ses.c revision 1.11.2.1 1 /* $NetBSD: ses.c,v 1.11.2.1 2001/09/07 04:45:32 thorpej Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <miscfs/specfs/specdev.h>
52
53 #include <dev/scsipi/scsipi_all.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsipi_disk.h>
56 #include <dev/scsipi/scsi_disk.h>
57 #include <dev/scsipi/scsiconf.h>
58 #include <dev/scsipi/ses.h>
59
60 /*
61 * Platform Independent Driver Internal Definitions for SES devices.
62 */
63 typedef enum {
64 SES_NONE,
65 SES_SES_SCSI2,
66 SES_SES,
67 SES_SES_PASSTHROUGH,
68 SES_SEN,
69 SES_SAFT
70 } enctyp;
71
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 int (*softc_init) __P((ses_softc_t *, int));
76 int (*init_enc) __P((ses_softc_t *));
77 int (*get_encstat) __P((ses_softc_t *, int));
78 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
79 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
80 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
81 } encvec;
82
83 #define ENCI_SVALID 0x80
84
85 typedef struct {
86 uint32_t
87 enctype : 8, /* enclosure type */
88 subenclosure : 8, /* subenclosure id */
89 svalid : 1, /* enclosure information valid */
90 priv : 15; /* private data, per object */
91 uint8_t encstat[4]; /* state && stats */
92 } encobj;
93
94 #define SEN_ID "UNISYS SUN_SEN"
95 #define SEN_ID_LEN 24
96
97 static enctyp ses_type __P((struct scsipi_inquiry_data *));
98
99
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init __P((ses_softc_t *, int));
102 static int ses_init_enc __P((ses_softc_t *));
103 static int ses_get_encstat __P((ses_softc_t *, int));
104 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
105 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
106 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
107
108 static int safte_softc_init __P((ses_softc_t *, int));
109 static int safte_init_enc __P((ses_softc_t *));
110 static int safte_get_encstat __P((ses_softc_t *, int));
111 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
112 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
113 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
114
115 /*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119 #define STRNCMP strncmp
120 #define PRINTF printf
121 #define SES_LOG ses_log
122 #if defined(DEBUG) || defined(SCSIDEBUG)
123 #define SES_VLOG ses_log
124 #else
125 #define SES_VLOG if (0) ses_log
126 #endif
127 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
129 #define MEMZERO(dest, amt) memset(dest, 0, amt)
130 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
131 #define RECEIVE_DIAGNOSTIC 0x1c
132 #define SEND_DIAGNOSTIC 0x1d
133 #define WRITE_BUFFER 0x3b
134 #define READ_BUFFER 0x3c
135
136 cdev_decl(ses);
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...))
140 __attribute__((__format__(__printf__, 2, 3)));
141
142 /*
143 * General NetBSD kernel stuff.
144 */
145
146 struct ses_softc {
147 struct device sc_device;
148 struct scsipi_periph *sc_periph;
149 enctyp ses_type; /* type of enclosure */
150 encvec ses_vec; /* vector to handlers */
151 void * ses_private; /* per-type private data */
152 encobj * ses_objmap; /* objects */
153 u_int32_t ses_nobjects; /* number of objects */
154 ses_encstat ses_encstat; /* overall status */
155 u_int8_t ses_flags;
156 };
157 #define SES_FLAG_INVALID 0x01
158 #define SES_FLAG_OPEN 0x02
159 #define SES_FLAG_INITIALIZED 0x04
160
161 #define SESUNIT(x) (minor((x)))
162
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166
167 struct cfattach ses_ca = {
168 sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171
172 const struct scsipi_periphsw ses_switch = {
173 NULL,
174 NULL,
175 NULL,
176 NULL
177 };
178
179
180 int
181 ses_match(parent, match, aux)
182 struct device *parent;
183 struct cfdata *match;
184 void *aux;
185 {
186 struct scsipibus_attach_args *sa = aux;
187
188 switch (ses_device_type(sa)) {
189 case SES_SES:
190 case SES_SES_SCSI2:
191 case SES_SEN:
192 case SES_SAFT:
193 case SES_SES_PASSTHROUGH:
194 /*
195 * For these devices, it's a perfect match.
196 */
197 return (24);
198 default:
199 return (0);
200 }
201 }
202
203
204 /*
205 * Complete the attachment.
206 *
207 * We have to repeat the rerun of INQUIRY data as above because
208 * it's not until the return from the match routine that we have
209 * the softc available to set stuff in.
210 */
211 void
212 ses_attach(parent, self, aux)
213 struct device *parent;
214 struct device *self;
215 void *aux;
216 {
217 char *tname;
218 struct ses_softc *softc = (void *)self;
219 struct scsipibus_attach_args *sa = aux;
220 struct scsipi_periph *periph = sa->sa_periph;
221
222 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 softc->sc_periph = periph;
224 periph->periph_dev = &softc->sc_device;
225 periph->periph_switch = &ses_switch;
226 periph->periph_openings = 1;
227
228 softc->ses_type = ses_device_type(sa);
229 switch (softc->ses_type) {
230 case SES_SES:
231 case SES_SES_SCSI2:
232 case SES_SES_PASSTHROUGH:
233 softc->ses_vec.softc_init = ses_softc_init;
234 softc->ses_vec.init_enc = ses_init_enc;
235 softc->ses_vec.get_encstat = ses_get_encstat;
236 softc->ses_vec.set_encstat = ses_set_encstat;
237 softc->ses_vec.get_objstat = ses_get_objstat;
238 softc->ses_vec.set_objstat = ses_set_objstat;
239 break;
240 case SES_SAFT:
241 softc->ses_vec.softc_init = safte_softc_init;
242 softc->ses_vec.init_enc = safte_init_enc;
243 softc->ses_vec.get_encstat = safte_get_encstat;
244 softc->ses_vec.set_encstat = safte_set_encstat;
245 softc->ses_vec.get_objstat = safte_get_objstat;
246 softc->ses_vec.set_objstat = safte_set_objstat;
247 break;
248 case SES_SEN:
249 break;
250 case SES_NONE:
251 default:
252 break;
253 }
254
255 switch (softc->ses_type) {
256 default:
257 case SES_NONE:
258 tname = "No SES device";
259 break;
260 case SES_SES_SCSI2:
261 tname = "SCSI-2 SES Device";
262 break;
263 case SES_SES:
264 tname = "SCSI-3 SES Device";
265 break;
266 case SES_SES_PASSTHROUGH:
267 tname = "SES Passthrough Device";
268 break;
269 case SES_SEN:
270 tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 break;
272 case SES_SAFT:
273 tname = "SAF-TE Compliant Device";
274 break;
275 }
276 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278
279
280 static enctyp
281 ses_device_type(sa)
282 struct scsipibus_attach_args *sa;
283 {
284 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285
286 if (inqp == NULL)
287 return (SES_NONE);
288
289 return (ses_type(inqp));
290 }
291
292 int
293 sesopen(devvp, flags, fmt, p)
294 struct vnode *devvp;
295 int flags;
296 int fmt;
297 struct proc *p;
298 {
299 struct ses_softc *softc;
300 int error, unit;
301
302 unit = SESUNIT(devvp->v_rdev);
303 if (unit >= ses_cd.cd_ndevs)
304 return (ENXIO);
305 softc = ses_cd.cd_devs[unit];
306 if (softc == NULL)
307 return (ENXIO);
308
309 if (softc->ses_flags & SES_FLAG_INVALID) {
310 error = ENXIO;
311 goto out;
312 }
313 if (softc->ses_flags & SES_FLAG_OPEN) {
314 error = EBUSY;
315 goto out;
316 }
317 if (softc->ses_vec.softc_init == NULL) {
318 error = ENXIO;
319 goto out;
320 }
321 error = scsipi_adapter_addref(
322 softc->sc_periph->periph_channel->chan_adapter);
323 if (error != 0)
324 goto out;
325
326 devvp->v_devcookie = softc;
327
328 softc->ses_flags |= SES_FLAG_OPEN;
329 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
330 error = (*softc->ses_vec.softc_init)(softc, 1);
331 if (error)
332 softc->ses_flags &= ~SES_FLAG_OPEN;
333 else
334 softc->ses_flags |= SES_FLAG_INITIALIZED;
335 }
336
337 out:
338 return (error);
339 }
340
341 int
342 sesclose(devvp, flags, fmt, p)
343 struct vnode *devvp;
344 int flags;
345 int fmt;
346 struct proc *p;
347 {
348 struct ses_softc *softc = devvp->v_devcookie;
349
350 scsipi_wait_drain(softc->sc_periph);
351 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
352 softc->ses_flags &= ~SES_FLAG_OPEN;
353 return (0);
354 }
355
356 int
357 sesioctl(devvp, cmd, arg_addr, flag, p)
358 struct vnode *devvp;
359 u_long cmd;
360 caddr_t arg_addr;
361 int flag;
362 struct proc *p;
363 {
364 ses_encstat tmp;
365 ses_objstat objs;
366 ses_object obj, *uobj;
367 struct ses_softc *ssc = devvp->v_devcookie;
368 void *addr;
369 int error, i;
370
371
372 if (arg_addr)
373 addr = *((caddr_t *) arg_addr);
374 else
375 addr = NULL;
376
377 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
378
379 /*
380 * Now check to see whether we're initialized or not.
381 */
382 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
383 return (ENODEV);
384 }
385
386 error = 0;
387
388 /*
389 * If this command can change the device's state,
390 * we must have the device open for writing.
391 */
392 switch (cmd) {
393 case SESIOC_GETNOBJ:
394 case SESIOC_GETOBJMAP:
395 case SESIOC_GETENCSTAT:
396 case SESIOC_GETOBJSTAT:
397 break;
398 default:
399 if ((flag & FWRITE) == 0) {
400 return (EBADF);
401 }
402 }
403
404 switch (cmd) {
405 case SESIOC_GETNOBJ:
406 error = copyout(&ssc->ses_nobjects, addr,
407 sizeof (ssc->ses_nobjects));
408 break;
409
410 case SESIOC_GETOBJMAP:
411 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
412 obj.obj_id = i;
413 obj.subencid = ssc->ses_objmap[i].subenclosure;
414 obj.object_type = ssc->ses_objmap[i].enctype;
415 error = copyout(&obj, uobj, sizeof (ses_object));
416 if (error) {
417 break;
418 }
419 }
420 break;
421
422 case SESIOC_GETENCSTAT:
423 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
424 if (error)
425 break;
426 tmp = ssc->ses_encstat & ~ENCI_SVALID;
427 error = copyout(&tmp, addr, sizeof (ses_encstat));
428 ssc->ses_encstat = tmp;
429 break;
430
431 case SESIOC_SETENCSTAT:
432 error = copyin(addr, &tmp, sizeof (ses_encstat));
433 if (error)
434 break;
435 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
436 break;
437
438 case SESIOC_GETOBJSTAT:
439 error = copyin(addr, &objs, sizeof (ses_objstat));
440 if (error)
441 break;
442 if (objs.obj_id >= ssc->ses_nobjects) {
443 error = EINVAL;
444 break;
445 }
446 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
447 if (error)
448 break;
449 error = copyout(&objs, addr, sizeof (ses_objstat));
450 /*
451 * Always (for now) invalidate entry.
452 */
453 ssc->ses_objmap[objs.obj_id].svalid = 0;
454 break;
455
456 case SESIOC_SETOBJSTAT:
457 error = copyin(addr, &objs, sizeof (ses_objstat));
458 if (error)
459 break;
460
461 if (objs.obj_id >= ssc->ses_nobjects) {
462 error = EINVAL;
463 break;
464 }
465 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
466
467 /*
468 * Always (for now) invalidate entry.
469 */
470 ssc->ses_objmap[objs.obj_id].svalid = 0;
471 break;
472
473 case SESIOC_INIT:
474
475 error = (*ssc->ses_vec.init_enc)(ssc);
476 break;
477
478 default:
479 error = scsipi_do_ioctl(ssc->sc_periph,
480 devvp, cmd, addr, flag, p);
481 break;
482 }
483 return (error);
484 }
485
486 static int
487 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
488 {
489 struct scsipi_generic sgen;
490 int dl, flg, error;
491
492 if (dptr) {
493 if ((dl = *dlenp) < 0) {
494 dl = -dl;
495 flg = XS_CTL_DATA_OUT;
496 } else {
497 flg = XS_CTL_DATA_IN;
498 }
499 } else {
500 dl = 0;
501 flg = 0;
502 }
503
504 if (cdbl > sizeof (struct scsipi_generic)) {
505 cdbl = sizeof (struct scsipi_generic);
506 }
507 memcpy(&sgen, cdb, cdbl);
508 #ifndef SCSIDEBUG
509 flg |= XS_CTL_SILENT;
510 #endif
511 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
512 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
513
514 if (error == 0 && dptr)
515 *dlenp = 0;
516
517 return (error);
518 }
519
520 #ifdef __STDC__
521 static void
522 ses_log(struct ses_softc *ssc, const char *fmt, ...)
523 {
524 va_list ap;
525
526 printf("%s: ", ssc->sc_device.dv_xname);
527 va_start(ap, fmt);
528 vprintf(fmt, ap);
529 va_end(ap);
530 }
531 #else
532 static void
533 ses_log(ssc, fmt, va_alist)
534 struct ses_softc *ssc;
535 char *fmt;
536 va_dcl
537 {
538 va_list ap;
539
540 printf("%s: ", ssc->sc_device.dv_xname);
541 va_start(ap, fmt);
542 vprintf(fmt, ap);
543 va_end(ap);
544 }
545 #endif
546
547 /*
548 * The code after this point runs on many platforms,
549 * so forgive the slightly awkward and nonconforming
550 * appearance.
551 */
552
553 /*
554 * Is this a device that supports enclosure services?
555 *
556 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
557 * an SES device. If it happens to be an old UNISYS SEN device, we can
558 * handle that too.
559 */
560
561 #define SAFTE_START 44
562 #define SAFTE_END 50
563 #define SAFTE_LEN SAFTE_END-SAFTE_START
564
565 static enctyp
566 ses_type(inqp)
567 struct scsipi_inquiry_data *inqp;
568 {
569 size_t given_len = inqp->additional_length + 4;
570
571 if (given_len < 8+SEN_ID_LEN)
572 return (SES_NONE);
573
574 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
575 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
576 return (SES_SEN);
577 } else if ((inqp->version & SID_ANSII) > 2) {
578 return (SES_SES);
579 } else {
580 return (SES_SES_SCSI2);
581 }
582 return (SES_NONE);
583 }
584
585 #ifdef SES_ENABLE_PASSTHROUGH
586 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
587 /*
588 * PassThrough Device.
589 */
590 return (SES_SES_PASSTHROUGH);
591 }
592 #endif
593
594 /*
595 * The comparison is short for a reason-
596 * some vendors were chopping it short.
597 */
598
599 if (given_len < SAFTE_END - 2) {
600 return (SES_NONE);
601 }
602
603 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
604 SAFTE_LEN - 2) == 0) {
605 return (SES_SAFT);
606 }
607
608 return (SES_NONE);
609 }
610
611 /*
612 * SES Native Type Device Support
613 */
614
615 /*
616 * SES Diagnostic Page Codes
617 */
618
619 typedef enum {
620 SesConfigPage = 0x1,
621 SesControlPage,
622 #define SesStatusPage SesControlPage
623 SesHelpTxt,
624 SesStringOut,
625 #define SesStringIn SesStringOut
626 SesThresholdOut,
627 #define SesThresholdIn SesThresholdOut
628 SesArrayControl,
629 #define SesArrayStatus SesArrayControl
630 SesElementDescriptor,
631 SesShortStatus
632 } SesDiagPageCodes;
633
634 /*
635 * minimal amounts
636 */
637
638 /*
639 * Minimum amount of data, starting from byte 0, to have
640 * the config header.
641 */
642 #define SES_CFGHDR_MINLEN 12
643
644 /*
645 * Minimum amount of data, starting from byte 0, to have
646 * the config header and one enclosure header.
647 */
648 #define SES_ENCHDR_MINLEN 48
649
650 /*
651 * Take this value, subtract it from VEnclen and you know
652 * the length of the vendor unique bytes.
653 */
654 #define SES_ENCHDR_VMIN 36
655
656 /*
657 * SES Data Structures
658 */
659
660 typedef struct {
661 uint32_t GenCode; /* Generation Code */
662 uint8_t Nsubenc; /* Number of Subenclosures */
663 } SesCfgHdr;
664
665 typedef struct {
666 uint8_t Subencid; /* SubEnclosure Identifier */
667 uint8_t Ntypes; /* # of supported types */
668 uint8_t VEnclen; /* Enclosure Descriptor Length */
669 } SesEncHdr;
670
671 typedef struct {
672 uint8_t encWWN[8]; /* XXX- Not Right Yet */
673 uint8_t encVid[8];
674 uint8_t encPid[16];
675 uint8_t encRev[4];
676 uint8_t encVen[1];
677 } SesEncDesc;
678
679 typedef struct {
680 uint8_t enc_type; /* type of element */
681 uint8_t enc_maxelt; /* maximum supported */
682 uint8_t enc_subenc; /* in SubEnc # N */
683 uint8_t enc_tlen; /* Type Descriptor Text Length */
684 } SesThdr;
685
686 typedef struct {
687 uint8_t comstatus;
688 uint8_t comstat[3];
689 } SesComStat;
690
691 struct typidx {
692 int ses_tidx;
693 int ses_oidx;
694 };
695
696 struct sscfg {
697 uint8_t ses_ntypes; /* total number of types supported */
698
699 /*
700 * We need to keep a type index as well as an
701 * object index for each object in an enclosure.
702 */
703 struct typidx *ses_typidx;
704
705 /*
706 * We also need to keep track of the number of elements
707 * per type of element. This is needed later so that we
708 * can find precisely in the returned status data the
709 * status for the Nth element of the Kth type.
710 */
711 uint8_t * ses_eltmap;
712 };
713
714
715 /*
716 * (de)canonicalization defines
717 */
718 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
719 #define sbit(x, bit) (((uint32_t)(x)) << bit)
720 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
721
722 #define sset16(outp, idx, sval) \
723 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
724 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725
726
727 #define sset24(outp, idx, sval) \
728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
730 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
731
732
733 #define sset32(outp, idx, sval) \
734 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
735 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
736 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738
739 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
740 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
741 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
742 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
743
744 #define sget16(inp, idx, lval) \
745 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
746 (((uint8_t *)(inp))[idx+1]), idx += 2
747
748 #define gget16(inp, idx, lval) \
749 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
750 (((uint8_t *)(inp))[idx+1])
751
752 #define sget24(inp, idx, lval) \
753 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
754 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
755 (((uint8_t *)(inp))[idx+2]), idx += 3
756
757 #define gget24(inp, idx, lval) \
758 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
759 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
760 (((uint8_t *)(inp))[idx+2])
761
762 #define sget32(inp, idx, lval) \
763 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
764 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
765 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
766 (((uint8_t *)(inp))[idx+3]), idx += 4
767
768 #define gget32(inp, idx, lval) \
769 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
770 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
771 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
772 (((uint8_t *)(inp))[idx+3])
773
774 #define SCSZ 0x2000
775 #define CFLEN (256 + SES_ENCHDR_MINLEN)
776
777 /*
778 * Routines specific && private to SES only
779 */
780
781 static int ses_getconfig(ses_softc_t *);
782 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
783 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
784 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
785 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
786 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
787 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
788 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
789
790 static int
791 ses_softc_init(ses_softc_t *ssc, int doinit)
792 {
793 if (doinit == 0) {
794 struct sscfg *cc;
795 if (ssc->ses_nobjects) {
796 SES_FREE(ssc->ses_objmap,
797 ssc->ses_nobjects * sizeof (encobj));
798 ssc->ses_objmap = NULL;
799 }
800 if ((cc = ssc->ses_private) != NULL) {
801 if (cc->ses_eltmap && cc->ses_ntypes) {
802 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
803 cc->ses_eltmap = NULL;
804 cc->ses_ntypes = 0;
805 }
806 if (cc->ses_typidx && ssc->ses_nobjects) {
807 SES_FREE(cc->ses_typidx,
808 ssc->ses_nobjects * sizeof (struct typidx));
809 cc->ses_typidx = NULL;
810 }
811 SES_FREE(cc, sizeof (struct sscfg));
812 ssc->ses_private = NULL;
813 }
814 ssc->ses_nobjects = 0;
815 return (0);
816 }
817 if (ssc->ses_private == NULL) {
818 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
819 }
820 if (ssc->ses_private == NULL) {
821 return (ENOMEM);
822 }
823 ssc->ses_nobjects = 0;
824 ssc->ses_encstat = 0;
825 return (ses_getconfig(ssc));
826 }
827
828 static int
829 ses_init_enc(ses_softc_t *ssc)
830 {
831 return (0);
832 }
833
834 static int
835 ses_get_encstat(ses_softc_t *ssc, int slpflag)
836 {
837 SesComStat ComStat;
838 int status;
839
840 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
841 return (status);
842 }
843 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
844 return (0);
845 }
846
847 static int
848 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
849 {
850 SesComStat ComStat;
851 int status;
852
853 ComStat.comstatus = encstat & 0xf;
854 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
855 return (status);
856 }
857 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
858 return (0);
859 }
860
861 static int
862 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
863 {
864 int i = (int)obp->obj_id;
865
866 if (ssc->ses_objmap[i].svalid == 0) {
867 SesComStat ComStat;
868 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
869 if (err)
870 return (err);
871 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
872 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
873 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
874 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
875 ssc->ses_objmap[i].svalid = 1;
876 }
877 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
878 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
879 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
880 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
881 return (0);
882 }
883
884 static int
885 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
886 {
887 SesComStat ComStat;
888 int err;
889 /*
890 * If this is clear, we don't do diddly.
891 */
892 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
893 return (0);
894 }
895 ComStat.comstatus = obp->cstat[0];
896 ComStat.comstat[0] = obp->cstat[1];
897 ComStat.comstat[1] = obp->cstat[2];
898 ComStat.comstat[2] = obp->cstat[3];
899 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
900 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
901 return (err);
902 }
903
904 static int
905 ses_getconfig(ses_softc_t *ssc)
906 {
907 struct sscfg *cc;
908 SesCfgHdr cf;
909 SesEncHdr hd;
910 SesEncDesc *cdp;
911 SesThdr thdr;
912 int err, amt, i, nobj, ntype, maxima;
913 char storage[CFLEN], *sdata;
914 static char cdb[6] = {
915 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
916 };
917
918 cc = ssc->ses_private;
919 if (cc == NULL) {
920 return (ENXIO);
921 }
922
923 sdata = SES_MALLOC(SCSZ);
924 if (sdata == NULL)
925 return (ENOMEM);
926
927 amt = SCSZ;
928 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
929 if (err) {
930 SES_FREE(sdata, SCSZ);
931 return (err);
932 }
933 amt = SCSZ - amt;
934
935 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
936 SES_LOG(ssc, "Unable to parse SES Config Header\n");
937 SES_FREE(sdata, SCSZ);
938 return (EIO);
939 }
940 if (amt < SES_ENCHDR_MINLEN) {
941 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
942 SES_FREE(sdata, SCSZ);
943 return (EIO);
944 }
945
946 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
947
948 /*
949 * Now waltz through all the subenclosures toting up the
950 * number of types available in each. For this, we only
951 * really need the enclosure header. However, we get the
952 * enclosure descriptor for debug purposes, as well
953 * as self-consistency checking purposes.
954 */
955
956 maxima = cf.Nsubenc + 1;
957 cdp = (SesEncDesc *) storage;
958 for (ntype = i = 0; i < maxima; i++) {
959 MEMZERO((caddr_t)cdp, sizeof (*cdp));
960 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
961 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
962 SES_FREE(sdata, SCSZ);
963 return (EIO);
964 }
965 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
966 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
967
968 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
969 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
970 SES_FREE(sdata, SCSZ);
971 return (EIO);
972 }
973 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
974 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
975 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
976 cdp->encWWN[6], cdp->encWWN[7]);
977 ntype += hd.Ntypes;
978 }
979
980 /*
981 * Now waltz through all the types that are available, getting
982 * the type header so we can start adding up the number of
983 * objects available.
984 */
985 for (nobj = i = 0; i < ntype; i++) {
986 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
987 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
988 SES_FREE(sdata, SCSZ);
989 return (EIO);
990 }
991 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
992 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
993 thdr.enc_subenc, thdr.enc_tlen);
994 nobj += thdr.enc_maxelt;
995 }
996
997
998 /*
999 * Now allocate the object array and type map.
1000 */
1001
1002 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1003 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1004 cc->ses_eltmap = SES_MALLOC(ntype);
1005
1006 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1007 cc->ses_eltmap == NULL) {
1008 if (ssc->ses_objmap) {
1009 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1010 ssc->ses_objmap = NULL;
1011 }
1012 if (cc->ses_typidx) {
1013 SES_FREE(cc->ses_typidx,
1014 (nobj * sizeof (struct typidx)));
1015 cc->ses_typidx = NULL;
1016 }
1017 if (cc->ses_eltmap) {
1018 SES_FREE(cc->ses_eltmap, ntype);
1019 cc->ses_eltmap = NULL;
1020 }
1021 SES_FREE(sdata, SCSZ);
1022 return (ENOMEM);
1023 }
1024 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1025 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1026 MEMZERO(cc->ses_eltmap, ntype);
1027 cc->ses_ntypes = (uint8_t) ntype;
1028 ssc->ses_nobjects = nobj;
1029
1030 /*
1031 * Now waltz through the # of types again to fill in the types
1032 * (and subenclosure ids) of the allocated objects.
1033 */
1034 nobj = 0;
1035 for (i = 0; i < ntype; i++) {
1036 int j;
1037 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1038 continue;
1039 }
1040 cc->ses_eltmap[i] = thdr.enc_maxelt;
1041 for (j = 0; j < thdr.enc_maxelt; j++) {
1042 cc->ses_typidx[nobj].ses_tidx = i;
1043 cc->ses_typidx[nobj].ses_oidx = j;
1044 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1045 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1046 }
1047 }
1048 SES_FREE(sdata, SCSZ);
1049 return (0);
1050 }
1051
1052 static int
1053 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1054 {
1055 struct sscfg *cc;
1056 int err, amt, bufsiz, tidx, oidx;
1057 char cdb[6], *sdata;
1058
1059 cc = ssc->ses_private;
1060 if (cc == NULL) {
1061 return (ENXIO);
1062 }
1063
1064 /*
1065 * If we're just getting overall enclosure status,
1066 * we only need 2 bytes of data storage.
1067 *
1068 * If we're getting anything else, we know how much
1069 * storage we need by noting that starting at offset
1070 * 8 in returned data, all object status bytes are 4
1071 * bytes long, and are stored in chunks of types(M)
1072 * and nth+1 instances of type M.
1073 */
1074 if (objid == -1) {
1075 bufsiz = 2;
1076 } else {
1077 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1078 }
1079 sdata = SES_MALLOC(bufsiz);
1080 if (sdata == NULL)
1081 return (ENOMEM);
1082
1083 cdb[0] = RECEIVE_DIAGNOSTIC;
1084 cdb[1] = 1;
1085 cdb[2] = SesStatusPage;
1086 cdb[3] = bufsiz >> 8;
1087 cdb[4] = bufsiz & 0xff;
1088 cdb[5] = 0;
1089 amt = bufsiz;
1090 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1091 if (err) {
1092 SES_FREE(sdata, bufsiz);
1093 return (err);
1094 }
1095 amt = bufsiz - amt;
1096
1097 if (objid == -1) {
1098 tidx = -1;
1099 oidx = -1;
1100 } else {
1101 tidx = cc->ses_typidx[objid].ses_tidx;
1102 oidx = cc->ses_typidx[objid].ses_oidx;
1103 }
1104 if (in) {
1105 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1106 err = ENODEV;
1107 }
1108 } else {
1109 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1110 err = ENODEV;
1111 } else {
1112 cdb[0] = SEND_DIAGNOSTIC;
1113 cdb[1] = 0x10;
1114 cdb[2] = 0;
1115 cdb[3] = bufsiz >> 8;
1116 cdb[4] = bufsiz & 0xff;
1117 cdb[5] = 0;
1118 amt = -bufsiz;
1119 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1120 }
1121 }
1122 SES_FREE(sdata, bufsiz);
1123 return (0);
1124 }
1125
1126
1127 /*
1128 * Routines to parse returned SES data structures.
1129 * Architecture and compiler independent.
1130 */
1131
1132 static int
1133 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1134 {
1135 if (buflen < SES_CFGHDR_MINLEN) {
1136 return (-1);
1137 }
1138 gget8(buffer, 1, cfp->Nsubenc);
1139 gget32(buffer, 4, cfp->GenCode);
1140 return (0);
1141 }
1142
1143 static int
1144 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1145 {
1146 int s, off = 8;
1147 for (s = 0; s < SubEncId; s++) {
1148 if (off + 3 > amt)
1149 return (-1);
1150 off += buffer[off+3] + 4;
1151 }
1152 if (off + 3 > amt) {
1153 return (-1);
1154 }
1155 gget8(buffer, off+1, chp->Subencid);
1156 gget8(buffer, off+2, chp->Ntypes);
1157 gget8(buffer, off+3, chp->VEnclen);
1158 return (0);
1159 }
1160
1161 static int
1162 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1163 {
1164 int s, e, enclen, off = 8;
1165 for (s = 0; s < SubEncId; s++) {
1166 if (off + 3 > amt)
1167 return (-1);
1168 off += buffer[off+3] + 4;
1169 }
1170 if (off + 3 > amt) {
1171 return (-1);
1172 }
1173 gget8(buffer, off+3, enclen);
1174 off += 4;
1175 if (off >= amt)
1176 return (-1);
1177
1178 e = off + enclen;
1179 if (e > amt) {
1180 e = amt;
1181 }
1182 MEMCPY(cdp, &buffer[off], e - off);
1183 return (0);
1184 }
1185
1186 static int
1187 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1188 {
1189 int s, off = 8;
1190
1191 if (amt < SES_CFGHDR_MINLEN) {
1192 return (-1);
1193 }
1194 for (s = 0; s < buffer[1]; s++) {
1195 if (off + 3 > amt)
1196 return (-1);
1197 off += buffer[off+3] + 4;
1198 }
1199 if (off + 3 > amt) {
1200 return (-1);
1201 }
1202 off += buffer[off+3] + 4 + (nth * 4);
1203 if (amt < (off + 4))
1204 return (-1);
1205
1206 gget8(buffer, off++, thp->enc_type);
1207 gget8(buffer, off++, thp->enc_maxelt);
1208 gget8(buffer, off++, thp->enc_subenc);
1209 gget8(buffer, off, thp->enc_tlen);
1210 return (0);
1211 }
1212
1213 /*
1214 * This function needs a little explanation.
1215 *
1216 * The arguments are:
1217 *
1218 *
1219 * char *b, int amt
1220 *
1221 * These describes the raw input SES status data and length.
1222 *
1223 * uint8_t *ep
1224 *
1225 * This is a map of the number of types for each element type
1226 * in the enclosure.
1227 *
1228 * int elt
1229 *
1230 * This is the element type being sought. If elt is -1,
1231 * then overall enclosure status is being sought.
1232 *
1233 * int elm
1234 *
1235 * This is the ordinal Mth element of type elt being sought.
1236 *
1237 * SesComStat *sp
1238 *
1239 * This is the output area to store the status for
1240 * the Mth element of type Elt.
1241 */
1242
1243 static int
1244 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1245 {
1246 int idx, i;
1247
1248 /*
1249 * If it's overall enclosure status being sought, get that.
1250 * We need at least 2 bytes of status data to get that.
1251 */
1252 if (elt == -1) {
1253 if (amt < 2)
1254 return (-1);
1255 gget8(b, 1, sp->comstatus);
1256 sp->comstat[0] = 0;
1257 sp->comstat[1] = 0;
1258 sp->comstat[2] = 0;
1259 return (0);
1260 }
1261
1262 /*
1263 * Check to make sure that the Mth element is legal for type Elt.
1264 */
1265
1266 if (elm >= ep[elt])
1267 return (-1);
1268
1269 /*
1270 * Starting at offset 8, start skipping over the storage
1271 * for the element types we're not interested in.
1272 */
1273 for (idx = 8, i = 0; i < elt; i++) {
1274 idx += ((ep[i] + 1) * 4);
1275 }
1276
1277 /*
1278 * Skip over Overall status for this element type.
1279 */
1280 idx += 4;
1281
1282 /*
1283 * And skip to the index for the Mth element that we're going for.
1284 */
1285 idx += (4 * elm);
1286
1287 /*
1288 * Make sure we haven't overflowed the buffer.
1289 */
1290 if (idx+4 > amt)
1291 return (-1);
1292
1293 /*
1294 * Retrieve the status.
1295 */
1296 gget8(b, idx++, sp->comstatus);
1297 gget8(b, idx++, sp->comstat[0]);
1298 gget8(b, idx++, sp->comstat[1]);
1299 gget8(b, idx++, sp->comstat[2]);
1300 #if 0
1301 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1302 #endif
1303 return (0);
1304 }
1305
1306 /*
1307 * This is the mirror function to ses_decode, but we set the 'select'
1308 * bit for the object which we're interested in. All other objects,
1309 * after a status fetch, should have that bit off. Hmm. It'd be easy
1310 * enough to ensure this, so we will.
1311 */
1312
1313 static int
1314 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1315 {
1316 int idx, i;
1317
1318 /*
1319 * If it's overall enclosure status being sought, get that.
1320 * We need at least 2 bytes of status data to get that.
1321 */
1322 if (elt == -1) {
1323 if (amt < 2)
1324 return (-1);
1325 i = 0;
1326 sset8(b, i, 0);
1327 sset8(b, i, sp->comstatus & 0xf);
1328 #if 0
1329 PRINTF("set EncStat %x\n", sp->comstatus);
1330 #endif
1331 return (0);
1332 }
1333
1334 /*
1335 * Check to make sure that the Mth element is legal for type Elt.
1336 */
1337
1338 if (elm >= ep[elt])
1339 return (-1);
1340
1341 /*
1342 * Starting at offset 8, start skipping over the storage
1343 * for the element types we're not interested in.
1344 */
1345 for (idx = 8, i = 0; i < elt; i++) {
1346 idx += ((ep[i] + 1) * 4);
1347 }
1348
1349 /*
1350 * Skip over Overall status for this element type.
1351 */
1352 idx += 4;
1353
1354 /*
1355 * And skip to the index for the Mth element that we're going for.
1356 */
1357 idx += (4 * elm);
1358
1359 /*
1360 * Make sure we haven't overflowed the buffer.
1361 */
1362 if (idx+4 > amt)
1363 return (-1);
1364
1365 /*
1366 * Set the status.
1367 */
1368 sset8(b, idx, sp->comstatus);
1369 sset8(b, idx, sp->comstat[0]);
1370 sset8(b, idx, sp->comstat[1]);
1371 sset8(b, idx, sp->comstat[2]);
1372 idx -= 4;
1373
1374 #if 0
1375 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1376 elt, elm, idx, sp->comstatus, sp->comstat[0],
1377 sp->comstat[1], sp->comstat[2]);
1378 #endif
1379
1380 /*
1381 * Now make sure all other 'Select' bits are off.
1382 */
1383 for (i = 8; i < amt; i += 4) {
1384 if (i != idx)
1385 b[i] &= ~0x80;
1386 }
1387 /*
1388 * And make sure the INVOP bit is clear.
1389 */
1390 b[2] &= ~0x10;
1391
1392 return (0);
1393 }
1394
1395 /*
1396 * SAF-TE Type Device Emulation
1397 */
1398
1399 static int safte_getconfig(ses_softc_t *);
1400 static int safte_rdstat(ses_softc_t *, int);;
1401 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1402 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1403 static void wrslot_stat(ses_softc_t *, int);
1404 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1405
1406 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1407 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1408 /*
1409 * SAF-TE specific defines- Mandatory ones only...
1410 */
1411
1412 /*
1413 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1414 */
1415 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1416 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1417 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1418
1419 /*
1420 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1421 */
1422 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1423 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1424 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1425 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1426 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1427
1428
1429 #define SAFT_SCRATCH 64
1430 #define NPSEUDO_THERM 16
1431 #define NPSEUDO_ALARM 1
1432 struct scfg {
1433 /*
1434 * Cached Configuration
1435 */
1436 uint8_t Nfans; /* Number of Fans */
1437 uint8_t Npwr; /* Number of Power Supplies */
1438 uint8_t Nslots; /* Number of Device Slots */
1439 uint8_t DoorLock; /* Door Lock Installed */
1440 uint8_t Ntherm; /* Number of Temperature Sensors */
1441 uint8_t Nspkrs; /* Number of Speakers */
1442 uint8_t Nalarm; /* Number of Alarms (at least one) */
1443 /*
1444 * Cached Flag Bytes for Global Status
1445 */
1446 uint8_t flag1;
1447 uint8_t flag2;
1448 /*
1449 * What object index ID is where various slots start.
1450 */
1451 uint8_t pwroff;
1452 uint8_t slotoff;
1453 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1454 };
1455
1456 #define SAFT_FLG1_ALARM 0x1
1457 #define SAFT_FLG1_GLOBFAIL 0x2
1458 #define SAFT_FLG1_GLOBWARN 0x4
1459 #define SAFT_FLG1_ENCPWROFF 0x8
1460 #define SAFT_FLG1_ENCFANFAIL 0x10
1461 #define SAFT_FLG1_ENCPWRFAIL 0x20
1462 #define SAFT_FLG1_ENCDRVFAIL 0x40
1463 #define SAFT_FLG1_ENCDRVWARN 0x80
1464
1465 #define SAFT_FLG2_LOCKDOOR 0x4
1466 #define SAFT_PRIVATE sizeof (struct scfg)
1467
1468 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1469 #define SAFT_BAIL(r, x, k, l) \
1470 if (r >= x) { \
1471 SES_LOG(ssc, safte_2little, x, __LINE__);\
1472 SES_FREE(k, l); \
1473 return (EIO); \
1474 }
1475
1476
1477 int
1478 safte_softc_init(ses_softc_t *ssc, int doinit)
1479 {
1480 int err, i, r;
1481 struct scfg *cc;
1482
1483 if (doinit == 0) {
1484 if (ssc->ses_nobjects) {
1485 if (ssc->ses_objmap) {
1486 SES_FREE(ssc->ses_objmap,
1487 ssc->ses_nobjects * sizeof (encobj));
1488 ssc->ses_objmap = NULL;
1489 }
1490 ssc->ses_nobjects = 0;
1491 }
1492 if (ssc->ses_private) {
1493 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1494 ssc->ses_private = NULL;
1495 }
1496 return (0);
1497 }
1498
1499 if (ssc->ses_private == NULL) {
1500 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1501 if (ssc->ses_private == NULL) {
1502 return (ENOMEM);
1503 }
1504 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1505 }
1506
1507 ssc->ses_nobjects = 0;
1508 ssc->ses_encstat = 0;
1509
1510 if ((err = safte_getconfig(ssc)) != 0) {
1511 return (err);
1512 }
1513
1514 /*
1515 * The number of objects here, as well as that reported by the
1516 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1517 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1518 */
1519 cc = ssc->ses_private;
1520 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1521 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1522 ssc->ses_objmap = (encobj *)
1523 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1524 if (ssc->ses_objmap == NULL) {
1525 return (ENOMEM);
1526 }
1527 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1528
1529 r = 0;
1530 /*
1531 * Note that this is all arranged for the convenience
1532 * in later fetches of status.
1533 */
1534 for (i = 0; i < cc->Nfans; i++)
1535 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1536 cc->pwroff = (uint8_t) r;
1537 for (i = 0; i < cc->Npwr; i++)
1538 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1539 for (i = 0; i < cc->DoorLock; i++)
1540 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1541 for (i = 0; i < cc->Nspkrs; i++)
1542 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1543 for (i = 0; i < cc->Ntherm; i++)
1544 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1545 for (i = 0; i < NPSEUDO_THERM; i++)
1546 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1547 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1548 cc->slotoff = (uint8_t) r;
1549 for (i = 0; i < cc->Nslots; i++)
1550 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1551 return (0);
1552 }
1553
1554 int
1555 safte_init_enc(ses_softc_t *ssc)
1556 {
1557 int err, amt;
1558 char *sdata;
1559 static char cdb0[6] = { SEND_DIAGNOSTIC };
1560 static char cdb[10] =
1561 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1562
1563 sdata = SES_MALLOC(SAFT_SCRATCH);
1564 if (sdata == NULL)
1565 return (ENOMEM);
1566
1567 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1568 if (err) {
1569 SES_FREE(sdata, SAFT_SCRATCH);
1570 return (err);
1571 }
1572 sdata[0] = SAFTE_WT_GLOBAL;
1573 MEMZERO(&sdata[1], 15);
1574 amt = -SAFT_SCRATCH;
1575 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1576 SES_FREE(sdata, SAFT_SCRATCH);
1577 return (err);
1578 }
1579
1580 int
1581 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1582 {
1583 return (safte_rdstat(ssc, slpflg));
1584 }
1585
1586 int
1587 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1588 {
1589 struct scfg *cc = ssc->ses_private;
1590 if (cc == NULL)
1591 return (0);
1592 /*
1593 * Since SAF-TE devices aren't necessarily sticky in terms
1594 * of state, make our soft copy of enclosure status 'sticky'-
1595 * that is, things set in enclosure status stay set (as implied
1596 * by conditions set in reading object status) until cleared.
1597 */
1598 ssc->ses_encstat &= ~ALL_ENC_STAT;
1599 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1600 ssc->ses_encstat |= ENCI_SVALID;
1601 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1602 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1603 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1604 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1605 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1606 }
1607 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1608 }
1609
1610 int
1611 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1612 {
1613 int i = (int)obp->obj_id;
1614
1615 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1616 (ssc->ses_objmap[i].svalid) == 0) {
1617 int err = safte_rdstat(ssc, slpflg);
1618 if (err)
1619 return (err);
1620 }
1621 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1622 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1623 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1624 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1625 return (0);
1626 }
1627
1628
1629 int
1630 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1631 {
1632 int idx, err;
1633 encobj *ep;
1634 struct scfg *cc;
1635
1636
1637 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1638 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1639 obp->cstat[3]);
1640
1641 /*
1642 * If this is clear, we don't do diddly.
1643 */
1644 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1645 return (0);
1646 }
1647
1648 err = 0;
1649 /*
1650 * Check to see if the common bits are set and do them first.
1651 */
1652 if (obp->cstat[0] & ~SESCTL_CSEL) {
1653 err = set_objstat_sel(ssc, obp, slp);
1654 if (err)
1655 return (err);
1656 }
1657
1658 cc = ssc->ses_private;
1659 if (cc == NULL)
1660 return (0);
1661
1662 idx = (int)obp->obj_id;
1663 ep = &ssc->ses_objmap[idx];
1664
1665 switch (ep->enctype) {
1666 case SESTYP_DEVICE:
1667 {
1668 uint8_t slotop = 0;
1669 /*
1670 * XXX: I should probably cache the previous state
1671 * XXX: of SESCTL_DEVOFF so that when it goes from
1672 * XXX: true to false I can then set PREPARE FOR OPERATION
1673 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1674 */
1675 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1676 slotop |= 0x2;
1677 }
1678 if (obp->cstat[2] & SESCTL_RQSID) {
1679 slotop |= 0x4;
1680 }
1681 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1682 slotop, slp);
1683 if (err)
1684 return (err);
1685 if (obp->cstat[3] & SESCTL_RQSFLT) {
1686 ep->priv |= 0x2;
1687 } else {
1688 ep->priv &= ~0x2;
1689 }
1690 if (ep->priv & 0xc6) {
1691 ep->priv &= ~0x1;
1692 } else {
1693 ep->priv |= 0x1; /* no errors */
1694 }
1695 wrslot_stat(ssc, slp);
1696 break;
1697 }
1698 case SESTYP_POWER:
1699 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1700 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1701 } else {
1702 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1703 }
1704 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1705 cc->flag2, 0, slp);
1706 if (err)
1707 return (err);
1708 if (obp->cstat[3] & SESCTL_RQSTON) {
1709 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1710 idx - cc->pwroff, 0, 0, slp);
1711 } else {
1712 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1713 idx - cc->pwroff, 0, 1, slp);
1714 }
1715 break;
1716 case SESTYP_FAN:
1717 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1718 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1719 } else {
1720 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1721 }
1722 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1723 cc->flag2, 0, slp);
1724 if (err)
1725 return (err);
1726 if (obp->cstat[3] & SESCTL_RQSTON) {
1727 uint8_t fsp;
1728 if ((obp->cstat[3] & 0x7) == 7) {
1729 fsp = 4;
1730 } else if ((obp->cstat[3] & 0x7) == 6) {
1731 fsp = 3;
1732 } else if ((obp->cstat[3] & 0x7) == 4) {
1733 fsp = 2;
1734 } else {
1735 fsp = 1;
1736 }
1737 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1738 } else {
1739 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1740 }
1741 break;
1742 case SESTYP_DOORLOCK:
1743 if (obp->cstat[3] & 0x1) {
1744 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1745 } else {
1746 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1747 }
1748 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1749 cc->flag2, 0, slp);
1750 break;
1751 case SESTYP_ALARM:
1752 /*
1753 * On all nonzero but the 'muted' bit, we turn on the alarm,
1754 */
1755 obp->cstat[3] &= ~0xa;
1756 if (obp->cstat[3] & 0x40) {
1757 cc->flag2 &= ~SAFT_FLG1_ALARM;
1758 } else if (obp->cstat[3] != 0) {
1759 cc->flag2 |= SAFT_FLG1_ALARM;
1760 } else {
1761 cc->flag2 &= ~SAFT_FLG1_ALARM;
1762 }
1763 ep->priv = obp->cstat[3];
1764 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1765 cc->flag2, 0, slp);
1766 break;
1767 default:
1768 break;
1769 }
1770 ep->svalid = 0;
1771 return (0);
1772 }
1773
1774 static int
1775 safte_getconfig(ses_softc_t *ssc)
1776 {
1777 struct scfg *cfg;
1778 int err, amt;
1779 char *sdata;
1780 static char cdb[10] =
1781 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1782
1783 cfg = ssc->ses_private;
1784 if (cfg == NULL)
1785 return (ENXIO);
1786
1787 sdata = SES_MALLOC(SAFT_SCRATCH);
1788 if (sdata == NULL)
1789 return (ENOMEM);
1790
1791 amt = SAFT_SCRATCH;
1792 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1793 if (err) {
1794 SES_FREE(sdata, SAFT_SCRATCH);
1795 return (err);
1796 }
1797 amt = SAFT_SCRATCH - amt;
1798 if (amt < 6) {
1799 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1800 SES_FREE(sdata, SAFT_SCRATCH);
1801 return (EIO);
1802 }
1803 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1804 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1805 cfg->Nfans = sdata[0];
1806 cfg->Npwr = sdata[1];
1807 cfg->Nslots = sdata[2];
1808 cfg->DoorLock = sdata[3];
1809 cfg->Ntherm = sdata[4];
1810 cfg->Nspkrs = sdata[5];
1811 cfg->Nalarm = NPSEUDO_ALARM;
1812 SES_FREE(sdata, SAFT_SCRATCH);
1813 return (0);
1814 }
1815
1816 static int
1817 safte_rdstat(ses_softc_t *ssc, int slpflg)
1818 {
1819 int err, oid, r, i, hiwater, nitems, amt;
1820 uint16_t tempflags;
1821 size_t buflen;
1822 uint8_t status, oencstat;
1823 char *sdata, cdb[10];
1824 struct scfg *cc = ssc->ses_private;
1825
1826
1827 /*
1828 * The number of objects overstates things a bit,
1829 * both for the bogus 'thermometer' entries and
1830 * the drive status (which isn't read at the same
1831 * time as the enclosure status), but that's okay.
1832 */
1833 buflen = 4 * cc->Nslots;
1834 if (ssc->ses_nobjects > buflen)
1835 buflen = ssc->ses_nobjects;
1836 sdata = SES_MALLOC(buflen);
1837 if (sdata == NULL)
1838 return (ENOMEM);
1839
1840 cdb[0] = READ_BUFFER;
1841 cdb[1] = 1;
1842 cdb[2] = SAFTE_RD_RDESTS;
1843 cdb[3] = 0;
1844 cdb[4] = 0;
1845 cdb[5] = 0;
1846 cdb[6] = 0;
1847 cdb[7] = (buflen >> 8) & 0xff;
1848 cdb[8] = buflen & 0xff;
1849 cdb[9] = 0;
1850 amt = buflen;
1851 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1852 if (err) {
1853 SES_FREE(sdata, buflen);
1854 return (err);
1855 }
1856 hiwater = buflen - amt;
1857
1858
1859 /*
1860 * invalidate all status bits.
1861 */
1862 for (i = 0; i < ssc->ses_nobjects; i++)
1863 ssc->ses_objmap[i].svalid = 0;
1864 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1865 ssc->ses_encstat = 0;
1866
1867
1868 /*
1869 * Now parse returned buffer.
1870 * If we didn't get enough data back,
1871 * that's considered a fatal error.
1872 */
1873 oid = r = 0;
1874
1875 for (nitems = i = 0; i < cc->Nfans; i++) {
1876 SAFT_BAIL(r, hiwater, sdata, buflen);
1877 /*
1878 * 0 = Fan Operational
1879 * 1 = Fan is malfunctioning
1880 * 2 = Fan is not present
1881 * 0x80 = Unknown or Not Reportable Status
1882 */
1883 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1884 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1885 switch ((int)(uint8_t)sdata[r]) {
1886 case 0:
1887 nitems++;
1888 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1889 /*
1890 * We could get fancier and cache
1891 * fan speeds that we have set, but
1892 * that isn't done now.
1893 */
1894 ssc->ses_objmap[oid].encstat[3] = 7;
1895 break;
1896
1897 case 1:
1898 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1899 /*
1900 * FAIL and FAN STOPPED synthesized
1901 */
1902 ssc->ses_objmap[oid].encstat[3] = 0x40;
1903 /*
1904 * Enclosure marked with CRITICAL error
1905 * if only one fan or no thermometers,
1906 * else the NONCRITICAL error is set.
1907 */
1908 if (cc->Nfans == 1 || cc->Ntherm == 0)
1909 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1910 else
1911 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1912 break;
1913 case 2:
1914 ssc->ses_objmap[oid].encstat[0] =
1915 SES_OBJSTAT_NOTINSTALLED;
1916 ssc->ses_objmap[oid].encstat[3] = 0;
1917 /*
1918 * Enclosure marked with CRITICAL error
1919 * if only one fan or no thermometers,
1920 * else the NONCRITICAL error is set.
1921 */
1922 if (cc->Nfans == 1)
1923 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1924 else
1925 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1926 break;
1927 case 0x80:
1928 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1929 ssc->ses_objmap[oid].encstat[3] = 0;
1930 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1931 break;
1932 default:
1933 ssc->ses_objmap[oid].encstat[0] =
1934 SES_OBJSTAT_UNSUPPORTED;
1935 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1936 sdata[r] & 0xff);
1937 break;
1938 }
1939 ssc->ses_objmap[oid++].svalid = 1;
1940 r++;
1941 }
1942
1943 /*
1944 * No matter how you cut it, no cooling elements when there
1945 * should be some there is critical.
1946 */
1947 if (cc->Nfans && nitems == 0) {
1948 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1949 }
1950
1951
1952 for (i = 0; i < cc->Npwr; i++) {
1953 SAFT_BAIL(r, hiwater, sdata, buflen);
1954 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1955 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1956 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1957 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1958 switch ((uint8_t)sdata[r]) {
1959 case 0x00: /* pws operational and on */
1960 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1961 break;
1962 case 0x01: /* pws operational and off */
1963 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1964 ssc->ses_objmap[oid].encstat[3] = 0x10;
1965 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1966 break;
1967 case 0x10: /* pws is malfunctioning and commanded on */
1968 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1969 ssc->ses_objmap[oid].encstat[3] = 0x61;
1970 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1971 break;
1972
1973 case 0x11: /* pws is malfunctioning and commanded off */
1974 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1975 ssc->ses_objmap[oid].encstat[3] = 0x51;
1976 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1977 break;
1978 case 0x20: /* pws is not present */
1979 ssc->ses_objmap[oid].encstat[0] =
1980 SES_OBJSTAT_NOTINSTALLED;
1981 ssc->ses_objmap[oid].encstat[3] = 0;
1982 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1983 break;
1984 case 0x21: /* pws is present */
1985 /*
1986 * This is for enclosures that cannot tell whether the
1987 * device is on or malfunctioning, but know that it is
1988 * present. Just fall through.
1989 */
1990 /* FALLTHROUGH */
1991 case 0x80: /* Unknown or Not Reportable Status */
1992 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1993 ssc->ses_objmap[oid].encstat[3] = 0;
1994 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1995 break;
1996 default:
1997 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1998 i, sdata[r] & 0xff);
1999 break;
2000 }
2001 ssc->ses_objmap[oid++].svalid = 1;
2002 r++;
2003 }
2004
2005 /*
2006 * Skip over Slot SCSI IDs
2007 */
2008 r += cc->Nslots;
2009
2010 /*
2011 * We always have doorlock status, no matter what,
2012 * but we only save the status if we have one.
2013 */
2014 SAFT_BAIL(r, hiwater, sdata, buflen);
2015 if (cc->DoorLock) {
2016 /*
2017 * 0 = Door Locked
2018 * 1 = Door Unlocked, or no Lock Installed
2019 * 0x80 = Unknown or Not Reportable Status
2020 */
2021 ssc->ses_objmap[oid].encstat[1] = 0;
2022 ssc->ses_objmap[oid].encstat[2] = 0;
2023 switch ((uint8_t)sdata[r]) {
2024 case 0:
2025 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2026 ssc->ses_objmap[oid].encstat[3] = 0;
2027 break;
2028 case 1:
2029 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2030 ssc->ses_objmap[oid].encstat[3] = 1;
2031 break;
2032 case 0x80:
2033 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2034 ssc->ses_objmap[oid].encstat[3] = 0;
2035 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2036 break;
2037 default:
2038 ssc->ses_objmap[oid].encstat[0] =
2039 SES_OBJSTAT_UNSUPPORTED;
2040 SES_LOG(ssc, "unknown lock status 0x%x\n",
2041 sdata[r] & 0xff);
2042 break;
2043 }
2044 ssc->ses_objmap[oid++].svalid = 1;
2045 }
2046 r++;
2047
2048 /*
2049 * We always have speaker status, no matter what,
2050 * but we only save the status if we have one.
2051 */
2052 SAFT_BAIL(r, hiwater, sdata, buflen);
2053 if (cc->Nspkrs) {
2054 ssc->ses_objmap[oid].encstat[1] = 0;
2055 ssc->ses_objmap[oid].encstat[2] = 0;
2056 if (sdata[r] == 1) {
2057 /*
2058 * We need to cache tone urgency indicators.
2059 * Someday.
2060 */
2061 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2062 ssc->ses_objmap[oid].encstat[3] = 0x8;
2063 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2064 } else if (sdata[r] == 0) {
2065 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2066 ssc->ses_objmap[oid].encstat[3] = 0;
2067 } else {
2068 ssc->ses_objmap[oid].encstat[0] =
2069 SES_OBJSTAT_UNSUPPORTED;
2070 ssc->ses_objmap[oid].encstat[3] = 0;
2071 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2072 sdata[r] & 0xff);
2073 }
2074 ssc->ses_objmap[oid++].svalid = 1;
2075 }
2076 r++;
2077
2078 for (i = 0; i < cc->Ntherm; i++) {
2079 SAFT_BAIL(r, hiwater, sdata, buflen);
2080 /*
2081 * Status is a range from -10 to 245 deg Celsius,
2082 * which we need to normalize to -20 to -245 according
2083 * to the latest SCSI spec, which makes little
2084 * sense since this would overflow an 8bit value.
2085 * Well, still, the base normalization is -20,
2086 * not -10, so we have to adjust.
2087 *
2088 * So what's over and under temperature?
2089 * Hmm- we'll state that 'normal' operating
2090 * is 10 to 40 deg Celsius.
2091 */
2092
2093 /*
2094 * Actually.... All of the units that people out in the world
2095 * seem to have do not come even close to setting a value that
2096 * complies with this spec.
2097 *
2098 * The closest explanation I could find was in an
2099 * LSI-Logic manual, which seemed to indicate that
2100 * this value would be set by whatever the I2C code
2101 * would interpolate from the output of an LM75
2102 * temperature sensor.
2103 *
2104 * This means that it is impossible to use the actual
2105 * numeric value to predict anything. But we don't want
2106 * to lose the value. So, we'll propagate the *uncorrected*
2107 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2108 * temperature flags for warnings.
2109 */
2110 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2111 ssc->ses_objmap[oid].encstat[1] = 0;
2112 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2113 ssc->ses_objmap[oid].encstat[3] = 0;;
2114 ssc->ses_objmap[oid++].svalid = 1;
2115 r++;
2116 }
2117
2118 /*
2119 * Now, for "pseudo" thermometers, we have two bytes
2120 * of information in enclosure status- 16 bits. Actually,
2121 * the MSB is a single TEMP ALERT flag indicating whether
2122 * any other bits are set, but, thanks to fuzzy thinking,
2123 * in the SAF-TE spec, this can also be set even if no
2124 * other bits are set, thus making this really another
2125 * binary temperature sensor.
2126 */
2127
2128 SAFT_BAIL(r, hiwater, sdata, buflen);
2129 tempflags = sdata[r++];
2130 SAFT_BAIL(r, hiwater, sdata, buflen);
2131 tempflags |= (tempflags << 8) | sdata[r++];
2132
2133 for (i = 0; i < NPSEUDO_THERM; i++) {
2134 ssc->ses_objmap[oid].encstat[1] = 0;
2135 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2136 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2137 ssc->ses_objmap[4].encstat[2] = 0xff;
2138 /*
2139 * Set 'over temperature' failure.
2140 */
2141 ssc->ses_objmap[oid].encstat[3] = 8;
2142 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2143 } else {
2144 /*
2145 * We used to say 'not available' and synthesize a
2146 * nominal 30 deg (C)- that was wrong. Actually,
2147 * Just say 'OK', and use the reserved value of
2148 * zero.
2149 */
2150 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2151 ssc->ses_objmap[oid].encstat[2] = 0;
2152 ssc->ses_objmap[oid].encstat[3] = 0;
2153 }
2154 ssc->ses_objmap[oid++].svalid = 1;
2155 }
2156
2157 /*
2158 * Get alarm status.
2159 */
2160 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2161 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2162 ssc->ses_objmap[oid++].svalid = 1;
2163
2164 /*
2165 * Now get drive slot status
2166 */
2167 cdb[2] = SAFTE_RD_RDDSTS;
2168 amt = buflen;
2169 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2170 if (err) {
2171 SES_FREE(sdata, buflen);
2172 return (err);
2173 }
2174 hiwater = buflen - amt;
2175 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2176 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2177 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2178 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2179 ssc->ses_objmap[oid].encstat[2] = 0;
2180 ssc->ses_objmap[oid].encstat[3] = 0;
2181 status = sdata[r+3];
2182 if ((status & 0x1) == 0) { /* no device */
2183 ssc->ses_objmap[oid].encstat[0] =
2184 SES_OBJSTAT_NOTINSTALLED;
2185 } else {
2186 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2187 }
2188 if (status & 0x2) {
2189 ssc->ses_objmap[oid].encstat[2] = 0x8;
2190 }
2191 if ((status & 0x4) == 0) {
2192 ssc->ses_objmap[oid].encstat[3] = 0x10;
2193 }
2194 ssc->ses_objmap[oid++].svalid = 1;
2195 }
2196 /* see comment below about sticky enclosure status */
2197 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2198 SES_FREE(sdata, buflen);
2199 return (0);
2200 }
2201
2202 static int
2203 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2204 {
2205 int idx;
2206 encobj *ep;
2207 struct scfg *cc = ssc->ses_private;
2208
2209 if (cc == NULL)
2210 return (0);
2211
2212 idx = (int)obp->obj_id;
2213 ep = &ssc->ses_objmap[idx];
2214
2215 switch (ep->enctype) {
2216 case SESTYP_DEVICE:
2217 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2218 ep->priv |= 0x40;
2219 }
2220 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2221 if (obp->cstat[0] & SESCTL_DISABLE) {
2222 ep->priv |= 0x80;
2223 /*
2224 * Hmm. Try to set the 'No Drive' flag.
2225 * Maybe that will count as a 'disable'.
2226 */
2227 }
2228 if (ep->priv & 0xc6) {
2229 ep->priv &= ~0x1;
2230 } else {
2231 ep->priv |= 0x1; /* no errors */
2232 }
2233 wrslot_stat(ssc, slp);
2234 break;
2235 case SESTYP_POWER:
2236 /*
2237 * Okay- the only one that makes sense here is to
2238 * do the 'disable' for a power supply.
2239 */
2240 if (obp->cstat[0] & SESCTL_DISABLE) {
2241 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2242 idx - cc->pwroff, 0, 0, slp);
2243 }
2244 break;
2245 case SESTYP_FAN:
2246 /*
2247 * Okay- the only one that makes sense here is to
2248 * set fan speed to zero on disable.
2249 */
2250 if (obp->cstat[0] & SESCTL_DISABLE) {
2251 /* remember- fans are the first items, so idx works */
2252 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2253 }
2254 break;
2255 case SESTYP_DOORLOCK:
2256 /*
2257 * Well, we can 'disable' the lock.
2258 */
2259 if (obp->cstat[0] & SESCTL_DISABLE) {
2260 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2261 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2262 cc->flag2, 0, slp);
2263 }
2264 break;
2265 case SESTYP_ALARM:
2266 /*
2267 * Well, we can 'disable' the alarm.
2268 */
2269 if (obp->cstat[0] & SESCTL_DISABLE) {
2270 cc->flag2 &= ~SAFT_FLG1_ALARM;
2271 ep->priv |= 0x40; /* Muted */
2272 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2273 cc->flag2, 0, slp);
2274 }
2275 break;
2276 default:
2277 break;
2278 }
2279 ep->svalid = 0;
2280 return (0);
2281 }
2282
2283 /*
2284 * This function handles all of the 16 byte WRITE BUFFER commands.
2285 */
2286 static int
2287 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2288 uint8_t b3, int slp)
2289 {
2290 int err, amt;
2291 char *sdata;
2292 struct scfg *cc = ssc->ses_private;
2293 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2294
2295 if (cc == NULL)
2296 return (0);
2297
2298 sdata = SES_MALLOC(16);
2299 if (sdata == NULL)
2300 return (ENOMEM);
2301
2302 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2303
2304 sdata[0] = op;
2305 sdata[1] = b1;
2306 sdata[2] = b2;
2307 sdata[3] = b3;
2308 MEMZERO(&sdata[4], 12);
2309 amt = -16;
2310 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2311 SES_FREE(sdata, 16);
2312 return (err);
2313 }
2314
2315 /*
2316 * This function updates the status byte for the device slot described.
2317 *
2318 * Since this is an optional SAF-TE command, there's no point in
2319 * returning an error.
2320 */
2321 static void
2322 wrslot_stat(ses_softc_t *ssc, int slp)
2323 {
2324 int i, amt;
2325 encobj *ep;
2326 char cdb[10], *sdata;
2327 struct scfg *cc = ssc->ses_private;
2328
2329 if (cc == NULL)
2330 return;
2331
2332 SES_VLOG(ssc, "saf_wrslot\n");
2333 cdb[0] = WRITE_BUFFER;
2334 cdb[1] = 1;
2335 cdb[2] = 0;
2336 cdb[3] = 0;
2337 cdb[4] = 0;
2338 cdb[5] = 0;
2339 cdb[6] = 0;
2340 cdb[7] = 0;
2341 cdb[8] = cc->Nslots * 3 + 1;
2342 cdb[9] = 0;
2343
2344 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2345 if (sdata == NULL)
2346 return;
2347 MEMZERO(sdata, cc->Nslots * 3 + 1);
2348
2349 sdata[0] = SAFTE_WT_DSTAT;
2350 for (i = 0; i < cc->Nslots; i++) {
2351 ep = &ssc->ses_objmap[cc->slotoff + i];
2352 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2353 sdata[1 + (3 * i)] = ep->priv & 0xff;
2354 }
2355 amt = -(cc->Nslots * 3 + 1);
2356 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2357 SES_FREE(sdata, cc->Nslots * 3 + 1);
2358 }
2359
2360 /*
2361 * This function issues the "PERFORM SLOT OPERATION" command.
2362 */
2363 static int
2364 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2365 {
2366 int err, amt;
2367 char *sdata;
2368 struct scfg *cc = ssc->ses_private;
2369 static char cdb[10] =
2370 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2371
2372 if (cc == NULL)
2373 return (0);
2374
2375 sdata = SES_MALLOC(SAFT_SCRATCH);
2376 if (sdata == NULL)
2377 return (ENOMEM);
2378 MEMZERO(sdata, SAFT_SCRATCH);
2379
2380 sdata[0] = SAFTE_WT_SLTOP;
2381 sdata[1] = slot;
2382 sdata[2] = opflag;
2383 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2384 amt = -SAFT_SCRATCH;
2385 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2386 SES_FREE(sdata, SAFT_SCRATCH);
2387 return (err);
2388 }
2389