ses.c revision 1.1 1 /* $NetBSD: ses.c,v 1.1 2000/01/20 17:07:41 mjacob Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57
58 /*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61 typedef enum {
62 SES_NONE,
63 SES_SES_SCSI2,
64 SES_SES,
65 SES_SES_PASSTHROUGH,
66 SES_SEN,
67 SES_SAFT
68 } enctyp;
69
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 int (*softc_init) __P((ses_softc_t *, int));
74 int (*init_enc) __P((ses_softc_t *));
75 int (*get_encstat) __P((ses_softc_t *, int));
76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80
81 #define ENCI_SVALID 0x80
82
83 typedef struct {
84 uint32_t
85 enctype : 8, /* enclosure type */
86 subenclosure : 8, /* subenclosure id */
87 svalid : 1, /* enclosure information valid */
88 priv : 15; /* private data, per object */
89 uint8_t encstat[4]; /* state && stats */
90 } encobj;
91
92 #define SEN_ID "UNISYS SUN_SEN"
93 #define SEN_ID_LEN 24
94
95
96 static enctyp ses_type __P((void *, int));
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init __P((ses_softc_t *, int));
101 static int ses_init_enc __P((ses_softc_t *));
102 static int ses_get_encstat __P((ses_softc_t *, int));
103 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
104 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
105 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
106
107 static int safte_softc_init __P((ses_softc_t *, int));
108 static int safte_init_enc __P((ses_softc_t *));
109 static int safte_get_encstat __P((ses_softc_t *, int));
110 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
111 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
112 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO bzero
129 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 int sesopen __P((dev_t, int, int, struct proc *));
136 int sesclose __P((dev_t, int, int, struct proc *));
137 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
138
139 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
140 static void ses_log __P((struct ses_softc *, const char *, ...));
141
142 /*
143 * General NetBSD kernel stuff.
144 */
145
146 struct ses_softc {
147 struct device sc_device;
148 struct scsipi_link *sc_link;
149 enctyp ses_type; /* type of enclosure */
150 encvec ses_vec; /* vector to handlers */
151 void * ses_private; /* per-type private data */
152 encobj * ses_objmap; /* objects */
153 u_int32_t ses_nobjects; /* number of objects */
154 ses_encstat ses_encstat; /* overall status */
155 u_int8_t ses_flags;
156 };
157 #define SES_FLAG_INVALID 0x01
158 #define SES_FLAG_OPEN 0x02
159 #define SES_FLAG_INITIALIZED 0x04
160
161 #define SESUNIT(x) (minor((x)))
162
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166
167 struct cfattach ses_ca = {
168 sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171
172 struct scsipi_device ses_switch = {
173 NULL,
174 NULL,
175 NULL,
176 NULL
177 };
178
179
180 int
181 ses_match(parent, match, aux)
182 struct device *parent;
183 struct cfdata *match;
184 void *aux;
185 {
186 struct scsipibus_attach_args *sa = aux;
187 switch (ses_device_type(sa)) {
188 case SES_SES:
189 case SES_SES_SCSI2:
190 case SES_SES_PASSTHROUGH:
191 case SES_SEN:
192 case SES_SAFT:
193 return (1);
194 default:
195 return (0);
196 }
197 }
198
199
200 /*
201 * Complete the attachment.
202 *
203 * We have to repeat the rerun of INQUIRY data as above because
204 * it's not until the return from the match routine that we have
205 * the softc available to set stuff in.
206 */
207 void
208 ses_attach(parent, self, aux)
209 struct device *parent;
210 struct device *self;
211 void *aux;
212 {
213 char *tname;
214 struct ses_softc *softc = (void *)self;
215 struct scsipibus_attach_args *sa = aux;
216 struct scsipi_link *sc_link = sa->sa_sc_link;
217
218 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
219 softc->sc_link = sa->sa_sc_link;
220 sc_link->device = &ses_switch;
221 sc_link->device_softc = softc;
222 sc_link->openings = 1;
223
224 softc->ses_type = ses_device_type(sa);
225 switch (softc->ses_type) {
226 case SES_SES:
227 case SES_SES_SCSI2:
228 case SES_SES_PASSTHROUGH:
229 softc->ses_vec.softc_init = ses_softc_init;
230 softc->ses_vec.init_enc = ses_init_enc;
231 softc->ses_vec.get_encstat = ses_get_encstat;
232 softc->ses_vec.set_encstat = ses_set_encstat;
233 softc->ses_vec.get_objstat = ses_get_objstat;
234 softc->ses_vec.set_objstat = ses_set_objstat;
235 break;
236 case SES_SAFT:
237 softc->ses_vec.softc_init = safte_softc_init;
238 softc->ses_vec.init_enc = safte_init_enc;
239 softc->ses_vec.get_encstat = safte_get_encstat;
240 softc->ses_vec.set_encstat = safte_set_encstat;
241 softc->ses_vec.get_objstat = safte_get_objstat;
242 softc->ses_vec.set_objstat = safte_set_objstat;
243 break;
244 case SES_SEN:
245 break;
246 case SES_NONE:
247 default:
248 break;
249 }
250
251 switch (softc->ses_type) {
252 default:
253 case SES_NONE:
254 tname = "No SES device";
255 break;
256 case SES_SES_SCSI2:
257 tname = "SCSI-2 SES Device";
258 break;
259 case SES_SES:
260 tname = "SCSI-3 SES Device";
261 break;
262 case SES_SES_PASSTHROUGH:
263 tname = "SES Passthrough Device";
264 break;
265 case SES_SEN:
266 tname = "UNISYS SEN Device (NOT HANDLED YET)";
267 break;
268 case SES_SAFT:
269 tname = "SAF-TE Compliant Device";
270 break;
271 }
272 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
273 }
274
275 static enctyp
276 ses_device_type(sa)
277 struct scsipibus_attach_args *sa;
278 {
279 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
280 int length;
281
282 if (inqp == NULL)
283 return (SES_NONE);
284
285 /*
286 * If we can get longer data to check for the
287 * presence of a SAF-TE device, try and do so.
288 *
289 * Because we do deferred target attach in NetBSD,
290 * we don't have to run this as a polled command.
291 */
292
293 #define MORESZ 64
294 if (inqp->additional_length > MORESZ-4) {
295 struct scsipi_generic cmd;
296 static u_char more[MORESZ];
297 bzero(&cmd, sizeof(cmd));
298 cmd.opcode = INQUIRY;
299 cmd.bytes[3] = MORESZ;
300 if (scsipi_command(sa->sa_sc_link, &cmd, 6, more, MORESZ,
301 SCSIPIRETRIES, 10000, NULL,
302 XS_CTL_DATA_IN | XS_CTL_DISCOVERY) == 0) {
303 inqp = (struct scsipi_inquiry_data *) more;
304 length = MORESZ;
305 }
306 } else {
307 length = sizeof (struct scsipi_inquiry_data);
308 }
309 return (ses_type(inqp, length));
310 }
311
312 int
313 sesopen(dev, flags, fmt, p)
314 dev_t dev;
315 int flags;
316 int fmt;
317 struct proc *p;
318 {
319 struct ses_softc *softc;
320 int error, unit;
321
322 unit = SESUNIT(dev);
323 if (unit >= ses_cd.cd_ndevs)
324 return (ENXIO);
325 softc = ses_cd.cd_devs[unit];
326 if (softc == NULL)
327 return (ENXIO);
328
329 if (softc->ses_flags & SES_FLAG_INVALID) {
330 error = ENXIO;
331 goto out;
332 }
333 if (softc->ses_flags & SES_FLAG_OPEN) {
334 error = EBUSY;
335 goto out;
336 }
337 if (softc->ses_vec.softc_init == NULL) {
338 error = ENXIO;
339 goto out;
340 }
341 error = scsipi_adapter_addref(softc->sc_link);
342 if (error != 0)
343 goto out;
344
345
346 softc->ses_flags |= SES_FLAG_OPEN;
347 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
348 error = (*softc->ses_vec.softc_init)(softc, 1);
349 if (error)
350 softc->ses_flags &= ~SES_FLAG_OPEN;
351 else
352 softc->ses_flags |= SES_FLAG_INITIALIZED;
353 }
354
355 out:
356 return (error);
357 }
358
359 int
360 sesclose(dev, flags, fmt, p)
361 dev_t dev;
362 int flags;
363 int fmt;
364 struct proc *p;
365 {
366 struct ses_softc *softc;
367 int unit;
368
369 unit = SESUNIT(dev);
370 if (unit >= ses_cd.cd_ndevs)
371 return (ENXIO);
372 softc = ses_cd.cd_devs[unit];
373 if (softc == NULL)
374 return (ENXIO);
375
376 scsipi_wait_drain(softc->sc_link);
377 scsipi_adapter_delref(softc->sc_link);
378 softc->ses_flags &= ~SES_FLAG_OPEN;
379 return (0);
380 }
381
382 int
383 sesioctl(dev, cmd, arg_addr, flag, p)
384 dev_t dev;
385 u_long cmd;
386 caddr_t arg_addr;
387 int flag;
388 struct proc *p;
389 {
390 ses_encstat tmp;
391 ses_objstat objs;
392 ses_object obj, *uobj;
393 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
394 void *addr;
395 int error, i;
396
397
398 if (arg_addr)
399 addr = *((caddr_t *) arg_addr);
400 else
401 addr = NULL;
402
403 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
404
405 /*
406 * Now check to see whether we're initialized or not.
407 */
408 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
409 return (ENODEV);
410 }
411
412 error = 0;
413
414 /*
415 * If this command can change the device's state,
416 * we must have the device open for writing.
417 */
418 switch (cmd) {
419 case SESIOC_GETNOBJ:
420 case SESIOC_GETOBJMAP:
421 case SESIOC_GETENCSTAT:
422 case SESIOC_GETOBJSTAT:
423 break;
424 default:
425 if ((flag & FWRITE) == 0) {
426 return (EBADF);
427 }
428 }
429
430 switch (cmd) {
431 case SESIOC_GETNOBJ:
432 error = copyout(&ssc->ses_nobjects, addr,
433 sizeof (ssc->ses_nobjects));
434 break;
435
436 case SESIOC_GETOBJMAP:
437 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
438 obj.obj_id = i;
439 obj.subencid = ssc->ses_objmap[i].subenclosure;
440 obj.object_type = ssc->ses_objmap[i].enctype;
441 error = copyout(&obj, uobj, sizeof (ses_object));
442 if (error) {
443 break;
444 }
445 }
446 break;
447
448 case SESIOC_GETENCSTAT:
449 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
450 if (error)
451 break;
452 tmp = ssc->ses_encstat & ~ENCI_SVALID;
453 error = copyout(&tmp, addr, sizeof (ses_encstat));
454 ssc->ses_encstat = tmp;
455 break;
456
457 case SESIOC_SETENCSTAT:
458 error = copyin(addr, &tmp, sizeof (ses_encstat));
459 if (error)
460 break;
461 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
462 break;
463
464 case SESIOC_GETOBJSTAT:
465 error = copyin(addr, &objs, sizeof (ses_objstat));
466 if (error)
467 break;
468 if (objs.obj_id >= ssc->ses_nobjects) {
469 error = EINVAL;
470 break;
471 }
472 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
473 if (error)
474 break;
475 error = copyout(&objs, addr, sizeof (ses_objstat));
476 /*
477 * Always (for now) invalidate entry.
478 */
479 ssc->ses_objmap[objs.obj_id].svalid = 0;
480 break;
481
482 case SESIOC_SETOBJSTAT:
483 error = copyin(addr, &objs, sizeof (ses_objstat));
484 if (error)
485 break;
486
487 if (objs.obj_id >= ssc->ses_nobjects) {
488 error = EINVAL;
489 break;
490 }
491 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
492
493 /*
494 * Always (for now) invalidate entry.
495 */
496 ssc->ses_objmap[objs.obj_id].svalid = 0;
497 break;
498
499 case SESIOC_INIT:
500
501 error = (*ssc->ses_vec.init_enc)(ssc);
502 break;
503
504 default:
505 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
506 break;
507 }
508 return (error);
509 }
510
511 static int
512 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
513 {
514 struct scsipi_generic sgen;
515 int dl, flg, error;
516
517 if (dptr) {
518 if ((dl = *dlenp) < 0) {
519 dl = -dl;
520 flg = XS_CTL_DATA_OUT;
521 } else {
522 flg = XS_CTL_DATA_IN;
523 }
524 } else {
525 dl = 0;
526 flg = 0;
527 }
528
529 if (cdbl > sizeof (struct scsipi_generic)) {
530 cdbl = sizeof (struct scsipi_generic);
531 }
532 bcopy(cdb, &sgen, cdbl);
533 #ifndef SCSIDEBUG
534 flg |= XS_CTL_SILENT;
535 #endif
536
537 error = scsipi_command(ssc->sc_link, &sgen, cdbl,
538 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
539
540 if (error == 0 && dptr)
541 *dlenp = 0;
542
543 return (error);
544 }
545
546 #ifdef __STDC__
547 static void
548 ses_log(struct ses_softc *ssc, const char *fmt, ...)
549 {
550 va_list ap;
551
552 printf("%s: ", ssc->sc_device.dv_xname);
553 va_start(ap, fmt);
554 vprintf(fmt, ap);
555 va_end(ap);
556 }
557 #else
558 static void
559 ses_log(ssc, fmt, va_alist)
560 struct ses_softc *ssc;
561 char *fmt;
562 va_dcl
563 {
564 va_list ap;
565
566 printf("%s: ", ssc->sc_device.dv_xname);
567 va_start(ap, fmt);
568 vprintf(fmt, ap);
569 va_end(ap);
570 }
571 #endif
572
573 /*
574 * The code after this point runs on many platforms,
575 * so forgive the slightly awkward and nonconforming
576 * appearance.
577 */
578
579 /*
580 * Is this a device that supports enclosure services?
581 *
582 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
583 * an SES device. If it happens to be an old UNISYS SEN device, we can
584 * handle that too.
585 */
586
587 static enctyp
588 ses_type(void *buf, int buflen)
589 {
590 unsigned char *iqd = buf;
591
592 if (buflen < 32)
593 return (SES_NONE);
594
595 if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
596 if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
597 return (SES_SEN);
598 } else if ((iqd[2] & 0x7) > 2) {
599 return (SES_SES);
600 } else {
601 return (SES_SES_SCSI2);
602 }
603 return (SES_NONE);
604 }
605
606 #ifdef SES_ENABLE_PASSTHROUGH
607 if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
608 /*
609 * PassThrough Device.
610 */
611 return (SES_SES_PASSTHROUGH);
612 }
613 #endif
614
615 if (buflen < 47) {
616 return (SES_NONE);
617 }
618 /*
619 * The comparison is short for a reason- some vendors were chopping
620 * it short.
621 */
622 if (STRNCMP((char *)&iqd[44], "SAF-TE", 4) == 0) {
623 return (SES_SAFT);
624 }
625 return (SES_NONE);
626 }
627
628 /*
629 * SES Native Type Device Support
630 */
631
632 /*
633 * SES Diagnostic Page Codes
634 */
635
636 typedef enum {
637 SesConfigPage = 0x1,
638 SesControlPage,
639 #define SesStatusPage SesControlPage
640 SesHelpTxt,
641 SesStringOut,
642 #define SesStringIn SesStringOut
643 SesThresholdOut,
644 #define SesThresholdIn SesThresholdOut
645 SesArrayControl,
646 #define SesArrayStatus SesArrayControl
647 SesElementDescriptor,
648 SesShortStatus
649 } SesDiagPageCodes;
650
651 /*
652 * minimal amounts
653 */
654
655 /*
656 * Minimum amount of data, starting from byte 0, to have
657 * the config header.
658 */
659 #define SES_CFGHDR_MINLEN 12
660
661 /*
662 * Minimum amount of data, starting from byte 0, to have
663 * the config header and one enclosure header.
664 */
665 #define SES_ENCHDR_MINLEN 48
666
667 /*
668 * Take this value, subtract it from VEnclen and you know
669 * the length of the vendor unique bytes.
670 */
671 #define SES_ENCHDR_VMIN 36
672
673 /*
674 * SES Data Structures
675 */
676
677 typedef struct {
678 uint32_t GenCode; /* Generation Code */
679 uint8_t Nsubenc; /* Number of Subenclosures */
680 } SesCfgHdr;
681
682 typedef struct {
683 uint8_t Subencid; /* SubEnclosure Identifier */
684 uint8_t Ntypes; /* # of supported types */
685 uint8_t VEnclen; /* Enclosure Descriptor Length */
686 } SesEncHdr;
687
688 typedef struct {
689 uint8_t encWWN[8]; /* XXX- Not Right Yet */
690 uint8_t encVid[8];
691 uint8_t encPid[16];
692 uint8_t encRev[4];
693 uint8_t encVen[1];
694 } SesEncDesc;
695
696 typedef struct {
697 uint8_t enc_type; /* type of element */
698 uint8_t enc_maxelt; /* maximum supported */
699 uint8_t enc_subenc; /* in SubEnc # N */
700 uint8_t enc_tlen; /* Type Descriptor Text Length */
701 } SesThdr;
702
703 typedef struct {
704 uint8_t comstatus;
705 uint8_t comstat[3];
706 } SesComStat;
707
708 struct typidx {
709 int ses_tidx;
710 int ses_oidx;
711 };
712
713 struct sscfg {
714 uint8_t ses_ntypes; /* total number of types supported */
715
716 /*
717 * We need to keep a type index as well as an
718 * object index for each object in an enclosure.
719 */
720 struct typidx *ses_typidx;
721
722 /*
723 * We also need to keep track of the number of elements
724 * per type of element. This is needed later so that we
725 * can find precisely in the returned status data the
726 * status for the Nth element of the Kth type.
727 */
728 uint8_t * ses_eltmap;
729 };
730
731
732 /*
733 * (de)canonicalization defines
734 */
735 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
736 #define sbit(x, bit) (((uint32_t)(x)) << bit)
737 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738
739 #define sset16(outp, idx, sval) \
740 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
742
743
744 #define sset24(outp, idx, sval) \
745 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
746 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
747 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
748
749
750 #define sset32(outp, idx, sval) \
751 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
752 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
753 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
754 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
755
756 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
757 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
758 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
759 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
760
761 #define sget16(inp, idx, lval) \
762 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
763 (((uint8_t *)(inp))[idx+1]), idx += 2
764
765 #define gget16(inp, idx, lval) \
766 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
767 (((uint8_t *)(inp))[idx+1])
768
769 #define sget24(inp, idx, lval) \
770 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
771 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
772 (((uint8_t *)(inp))[idx+2]), idx += 3
773
774 #define gget24(inp, idx, lval) \
775 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
776 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
777 (((uint8_t *)(inp))[idx+2])
778
779 #define sget32(inp, idx, lval) \
780 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
781 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
782 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
783 (((uint8_t *)(inp))[idx+3]), idx += 4
784
785 #define gget32(inp, idx, lval) \
786 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
787 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
788 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
789 (((uint8_t *)(inp))[idx+3])
790
791 #define SCSZ 0x2000
792 #define CFLEN (256 + SES_ENCHDR_MINLEN)
793
794 /*
795 * Routines specific && private to SES only
796 */
797
798 static int ses_getconfig(ses_softc_t *);
799 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
800 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
801 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
802 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
803 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
804 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
805 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
806
807 static int
808 ses_softc_init(ses_softc_t *ssc, int doinit)
809 {
810 if (doinit == 0) {
811 struct sscfg *cc;
812 if (ssc->ses_nobjects) {
813 SES_FREE(ssc->ses_objmap,
814 ssc->ses_nobjects * sizeof (encobj));
815 ssc->ses_objmap = NULL;
816 }
817 if ((cc = ssc->ses_private) != NULL) {
818 if (cc->ses_eltmap && cc->ses_ntypes) {
819 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
820 cc->ses_eltmap = NULL;
821 cc->ses_ntypes = 0;
822 }
823 if (cc->ses_typidx && ssc->ses_nobjects) {
824 SES_FREE(cc->ses_typidx,
825 ssc->ses_nobjects * sizeof (struct typidx));
826 cc->ses_typidx = NULL;
827 }
828 SES_FREE(cc, sizeof (struct sscfg));
829 ssc->ses_private = NULL;
830 }
831 ssc->ses_nobjects = 0;
832 return (0);
833 }
834 if (ssc->ses_private == NULL) {
835 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
836 }
837 if (ssc->ses_private == NULL) {
838 return (ENOMEM);
839 }
840 ssc->ses_nobjects = 0;
841 ssc->ses_encstat = 0;
842 return (ses_getconfig(ssc));
843 }
844
845 static int
846 ses_init_enc(ses_softc_t *ssc)
847 {
848 return (0);
849 }
850
851 static int
852 ses_get_encstat(ses_softc_t *ssc, int slpflag)
853 {
854 SesComStat ComStat;
855 int status;
856
857 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
858 return (status);
859 }
860 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
861 return (0);
862 }
863
864 static int
865 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
866 {
867 SesComStat ComStat;
868 int status;
869
870 ComStat.comstatus = encstat & 0xf;
871 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
872 return (status);
873 }
874 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
875 return (0);
876 }
877
878 static int
879 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
880 {
881 int i = (int)obp->obj_id;
882
883 if (ssc->ses_objmap[i].svalid == 0) {
884 SesComStat ComStat;
885 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
886 if (err)
887 return (err);
888 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
889 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
890 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
891 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
892 ssc->ses_objmap[i].svalid = 1;
893 }
894 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
895 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
896 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
897 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
898 return (0);
899 }
900
901 static int
902 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
903 {
904 SesComStat ComStat;
905 int err;
906 /*
907 * If this is clear, we don't do diddly.
908 */
909 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
910 return (0);
911 }
912 ComStat.comstatus = obp->cstat[0];
913 ComStat.comstat[0] = obp->cstat[1];
914 ComStat.comstat[1] = obp->cstat[2];
915 ComStat.comstat[2] = obp->cstat[3];
916 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
917 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
918 return (err);
919 }
920
921 static int
922 ses_getconfig(ses_softc_t *ssc)
923 {
924 struct sscfg *cc;
925 SesCfgHdr cf;
926 SesEncHdr hd;
927 SesEncDesc *cdp;
928 SesThdr thdr;
929 int err, amt, i, nobj, ntype, maxima;
930 char storage[CFLEN], *sdata;
931 static char cdb[6] = {
932 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
933 };
934
935 cc = ssc->ses_private;
936 if (cc == NULL) {
937 return (ENXIO);
938 }
939
940 sdata = SES_MALLOC(SCSZ);
941 if (sdata == NULL)
942 return (ENOMEM);
943
944 amt = SCSZ;
945 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
946 if (err) {
947 SES_FREE(sdata, SCSZ);
948 return (err);
949 }
950 amt = SCSZ - amt;
951
952 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
953 SES_LOG(ssc, "Unable to parse SES Config Header\n");
954 SES_FREE(sdata, SCSZ);
955 return (EIO);
956 }
957 if (amt < SES_ENCHDR_MINLEN) {
958 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
959 SES_FREE(sdata, SCSZ);
960 return (EIO);
961 }
962
963 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
964
965 /*
966 * Now waltz through all the subenclosures toting up the
967 * number of types available in each. For this, we only
968 * really need the enclosure header. However, we get the
969 * enclosure descriptor for debug purposes, as well
970 * as self-consistency checking purposes.
971 */
972
973 maxima = cf.Nsubenc + 1;
974 cdp = (SesEncDesc *) storage;
975 for (ntype = i = 0; i < maxima; i++) {
976 MEMZERO((caddr_t)cdp, sizeof (*cdp));
977 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
978 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
979 SES_FREE(sdata, SCSZ);
980 return (EIO);
981 }
982 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
983 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
984
985 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
986 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
987 SES_FREE(sdata, SCSZ);
988 return (EIO);
989 }
990 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
991 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
992 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
993 cdp->encWWN[6], cdp->encWWN[7]);
994 ntype += hd.Ntypes;
995 }
996
997 /*
998 * Now waltz through all the types that are available, getting
999 * the type header so we can start adding up the number of
1000 * objects available.
1001 */
1002 for (nobj = i = 0; i < ntype; i++) {
1003 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1004 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1005 SES_FREE(sdata, SCSZ);
1006 return (EIO);
1007 }
1008 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1009 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1010 thdr.enc_subenc, thdr.enc_tlen);
1011 nobj += thdr.enc_maxelt;
1012 }
1013
1014
1015 /*
1016 * Now allocate the object array and type map.
1017 */
1018
1019 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1020 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1021 cc->ses_eltmap = SES_MALLOC(ntype);
1022
1023 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1024 cc->ses_eltmap == NULL) {
1025 if (ssc->ses_objmap) {
1026 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1027 ssc->ses_objmap = NULL;
1028 }
1029 if (cc->ses_typidx) {
1030 SES_FREE(cc->ses_typidx,
1031 (nobj * sizeof (struct typidx)));
1032 cc->ses_typidx = NULL;
1033 }
1034 if (cc->ses_eltmap) {
1035 SES_FREE(cc->ses_eltmap, ntype);
1036 cc->ses_eltmap = NULL;
1037 }
1038 SES_FREE(sdata, SCSZ);
1039 return (ENOMEM);
1040 }
1041 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1042 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1043 MEMZERO(cc->ses_eltmap, ntype);
1044 cc->ses_ntypes = (uint8_t) ntype;
1045 ssc->ses_nobjects = nobj;
1046
1047 /*
1048 * Now waltz through the # of types again to fill in the types
1049 * (and subenclosure ids) of the allocated objects.
1050 */
1051 nobj = 0;
1052 for (i = 0; i < ntype; i++) {
1053 int j;
1054 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1055 continue;
1056 }
1057 cc->ses_eltmap[i] = thdr.enc_maxelt;
1058 for (j = 0; j < thdr.enc_maxelt; j++) {
1059 cc->ses_typidx[nobj].ses_tidx = i;
1060 cc->ses_typidx[nobj].ses_oidx = j;
1061 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1062 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1063 }
1064 }
1065 SES_FREE(sdata, SCSZ);
1066 return (0);
1067 }
1068
1069 static int
1070 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1071 {
1072 struct sscfg *cc;
1073 int err, amt, bufsiz, tidx, oidx;
1074 char cdb[6], *sdata;
1075
1076 cc = ssc->ses_private;
1077 if (cc == NULL) {
1078 return (ENXIO);
1079 }
1080
1081 /*
1082 * If we're just getting overall enclosure status,
1083 * we only need 2 bytes of data storage.
1084 *
1085 * If we're getting anything else, we know how much
1086 * storage we need by noting that starting at offset
1087 * 8 in returned data, all object status bytes are 4
1088 * bytes long, and are stored in chunks of types(M)
1089 * and nth+1 instances of type M.
1090 */
1091 if (objid == -1) {
1092 bufsiz = 2;
1093 } else {
1094 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1095 }
1096 sdata = SES_MALLOC(bufsiz);
1097 if (sdata == NULL)
1098 return (ENOMEM);
1099
1100 cdb[0] = RECEIVE_DIAGNOSTIC;
1101 cdb[1] = 1;
1102 cdb[2] = SesStatusPage;
1103 cdb[3] = bufsiz >> 8;
1104 cdb[4] = bufsiz & 0xff;
1105 cdb[5] = 0;
1106 amt = bufsiz;
1107 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1108 if (err) {
1109 SES_FREE(sdata, bufsiz);
1110 return (err);
1111 }
1112 amt = bufsiz - amt;
1113
1114 if (objid == -1) {
1115 tidx = -1;
1116 oidx = -1;
1117 } else {
1118 tidx = cc->ses_typidx[objid].ses_tidx;
1119 oidx = cc->ses_typidx[objid].ses_oidx;
1120 }
1121 if (in) {
1122 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1123 err = ENODEV;
1124 }
1125 } else {
1126 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1127 err = ENODEV;
1128 } else {
1129 cdb[0] = SEND_DIAGNOSTIC;
1130 cdb[1] = 0x10;
1131 cdb[2] = 0;
1132 cdb[3] = bufsiz >> 8;
1133 cdb[4] = bufsiz & 0xff;
1134 cdb[5] = 0;
1135 amt = -bufsiz;
1136 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1137 }
1138 }
1139 SES_FREE(sdata, bufsiz);
1140 return (0);
1141 }
1142
1143
1144 /*
1145 * Routines to parse returned SES data structures.
1146 * Architecture and compiler independent.
1147 */
1148
1149 static int
1150 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1151 {
1152 if (buflen < SES_CFGHDR_MINLEN) {
1153 return (-1);
1154 }
1155 gget8(buffer, 1, cfp->Nsubenc);
1156 gget32(buffer, 4, cfp->GenCode);
1157 return (0);
1158 }
1159
1160 static int
1161 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1162 {
1163 int s, off = 8;
1164 for (s = 0; s < SubEncId; s++) {
1165 if (off + 3 > amt)
1166 return (-1);
1167 off += buffer[off+3] + 4;
1168 }
1169 if (off + 3 > amt) {
1170 return (-1);
1171 }
1172 gget8(buffer, off+1, chp->Subencid);
1173 gget8(buffer, off+2, chp->Ntypes);
1174 gget8(buffer, off+3, chp->VEnclen);
1175 return (0);
1176 }
1177
1178 static int
1179 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1180 {
1181 int s, e, enclen, off = 8;
1182 for (s = 0; s < SubEncId; s++) {
1183 if (off + 3 > amt)
1184 return (-1);
1185 off += buffer[off+3] + 4;
1186 }
1187 if (off + 3 > amt) {
1188 return (-1);
1189 }
1190 gget8(buffer, off+3, enclen);
1191 off += 4;
1192 if (off >= amt)
1193 return (-1);
1194
1195 e = off + enclen;
1196 if (e > amt) {
1197 e = amt;
1198 }
1199 MEMCPY(cdp, &buffer[off], e - off);
1200 return (0);
1201 }
1202
1203 static int
1204 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1205 {
1206 int s, off = 8;
1207
1208 if (amt < SES_CFGHDR_MINLEN) {
1209 return (-1);
1210 }
1211 for (s = 0; s < buffer[1]; s++) {
1212 if (off + 3 > amt)
1213 return (-1);
1214 off += buffer[off+3] + 4;
1215 }
1216 if (off + 3 > amt) {
1217 return (-1);
1218 }
1219 off += buffer[off+3] + 4 + (nth * 4);
1220 if (amt < (off + 4))
1221 return (-1);
1222
1223 gget8(buffer, off++, thp->enc_type);
1224 gget8(buffer, off++, thp->enc_maxelt);
1225 gget8(buffer, off++, thp->enc_subenc);
1226 gget8(buffer, off, thp->enc_tlen);
1227 return (0);
1228 }
1229
1230 /*
1231 * This function needs a little explanation.
1232 *
1233 * The arguments are:
1234 *
1235 *
1236 * char *b, int amt
1237 *
1238 * These describes the raw input SES status data and length.
1239 *
1240 * uint8_t *ep
1241 *
1242 * This is a map of the number of types for each element type
1243 * in the enclosure.
1244 *
1245 * int elt
1246 *
1247 * This is the element type being sought. If elt is -1,
1248 * then overall enclosure status is being sought.
1249 *
1250 * int elm
1251 *
1252 * This is the ordinal Mth element of type elt being sought.
1253 *
1254 * SesComStat *sp
1255 *
1256 * This is the output area to store the status for
1257 * the Mth element of type Elt.
1258 */
1259
1260 static int
1261 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1262 {
1263 int idx, i;
1264
1265 /*
1266 * If it's overall enclosure status being sought, get that.
1267 * We need at least 2 bytes of status data to get that.
1268 */
1269 if (elt == -1) {
1270 if (amt < 2)
1271 return (-1);
1272 gget8(b, 1, sp->comstatus);
1273 sp->comstat[0] = 0;
1274 sp->comstat[1] = 0;
1275 sp->comstat[2] = 0;
1276 return (0);
1277 }
1278
1279 /*
1280 * Check to make sure that the Mth element is legal for type Elt.
1281 */
1282
1283 if (elm >= ep[elt])
1284 return (-1);
1285
1286 /*
1287 * Starting at offset 8, start skipping over the storage
1288 * for the element types we're not interested in.
1289 */
1290 for (idx = 8, i = 0; i < elt; i++) {
1291 idx += ((ep[i] + 1) * 4);
1292 }
1293
1294 /*
1295 * Skip over Overall status for this element type.
1296 */
1297 idx += 4;
1298
1299 /*
1300 * And skip to the index for the Mth element that we're going for.
1301 */
1302 idx += (4 * elm);
1303
1304 /*
1305 * Make sure we haven't overflowed the buffer.
1306 */
1307 if (idx+4 > amt)
1308 return (-1);
1309
1310 /*
1311 * Retrieve the status.
1312 */
1313 gget8(b, idx++, sp->comstatus);
1314 gget8(b, idx++, sp->comstat[0]);
1315 gget8(b, idx++, sp->comstat[1]);
1316 gget8(b, idx++, sp->comstat[2]);
1317 #if 0
1318 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1319 #endif
1320 return (0);
1321 }
1322
1323 /*
1324 * This is the mirror function to ses_decode, but we set the 'select'
1325 * bit for the object which we're interested in. All other objects,
1326 * after a status fetch, should have that bit off. Hmm. It'd be easy
1327 * enough to ensure this, so we will.
1328 */
1329
1330 static int
1331 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1332 {
1333 int idx, i;
1334
1335 /*
1336 * If it's overall enclosure status being sought, get that.
1337 * We need at least 2 bytes of status data to get that.
1338 */
1339 if (elt == -1) {
1340 if (amt < 2)
1341 return (-1);
1342 i = 0;
1343 sset8(b, i, 0);
1344 sset8(b, i, sp->comstatus & 0xf);
1345 #if 0
1346 PRINTF("set EncStat %x\n", sp->comstatus);
1347 #endif
1348 return (0);
1349 }
1350
1351 /*
1352 * Check to make sure that the Mth element is legal for type Elt.
1353 */
1354
1355 if (elm >= ep[elt])
1356 return (-1);
1357
1358 /*
1359 * Starting at offset 8, start skipping over the storage
1360 * for the element types we're not interested in.
1361 */
1362 for (idx = 8, i = 0; i < elt; i++) {
1363 idx += ((ep[i] + 1) * 4);
1364 }
1365
1366 /*
1367 * Skip over Overall status for this element type.
1368 */
1369 idx += 4;
1370
1371 /*
1372 * And skip to the index for the Mth element that we're going for.
1373 */
1374 idx += (4 * elm);
1375
1376 /*
1377 * Make sure we haven't overflowed the buffer.
1378 */
1379 if (idx+4 > amt)
1380 return (-1);
1381
1382 /*
1383 * Set the status.
1384 */
1385 sset8(b, idx, sp->comstatus);
1386 sset8(b, idx, sp->comstat[0]);
1387 sset8(b, idx, sp->comstat[1]);
1388 sset8(b, idx, sp->comstat[2]);
1389 idx -= 4;
1390
1391 #if 0
1392 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1393 elt, elm, idx, sp->comstatus, sp->comstat[0],
1394 sp->comstat[1], sp->comstat[2]);
1395 #endif
1396
1397 /*
1398 * Now make sure all other 'Select' bits are off.
1399 */
1400 for (i = 8; i < amt; i += 4) {
1401 if (i != idx)
1402 b[i] &= ~0x80;
1403 }
1404 /*
1405 * And make sure the INVOP bit is clear.
1406 */
1407 b[2] &= ~0x10;
1408
1409 return (0);
1410 }
1411
1412 /*
1413 * SAF-TE Type Device Emulation
1414 */
1415
1416 static int safte_getconfig(ses_softc_t *);
1417 static int safte_rdstat(ses_softc_t *, int);;
1418 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1419 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1420 static void wrslot_stat(ses_softc_t *, int);
1421 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1422
1423 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1424 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1425 /*
1426 * SAF-TE specific defines- Mandatory ones only...
1427 */
1428
1429 /*
1430 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1431 */
1432 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1433 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1434 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1435
1436 /*
1437 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1438 */
1439 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1440 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1441 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1442 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1443 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1444
1445
1446 #define SAFT_SCRATCH 64
1447 #define NPSEUDO_THERM 16
1448 #define NPSEUDO_ALARM 1
1449 struct scfg {
1450 /*
1451 * Cached Configuration
1452 */
1453 uint8_t Nfans; /* Number of Fans */
1454 uint8_t Npwr; /* Number of Power Supplies */
1455 uint8_t Nslots; /* Number of Device Slots */
1456 uint8_t DoorLock; /* Door Lock Installed */
1457 uint8_t Ntherm; /* Number of Temperature Sensors */
1458 uint8_t Nspkrs; /* Number of Speakers */
1459 uint8_t Nalarm; /* Number of Alarms (at least one) */
1460 /*
1461 * Cached Flag Bytes for Global Status
1462 */
1463 uint8_t flag1;
1464 uint8_t flag2;
1465 /*
1466 * What object index ID is where various slots start.
1467 */
1468 uint8_t pwroff;
1469 uint8_t slotoff;
1470 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1471 };
1472
1473 #define SAFT_FLG1_ALARM 0x1
1474 #define SAFT_FLG1_GLOBFAIL 0x2
1475 #define SAFT_FLG1_GLOBWARN 0x4
1476 #define SAFT_FLG1_ENCPWROFF 0x8
1477 #define SAFT_FLG1_ENCFANFAIL 0x10
1478 #define SAFT_FLG1_ENCPWRFAIL 0x20
1479 #define SAFT_FLG1_ENCDRVFAIL 0x40
1480 #define SAFT_FLG1_ENCDRVWARN 0x80
1481
1482 #define SAFT_FLG2_LOCKDOOR 0x4
1483 #define SAFT_PRIVATE sizeof (struct scfg)
1484
1485 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1486 #define SAFT_BAIL(r, x, k, l) \
1487 if (r >= x) { \
1488 SES_LOG(ssc, safte_2little, x, __LINE__);\
1489 SES_FREE(k, l); \
1490 return (EIO); \
1491 }
1492
1493
1494 int
1495 safte_softc_init(ses_softc_t *ssc, int doinit)
1496 {
1497 int err, i, r;
1498 struct scfg *cc;
1499
1500 if (doinit == 0) {
1501 if (ssc->ses_nobjects) {
1502 if (ssc->ses_objmap) {
1503 SES_FREE(ssc->ses_objmap,
1504 ssc->ses_nobjects * sizeof (encobj));
1505 ssc->ses_objmap = NULL;
1506 }
1507 ssc->ses_nobjects = 0;
1508 }
1509 if (ssc->ses_private) {
1510 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1511 ssc->ses_private = NULL;
1512 }
1513 return (0);
1514 }
1515
1516 if (ssc->ses_private == NULL) {
1517 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1518 if (ssc->ses_private == NULL) {
1519 return (ENOMEM);
1520 }
1521 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1522 }
1523
1524 ssc->ses_nobjects = 0;
1525 ssc->ses_encstat = 0;
1526
1527 if ((err = safte_getconfig(ssc)) != 0) {
1528 return (err);
1529 }
1530
1531 /*
1532 * The number of objects here, as well as that reported by the
1533 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1534 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1535 */
1536 cc = ssc->ses_private;
1537 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1538 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1539 ssc->ses_objmap = (encobj *)
1540 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1541 if (ssc->ses_objmap == NULL) {
1542 return (ENOMEM);
1543 }
1544 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1545
1546 r = 0;
1547 /*
1548 * Note that this is all arranged for the convenience
1549 * in later fetches of status.
1550 */
1551 for (i = 0; i < cc->Nfans; i++)
1552 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1553 cc->pwroff = (uint8_t) r;
1554 for (i = 0; i < cc->Npwr; i++)
1555 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1556 for (i = 0; i < cc->DoorLock; i++)
1557 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1558 for (i = 0; i < cc->Nspkrs; i++)
1559 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1560 for (i = 0; i < cc->Ntherm; i++)
1561 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1562 for (i = 0; i < NPSEUDO_THERM; i++)
1563 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1564 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1565 cc->slotoff = (uint8_t) r;
1566 for (i = 0; i < cc->Nslots; i++)
1567 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1568 return (0);
1569 }
1570
1571 int
1572 safte_init_enc(ses_softc_t *ssc)
1573 {
1574 int err, amt;
1575 char *sdata;
1576 static char cdb0[10] = { SEND_DIAGNOSTIC };
1577 static char cdb[10] =
1578 { WRITE_BUFFER , 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1579
1580 sdata = SES_MALLOC(SAFT_SCRATCH);
1581 if (sdata == NULL)
1582 return (ENOMEM);
1583
1584 err = ses_runcmd(ssc, cdb0, 10, NULL, 0);
1585 if (err) {
1586 SES_FREE(sdata, SAFT_SCRATCH);
1587 return (err);
1588 }
1589 sdata[0] = SAFTE_WT_GLOBAL;
1590 MEMZERO(&sdata[1], SAFT_SCRATCH - 1);
1591 amt = -SAFT_SCRATCH;
1592 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1593 SES_FREE(sdata, SAFT_SCRATCH);
1594 return (err);
1595 }
1596
1597 int
1598 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1599 {
1600 return (safte_rdstat(ssc, slpflg));
1601 }
1602
1603 int
1604 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1605 {
1606 struct scfg *cc = ssc->ses_private;
1607 if (cc == NULL)
1608 return (0);
1609 /*
1610 * Since SAF-TE devices aren't necessarily sticky in terms
1611 * of state, make our soft copy of enclosure status 'sticky'-
1612 * that is, things set in enclosure status stay set (as implied
1613 * by conditions set in reading object status) until cleared.
1614 */
1615 ssc->ses_encstat &= ~ALL_ENC_STAT;
1616 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1617 ssc->ses_encstat |= ENCI_SVALID;
1618 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1619 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1620 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1621 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1622 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1623 }
1624 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1625 }
1626
1627 int
1628 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1629 {
1630 int i = (int)obp->obj_id;
1631
1632 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1633 (ssc->ses_objmap[i].svalid) == 0) {
1634 int err = safte_rdstat(ssc, slpflg);
1635 if (err)
1636 return (err);
1637 }
1638 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1639 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1640 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1641 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1642 return (0);
1643 }
1644
1645
1646 int
1647 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1648 {
1649 int idx, err;
1650 encobj *ep;
1651 struct scfg *cc;
1652
1653
1654 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1655 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1656 obp->cstat[3]);
1657
1658 /*
1659 * If this is clear, we don't do diddly.
1660 */
1661 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1662 return (0);
1663 }
1664
1665 err = 0;
1666 /*
1667 * Check to see if the common bits are set and do them first.
1668 */
1669 if (obp->cstat[0] & ~SESCTL_CSEL) {
1670 err = set_objstat_sel(ssc, obp, slp);
1671 if (err)
1672 return (err);
1673 }
1674
1675 cc = ssc->ses_private;
1676 if (cc == NULL)
1677 return (0);
1678
1679 idx = (int)obp->obj_id;
1680 ep = &ssc->ses_objmap[idx];
1681
1682 switch (ep->enctype) {
1683 case SESTYP_DEVICE:
1684 {
1685 uint8_t slotop = 0;
1686 /*
1687 * XXX: I should probably cache the previous state
1688 * XXX: of SESCTL_DEVOFF so that when it goes from
1689 * XXX: true to false I can then set PREPARE FOR OPERATION
1690 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1691 */
1692 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1693 slotop |= 0x2;
1694 }
1695 if (obp->cstat[2] & SESCTL_RQSID) {
1696 slotop |= 0x4;
1697 }
1698 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1699 slotop, slp);
1700 if (err)
1701 return (err);
1702 if (obp->cstat[3] & SESCTL_RQSFLT) {
1703 ep->priv |= 0x2;
1704 } else {
1705 ep->priv &= ~0x2;
1706 }
1707 if (ep->priv & 0xc6) {
1708 ep->priv &= ~0x1;
1709 } else {
1710 ep->priv |= 0x1; /* no errors */
1711 }
1712 wrslot_stat(ssc, slp);
1713 break;
1714 }
1715 case SESTYP_POWER:
1716 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1717 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1718 } else {
1719 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1720 }
1721 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1722 cc->flag2, 0, slp);
1723 if (err)
1724 return (err);
1725 if (obp->cstat[3] & SESCTL_RQSTON) {
1726 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1727 idx - cc->pwroff, 0, 0, slp);
1728 } else {
1729 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1730 idx - cc->pwroff, 0, 1, slp);
1731 }
1732 break;
1733 case SESTYP_FAN:
1734 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1735 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1736 } else {
1737 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1738 }
1739 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1740 cc->flag2, 0, slp);
1741 if (err)
1742 return (err);
1743 if (obp->cstat[3] & SESCTL_RQSTON) {
1744 uint8_t fsp;
1745 if ((obp->cstat[3] & 0x7) == 7) {
1746 fsp = 4;
1747 } else if ((obp->cstat[3] & 0x7) == 6) {
1748 fsp = 3;
1749 } else if ((obp->cstat[3] & 0x7) == 4) {
1750 fsp = 2;
1751 } else {
1752 fsp = 1;
1753 }
1754 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1755 } else {
1756 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1757 }
1758 break;
1759 case SESTYP_DOORLOCK:
1760 if (obp->cstat[3] & 0x1) {
1761 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1762 } else {
1763 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1764 }
1765 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1766 cc->flag2, 0, slp);
1767 break;
1768 case SESTYP_ALARM:
1769 /*
1770 * On all nonzero but the 'muted' bit, we turn on the alarm,
1771 */
1772 obp->cstat[3] &= ~0xa;
1773 if (obp->cstat[3] & 0x40) {
1774 cc->flag2 &= ~SAFT_FLG1_ALARM;
1775 } else if (obp->cstat[3] != 0) {
1776 cc->flag2 |= SAFT_FLG1_ALARM;
1777 } else {
1778 cc->flag2 &= ~SAFT_FLG1_ALARM;
1779 }
1780 ep->priv = obp->cstat[3];
1781 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1782 cc->flag2, 0, slp);
1783 break;
1784 default:
1785 break;
1786 }
1787 ep->svalid = 0;
1788 return (0);
1789 }
1790
1791 static int
1792 safte_getconfig(ses_softc_t *ssc)
1793 {
1794 struct scfg *cfg;
1795 int err, amt;
1796 char *sdata;
1797 static char cdb[10] =
1798 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1799
1800 cfg = ssc->ses_private;
1801 if (cfg == NULL)
1802 return (ENXIO);
1803
1804 sdata = SES_MALLOC(SAFT_SCRATCH);
1805 if (sdata == NULL)
1806 return (ENOMEM);
1807
1808 amt = SAFT_SCRATCH;
1809 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1810 if (err) {
1811 SES_FREE(sdata, SAFT_SCRATCH);
1812 return (err);
1813 }
1814 amt = SAFT_SCRATCH - amt;
1815 if (amt < 6) {
1816 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1817 SES_FREE(sdata, SAFT_SCRATCH);
1818 return (EIO);
1819 }
1820 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1821 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1822 cfg->Nfans = sdata[0];
1823 cfg->Npwr = sdata[1];
1824 cfg->Nslots = sdata[2];
1825 cfg->DoorLock = sdata[3];
1826 cfg->Ntherm = sdata[4];
1827 cfg->Nspkrs = sdata[5];
1828 cfg->Nalarm = NPSEUDO_ALARM;
1829 SES_FREE(sdata, SAFT_SCRATCH);
1830 return (0);
1831 }
1832
1833 static int
1834 safte_rdstat(ses_softc_t *ssc, int slpflg)
1835 {
1836 int err, oid, r, i, hiwater, nitems, amt;
1837 uint16_t tempflags;
1838 size_t buflen;
1839 uint8_t status, oencstat;
1840 char *sdata, cdb[10];
1841 struct scfg *cc = ssc->ses_private;
1842
1843
1844 /*
1845 * The number of objects overstates things a bit,
1846 * both for the bogus 'thermometer' entries and
1847 * the drive status (which isn't read at the same
1848 * time as the enclosure status), but that's okay.
1849 */
1850 buflen = 4 * cc->Nslots;
1851 if (ssc->ses_nobjects > buflen)
1852 buflen = ssc->ses_nobjects;
1853 sdata = SES_MALLOC(buflen);
1854 if (sdata == NULL)
1855 return (ENOMEM);
1856
1857 cdb[0] = READ_BUFFER;
1858 cdb[1] = 1;
1859 cdb[2] = SAFTE_RD_RDESTS;
1860 cdb[3] = 0;
1861 cdb[4] = 0;
1862 cdb[5] = 0;
1863 cdb[6] = 0;
1864 cdb[7] = (buflen >> 8) & 0xff;
1865 cdb[8] = buflen & 0xff;
1866 cdb[9] = 0;
1867 amt = buflen;
1868 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1869 if (err) {
1870 SES_FREE(sdata, buflen);
1871 return (err);
1872 }
1873 hiwater = buflen - amt;
1874
1875
1876 /*
1877 * invalidate all status bits.
1878 */
1879 for (i = 0; i < ssc->ses_nobjects; i++)
1880 ssc->ses_objmap[i].svalid = 0;
1881 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1882 ssc->ses_encstat = 0;
1883
1884
1885 /*
1886 * Now parse returned buffer.
1887 * If we didn't get enough data back,
1888 * that's considered a fatal error.
1889 */
1890 oid = r = 0;
1891
1892 for (nitems = i = 0; i < cc->Nfans; i++) {
1893 SAFT_BAIL(r, hiwater, sdata, buflen);
1894 /*
1895 * 0 = Fan Operational
1896 * 1 = Fan is malfunctioning
1897 * 2 = Fan is not present
1898 * 0x80 = Unknown or Not Reportable Status
1899 */
1900 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1901 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1902 switch ((int)(uint8_t)sdata[r]) {
1903 case 0:
1904 nitems++;
1905 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1906 /*
1907 * We could get fancier and cache
1908 * fan speeds that we have set, but
1909 * that isn't done now.
1910 */
1911 ssc->ses_objmap[oid].encstat[3] = 7;
1912 break;
1913
1914 case 1:
1915 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1916 /*
1917 * FAIL and FAN STOPPED synthesized
1918 */
1919 ssc->ses_objmap[oid].encstat[3] = 0x40;
1920 /*
1921 * Enclosure marked with CRITICAL error
1922 * if only one fan or no thermometers,
1923 * else the NONCRITICAL error is set.
1924 */
1925 if (cc->Nfans == 1 || cc->Ntherm == 0)
1926 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1927 else
1928 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1929 break;
1930 case 2:
1931 ssc->ses_objmap[oid].encstat[0] =
1932 SES_OBJSTAT_NOTINSTALLED;
1933 ssc->ses_objmap[oid].encstat[3] = 0;
1934 /*
1935 * Enclosure marked with CRITICAL error
1936 * if only one fan or no thermometers,
1937 * else the NONCRITICAL error is set.
1938 */
1939 if (cc->Nfans == 1)
1940 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1941 else
1942 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1943 break;
1944 case 0x80:
1945 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1946 ssc->ses_objmap[oid].encstat[3] = 0;
1947 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1948 break;
1949 default:
1950 ssc->ses_objmap[oid].encstat[0] =
1951 SES_OBJSTAT_UNSUPPORTED;
1952 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1953 sdata[r] & 0xff);
1954 break;
1955 }
1956 ssc->ses_objmap[oid++].svalid = 1;
1957 r++;
1958 }
1959
1960 /*
1961 * No matter how you cut it, no cooling elements when there
1962 * should be some there is critical.
1963 */
1964 if (cc->Nfans && nitems == 0) {
1965 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1966 }
1967
1968
1969 for (i = 0; i < cc->Npwr; i++) {
1970 SAFT_BAIL(r, hiwater, sdata, buflen);
1971 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1972 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1973 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1974 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1975 switch ((uint8_t)sdata[r]) {
1976 case 0x00: /* pws operational and on */
1977 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1978 break;
1979 case 0x01: /* pws operational and off */
1980 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1981 ssc->ses_objmap[oid].encstat[3] = 0x10;
1982 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1983 break;
1984 case 0x10: /* pws is malfunctioning and commanded on */
1985 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1986 ssc->ses_objmap[oid].encstat[3] = 0x61;
1987 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1988 break;
1989
1990 case 0x11: /* pws is malfunctioning and commanded off */
1991 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1992 ssc->ses_objmap[oid].encstat[3] = 0x51;
1993 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1994 break;
1995 case 0x20: /* pws is not present */
1996 ssc->ses_objmap[oid].encstat[0] =
1997 SES_OBJSTAT_NOTINSTALLED;
1998 ssc->ses_objmap[oid].encstat[3] = 0;
1999 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2000 break;
2001 case 0x21: /* pws is present */
2002 /*
2003 * This is for enclosures that cannot tell whether the
2004 * device is on or malfunctioning, but know that it is
2005 * present. Just fall through.
2006 */
2007 /* FALLTHROUGH */
2008 case 0x80: /* Unknown or Not Reportable Status */
2009 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2010 ssc->ses_objmap[oid].encstat[3] = 0;
2011 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2012 break;
2013 default:
2014 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2015 i, sdata[r] & 0xff);
2016 break;
2017 }
2018 ssc->ses_objmap[oid++].svalid = 1;
2019 r++;
2020 }
2021
2022 /*
2023 * Skip over Slot SCSI IDs
2024 */
2025 r += cc->Nslots;
2026
2027 /*
2028 * We always have doorlock status, no matter what,
2029 * but we only save the status if we have one.
2030 */
2031 SAFT_BAIL(r, hiwater, sdata, buflen);
2032 if (cc->DoorLock) {
2033 /*
2034 * 0 = Door Locked
2035 * 1 = Door Unlocked, or no Lock Installed
2036 * 0x80 = Unknown or Not Reportable Status
2037 */
2038 ssc->ses_objmap[oid].encstat[1] = 0;
2039 ssc->ses_objmap[oid].encstat[2] = 0;
2040 switch ((uint8_t)sdata[r]) {
2041 case 0:
2042 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2043 ssc->ses_objmap[oid].encstat[3] = 0;
2044 break;
2045 case 1:
2046 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2047 ssc->ses_objmap[oid].encstat[3] = 1;
2048 break;
2049 case 0x80:
2050 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2051 ssc->ses_objmap[oid].encstat[3] = 0;
2052 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2053 break;
2054 default:
2055 ssc->ses_objmap[oid].encstat[0] =
2056 SES_OBJSTAT_UNSUPPORTED;
2057 SES_LOG(ssc, "unknown lock status 0x%x\n",
2058 sdata[r] & 0xff);
2059 break;
2060 }
2061 ssc->ses_objmap[oid++].svalid = 1;
2062 }
2063 r++;
2064
2065 /*
2066 * We always have speaker status, no matter what,
2067 * but we only save the status if we have one.
2068 */
2069 SAFT_BAIL(r, hiwater, sdata, buflen);
2070 if (cc->Nspkrs) {
2071 ssc->ses_objmap[oid].encstat[1] = 0;
2072 ssc->ses_objmap[oid].encstat[2] = 0;
2073 if (sdata[r] == 1) {
2074 /*
2075 * We need to cache tone urgency indicators.
2076 * Someday.
2077 */
2078 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2079 ssc->ses_objmap[oid].encstat[3] = 0x8;
2080 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2081 } else if (sdata[r] == 0) {
2082 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2083 ssc->ses_objmap[oid].encstat[3] = 0;
2084 } else {
2085 ssc->ses_objmap[oid].encstat[0] =
2086 SES_OBJSTAT_UNSUPPORTED;
2087 ssc->ses_objmap[oid].encstat[3] = 0;
2088 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2089 sdata[r] & 0xff);
2090 }
2091 ssc->ses_objmap[oid++].svalid = 1;
2092 }
2093 r++;
2094
2095 for (i = 0; i < cc->Ntherm; i++) {
2096 SAFT_BAIL(r, hiwater, sdata, buflen);
2097 /*
2098 * Status is a range from -10 to 245 deg Celsius,
2099 * which we need to normalize to -20 to -245 according
2100 * to the latest SCSI spec, which makes little
2101 * sense since this would overflow an 8bit value.
2102 * Well, still, the base normalization is -20,
2103 * not -10, so we have to adjust.
2104 *
2105 * So what's over and under temperature?
2106 * Hmm- we'll state that 'normal' operating
2107 * is 10 to 40 deg Celsius.
2108 */
2109 ssc->ses_objmap[oid].encstat[1] = 0;
2110 ssc->ses_objmap[oid].encstat[2] =
2111 ((unsigned int) sdata[r]) - 10;
2112 if (sdata[r] < 20) {
2113 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2114 /*
2115 * Set 'under temperature' failure.
2116 */
2117 ssc->ses_objmap[oid].encstat[3] = 2;
2118 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2119 } else if (sdata[r] > 30) {
2120 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2121 /*
2122 * Set 'over temperature' failure.
2123 */
2124 ssc->ses_objmap[oid].encstat[3] = 8;
2125 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2126 } else {
2127 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2128 }
2129 ssc->ses_objmap[oid++].svalid = 1;
2130 r++;
2131 }
2132
2133 /*
2134 * Now, for "pseudo" thermometers, we have two bytes
2135 * of information in enclosure status- 16 bits. Actually,
2136 * the MSB is a single TEMP ALERT flag indicating whether
2137 * any other bits are set, but, thanks to fuzzy thinking,
2138 * in the SAF-TE spec, this can also be set even if no
2139 * other bits are set, thus making this really another
2140 * binary temperature sensor.
2141 */
2142
2143 SAFT_BAIL(r, hiwater, sdata, buflen);
2144 tempflags = sdata[r++];
2145 SAFT_BAIL(r, hiwater, sdata, buflen);
2146 tempflags |= (tempflags << 8) | sdata[r++];
2147
2148 for (i = 0; i < NPSEUDO_THERM; i++) {
2149 ssc->ses_objmap[oid].encstat[1] = 0;
2150 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2151 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2152 ssc->ses_objmap[4].encstat[2] = 0xff;
2153 /*
2154 * Set 'over temperature' failure.
2155 */
2156 ssc->ses_objmap[oid].encstat[3] = 8;
2157 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2158 } else {
2159 /*
2160 * We used to say 'not available' and synthesize a
2161 * nominal 30 deg (C)- that was wrong. Actually,
2162 * Just say 'OK', and use the reserved value of
2163 * zero.
2164 */
2165 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2166 ssc->ses_objmap[oid].encstat[2] = 0;
2167 ssc->ses_objmap[oid].encstat[3] = 0;
2168 }
2169 ssc->ses_objmap[oid++].svalid = 1;
2170 }
2171
2172 /*
2173 * Get alarm status.
2174 */
2175 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2176 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2177 ssc->ses_objmap[oid++].svalid = 1;
2178
2179 /*
2180 * Now get drive slot status
2181 */
2182 cdb[2] = SAFTE_RD_RDDSTS;
2183 amt = buflen;
2184 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2185 if (err) {
2186 SES_FREE(sdata, buflen);
2187 return (err);
2188 }
2189 hiwater = buflen - amt;
2190 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2191 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2192 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2193 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2194 ssc->ses_objmap[oid].encstat[2] = 0;
2195 ssc->ses_objmap[oid].encstat[3] = 0;
2196 status = sdata[r+3];
2197 if ((status & 0x1) == 0) { /* no device */
2198 ssc->ses_objmap[oid].encstat[0] =
2199 SES_OBJSTAT_NOTINSTALLED;
2200 } else {
2201 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2202 }
2203 if (status & 0x2) {
2204 ssc->ses_objmap[oid].encstat[2] = 0x8;
2205 }
2206 if ((status & 0x4) == 0) {
2207 ssc->ses_objmap[oid].encstat[3] = 0x10;
2208 }
2209 ssc->ses_objmap[oid++].svalid = 1;
2210 }
2211 /* see comment below about sticky enclosure status */
2212 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2213 SES_FREE(sdata, buflen);
2214 return (0);
2215 }
2216
2217 static int
2218 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2219 {
2220 int idx;
2221 encobj *ep;
2222 struct scfg *cc = ssc->ses_private;
2223
2224 if (cc == NULL)
2225 return (0);
2226
2227 idx = (int)obp->obj_id;
2228 ep = &ssc->ses_objmap[idx];
2229
2230 switch (ep->enctype) {
2231 case SESTYP_DEVICE:
2232 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2233 ep->priv |= 0x40;
2234 }
2235 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2236 if (obp->cstat[0] & SESCTL_DISABLE) {
2237 ep->priv |= 0x80;
2238 /*
2239 * Hmm. Try to set the 'No Drive' flag.
2240 * Maybe that will count as a 'disable'.
2241 */
2242 }
2243 if (ep->priv & 0xc6) {
2244 ep->priv &= ~0x1;
2245 } else {
2246 ep->priv |= 0x1; /* no errors */
2247 }
2248 wrslot_stat(ssc, slp);
2249 break;
2250 case SESTYP_POWER:
2251 /*
2252 * Okay- the only one that makes sense here is to
2253 * do the 'disable' for a power supply.
2254 */
2255 if (obp->cstat[0] & SESCTL_DISABLE) {
2256 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2257 idx - cc->pwroff, 0, 0, slp);
2258 }
2259 break;
2260 case SESTYP_FAN:
2261 /*
2262 * Okay- the only one that makes sense here is to
2263 * set fan speed to zero on disable.
2264 */
2265 if (obp->cstat[0] & SESCTL_DISABLE) {
2266 /* remember- fans are the first items, so idx works */
2267 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2268 }
2269 break;
2270 case SESTYP_DOORLOCK:
2271 /*
2272 * Well, we can 'disable' the lock.
2273 */
2274 if (obp->cstat[0] & SESCTL_DISABLE) {
2275 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2276 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2277 cc->flag2, 0, slp);
2278 }
2279 break;
2280 case SESTYP_ALARM:
2281 /*
2282 * Well, we can 'disable' the alarm.
2283 */
2284 if (obp->cstat[0] & SESCTL_DISABLE) {
2285 cc->flag2 &= ~SAFT_FLG1_ALARM;
2286 ep->priv |= 0x40; /* Muted */
2287 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2288 cc->flag2, 0, slp);
2289 }
2290 break;
2291 default:
2292 break;
2293 }
2294 ep->svalid = 0;
2295 return (0);
2296 }
2297
2298 /*
2299 * This function handles all of the 16 byte WRITE BUFFER commands.
2300 */
2301 static int
2302 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2303 uint8_t b3, int slp)
2304 {
2305 int err, amt;
2306 char *sdata;
2307 struct scfg *cc = ssc->ses_private;
2308 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2309
2310 if (cc == NULL)
2311 return (0);
2312
2313 sdata = SES_MALLOC(16);
2314 if (sdata == NULL)
2315 return (ENOMEM);
2316
2317 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2318
2319 sdata[0] = op;
2320 sdata[1] = b1;
2321 sdata[2] = b2;
2322 sdata[3] = b3;
2323 MEMZERO(&sdata[4], 12);
2324 amt = -16;
2325 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2326 SES_FREE(sdata, 16);
2327 return (err);
2328 }
2329
2330 /*
2331 * This function updates the status byte for the device slot described.
2332 *
2333 * Since this is an optional SAF-TE command, there's no point in
2334 * returning an error.
2335 */
2336 static void
2337 wrslot_stat(ses_softc_t *ssc, int slp)
2338 {
2339 int i, amt;
2340 encobj *ep;
2341 char cdb[10], *sdata;
2342 struct scfg *cc = ssc->ses_private;
2343
2344 if (cc == NULL)
2345 return;
2346
2347 SES_VLOG(ssc, "saf_wrslot\n");
2348 cdb[0] = WRITE_BUFFER;
2349 cdb[1] = 1;
2350 cdb[2] = 0;
2351 cdb[3] = 0;
2352 cdb[4] = 0;
2353 cdb[5] = 0;
2354 cdb[6] = 0;
2355 cdb[7] = 0;
2356 cdb[8] = cc->Nslots * 3 + 1;
2357 cdb[9] = 0;
2358
2359 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2360 if (sdata == NULL)
2361 return;
2362 MEMZERO(sdata, cc->Nslots * 3 + 1);
2363
2364 sdata[0] = SAFTE_WT_DSTAT;
2365 for (i = 0; i < cc->Nslots; i++) {
2366 ep = &ssc->ses_objmap[cc->slotoff + i];
2367 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2368 sdata[1 + (3 * i)] = ep->priv & 0xff;
2369 }
2370 amt = -(cc->Nslots * 3 + 1);
2371 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2372 SES_FREE(sdata, cc->Nslots * 3 + 1);
2373 }
2374
2375 /*
2376 * This function issues the "PERFORM SLOT OPERATION" command.
2377 */
2378 static int
2379 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2380 {
2381 int err, amt;
2382 char *sdata;
2383 struct scfg *cc = ssc->ses_private;
2384 static char cdb[10] =
2385 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2386
2387 if (cc == NULL)
2388 return (0);
2389
2390 sdata = SES_MALLOC(SAFT_SCRATCH);
2391 if (sdata == NULL)
2392 return (ENOMEM);
2393 MEMZERO(sdata, SAFT_SCRATCH);
2394
2395 sdata[0] = SAFTE_WT_SLTOP;
2396 sdata[1] = slot;
2397 sdata[2] = opflag;
2398 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2399 amt = -SAFT_SCRATCH;
2400 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2401 SES_FREE(sdata, SAFT_SCRATCH);
2402 return (err);
2403 }
2404