1.1    mjacob 		 * XXX: of SESCTL_DEVOFF so that when it goes from
   1679      1.1    mjacob 		 * XXX: true to false I can then set PREPARE FOR OPERATION
   1680      1.1    mjacob 		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
   1681      1.1    mjacob 		 */
   1682      1.1    mjacob 		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
   1683      1.1    mjacob 			slotop |= 0x2;
   1684      1.1    mjacob 		}
   1685      1.1    mjacob 		if (obp->cstat[2] & SESCTL_RQSID) {
   1686      1.1    mjacob 			slotop |= 0x4;
   1687      1.1    mjacob 		}
   1688      1.1    mjacob 		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
   1689      1.1    mjacob 		    slotop, slp);
   1690      1.1    mjacob 		if (err)
   1691      1.1    mjacob 			return (err);
   1692      1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSFLT) {
   1693      1.1    mjacob 			ep->priv |= 0x2;
   1694      1.1    mjacob 		} else {
   1695      1.1    mjacob 			ep->priv &= ~0x2;
   1696      1.1    mjacob 		}
   1697      1.1    mjacob 		if (ep->priv & 0xc6) {
   1698      1.1    mjacob 			ep->priv &= ~0x1;
   1699      1.1    mjacob 		} else {
   1700      1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   1701      1.1    mjacob 		}
   1702      1.1    mjacob 		wrslot_stat(ssc, slp);
   1703      1.1    mjacob 		break;
   1704      1.1    mjacob 	}
   1705      1.1    mjacob 	case SESTYP_POWER:
   1706      1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1707      1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
   1708      1.1    mjacob 		} else {
   1709      1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
   1710      1.1    mjacob 		}
   1711      1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1712      1.1    mjacob 		    cc->flag2, 0, slp);
   1713      1.1    mjacob 		if (err)
   1714      1.1    mjacob 			return (err);
   1715      1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1716      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1717      1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   1718      1.1    mjacob 		} else {
   1719      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   1720      1.1    mjacob 				idx - cc->pwroff, 0, 1, slp);
   1721      1.1    mjacob 		}
   1722      1.1    mjacob 		break;
   1723      1.1    mjacob 	case SESTYP_FAN:
   1724      1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
   1725      1.1    mjacob 			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
   1726      1.1    mjacob 		} else {
   1727      1.1    mjacob 			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
   1728      1.1    mjacob 		}
   1729      1.1    mjacob 		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1730      1.1    mjacob 		    cc->flag2, 0, slp);
   1731      1.1    mjacob 		if (err)
   1732      1.1    mjacob 			return (err);
   1733      1.1    mjacob 		if (obp->cstat[3] & SESCTL_RQSTON) {
   1734      1.1    mjacob 			uint8_t fsp;
   1735      1.1    mjacob 			if ((obp->cstat[3] & 0x7) == 7) {
   1736      1.1    mjacob 				fsp = 4;
   1737      1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 6) {
   1738      1.1    mjacob 				fsp = 3;
   1739      1.1    mjacob 			} else if ((obp->cstat[3] & 0x7) == 4) {
   1740      1.1    mjacob 				fsp = 2;
   1741      1.1    mjacob 			} else {
   1742      1.1    mjacob 				fsp = 1;
   1743      1.1    mjacob 			}
   1744      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
   1745      1.1    mjacob 		} else {
   1746      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   1747      1.1    mjacob 		}
   1748      1.1    mjacob 		break;
   1749      1.1    mjacob 	case SESTYP_DOORLOCK:
   1750      1.1    mjacob 		if (obp->cstat[3] & 0x1) {
   1751      1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   1752      1.1    mjacob 		} else {
   1753      1.1    mjacob 			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
   1754      1.1    mjacob 		}
   1755      1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1756      1.1    mjacob 		    cc->flag2, 0, slp);
   1757      1.1    mjacob 		break;
   1758      1.1    mjacob 	case SESTYP_ALARM:
   1759      1.1    mjacob 		/*
   1760      1.1    mjacob 		 * On all nonzero but the 'muted' bit, we turn on the alarm,
   1761      1.1    mjacob 		 */
   1762      1.1    mjacob 		obp->cstat[3] &= ~0xa;
   1763      1.1    mjacob 		if (obp->cstat[3] & 0x40) {
   1764      1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1765      1.1    mjacob 		} else if (obp->cstat[3] != 0) {
   1766      1.1    mjacob 			cc->flag2 |= SAFT_FLG1_ALARM;
   1767      1.1    mjacob 		} else {
   1768      1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   1769      1.1    mjacob 		}
   1770      1.1    mjacob 		ep->priv = obp->cstat[3];
   1771      1.1    mjacob 		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   1772      1.1    mjacob 			cc->flag2, 0, slp);
   1773      1.1    mjacob 		break;
   1774      1.1    mjacob 	default:
   1775      1.1    mjacob 		break;
   1776      1.1    mjacob 	}
   1777      1.1    mjacob 	ep->svalid = 0;
   1778      1.1    mjacob 	return (0);
   1779      1.1    mjacob }
   1780      1.1    mjacob 
   1781      1.1    mjacob static int
   1782      1.1    mjacob safte_getconfig(ses_softc_t *ssc)
   1783      1.1    mjacob {
   1784      1.1    mjacob 	struct scfg *cfg;
   1785      1.1    mjacob 	int err, amt;
   1786      1.1    mjacob 	char *sdata;
   1787      1.1    mjacob 	static char cdb[10] =
   1788      1.1    mjacob 	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   1789      1.1    mjacob 
   1790      1.1    mjacob 	cfg = ssc->ses_private;
   1791      1.1    mjacob 	if (cfg == NULL)
   1792      1.1    mjacob 		return (ENXIO);
   1793      1.1    mjacob 
   1794      1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   1795      1.1    mjacob 	if (sdata == NULL)
   1796      1.1    mjacob 		return (ENOMEM);
   1797      1.1    mjacob 
   1798      1.1    mjacob 	amt = SAFT_SCRATCH;
   1799      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1800      1.1    mjacob 	if (err) {
   1801      1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1802      1.1    mjacob 		return (err);
   1803      1.1    mjacob 	}
   1804      1.1    mjacob 	amt = SAFT_SCRATCH - amt;
   1805      1.1    mjacob 	if (amt < 6) {
   1806      1.1    mjacob 		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
   1807      1.1    mjacob 		SES_FREE(sdata, SAFT_SCRATCH);
   1808      1.1    mjacob 		return (EIO);
   1809      1.1    mjacob 	}
   1810      1.1    mjacob 	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
   1811      1.1    mjacob 	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
   1812      1.1    mjacob 	cfg->Nfans = sdata[0];
   1813      1.1    mjacob 	cfg->Npwr = sdata[1];
   1814      1.1    mjacob 	cfg->Nslots = sdata[2];
   1815      1.1    mjacob 	cfg->DoorLock = sdata[3];
   1816      1.1    mjacob 	cfg->Ntherm = sdata[4];
   1817      1.1    mjacob 	cfg->Nspkrs = sdata[5];
   1818      1.1    mjacob 	cfg->Nalarm = NPSEUDO_ALARM;
   1819      1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   1820      1.1    mjacob 	return (0);
   1821      1.1    mjacob }
   1822      1.1    mjacob 
   1823      1.1    mjacob static int
   1824      1.1    mjacob safte_rdstat(ses_softc_t *ssc, int slpflg)
   1825      1.1    mjacob {
   1826      1.1    mjacob 	int err, oid, r, i, hiwater, nitems, amt;
   1827      1.1    mjacob 	uint16_t tempflags;
   1828      1.1    mjacob 	size_t buflen;
   1829      1.1    mjacob 	uint8_t status, oencstat;
   1830      1.1    mjacob 	char *sdata, cdb[10];
   1831      1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   1832      1.1    mjacob 
   1833      1.1    mjacob 
   1834      1.1    mjacob 	/*
   1835      1.1    mjacob 	 * The number of objects overstates things a bit,
   1836      1.1    mjacob 	 * both for the bogus 'thermometer' entries and
   1837      1.1    mjacob 	 * the drive status (which isn't read at the same
   1838      1.1    mjacob 	 * time as the enclosure status), but that's okay.
   1839      1.1    mjacob 	 */
   1840      1.1    mjacob 	buflen = 4 * cc->Nslots;
   1841      1.1    mjacob 	if (ssc->ses_nobjects > buflen)
   1842      1.1    mjacob 		buflen = ssc->ses_nobjects;
   1843      1.1    mjacob 	sdata = SES_MALLOC(buflen);
   1844      1.1    mjacob 	if (sdata == NULL)
   1845      1.1    mjacob 		return (ENOMEM);
   1846      1.1    mjacob 
   1847      1.1    mjacob 	cdb[0] = READ_BUFFER;
   1848      1.1    mjacob 	cdb[1] = 1;
   1849      1.1    mjacob 	cdb[2] = SAFTE_RD_RDESTS;
   1850      1.1    mjacob 	cdb[3] = 0;
   1851      1.1    mjacob 	cdb[4] = 0;
   1852      1.1    mjacob 	cdb[5] = 0;
   1853      1.1    mjacob 	cdb[6] = 0;
   1854      1.1    mjacob 	cdb[7] = (buflen >> 8) & 0xff;
   1855      1.1    mjacob 	cdb[8] = buflen & 0xff;
   1856      1.1    mjacob 	cdb[9] = 0;
   1857      1.1    mjacob 	amt = buflen;
   1858      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   1859      1.1    mjacob 	if (err) {
   1860      1.1    mjacob 		SES_FREE(sdata, buflen);
   1861      1.1    mjacob 		return (err);
   1862      1.1    mjacob 	}
   1863      1.1    mjacob 	hiwater = buflen - amt;
   1864      1.1    mjacob 
   1865      1.1    mjacob 
   1866      1.1    mjacob 	/*
   1867      1.1    mjacob 	 * invalidate all status bits.
   1868      1.1    mjacob 	 */
   1869      1.1    mjacob 	for (i = 0; i < ssc->ses_nobjects; i++)
   1870      1.1    mjacob 		ssc->ses_objmap[i].svalid = 0;
   1871      1.1    mjacob 	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
   1872      1.1    mjacob 	ssc->ses_encstat = 0;
   1873      1.1    mjacob 
   1874      1.1    mjacob 
   1875      1.1    mjacob 	/*
   1876      1.1    mjacob 	 * Now parse returned buffer.
   1877      1.1    mjacob 	 * If we didn't get enough data back,
   1878      1.1    mjacob 	 * that's considered a fatal error.
   1879      1.1    mjacob 	 */
   1880      1.1    mjacob 	oid = r = 0;
   1881      1.1    mjacob 
   1882      1.1    mjacob 	for (nitems = i = 0; i < cc->Nfans; i++) {
   1883      1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1884      1.1    mjacob 		/*
   1885      1.1    mjacob 		 * 0 = Fan Operational
   1886      1.1    mjacob 		 * 1 = Fan is malfunctioning
   1887      1.1    mjacob 		 * 2 = Fan is not present
   1888      1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   1889      1.1    mjacob 		 */
   1890      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1891      1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1892      1.1    mjacob 		switch ((int)(uint8_t)sdata[r]) {
   1893      1.1    mjacob 		case 0:
   1894      1.1    mjacob 			nitems++;
   1895      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1896      1.1    mjacob 			/*
   1897      1.1    mjacob 			 * We could get fancier and cache
   1898      1.1    mjacob 			 * fan speeds that we have set, but
   1899      1.1    mjacob 			 * that isn't done now.
   1900      1.1    mjacob 			 */
   1901      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 7;
   1902      1.1    mjacob 			break;
   1903      1.1    mjacob 
   1904      1.1    mjacob 		case 1:
   1905      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1906      1.1    mjacob 			/*
   1907      1.1    mjacob 			 * FAIL and FAN STOPPED synthesized
   1908      1.1    mjacob 			 */
   1909      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x40;
   1910      1.1    mjacob 			/*
   1911      1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1912      1.1    mjacob 			 * if only one fan or no thermometers,
   1913      1.1    mjacob 			 * else the NONCRITICAL error is set.
   1914      1.1    mjacob 			 */
   1915      1.1    mjacob 			if (cc->Nfans == 1 || cc->Ntherm == 0)
   1916      1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1917      1.1    mjacob 			else
   1918      1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1919      1.1    mjacob 			break;
   1920      1.1    mjacob 		case 2:
   1921      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1922      1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1923      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1924      1.1    mjacob 			/*
   1925      1.1    mjacob 			 * Enclosure marked with CRITICAL error
   1926      1.1    mjacob 			 * if only one fan or no thermometers,
   1927      1.1    mjacob 			 * else the NONCRITICAL error is set.
   1928      1.1    mjacob 			 */
   1929      1.1    mjacob 			if (cc->Nfans == 1)
   1930      1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1931      1.1    mjacob 			else
   1932      1.1    mjacob 				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1933      1.1    mjacob 			break;
   1934      1.1    mjacob 		case 0x80:
   1935      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1936      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1937      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1938      1.1    mjacob 			break;
   1939      1.1    mjacob 		default:
   1940      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1941      1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   1942      1.1    mjacob 			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
   1943      1.1    mjacob 			    sdata[r] & 0xff);
   1944      1.1    mjacob 			break;
   1945      1.1    mjacob 		}
   1946      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   1947      1.1    mjacob 		r++;
   1948      1.1    mjacob 	}
   1949      1.1    mjacob 
   1950      1.1    mjacob 	/*
   1951      1.1    mjacob 	 * No matter how you cut it, no cooling elements when there
   1952      1.1    mjacob 	 * should be some there is critical.
   1953      1.1    mjacob 	 */
   1954      1.1    mjacob 	if (cc->Nfans && nitems == 0) {
   1955      1.1    mjacob 		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   1956      1.1    mjacob 	}
   1957      1.1    mjacob 
   1958      1.1    mjacob 
   1959      1.1    mjacob 	for (i = 0; i < cc->Npwr; i++) {
   1960      1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   1961      1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   1962      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
   1963      1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
   1964      1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
   1965      1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   1966      1.1    mjacob 		case 0x00:	/* pws operational and on */
   1967      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1968      1.1    mjacob 			break;
   1969      1.1    mjacob 		case 0x01:	/* pws operational and off */
   1970      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   1971      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   1972      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1973      1.1    mjacob 			break;
   1974      1.1    mjacob 		case 0x10:	/* pws is malfunctioning and commanded on */
   1975      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   1976      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x61;
   1977      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1978      1.1    mjacob 			break;
   1979      1.1    mjacob 
   1980      1.1    mjacob 		case 0x11:	/* pws is malfunctioning and commanded off */
   1981      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   1982      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x51;
   1983      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   1984      1.1    mjacob 			break;
   1985      1.1    mjacob 		case 0x20:	/* pws is not present */
   1986      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   1987      1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   1988      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   1989      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   1990      1.1    mjacob 			break;
   1991      1.1    mjacob 		case 0x21:	/* pws is present */
   1992      1.1    mjacob 			/*
   1993      1.1    mjacob 			 * This is for enclosures that cannot tell whether the
   1994      1.1    mjacob 			 * device is on or malfunctioning, but know that it is
   1995      1.1    mjacob 			 * present. Just fall through.
   1996      1.1    mjacob 			 */
   1997      1.1    mjacob 			/* FALLTHROUGH */
   1998      1.1    mjacob 		case 0x80:	/* Unknown or Not Reportable Status */
   1999      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   2000      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2001      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2002      1.1    mjacob 			break;
   2003      1.1    mjacob 		default:
   2004      1.1    mjacob 			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
   2005      1.1    mjacob 			    i, sdata[r] & 0xff);
   2006      1.1    mjacob 			break;
   2007      1.1    mjacob 		}
   2008      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2009      1.1    mjacob 		r++;
   2010      1.1    mjacob 	}
   2011      1.1    mjacob 
   2012      1.1    mjacob 	/*
   2013      1.1    mjacob 	 * Skip over Slot SCSI IDs
   2014      1.1    mjacob 	 */
   2015      1.1    mjacob 	r += cc->Nslots;
   2016      1.1    mjacob 
   2017      1.1    mjacob 	/*
   2018      1.1    mjacob 	 * We always have doorlock status, no matter what,
   2019      1.1    mjacob 	 * but we only save the status if we have one.
   2020      1.1    mjacob 	 */
   2021      1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2022      1.1    mjacob 	if (cc->DoorLock) {
   2023      1.1    mjacob 		/*
   2024      1.1    mjacob 		 * 0 = Door Locked
   2025      1.1    mjacob 		 * 1 = Door Unlocked, or no Lock Installed
   2026      1.1    mjacob 		 * 0x80 = Unknown or Not Reportable Status
   2027      1.1    mjacob 		 */
   2028      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2029      1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2030      1.1    mjacob 		switch ((uint8_t)sdata[r]) {
   2031      1.1    mjacob 		case 0:
   2032      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2033      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2034      1.1    mjacob 			break;
   2035      1.1    mjacob 		case 1:
   2036      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2037      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 1;
   2038      1.1    mjacob 			break;
   2039      1.1    mjacob 		case 0x80:
   2040      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
   2041      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2042      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_INFO;
   2043      1.1    mjacob 			break;
   2044      1.1    mjacob 		default:
   2045      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2046      1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2047      1.1    mjacob 			SES_LOG(ssc, "unknown lock status 0x%x\n",
   2048      1.1    mjacob 			    sdata[r] & 0xff);
   2049      1.1    mjacob 			break;
   2050      1.1    mjacob 		}
   2051      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2052      1.1    mjacob 	}
   2053      1.1    mjacob 	r++;
   2054      1.1    mjacob 
   2055      1.1    mjacob 	/*
   2056      1.1    mjacob 	 * We always have speaker status, no matter what,
   2057      1.1    mjacob 	 * but we only save the status if we have one.
   2058      1.1    mjacob 	 */
   2059      1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2060      1.1    mjacob 	if (cc->Nspkrs) {
   2061      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2062      1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2063      1.1    mjacob 		if (sdata[r] == 1) {
   2064      1.1    mjacob 			/*
   2065      1.1    mjacob 			 * We need to cache tone urgency indicators.
   2066      1.1    mjacob 			 * Someday.
   2067      1.1    mjacob 			 */
   2068      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
   2069      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x8;
   2070      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
   2071      1.1    mjacob 		} else if (sdata[r] == 0) {
   2072      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2073      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2074      1.1    mjacob 		} else {
   2075      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2076      1.1    mjacob 			    SES_OBJSTAT_UNSUPPORTED;
   2077      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2078      1.1    mjacob 			SES_LOG(ssc, "unknown spkr status 0x%x\n",
   2079      1.1    mjacob 			    sdata[r] & 0xff);
   2080      1.1    mjacob 		}
   2081      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2082      1.1    mjacob 	}
   2083      1.1    mjacob 	r++;
   2084      1.1    mjacob 
   2085      1.1    mjacob 	for (i = 0; i < cc->Ntherm; i++) {
   2086      1.1    mjacob 		SAFT_BAIL(r, hiwater, sdata, buflen);
   2087      1.1    mjacob 		/*
   2088      1.1    mjacob 		 * Status is a range from -10 to 245 deg Celsius,
   2089      1.1    mjacob 		 * which we need to normalize to -20 to -245 according
   2090      1.1    mjacob 		 * to the latest SCSI spec, which makes little
   2091      1.1    mjacob 		 * sense since this would overflow an 8bit value.
   2092      1.1    mjacob 		 * Well, still, the base normalization is -20,
   2093      1.1    mjacob 		 * not -10, so we have to adjust.
   2094      1.1    mjacob 		 *
   2095      1.1    mjacob 		 * So what's over and under temperature?
   2096      1.1    mjacob 		 * Hmm- we'll state that 'normal' operating
   2097      1.1    mjacob 		 * is 10 to 40 deg Celsius.
   2098      1.1    mjacob 		 */
   2099      1.8    mjacob 
   2100      1.8    mjacob 		/*
   2101      1.8    mjacob 		 * Actually.... All of the units that people out in the world
   2102      1.8    mjacob 		 * seem to have do not come even close to setting a value that
   2103      1.8    mjacob 		 * complies with this spec.
   2104      1.8    mjacob 		 *
   2105      1.8    mjacob 		 * The closest explanation I could find was in an
   2106      1.8    mjacob 		 * LSI-Logic manual, which seemed to indicate that
   2107      1.8    mjacob 		 * this value would be set by whatever the I2C code
   2108      1.8    mjacob 		 * would interpolate from the output of an LM75
   2109      1.8    mjacob 		 * temperature sensor.
   2110      1.8    mjacob 		 *
   2111      1.8    mjacob 		 * This means that it is impossible to use the actual
   2112      1.8    mjacob 		 * numeric value to predict anything. But we don't want
   2113      1.8    mjacob 		 * to lose the value. So, we'll propagate the *uncorrected*
   2114      1.8    mjacob 		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
   2115      1.8    mjacob 		 * temperature flags for warnings.
   2116      1.8    mjacob 		 */
   2117      1.8    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
   2118      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2119      1.8    mjacob 		ssc->ses_objmap[oid].encstat[2] = sdata[r];
   2120      1.8    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0;;
   2121      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2122      1.1    mjacob 		r++;
   2123      1.1    mjacob 	}
   2124      1.1    mjacob 
   2125      1.1    mjacob 	/*
   2126      1.1    mjacob 	 * Now, for "pseudo" thermometers, we have two bytes
   2127      1.1    mjacob 	 * of information in enclosure status- 16 bits. Actually,
   2128      1.1    mjacob 	 * the MSB is a single TEMP ALERT flag indicating whether
   2129      1.1    mjacob 	 * any other bits are set, but, thanks to fuzzy thinking,
   2130      1.1    mjacob 	 * in the SAF-TE spec, this can also be set even if no
   2131      1.1    mjacob 	 * other bits are set, thus making this really another
   2132      1.1    mjacob 	 * binary temperature sensor.
   2133      1.1    mjacob 	 */
   2134      1.1    mjacob 
   2135      1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2136      1.1    mjacob 	tempflags = sdata[r++];
   2137      1.1    mjacob 	SAFT_BAIL(r, hiwater, sdata, buflen);
   2138      1.1    mjacob 	tempflags |= (tempflags << 8) | sdata[r++];
   2139      1.1    mjacob 
   2140      1.1    mjacob 	for (i = 0; i < NPSEUDO_THERM; i++) {
   2141      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = 0;
   2142      1.1    mjacob 		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
   2143      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
   2144      1.1    mjacob 			ssc->ses_objmap[4].encstat[2] = 0xff;
   2145      1.1    mjacob 			/*
   2146      1.1    mjacob 			 * Set 'over temperature' failure.
   2147      1.1    mjacob 			 */
   2148      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 8;
   2149      1.1    mjacob 			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
   2150      1.1    mjacob 		} else {
   2151      1.1    mjacob 			/*
   2152      1.1    mjacob 			 * We used to say 'not available' and synthesize a
   2153      1.1    mjacob 			 * nominal 30 deg (C)- that was wrong. Actually,
   2154      1.1    mjacob 			 * Just say 'OK', and use the reserved value of
   2155      1.1    mjacob 			 * zero.
   2156      1.1    mjacob 			 */
   2157      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2158      1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0;
   2159      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0;
   2160      1.1    mjacob 		}
   2161      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2162      1.1    mjacob 	}
   2163      1.1    mjacob 
   2164      1.1    mjacob 	/*
   2165      1.1    mjacob 	 * Get alarm status.
   2166      1.1    mjacob 	 */
   2167      1.1    mjacob 	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2168      1.1    mjacob 	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
   2169      1.1    mjacob 	ssc->ses_objmap[oid++].svalid = 1;
   2170      1.1    mjacob 
   2171      1.1    mjacob 	/*
   2172      1.1    mjacob 	 * Now get drive slot status
   2173      1.1    mjacob 	 */
   2174      1.1    mjacob 	cdb[2] = SAFTE_RD_RDDSTS;
   2175      1.1    mjacob 	amt = buflen;
   2176      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2177      1.1    mjacob 	if (err) {
   2178      1.1    mjacob 		SES_FREE(sdata, buflen);
   2179      1.1    mjacob 		return (err);
   2180      1.1    mjacob 	}
   2181      1.1    mjacob 	hiwater = buflen - amt;
   2182      1.1    mjacob 	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
   2183      1.1    mjacob 		SAFT_BAIL(r+3, hiwater, sdata, buflen);
   2184      1.1    mjacob 		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
   2185      1.1    mjacob 		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
   2186      1.1    mjacob 		ssc->ses_objmap[oid].encstat[2] = 0;
   2187      1.1    mjacob 		ssc->ses_objmap[oid].encstat[3] = 0;
   2188      1.1    mjacob 		status = sdata[r+3];
   2189      1.1    mjacob 		if ((status & 0x1) == 0) {	/* no device */
   2190      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] =
   2191      1.1    mjacob 			    SES_OBJSTAT_NOTINSTALLED;
   2192      1.1    mjacob 		} else {
   2193      1.1    mjacob 			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
   2194      1.1    mjacob 		}
   2195      1.1    mjacob 		if (status & 0x2) {
   2196      1.1    mjacob 			ssc->ses_objmap[oid].encstat[2] = 0x8;
   2197      1.1    mjacob 		}
   2198      1.1    mjacob 		if ((status & 0x4) == 0) {
   2199      1.1    mjacob 			ssc->ses_objmap[oid].encstat[3] = 0x10;
   2200      1.1    mjacob 		}
   2201      1.1    mjacob 		ssc->ses_objmap[oid++].svalid = 1;
   2202      1.1    mjacob 	}
   2203      1.1    mjacob 	/* see comment below about sticky enclosure status */
   2204      1.1    mjacob 	ssc->ses_encstat |= ENCI_SVALID | oencstat;
   2205      1.1    mjacob 	SES_FREE(sdata, buflen);
   2206      1.1    mjacob 	return (0);
   2207      1.1    mjacob }
   2208      1.1    mjacob 
   2209      1.1    mjacob static int
   2210      1.1    mjacob set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
   2211      1.1    mjacob {
   2212      1.1    mjacob 	int idx;
   2213      1.1    mjacob 	encobj *ep;
   2214      1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2215      1.1    mjacob 
   2216      1.1    mjacob 	if (cc == NULL)
   2217      1.1    mjacob 		return (0);
   2218      1.1    mjacob 
   2219      1.1    mjacob 	idx = (int)obp->obj_id;
   2220      1.1    mjacob 	ep = &ssc->ses_objmap[idx];
   2221      1.1    mjacob 
   2222      1.1    mjacob 	switch (ep->enctype) {
   2223      1.1    mjacob 	case SESTYP_DEVICE:
   2224      1.1    mjacob 		if (obp->cstat[0] & SESCTL_PRDFAIL) {
   2225      1.1    mjacob 			ep->priv |= 0x40;
   2226      1.1    mjacob 		}
   2227      1.1    mjacob 		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
   2228      1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2229      1.1    mjacob 			ep->priv |= 0x80;
   2230      1.1    mjacob 			/*
   2231      1.1    mjacob 			 * Hmm. Try to set the 'No Drive' flag.
   2232      1.1    mjacob 			 * Maybe that will count as a 'disable'.
   2233      1.1    mjacob 			 */
   2234      1.1    mjacob 		}
   2235      1.1    mjacob 		if (ep->priv & 0xc6) {
   2236      1.1    mjacob 			ep->priv &= ~0x1;
   2237      1.1    mjacob 		} else {
   2238      1.1    mjacob 			ep->priv |= 0x1;	/* no errors */
   2239      1.1    mjacob 		}
   2240      1.1    mjacob 		wrslot_stat(ssc, slp);
   2241      1.1    mjacob 		break;
   2242      1.1    mjacob 	case SESTYP_POWER:
   2243      1.1    mjacob 		/*
   2244      1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2245      1.1    mjacob 		 * do the 'disable' for a power supply.
   2246      1.1    mjacob 		 */
   2247      1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2248      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
   2249      1.1    mjacob 				idx - cc->pwroff, 0, 0, slp);
   2250      1.1    mjacob 		}
   2251      1.1    mjacob 		break;
   2252      1.1    mjacob 	case SESTYP_FAN:
   2253      1.1    mjacob 		/*
   2254      1.1    mjacob 		 * Okay- the only one that makes sense here is to
   2255      1.1    mjacob 		 * set fan speed to zero on disable.
   2256      1.1    mjacob 		 */
   2257      1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2258      1.1    mjacob 			/* remember- fans are the first items, so idx works */
   2259      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
   2260      1.1    mjacob 		}
   2261      1.1    mjacob 		break;
   2262      1.1    mjacob 	case SESTYP_DOORLOCK:
   2263      1.1    mjacob 		/*
   2264      1.1    mjacob 		 * Well, we can 'disable' the lock.
   2265      1.1    mjacob 		 */
   2266      1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2267      1.1    mjacob 			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
   2268      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2269      1.1    mjacob 				cc->flag2, 0, slp);
   2270      1.1    mjacob 		}
   2271      1.1    mjacob 		break;
   2272      1.1    mjacob 	case SESTYP_ALARM:
   2273      1.1    mjacob 		/*
   2274      1.1    mjacob 		 * Well, we can 'disable' the alarm.
   2275      1.1    mjacob 		 */
   2276      1.1    mjacob 		if (obp->cstat[0] & SESCTL_DISABLE) {
   2277      1.1    mjacob 			cc->flag2 &= ~SAFT_FLG1_ALARM;
   2278      1.1    mjacob 			ep->priv |= 0x40;	/* Muted */
   2279      1.1    mjacob 			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
   2280      1.1    mjacob 				cc->flag2, 0, slp);
   2281      1.1    mjacob 		}
   2282      1.1    mjacob 		break;
   2283      1.1    mjacob 	default:
   2284      1.1    mjacob 		break;
   2285      1.1    mjacob 	}
   2286      1.1    mjacob 	ep->svalid = 0;
   2287      1.1    mjacob 	return (0);
   2288      1.1    mjacob }
   2289      1.1    mjacob 
   2290      1.1    mjacob /*
   2291      1.1    mjacob  * This function handles all of the 16 byte WRITE BUFFER commands.
   2292      1.1    mjacob  */
   2293      1.1    mjacob static int
   2294      1.1    mjacob wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
   2295      1.1    mjacob     uint8_t b3, int slp)
   2296      1.1    mjacob {
   2297      1.1    mjacob 	int err, amt;
   2298      1.1    mjacob 	char *sdata;
   2299      1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2300      1.1    mjacob 	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
   2301      1.1    mjacob 
   2302      1.1    mjacob 	if (cc == NULL)
   2303      1.1    mjacob 		return (0);
   2304      1.1    mjacob 
   2305      1.1    mjacob 	sdata = SES_MALLOC(16);
   2306      1.1    mjacob 	if (sdata == NULL)
   2307      1.1    mjacob 		return (ENOMEM);
   2308      1.1    mjacob 
   2309      1.1    mjacob 	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
   2310      1.1    mjacob 
   2311      1.1    mjacob 	sdata[0] = op;
   2312      1.1    mjacob 	sdata[1] = b1;
   2313      1.1    mjacob 	sdata[2] = b2;
   2314      1.1    mjacob 	sdata[3] = b3;
   2315      1.1    mjacob 	MEMZERO(&sdata[4], 12);
   2316      1.1    mjacob 	amt = -16;
   2317      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2318      1.1    mjacob 	SES_FREE(sdata, 16);
   2319      1.1    mjacob 	return (err);
   2320      1.1    mjacob }
   2321      1.1    mjacob 
   2322      1.1    mjacob /*
   2323      1.1    mjacob  * This function updates the status byte for the device slot described.
   2324      1.1    mjacob  *
   2325      1.1    mjacob  * Since this is an optional SAF-TE command, there's no point in
   2326      1.1    mjacob  * returning an error.
   2327      1.1    mjacob  */
   2328      1.1    mjacob static void
   2329      1.1    mjacob wrslot_stat(ses_softc_t *ssc, int slp)
   2330      1.1    mjacob {
   2331      1.1    mjacob 	int i, amt;
   2332      1.1    mjacob 	encobj *ep;
   2333      1.1    mjacob 	char cdb[10], *sdata;
   2334      1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2335      1.1    mjacob 
   2336      1.1    mjacob 	if (cc == NULL)
   2337      1.1    mjacob 		return;
   2338      1.1    mjacob 
   2339      1.1    mjacob 	SES_VLOG(ssc, "saf_wrslot\n");
   2340      1.1    mjacob 	cdb[0] = WRITE_BUFFER;
   2341      1.1    mjacob 	cdb[1] = 1;
   2342      1.1    mjacob 	cdb[2] = 0;
   2343      1.1    mjacob 	cdb[3] = 0;
   2344      1.1    mjacob 	cdb[4] = 0;
   2345      1.1    mjacob 	cdb[5] = 0;
   2346      1.1    mjacob 	cdb[6] = 0;
   2347      1.1    mjacob 	cdb[7] = 0;
   2348      1.1    mjacob 	cdb[8] = cc->Nslots * 3 + 1;
   2349      1.1    mjacob 	cdb[9] = 0;
   2350      1.1    mjacob 
   2351      1.1    mjacob 	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
   2352      1.1    mjacob 	if (sdata == NULL)
   2353      1.1    mjacob 		return;
   2354      1.1    mjacob 	MEMZERO(sdata, cc->Nslots * 3 + 1);
   2355      1.1    mjacob 
   2356      1.1    mjacob 	sdata[0] = SAFTE_WT_DSTAT;
   2357      1.1    mjacob 	for (i = 0; i < cc->Nslots; i++) {
   2358      1.1    mjacob 		ep = &ssc->ses_objmap[cc->slotoff + i];
   2359      1.1    mjacob 		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
   2360      1.1    mjacob 		sdata[1 + (3 * i)] = ep->priv & 0xff;
   2361      1.1    mjacob 	}
   2362      1.1    mjacob 	amt = -(cc->Nslots * 3 + 1);
   2363      1.1    mjacob 	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2364      1.1    mjacob 	SES_FREE(sdata, cc->Nslots * 3 + 1);
   2365      1.1    mjacob }
   2366      1.1    mjacob 
   2367      1.1    mjacob /*
   2368      1.1    mjacob  * This function issues the "PERFORM SLOT OPERATION" command.
   2369      1.1    mjacob  */
   2370      1.1    mjacob static int
   2371      1.1    mjacob perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
   2372      1.1    mjacob {
   2373      1.1    mjacob 	int err, amt;
   2374      1.1    mjacob 	char *sdata;
   2375      1.1    mjacob 	struct scfg *cc = ssc->ses_private;
   2376      1.1    mjacob 	static char cdb[10] =
   2377      1.1    mjacob 	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
   2378      1.1    mjacob 
   2379      1.1    mjacob 	if (cc == NULL)
   2380      1.1    mjacob 		return (0);
   2381      1.1    mjacob 
   2382      1.1    mjacob 	sdata = SES_MALLOC(SAFT_SCRATCH);
   2383      1.1    mjacob 	if (sdata == NULL)
   2384      1.1    mjacob 		return (ENOMEM);
   2385      1.1    mjacob 	MEMZERO(sdata, SAFT_SCRATCH);
   2386      1.1    mjacob 
   2387      1.1    mjacob 	sdata[0] = SAFTE_WT_SLTOP;
   2388      1.1    mjacob 	sdata[1] = slot;
   2389      1.1    mjacob 	sdata[2] = opflag;
   2390      1.1    mjacob 	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
   2391      1.1    mjacob 	amt = -SAFT_SCRATCH;
   2392      1.1    mjacob 	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
   2393      1.1    mjacob 	SES_FREE(sdata, SAFT_SCRATCH);
   2394      1.1    mjacob 	return (err);
   2395      1.1    mjacob }
   2396