ses.c revision 1.11.2.2 1 /* $NetBSD: ses.c,v 1.11.2.2 2001/09/26 15:28:18 fvdl Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <miscfs/specfs/specdev.h>
52
53 #include <dev/scsipi/scsipi_all.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsipi_disk.h>
56 #include <dev/scsipi/scsi_disk.h>
57 #include <dev/scsipi/scsiconf.h>
58 #include <dev/scsipi/ses.h>
59
60 /*
61 * Platform Independent Driver Internal Definitions for SES devices.
62 */
63 typedef enum {
64 SES_NONE,
65 SES_SES_SCSI2,
66 SES_SES,
67 SES_SES_PASSTHROUGH,
68 SES_SEN,
69 SES_SAFT
70 } enctyp;
71
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 int (*softc_init) __P((ses_softc_t *, int));
76 int (*init_enc) __P((ses_softc_t *));
77 int (*get_encstat) __P((ses_softc_t *, int));
78 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
79 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
80 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
81 } encvec;
82
83 #define ENCI_SVALID 0x80
84
85 typedef struct {
86 uint32_t
87 enctype : 8, /* enclosure type */
88 subenclosure : 8, /* subenclosure id */
89 svalid : 1, /* enclosure information valid */
90 priv : 15; /* private data, per object */
91 uint8_t encstat[4]; /* state && stats */
92 } encobj;
93
94 #define SEN_ID "UNISYS SUN_SEN"
95 #define SEN_ID_LEN 24
96
97 static enctyp ses_type __P((struct scsipi_inquiry_data *));
98
99
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init __P((ses_softc_t *, int));
102 static int ses_init_enc __P((ses_softc_t *));
103 static int ses_get_encstat __P((ses_softc_t *, int));
104 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
105 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
106 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
107
108 static int safte_softc_init __P((ses_softc_t *, int));
109 static int safte_init_enc __P((ses_softc_t *));
110 static int safte_get_encstat __P((ses_softc_t *, int));
111 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
112 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
113 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
114
115 /*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119 #define STRNCMP strncmp
120 #define PRINTF printf
121 #define SES_LOG ses_log
122 #if defined(DEBUG) || defined(SCSIDEBUG)
123 #define SES_VLOG ses_log
124 #else
125 #define SES_VLOG if (0) ses_log
126 #endif
127 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
129 #define MEMZERO(dest, amt) memset(dest, 0, amt)
130 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
131 #define RECEIVE_DIAGNOSTIC 0x1c
132 #define SEND_DIAGNOSTIC 0x1d
133 #define WRITE_BUFFER 0x3b
134 #define READ_BUFFER 0x3c
135
136 cdev_decl(ses);
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...))
140 __attribute__((__format__(__printf__, 2, 3)));
141
142 /*
143 * General NetBSD kernel stuff.
144 */
145
146 struct ses_softc {
147 struct device sc_device;
148 struct scsipi_periph *sc_periph;
149 enctyp ses_type; /* type of enclosure */
150 encvec ses_vec; /* vector to handlers */
151 void * ses_private; /* per-type private data */
152 encobj * ses_objmap; /* objects */
153 u_int32_t ses_nobjects; /* number of objects */
154 ses_encstat ses_encstat; /* overall status */
155 u_int8_t ses_flags;
156 };
157 #define SES_FLAG_INVALID 0x01
158 #define SES_FLAG_OPEN 0x02
159 #define SES_FLAG_INITIALIZED 0x04
160
161 #define SESUNIT(x) (minor((x)))
162
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166
167 struct cfattach ses_ca = {
168 sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171
172 const struct scsipi_periphsw ses_switch = {
173 NULL,
174 NULL,
175 NULL,
176 NULL
177 };
178
179
180 int
181 ses_match(parent, match, aux)
182 struct device *parent;
183 struct cfdata *match;
184 void *aux;
185 {
186 struct scsipibus_attach_args *sa = aux;
187
188 switch (ses_device_type(sa)) {
189 case SES_SES:
190 case SES_SES_SCSI2:
191 case SES_SEN:
192 case SES_SAFT:
193 case SES_SES_PASSTHROUGH:
194 /*
195 * For these devices, it's a perfect match.
196 */
197 return (24);
198 default:
199 return (0);
200 }
201 }
202
203
204 /*
205 * Complete the attachment.
206 *
207 * We have to repeat the rerun of INQUIRY data as above because
208 * it's not until the return from the match routine that we have
209 * the softc available to set stuff in.
210 */
211 void
212 ses_attach(parent, self, aux)
213 struct device *parent;
214 struct device *self;
215 void *aux;
216 {
217 char *tname;
218 struct ses_softc *softc = (void *)self;
219 struct scsipibus_attach_args *sa = aux;
220 struct scsipi_periph *periph = sa->sa_periph;
221
222 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 softc->sc_periph = periph;
224 periph->periph_dev = &softc->sc_device;
225 periph->periph_switch = &ses_switch;
226 periph->periph_openings = 1;
227
228 softc->ses_type = ses_device_type(sa);
229 switch (softc->ses_type) {
230 case SES_SES:
231 case SES_SES_SCSI2:
232 case SES_SES_PASSTHROUGH:
233 softc->ses_vec.softc_init = ses_softc_init;
234 softc->ses_vec.init_enc = ses_init_enc;
235 softc->ses_vec.get_encstat = ses_get_encstat;
236 softc->ses_vec.set_encstat = ses_set_encstat;
237 softc->ses_vec.get_objstat = ses_get_objstat;
238 softc->ses_vec.set_objstat = ses_set_objstat;
239 break;
240 case SES_SAFT:
241 softc->ses_vec.softc_init = safte_softc_init;
242 softc->ses_vec.init_enc = safte_init_enc;
243 softc->ses_vec.get_encstat = safte_get_encstat;
244 softc->ses_vec.set_encstat = safte_set_encstat;
245 softc->ses_vec.get_objstat = safte_get_objstat;
246 softc->ses_vec.set_objstat = safte_set_objstat;
247 break;
248 case SES_SEN:
249 break;
250 case SES_NONE:
251 default:
252 break;
253 }
254
255 switch (softc->ses_type) {
256 default:
257 case SES_NONE:
258 tname = "No SES device";
259 break;
260 case SES_SES_SCSI2:
261 tname = "SCSI-2 SES Device";
262 break;
263 case SES_SES:
264 tname = "SCSI-3 SES Device";
265 break;
266 case SES_SES_PASSTHROUGH:
267 tname = "SES Passthrough Device";
268 break;
269 case SES_SEN:
270 tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 break;
272 case SES_SAFT:
273 tname = "SAF-TE Compliant Device";
274 break;
275 }
276 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278
279
280 static enctyp
281 ses_device_type(sa)
282 struct scsipibus_attach_args *sa;
283 {
284 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285
286 if (inqp == NULL)
287 return (SES_NONE);
288
289 return (ses_type(inqp));
290 }
291
292 int
293 sesopen(devvp, flags, fmt, p)
294 struct vnode *devvp;
295 int flags;
296 int fmt;
297 struct proc *p;
298 {
299 struct ses_softc *softc;
300 int error, unit;
301
302 unit = SESUNIT(vdev_rdev(devvp));
303 if (unit >= ses_cd.cd_ndevs)
304 return (ENXIO);
305 softc = ses_cd.cd_devs[unit];
306 if (softc == NULL)
307 return (ENXIO);
308
309 if (softc->ses_flags & SES_FLAG_INVALID) {
310 error = ENXIO;
311 goto out;
312 }
313 if (softc->ses_flags & SES_FLAG_OPEN) {
314 error = EBUSY;
315 goto out;
316 }
317 if (softc->ses_vec.softc_init == NULL) {
318 error = ENXIO;
319 goto out;
320 }
321 error = scsipi_adapter_addref(
322 softc->sc_periph->periph_channel->chan_adapter);
323 if (error != 0)
324 goto out;
325
326 vdev_setprivdata(devvp, softc);
327
328 softc->ses_flags |= SES_FLAG_OPEN;
329 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
330 error = (*softc->ses_vec.softc_init)(softc, 1);
331 if (error)
332 softc->ses_flags &= ~SES_FLAG_OPEN;
333 else
334 softc->ses_flags |= SES_FLAG_INITIALIZED;
335 }
336
337 out:
338 return (error);
339 }
340
341 int
342 sesclose(devvp, flags, fmt, p)
343 struct vnode *devvp;
344 int flags;
345 int fmt;
346 struct proc *p;
347 {
348 struct ses_softc *softc;
349
350 softc = vdev_privdata(devvp);
351 scsipi_wait_drain(softc->sc_periph);
352 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
353 softc->ses_flags &= ~SES_FLAG_OPEN;
354 return (0);
355 }
356
357 int
358 sesioctl(devvp, cmd, arg_addr, flag, p)
359 struct vnode *devvp;
360 u_long cmd;
361 caddr_t arg_addr;
362 int flag;
363 struct proc *p;
364 {
365 ses_encstat tmp;
366 ses_objstat objs;
367 ses_object obj, *uobj;
368 struct ses_softc *ssc;
369 void *addr;
370 int error, i;
371
372 ssc = vdev_privdata(devvp);
373
374
375 if (arg_addr)
376 addr = *((caddr_t *) arg_addr);
377 else
378 addr = NULL;
379
380 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
381
382 /*
383 * Now check to see whether we're initialized or not.
384 */
385 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
386 return (ENODEV);
387 }
388
389 error = 0;
390
391 /*
392 * If this command can change the device's state,
393 * we must have the device open for writing.
394 */
395 switch (cmd) {
396 case SESIOC_GETNOBJ:
397 case SESIOC_GETOBJMAP:
398 case SESIOC_GETENCSTAT:
399 case SESIOC_GETOBJSTAT:
400 break;
401 default:
402 if ((flag & FWRITE) == 0) {
403 return (EBADF);
404 }
405 }
406
407 switch (cmd) {
408 case SESIOC_GETNOBJ:
409 error = copyout(&ssc->ses_nobjects, addr,
410 sizeof (ssc->ses_nobjects));
411 break;
412
413 case SESIOC_GETOBJMAP:
414 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
415 obj.obj_id = i;
416 obj.subencid = ssc->ses_objmap[i].subenclosure;
417 obj.object_type = ssc->ses_objmap[i].enctype;
418 error = copyout(&obj, uobj, sizeof (ses_object));
419 if (error) {
420 break;
421 }
422 }
423 break;
424
425 case SESIOC_GETENCSTAT:
426 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
427 if (error)
428 break;
429 tmp = ssc->ses_encstat & ~ENCI_SVALID;
430 error = copyout(&tmp, addr, sizeof (ses_encstat));
431 ssc->ses_encstat = tmp;
432 break;
433
434 case SESIOC_SETENCSTAT:
435 error = copyin(addr, &tmp, sizeof (ses_encstat));
436 if (error)
437 break;
438 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
439 break;
440
441 case SESIOC_GETOBJSTAT:
442 error = copyin(addr, &objs, sizeof (ses_objstat));
443 if (error)
444 break;
445 if (objs.obj_id >= ssc->ses_nobjects) {
446 error = EINVAL;
447 break;
448 }
449 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
450 if (error)
451 break;
452 error = copyout(&objs, addr, sizeof (ses_objstat));
453 /*
454 * Always (for now) invalidate entry.
455 */
456 ssc->ses_objmap[objs.obj_id].svalid = 0;
457 break;
458
459 case SESIOC_SETOBJSTAT:
460 error = copyin(addr, &objs, sizeof (ses_objstat));
461 if (error)
462 break;
463
464 if (objs.obj_id >= ssc->ses_nobjects) {
465 error = EINVAL;
466 break;
467 }
468 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
469
470 /*
471 * Always (for now) invalidate entry.
472 */
473 ssc->ses_objmap[objs.obj_id].svalid = 0;
474 break;
475
476 case SESIOC_INIT:
477
478 error = (*ssc->ses_vec.init_enc)(ssc);
479 break;
480
481 default:
482 error = scsipi_do_ioctl(ssc->sc_periph,
483 devvp, cmd, addr, flag, p);
484 break;
485 }
486 return (error);
487 }
488
489 static int
490 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
491 {
492 struct scsipi_generic sgen;
493 int dl, flg, error;
494
495 if (dptr) {
496 if ((dl = *dlenp) < 0) {
497 dl = -dl;
498 flg = XS_CTL_DATA_OUT;
499 } else {
500 flg = XS_CTL_DATA_IN;
501 }
502 } else {
503 dl = 0;
504 flg = 0;
505 }
506
507 if (cdbl > sizeof (struct scsipi_generic)) {
508 cdbl = sizeof (struct scsipi_generic);
509 }
510 memcpy(&sgen, cdb, cdbl);
511 #ifndef SCSIDEBUG
512 flg |= XS_CTL_SILENT;
513 #endif
514 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
515 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
516
517 if (error == 0 && dptr)
518 *dlenp = 0;
519
520 return (error);
521 }
522
523 #ifdef __STDC__
524 static void
525 ses_log(struct ses_softc *ssc, const char *fmt, ...)
526 {
527 va_list ap;
528
529 printf("%s: ", ssc->sc_device.dv_xname);
530 va_start(ap, fmt);
531 vprintf(fmt, ap);
532 va_end(ap);
533 }
534 #else
535 static void
536 ses_log(ssc, fmt, va_alist)
537 struct ses_softc *ssc;
538 char *fmt;
539 va_dcl
540 {
541 va_list ap;
542
543 printf("%s: ", ssc->sc_device.dv_xname);
544 va_start(ap, fmt);
545 vprintf(fmt, ap);
546 va_end(ap);
547 }
548 #endif
549
550 /*
551 * The code after this point runs on many platforms,
552 * so forgive the slightly awkward and nonconforming
553 * appearance.
554 */
555
556 /*
557 * Is this a device that supports enclosure services?
558 *
559 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
560 * an SES device. If it happens to be an old UNISYS SEN device, we can
561 * handle that too.
562 */
563
564 #define SAFTE_START 44
565 #define SAFTE_END 50
566 #define SAFTE_LEN SAFTE_END-SAFTE_START
567
568 static enctyp
569 ses_type(inqp)
570 struct scsipi_inquiry_data *inqp;
571 {
572 size_t given_len = inqp->additional_length + 4;
573
574 if (given_len < 8+SEN_ID_LEN)
575 return (SES_NONE);
576
577 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
578 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
579 return (SES_SEN);
580 } else if ((inqp->version & SID_ANSII) > 2) {
581 return (SES_SES);
582 } else {
583 return (SES_SES_SCSI2);
584 }
585 return (SES_NONE);
586 }
587
588 #ifdef SES_ENABLE_PASSTHROUGH
589 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
590 /*
591 * PassThrough Device.
592 */
593 return (SES_SES_PASSTHROUGH);
594 }
595 #endif
596
597 /*
598 * The comparison is short for a reason-
599 * some vendors were chopping it short.
600 */
601
602 if (given_len < SAFTE_END - 2) {
603 return (SES_NONE);
604 }
605
606 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
607 SAFTE_LEN - 2) == 0) {
608 return (SES_SAFT);
609 }
610
611 return (SES_NONE);
612 }
613
614 /*
615 * SES Native Type Device Support
616 */
617
618 /*
619 * SES Diagnostic Page Codes
620 */
621
622 typedef enum {
623 SesConfigPage = 0x1,
624 SesControlPage,
625 #define SesStatusPage SesControlPage
626 SesHelpTxt,
627 SesStringOut,
628 #define SesStringIn SesStringOut
629 SesThresholdOut,
630 #define SesThresholdIn SesThresholdOut
631 SesArrayControl,
632 #define SesArrayStatus SesArrayControl
633 SesElementDescriptor,
634 SesShortStatus
635 } SesDiagPageCodes;
636
637 /*
638 * minimal amounts
639 */
640
641 /*
642 * Minimum amount of data, starting from byte 0, to have
643 * the config header.
644 */
645 #define SES_CFGHDR_MINLEN 12
646
647 /*
648 * Minimum amount of data, starting from byte 0, to have
649 * the config header and one enclosure header.
650 */
651 #define SES_ENCHDR_MINLEN 48
652
653 /*
654 * Take this value, subtract it from VEnclen and you know
655 * the length of the vendor unique bytes.
656 */
657 #define SES_ENCHDR_VMIN 36
658
659 /*
660 * SES Data Structures
661 */
662
663 typedef struct {
664 uint32_t GenCode; /* Generation Code */
665 uint8_t Nsubenc; /* Number of Subenclosures */
666 } SesCfgHdr;
667
668 typedef struct {
669 uint8_t Subencid; /* SubEnclosure Identifier */
670 uint8_t Ntypes; /* # of supported types */
671 uint8_t VEnclen; /* Enclosure Descriptor Length */
672 } SesEncHdr;
673
674 typedef struct {
675 uint8_t encWWN[8]; /* XXX- Not Right Yet */
676 uint8_t encVid[8];
677 uint8_t encPid[16];
678 uint8_t encRev[4];
679 uint8_t encVen[1];
680 } SesEncDesc;
681
682 typedef struct {
683 uint8_t enc_type; /* type of element */
684 uint8_t enc_maxelt; /* maximum supported */
685 uint8_t enc_subenc; /* in SubEnc # N */
686 uint8_t enc_tlen; /* Type Descriptor Text Length */
687 } SesThdr;
688
689 typedef struct {
690 uint8_t comstatus;
691 uint8_t comstat[3];
692 } SesComStat;
693
694 struct typidx {
695 int ses_tidx;
696 int ses_oidx;
697 };
698
699 struct sscfg {
700 uint8_t ses_ntypes; /* total number of types supported */
701
702 /*
703 * We need to keep a type index as well as an
704 * object index for each object in an enclosure.
705 */
706 struct typidx *ses_typidx;
707
708 /*
709 * We also need to keep track of the number of elements
710 * per type of element. This is needed later so that we
711 * can find precisely in the returned status data the
712 * status for the Nth element of the Kth type.
713 */
714 uint8_t * ses_eltmap;
715 };
716
717
718 /*
719 * (de)canonicalization defines
720 */
721 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
722 #define sbit(x, bit) (((uint32_t)(x)) << bit)
723 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
724
725 #define sset16(outp, idx, sval) \
726 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
727 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728
729
730 #define sset24(outp, idx, sval) \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
733 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
734
735
736 #define sset32(outp, idx, sval) \
737 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
738 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
739 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
740 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
741
742 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
743 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
744 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
745 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
746
747 #define sget16(inp, idx, lval) \
748 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
749 (((uint8_t *)(inp))[idx+1]), idx += 2
750
751 #define gget16(inp, idx, lval) \
752 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
753 (((uint8_t *)(inp))[idx+1])
754
755 #define sget24(inp, idx, lval) \
756 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
757 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
758 (((uint8_t *)(inp))[idx+2]), idx += 3
759
760 #define gget24(inp, idx, lval) \
761 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
762 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
763 (((uint8_t *)(inp))[idx+2])
764
765 #define sget32(inp, idx, lval) \
766 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
767 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
768 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
769 (((uint8_t *)(inp))[idx+3]), idx += 4
770
771 #define gget32(inp, idx, lval) \
772 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
773 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
774 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
775 (((uint8_t *)(inp))[idx+3])
776
777 #define SCSZ 0x2000
778 #define CFLEN (256 + SES_ENCHDR_MINLEN)
779
780 /*
781 * Routines specific && private to SES only
782 */
783
784 static int ses_getconfig(ses_softc_t *);
785 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
786 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
787 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
788 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
789 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
790 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
791 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
792
793 static int
794 ses_softc_init(ses_softc_t *ssc, int doinit)
795 {
796 if (doinit == 0) {
797 struct sscfg *cc;
798 if (ssc->ses_nobjects) {
799 SES_FREE(ssc->ses_objmap,
800 ssc->ses_nobjects * sizeof (encobj));
801 ssc->ses_objmap = NULL;
802 }
803 if ((cc = ssc->ses_private) != NULL) {
804 if (cc->ses_eltmap && cc->ses_ntypes) {
805 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
806 cc->ses_eltmap = NULL;
807 cc->ses_ntypes = 0;
808 }
809 if (cc->ses_typidx && ssc->ses_nobjects) {
810 SES_FREE(cc->ses_typidx,
811 ssc->ses_nobjects * sizeof (struct typidx));
812 cc->ses_typidx = NULL;
813 }
814 SES_FREE(cc, sizeof (struct sscfg));
815 ssc->ses_private = NULL;
816 }
817 ssc->ses_nobjects = 0;
818 return (0);
819 }
820 if (ssc->ses_private == NULL) {
821 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
822 }
823 if (ssc->ses_private == NULL) {
824 return (ENOMEM);
825 }
826 ssc->ses_nobjects = 0;
827 ssc->ses_encstat = 0;
828 return (ses_getconfig(ssc));
829 }
830
831 static int
832 ses_init_enc(ses_softc_t *ssc)
833 {
834 return (0);
835 }
836
837 static int
838 ses_get_encstat(ses_softc_t *ssc, int slpflag)
839 {
840 SesComStat ComStat;
841 int status;
842
843 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
844 return (status);
845 }
846 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
847 return (0);
848 }
849
850 static int
851 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
852 {
853 SesComStat ComStat;
854 int status;
855
856 ComStat.comstatus = encstat & 0xf;
857 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
858 return (status);
859 }
860 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
861 return (0);
862 }
863
864 static int
865 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
866 {
867 int i = (int)obp->obj_id;
868
869 if (ssc->ses_objmap[i].svalid == 0) {
870 SesComStat ComStat;
871 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
872 if (err)
873 return (err);
874 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
875 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
876 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
877 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
878 ssc->ses_objmap[i].svalid = 1;
879 }
880 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
881 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
882 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
883 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
884 return (0);
885 }
886
887 static int
888 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
889 {
890 SesComStat ComStat;
891 int err;
892 /*
893 * If this is clear, we don't do diddly.
894 */
895 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
896 return (0);
897 }
898 ComStat.comstatus = obp->cstat[0];
899 ComStat.comstat[0] = obp->cstat[1];
900 ComStat.comstat[1] = obp->cstat[2];
901 ComStat.comstat[2] = obp->cstat[3];
902 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
903 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
904 return (err);
905 }
906
907 static int
908 ses_getconfig(ses_softc_t *ssc)
909 {
910 struct sscfg *cc;
911 SesCfgHdr cf;
912 SesEncHdr hd;
913 SesEncDesc *cdp;
914 SesThdr thdr;
915 int err, amt, i, nobj, ntype, maxima;
916 char storage[CFLEN], *sdata;
917 static char cdb[6] = {
918 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
919 };
920
921 cc = ssc->ses_private;
922 if (cc == NULL) {
923 return (ENXIO);
924 }
925
926 sdata = SES_MALLOC(SCSZ);
927 if (sdata == NULL)
928 return (ENOMEM);
929
930 amt = SCSZ;
931 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
932 if (err) {
933 SES_FREE(sdata, SCSZ);
934 return (err);
935 }
936 amt = SCSZ - amt;
937
938 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
939 SES_LOG(ssc, "Unable to parse SES Config Header\n");
940 SES_FREE(sdata, SCSZ);
941 return (EIO);
942 }
943 if (amt < SES_ENCHDR_MINLEN) {
944 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
945 SES_FREE(sdata, SCSZ);
946 return (EIO);
947 }
948
949 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
950
951 /*
952 * Now waltz through all the subenclosures toting up the
953 * number of types available in each. For this, we only
954 * really need the enclosure header. However, we get the
955 * enclosure descriptor for debug purposes, as well
956 * as self-consistency checking purposes.
957 */
958
959 maxima = cf.Nsubenc + 1;
960 cdp = (SesEncDesc *) storage;
961 for (ntype = i = 0; i < maxima; i++) {
962 MEMZERO((caddr_t)cdp, sizeof (*cdp));
963 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
964 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
965 SES_FREE(sdata, SCSZ);
966 return (EIO);
967 }
968 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
969 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
970
971 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
972 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
973 SES_FREE(sdata, SCSZ);
974 return (EIO);
975 }
976 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
977 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
978 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
979 cdp->encWWN[6], cdp->encWWN[7]);
980 ntype += hd.Ntypes;
981 }
982
983 /*
984 * Now waltz through all the types that are available, getting
985 * the type header so we can start adding up the number of
986 * objects available.
987 */
988 for (nobj = i = 0; i < ntype; i++) {
989 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
990 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
991 SES_FREE(sdata, SCSZ);
992 return (EIO);
993 }
994 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
995 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
996 thdr.enc_subenc, thdr.enc_tlen);
997 nobj += thdr.enc_maxelt;
998 }
999
1000
1001 /*
1002 * Now allocate the object array and type map.
1003 */
1004
1005 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1006 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1007 cc->ses_eltmap = SES_MALLOC(ntype);
1008
1009 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1010 cc->ses_eltmap == NULL) {
1011 if (ssc->ses_objmap) {
1012 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1013 ssc->ses_objmap = NULL;
1014 }
1015 if (cc->ses_typidx) {
1016 SES_FREE(cc->ses_typidx,
1017 (nobj * sizeof (struct typidx)));
1018 cc->ses_typidx = NULL;
1019 }
1020 if (cc->ses_eltmap) {
1021 SES_FREE(cc->ses_eltmap, ntype);
1022 cc->ses_eltmap = NULL;
1023 }
1024 SES_FREE(sdata, SCSZ);
1025 return (ENOMEM);
1026 }
1027 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1028 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1029 MEMZERO(cc->ses_eltmap, ntype);
1030 cc->ses_ntypes = (uint8_t) ntype;
1031 ssc->ses_nobjects = nobj;
1032
1033 /*
1034 * Now waltz through the # of types again to fill in the types
1035 * (and subenclosure ids) of the allocated objects.
1036 */
1037 nobj = 0;
1038 for (i = 0; i < ntype; i++) {
1039 int j;
1040 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1041 continue;
1042 }
1043 cc->ses_eltmap[i] = thdr.enc_maxelt;
1044 for (j = 0; j < thdr.enc_maxelt; j++) {
1045 cc->ses_typidx[nobj].ses_tidx = i;
1046 cc->ses_typidx[nobj].ses_oidx = j;
1047 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1048 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1049 }
1050 }
1051 SES_FREE(sdata, SCSZ);
1052 return (0);
1053 }
1054
1055 static int
1056 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1057 {
1058 struct sscfg *cc;
1059 int err, amt, bufsiz, tidx, oidx;
1060 char cdb[6], *sdata;
1061
1062 cc = ssc->ses_private;
1063 if (cc == NULL) {
1064 return (ENXIO);
1065 }
1066
1067 /*
1068 * If we're just getting overall enclosure status,
1069 * we only need 2 bytes of data storage.
1070 *
1071 * If we're getting anything else, we know how much
1072 * storage we need by noting that starting at offset
1073 * 8 in returned data, all object status bytes are 4
1074 * bytes long, and are stored in chunks of types(M)
1075 * and nth+1 instances of type M.
1076 */
1077 if (objid == -1) {
1078 bufsiz = 2;
1079 } else {
1080 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1081 }
1082 sdata = SES_MALLOC(bufsiz);
1083 if (sdata == NULL)
1084 return (ENOMEM);
1085
1086 cdb[0] = RECEIVE_DIAGNOSTIC;
1087 cdb[1] = 1;
1088 cdb[2] = SesStatusPage;
1089 cdb[3] = bufsiz >> 8;
1090 cdb[4] = bufsiz & 0xff;
1091 cdb[5] = 0;
1092 amt = bufsiz;
1093 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1094 if (err) {
1095 SES_FREE(sdata, bufsiz);
1096 return (err);
1097 }
1098 amt = bufsiz - amt;
1099
1100 if (objid == -1) {
1101 tidx = -1;
1102 oidx = -1;
1103 } else {
1104 tidx = cc->ses_typidx[objid].ses_tidx;
1105 oidx = cc->ses_typidx[objid].ses_oidx;
1106 }
1107 if (in) {
1108 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1109 err = ENODEV;
1110 }
1111 } else {
1112 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1113 err = ENODEV;
1114 } else {
1115 cdb[0] = SEND_DIAGNOSTIC;
1116 cdb[1] = 0x10;
1117 cdb[2] = 0;
1118 cdb[3] = bufsiz >> 8;
1119 cdb[4] = bufsiz & 0xff;
1120 cdb[5] = 0;
1121 amt = -bufsiz;
1122 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1123 }
1124 }
1125 SES_FREE(sdata, bufsiz);
1126 return (0);
1127 }
1128
1129
1130 /*
1131 * Routines to parse returned SES data structures.
1132 * Architecture and compiler independent.
1133 */
1134
1135 static int
1136 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1137 {
1138 if (buflen < SES_CFGHDR_MINLEN) {
1139 return (-1);
1140 }
1141 gget8(buffer, 1, cfp->Nsubenc);
1142 gget32(buffer, 4, cfp->GenCode);
1143 return (0);
1144 }
1145
1146 static int
1147 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1148 {
1149 int s, off = 8;
1150 for (s = 0; s < SubEncId; s++) {
1151 if (off + 3 > amt)
1152 return (-1);
1153 off += buffer[off+3] + 4;
1154 }
1155 if (off + 3 > amt) {
1156 return (-1);
1157 }
1158 gget8(buffer, off+1, chp->Subencid);
1159 gget8(buffer, off+2, chp->Ntypes);
1160 gget8(buffer, off+3, chp->VEnclen);
1161 return (0);
1162 }
1163
1164 static int
1165 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1166 {
1167 int s, e, enclen, off = 8;
1168 for (s = 0; s < SubEncId; s++) {
1169 if (off + 3 > amt)
1170 return (-1);
1171 off += buffer[off+3] + 4;
1172 }
1173 if (off + 3 > amt) {
1174 return (-1);
1175 }
1176 gget8(buffer, off+3, enclen);
1177 off += 4;
1178 if (off >= amt)
1179 return (-1);
1180
1181 e = off + enclen;
1182 if (e > amt) {
1183 e = amt;
1184 }
1185 MEMCPY(cdp, &buffer[off], e - off);
1186 return (0);
1187 }
1188
1189 static int
1190 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1191 {
1192 int s, off = 8;
1193
1194 if (amt < SES_CFGHDR_MINLEN) {
1195 return (-1);
1196 }
1197 for (s = 0; s < buffer[1]; s++) {
1198 if (off + 3 > amt)
1199 return (-1);
1200 off += buffer[off+3] + 4;
1201 }
1202 if (off + 3 > amt) {
1203 return (-1);
1204 }
1205 off += buffer[off+3] + 4 + (nth * 4);
1206 if (amt < (off + 4))
1207 return (-1);
1208
1209 gget8(buffer, off++, thp->enc_type);
1210 gget8(buffer, off++, thp->enc_maxelt);
1211 gget8(buffer, off++, thp->enc_subenc);
1212 gget8(buffer, off, thp->enc_tlen);
1213 return (0);
1214 }
1215
1216 /*
1217 * This function needs a little explanation.
1218 *
1219 * The arguments are:
1220 *
1221 *
1222 * char *b, int amt
1223 *
1224 * These describes the raw input SES status data and length.
1225 *
1226 * uint8_t *ep
1227 *
1228 * This is a map of the number of types for each element type
1229 * in the enclosure.
1230 *
1231 * int elt
1232 *
1233 * This is the element type being sought. If elt is -1,
1234 * then overall enclosure status is being sought.
1235 *
1236 * int elm
1237 *
1238 * This is the ordinal Mth element of type elt being sought.
1239 *
1240 * SesComStat *sp
1241 *
1242 * This is the output area to store the status for
1243 * the Mth element of type Elt.
1244 */
1245
1246 static int
1247 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1248 {
1249 int idx, i;
1250
1251 /*
1252 * If it's overall enclosure status being sought, get that.
1253 * We need at least 2 bytes of status data to get that.
1254 */
1255 if (elt == -1) {
1256 if (amt < 2)
1257 return (-1);
1258 gget8(b, 1, sp->comstatus);
1259 sp->comstat[0] = 0;
1260 sp->comstat[1] = 0;
1261 sp->comstat[2] = 0;
1262 return (0);
1263 }
1264
1265 /*
1266 * Check to make sure that the Mth element is legal for type Elt.
1267 */
1268
1269 if (elm >= ep[elt])
1270 return (-1);
1271
1272 /*
1273 * Starting at offset 8, start skipping over the storage
1274 * for the element types we're not interested in.
1275 */
1276 for (idx = 8, i = 0; i < elt; i++) {
1277 idx += ((ep[i] + 1) * 4);
1278 }
1279
1280 /*
1281 * Skip over Overall status for this element type.
1282 */
1283 idx += 4;
1284
1285 /*
1286 * And skip to the index for the Mth element that we're going for.
1287 */
1288 idx += (4 * elm);
1289
1290 /*
1291 * Make sure we haven't overflowed the buffer.
1292 */
1293 if (idx+4 > amt)
1294 return (-1);
1295
1296 /*
1297 * Retrieve the status.
1298 */
1299 gget8(b, idx++, sp->comstatus);
1300 gget8(b, idx++, sp->comstat[0]);
1301 gget8(b, idx++, sp->comstat[1]);
1302 gget8(b, idx++, sp->comstat[2]);
1303 #if 0
1304 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1305 #endif
1306 return (0);
1307 }
1308
1309 /*
1310 * This is the mirror function to ses_decode, but we set the 'select'
1311 * bit for the object which we're interested in. All other objects,
1312 * after a status fetch, should have that bit off. Hmm. It'd be easy
1313 * enough to ensure this, so we will.
1314 */
1315
1316 static int
1317 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1318 {
1319 int idx, i;
1320
1321 /*
1322 * If it's overall enclosure status being sought, get that.
1323 * We need at least 2 bytes of status data to get that.
1324 */
1325 if (elt == -1) {
1326 if (amt < 2)
1327 return (-1);
1328 i = 0;
1329 sset8(b, i, 0);
1330 sset8(b, i, sp->comstatus & 0xf);
1331 #if 0
1332 PRINTF("set EncStat %x\n", sp->comstatus);
1333 #endif
1334 return (0);
1335 }
1336
1337 /*
1338 * Check to make sure that the Mth element is legal for type Elt.
1339 */
1340
1341 if (elm >= ep[elt])
1342 return (-1);
1343
1344 /*
1345 * Starting at offset 8, start skipping over the storage
1346 * for the element types we're not interested in.
1347 */
1348 for (idx = 8, i = 0; i < elt; i++) {
1349 idx += ((ep[i] + 1) * 4);
1350 }
1351
1352 /*
1353 * Skip over Overall status for this element type.
1354 */
1355 idx += 4;
1356
1357 /*
1358 * And skip to the index for the Mth element that we're going for.
1359 */
1360 idx += (4 * elm);
1361
1362 /*
1363 * Make sure we haven't overflowed the buffer.
1364 */
1365 if (idx+4 > amt)
1366 return (-1);
1367
1368 /*
1369 * Set the status.
1370 */
1371 sset8(b, idx, sp->comstatus);
1372 sset8(b, idx, sp->comstat[0]);
1373 sset8(b, idx, sp->comstat[1]);
1374 sset8(b, idx, sp->comstat[2]);
1375 idx -= 4;
1376
1377 #if 0
1378 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1379 elt, elm, idx, sp->comstatus, sp->comstat[0],
1380 sp->comstat[1], sp->comstat[2]);
1381 #endif
1382
1383 /*
1384 * Now make sure all other 'Select' bits are off.
1385 */
1386 for (i = 8; i < amt; i += 4) {
1387 if (i != idx)
1388 b[i] &= ~0x80;
1389 }
1390 /*
1391 * And make sure the INVOP bit is clear.
1392 */
1393 b[2] &= ~0x10;
1394
1395 return (0);
1396 }
1397
1398 /*
1399 * SAF-TE Type Device Emulation
1400 */
1401
1402 static int safte_getconfig(ses_softc_t *);
1403 static int safte_rdstat(ses_softc_t *, int);;
1404 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1405 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1406 static void wrslot_stat(ses_softc_t *, int);
1407 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1408
1409 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1410 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1411 /*
1412 * SAF-TE specific defines- Mandatory ones only...
1413 */
1414
1415 /*
1416 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1417 */
1418 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1419 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1420 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1421
1422 /*
1423 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1424 */
1425 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1426 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1427 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1428 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1429 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1430
1431
1432 #define SAFT_SCRATCH 64
1433 #define NPSEUDO_THERM 16
1434 #define NPSEUDO_ALARM 1
1435 struct scfg {
1436 /*
1437 * Cached Configuration
1438 */
1439 uint8_t Nfans; /* Number of Fans */
1440 uint8_t Npwr; /* Number of Power Supplies */
1441 uint8_t Nslots; /* Number of Device Slots */
1442 uint8_t DoorLock; /* Door Lock Installed */
1443 uint8_t Ntherm; /* Number of Temperature Sensors */
1444 uint8_t Nspkrs; /* Number of Speakers */
1445 uint8_t Nalarm; /* Number of Alarms (at least one) */
1446 /*
1447 * Cached Flag Bytes for Global Status
1448 */
1449 uint8_t flag1;
1450 uint8_t flag2;
1451 /*
1452 * What object index ID is where various slots start.
1453 */
1454 uint8_t pwroff;
1455 uint8_t slotoff;
1456 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1457 };
1458
1459 #define SAFT_FLG1_ALARM 0x1
1460 #define SAFT_FLG1_GLOBFAIL 0x2
1461 #define SAFT_FLG1_GLOBWARN 0x4
1462 #define SAFT_FLG1_ENCPWROFF 0x8
1463 #define SAFT_FLG1_ENCFANFAIL 0x10
1464 #define SAFT_FLG1_ENCPWRFAIL 0x20
1465 #define SAFT_FLG1_ENCDRVFAIL 0x40
1466 #define SAFT_FLG1_ENCDRVWARN 0x80
1467
1468 #define SAFT_FLG2_LOCKDOOR 0x4
1469 #define SAFT_PRIVATE sizeof (struct scfg)
1470
1471 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1472 #define SAFT_BAIL(r, x, k, l) \
1473 if (r >= x) { \
1474 SES_LOG(ssc, safte_2little, x, __LINE__);\
1475 SES_FREE(k, l); \
1476 return (EIO); \
1477 }
1478
1479
1480 int
1481 safte_softc_init(ses_softc_t *ssc, int doinit)
1482 {
1483 int err, i, r;
1484 struct scfg *cc;
1485
1486 if (doinit == 0) {
1487 if (ssc->ses_nobjects) {
1488 if (ssc->ses_objmap) {
1489 SES_FREE(ssc->ses_objmap,
1490 ssc->ses_nobjects * sizeof (encobj));
1491 ssc->ses_objmap = NULL;
1492 }
1493 ssc->ses_nobjects = 0;
1494 }
1495 if (ssc->ses_private) {
1496 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1497 ssc->ses_private = NULL;
1498 }
1499 return (0);
1500 }
1501
1502 if (ssc->ses_private == NULL) {
1503 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1504 if (ssc->ses_private == NULL) {
1505 return (ENOMEM);
1506 }
1507 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1508 }
1509
1510 ssc->ses_nobjects = 0;
1511 ssc->ses_encstat = 0;
1512
1513 if ((err = safte_getconfig(ssc)) != 0) {
1514 return (err);
1515 }
1516
1517 /*
1518 * The number of objects here, as well as that reported by the
1519 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1520 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1521 */
1522 cc = ssc->ses_private;
1523 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1524 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1525 ssc->ses_objmap = (encobj *)
1526 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1527 if (ssc->ses_objmap == NULL) {
1528 return (ENOMEM);
1529 }
1530 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1531
1532 r = 0;
1533 /*
1534 * Note that this is all arranged for the convenience
1535 * in later fetches of status.
1536 */
1537 for (i = 0; i < cc->Nfans; i++)
1538 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1539 cc->pwroff = (uint8_t) r;
1540 for (i = 0; i < cc->Npwr; i++)
1541 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1542 for (i = 0; i < cc->DoorLock; i++)
1543 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1544 for (i = 0; i < cc->Nspkrs; i++)
1545 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1546 for (i = 0; i < cc->Ntherm; i++)
1547 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1548 for (i = 0; i < NPSEUDO_THERM; i++)
1549 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1550 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1551 cc->slotoff = (uint8_t) r;
1552 for (i = 0; i < cc->Nslots; i++)
1553 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1554 return (0);
1555 }
1556
1557 int
1558 safte_init_enc(ses_softc_t *ssc)
1559 {
1560 int err, amt;
1561 char *sdata;
1562 static char cdb0[6] = { SEND_DIAGNOSTIC };
1563 static char cdb[10] =
1564 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1565
1566 sdata = SES_MALLOC(SAFT_SCRATCH);
1567 if (sdata == NULL)
1568 return (ENOMEM);
1569
1570 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1571 if (err) {
1572 SES_FREE(sdata, SAFT_SCRATCH);
1573 return (err);
1574 }
1575 sdata[0] = SAFTE_WT_GLOBAL;
1576 MEMZERO(&sdata[1], 15);
1577 amt = -SAFT_SCRATCH;
1578 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1579 SES_FREE(sdata, SAFT_SCRATCH);
1580 return (err);
1581 }
1582
1583 int
1584 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1585 {
1586 return (safte_rdstat(ssc, slpflg));
1587 }
1588
1589 int
1590 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1591 {
1592 struct scfg *cc = ssc->ses_private;
1593 if (cc == NULL)
1594 return (0);
1595 /*
1596 * Since SAF-TE devices aren't necessarily sticky in terms
1597 * of state, make our soft copy of enclosure status 'sticky'-
1598 * that is, things set in enclosure status stay set (as implied
1599 * by conditions set in reading object status) until cleared.
1600 */
1601 ssc->ses_encstat &= ~ALL_ENC_STAT;
1602 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1603 ssc->ses_encstat |= ENCI_SVALID;
1604 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1605 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1606 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1607 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1608 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1609 }
1610 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1611 }
1612
1613 int
1614 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1615 {
1616 int i = (int)obp->obj_id;
1617
1618 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1619 (ssc->ses_objmap[i].svalid) == 0) {
1620 int err = safte_rdstat(ssc, slpflg);
1621 if (err)
1622 return (err);
1623 }
1624 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1625 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1626 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1627 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1628 return (0);
1629 }
1630
1631
1632 int
1633 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1634 {
1635 int idx, err;
1636 encobj *ep;
1637 struct scfg *cc;
1638
1639
1640 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1641 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1642 obp->cstat[3]);
1643
1644 /*
1645 * If this is clear, we don't do diddly.
1646 */
1647 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1648 return (0);
1649 }
1650
1651 err = 0;
1652 /*
1653 * Check to see if the common bits are set and do them first.
1654 */
1655 if (obp->cstat[0] & ~SESCTL_CSEL) {
1656 err = set_objstat_sel(ssc, obp, slp);
1657 if (err)
1658 return (err);
1659 }
1660
1661 cc = ssc->ses_private;
1662 if (cc == NULL)
1663 return (0);
1664
1665 idx = (int)obp->obj_id;
1666 ep = &ssc->ses_objmap[idx];
1667
1668 switch (ep->enctype) {
1669 case SESTYP_DEVICE:
1670 {
1671 uint8_t slotop = 0;
1672 /*
1673 * XXX: I should probably cache the previous state
1674 * XXX: of SESCTL_DEVOFF so that when it goes from
1675 * XXX: true to false I can then set PREPARE FOR OPERATION
1676 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1677 */
1678 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1679 slotop |= 0x2;
1680 }
1681 if (obp->cstat[2] & SESCTL_RQSID) {
1682 slotop |= 0x4;
1683 }
1684 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1685 slotop, slp);
1686 if (err)
1687 return (err);
1688 if (obp->cstat[3] & SESCTL_RQSFLT) {
1689 ep->priv |= 0x2;
1690 } else {
1691 ep->priv &= ~0x2;
1692 }
1693 if (ep->priv & 0xc6) {
1694 ep->priv &= ~0x1;
1695 } else {
1696 ep->priv |= 0x1; /* no errors */
1697 }
1698 wrslot_stat(ssc, slp);
1699 break;
1700 }
1701 case SESTYP_POWER:
1702 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1703 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1704 } else {
1705 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1706 }
1707 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1708 cc->flag2, 0, slp);
1709 if (err)
1710 return (err);
1711 if (obp->cstat[3] & SESCTL_RQSTON) {
1712 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1713 idx - cc->pwroff, 0, 0, slp);
1714 } else {
1715 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1716 idx - cc->pwroff, 0, 1, slp);
1717 }
1718 break;
1719 case SESTYP_FAN:
1720 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1721 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1722 } else {
1723 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1724 }
1725 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1726 cc->flag2, 0, slp);
1727 if (err)
1728 return (err);
1729 if (obp->cstat[3] & SESCTL_RQSTON) {
1730 uint8_t fsp;
1731 if ((obp->cstat[3] & 0x7) == 7) {
1732 fsp = 4;
1733 } else if ((obp->cstat[3] & 0x7) == 6) {
1734 fsp = 3;
1735 } else if ((obp->cstat[3] & 0x7) == 4) {
1736 fsp = 2;
1737 } else {
1738 fsp = 1;
1739 }
1740 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1741 } else {
1742 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1743 }
1744 break;
1745 case SESTYP_DOORLOCK:
1746 if (obp->cstat[3] & 0x1) {
1747 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1748 } else {
1749 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1750 }
1751 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1752 cc->flag2, 0, slp);
1753 break;
1754 case SESTYP_ALARM:
1755 /*
1756 * On all nonzero but the 'muted' bit, we turn on the alarm,
1757 */
1758 obp->cstat[3] &= ~0xa;
1759 if (obp->cstat[3] & 0x40) {
1760 cc->flag2 &= ~SAFT_FLG1_ALARM;
1761 } else if (obp->cstat[3] != 0) {
1762 cc->flag2 |= SAFT_FLG1_ALARM;
1763 } else {
1764 cc->flag2 &= ~SAFT_FLG1_ALARM;
1765 }
1766 ep->priv = obp->cstat[3];
1767 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1768 cc->flag2, 0, slp);
1769 break;
1770 default:
1771 break;
1772 }
1773 ep->svalid = 0;
1774 return (0);
1775 }
1776
1777 static int
1778 safte_getconfig(ses_softc_t *ssc)
1779 {
1780 struct scfg *cfg;
1781 int err, amt;
1782 char *sdata;
1783 static char cdb[10] =
1784 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1785
1786 cfg = ssc->ses_private;
1787 if (cfg == NULL)
1788 return (ENXIO);
1789
1790 sdata = SES_MALLOC(SAFT_SCRATCH);
1791 if (sdata == NULL)
1792 return (ENOMEM);
1793
1794 amt = SAFT_SCRATCH;
1795 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1796 if (err) {
1797 SES_FREE(sdata, SAFT_SCRATCH);
1798 return (err);
1799 }
1800 amt = SAFT_SCRATCH - amt;
1801 if (amt < 6) {
1802 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1803 SES_FREE(sdata, SAFT_SCRATCH);
1804 return (EIO);
1805 }
1806 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1807 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1808 cfg->Nfans = sdata[0];
1809 cfg->Npwr = sdata[1];
1810 cfg->Nslots = sdata[2];
1811 cfg->DoorLock = sdata[3];
1812 cfg->Ntherm = sdata[4];
1813 cfg->Nspkrs = sdata[5];
1814 cfg->Nalarm = NPSEUDO_ALARM;
1815 SES_FREE(sdata, SAFT_SCRATCH);
1816 return (0);
1817 }
1818
1819 static int
1820 safte_rdstat(ses_softc_t *ssc, int slpflg)
1821 {
1822 int err, oid, r, i, hiwater, nitems, amt;
1823 uint16_t tempflags;
1824 size_t buflen;
1825 uint8_t status, oencstat;
1826 char *sdata, cdb[10];
1827 struct scfg *cc = ssc->ses_private;
1828
1829
1830 /*
1831 * The number of objects overstates things a bit,
1832 * both for the bogus 'thermometer' entries and
1833 * the drive status (which isn't read at the same
1834 * time as the enclosure status), but that's okay.
1835 */
1836 buflen = 4 * cc->Nslots;
1837 if (ssc->ses_nobjects > buflen)
1838 buflen = ssc->ses_nobjects;
1839 sdata = SES_MALLOC(buflen);
1840 if (sdata == NULL)
1841 return (ENOMEM);
1842
1843 cdb[0] = READ_BUFFER;
1844 cdb[1] = 1;
1845 cdb[2] = SAFTE_RD_RDESTS;
1846 cdb[3] = 0;
1847 cdb[4] = 0;
1848 cdb[5] = 0;
1849 cdb[6] = 0;
1850 cdb[7] = (buflen >> 8) & 0xff;
1851 cdb[8] = buflen & 0xff;
1852 cdb[9] = 0;
1853 amt = buflen;
1854 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1855 if (err) {
1856 SES_FREE(sdata, buflen);
1857 return (err);
1858 }
1859 hiwater = buflen - amt;
1860
1861
1862 /*
1863 * invalidate all status bits.
1864 */
1865 for (i = 0; i < ssc->ses_nobjects; i++)
1866 ssc->ses_objmap[i].svalid = 0;
1867 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1868 ssc->ses_encstat = 0;
1869
1870
1871 /*
1872 * Now parse returned buffer.
1873 * If we didn't get enough data back,
1874 * that's considered a fatal error.
1875 */
1876 oid = r = 0;
1877
1878 for (nitems = i = 0; i < cc->Nfans; i++) {
1879 SAFT_BAIL(r, hiwater, sdata, buflen);
1880 /*
1881 * 0 = Fan Operational
1882 * 1 = Fan is malfunctioning
1883 * 2 = Fan is not present
1884 * 0x80 = Unknown or Not Reportable Status
1885 */
1886 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1887 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1888 switch ((int)(uint8_t)sdata[r]) {
1889 case 0:
1890 nitems++;
1891 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1892 /*
1893 * We could get fancier and cache
1894 * fan speeds that we have set, but
1895 * that isn't done now.
1896 */
1897 ssc->ses_objmap[oid].encstat[3] = 7;
1898 break;
1899
1900 case 1:
1901 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1902 /*
1903 * FAIL and FAN STOPPED synthesized
1904 */
1905 ssc->ses_objmap[oid].encstat[3] = 0x40;
1906 /*
1907 * Enclosure marked with CRITICAL error
1908 * if only one fan or no thermometers,
1909 * else the NONCRITICAL error is set.
1910 */
1911 if (cc->Nfans == 1 || cc->Ntherm == 0)
1912 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1913 else
1914 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1915 break;
1916 case 2:
1917 ssc->ses_objmap[oid].encstat[0] =
1918 SES_OBJSTAT_NOTINSTALLED;
1919 ssc->ses_objmap[oid].encstat[3] = 0;
1920 /*
1921 * Enclosure marked with CRITICAL error
1922 * if only one fan or no thermometers,
1923 * else the NONCRITICAL error is set.
1924 */
1925 if (cc->Nfans == 1)
1926 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1927 else
1928 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1929 break;
1930 case 0x80:
1931 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1932 ssc->ses_objmap[oid].encstat[3] = 0;
1933 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1934 break;
1935 default:
1936 ssc->ses_objmap[oid].encstat[0] =
1937 SES_OBJSTAT_UNSUPPORTED;
1938 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1939 sdata[r] & 0xff);
1940 break;
1941 }
1942 ssc->ses_objmap[oid++].svalid = 1;
1943 r++;
1944 }
1945
1946 /*
1947 * No matter how you cut it, no cooling elements when there
1948 * should be some there is critical.
1949 */
1950 if (cc->Nfans && nitems == 0) {
1951 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1952 }
1953
1954
1955 for (i = 0; i < cc->Npwr; i++) {
1956 SAFT_BAIL(r, hiwater, sdata, buflen);
1957 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1958 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1959 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1960 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1961 switch ((uint8_t)sdata[r]) {
1962 case 0x00: /* pws operational and on */
1963 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1964 break;
1965 case 0x01: /* pws operational and off */
1966 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1967 ssc->ses_objmap[oid].encstat[3] = 0x10;
1968 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1969 break;
1970 case 0x10: /* pws is malfunctioning and commanded on */
1971 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1972 ssc->ses_objmap[oid].encstat[3] = 0x61;
1973 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1974 break;
1975
1976 case 0x11: /* pws is malfunctioning and commanded off */
1977 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1978 ssc->ses_objmap[oid].encstat[3] = 0x51;
1979 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1980 break;
1981 case 0x20: /* pws is not present */
1982 ssc->ses_objmap[oid].encstat[0] =
1983 SES_OBJSTAT_NOTINSTALLED;
1984 ssc->ses_objmap[oid].encstat[3] = 0;
1985 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1986 break;
1987 case 0x21: /* pws is present */
1988 /*
1989 * This is for enclosures that cannot tell whether the
1990 * device is on or malfunctioning, but know that it is
1991 * present. Just fall through.
1992 */
1993 /* FALLTHROUGH */
1994 case 0x80: /* Unknown or Not Reportable Status */
1995 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1996 ssc->ses_objmap[oid].encstat[3] = 0;
1997 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1998 break;
1999 default:
2000 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2001 i, sdata[r] & 0xff);
2002 break;
2003 }
2004 ssc->ses_objmap[oid++].svalid = 1;
2005 r++;
2006 }
2007
2008 /*
2009 * Skip over Slot SCSI IDs
2010 */
2011 r += cc->Nslots;
2012
2013 /*
2014 * We always have doorlock status, no matter what,
2015 * but we only save the status if we have one.
2016 */
2017 SAFT_BAIL(r, hiwater, sdata, buflen);
2018 if (cc->DoorLock) {
2019 /*
2020 * 0 = Door Locked
2021 * 1 = Door Unlocked, or no Lock Installed
2022 * 0x80 = Unknown or Not Reportable Status
2023 */
2024 ssc->ses_objmap[oid].encstat[1] = 0;
2025 ssc->ses_objmap[oid].encstat[2] = 0;
2026 switch ((uint8_t)sdata[r]) {
2027 case 0:
2028 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2029 ssc->ses_objmap[oid].encstat[3] = 0;
2030 break;
2031 case 1:
2032 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2033 ssc->ses_objmap[oid].encstat[3] = 1;
2034 break;
2035 case 0x80:
2036 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2037 ssc->ses_objmap[oid].encstat[3] = 0;
2038 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2039 break;
2040 default:
2041 ssc->ses_objmap[oid].encstat[0] =
2042 SES_OBJSTAT_UNSUPPORTED;
2043 SES_LOG(ssc, "unknown lock status 0x%x\n",
2044 sdata[r] & 0xff);
2045 break;
2046 }
2047 ssc->ses_objmap[oid++].svalid = 1;
2048 }
2049 r++;
2050
2051 /*
2052 * We always have speaker status, no matter what,
2053 * but we only save the status if we have one.
2054 */
2055 SAFT_BAIL(r, hiwater, sdata, buflen);
2056 if (cc->Nspkrs) {
2057 ssc->ses_objmap[oid].encstat[1] = 0;
2058 ssc->ses_objmap[oid].encstat[2] = 0;
2059 if (sdata[r] == 1) {
2060 /*
2061 * We need to cache tone urgency indicators.
2062 * Someday.
2063 */
2064 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2065 ssc->ses_objmap[oid].encstat[3] = 0x8;
2066 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2067 } else if (sdata[r] == 0) {
2068 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2069 ssc->ses_objmap[oid].encstat[3] = 0;
2070 } else {
2071 ssc->ses_objmap[oid].encstat[0] =
2072 SES_OBJSTAT_UNSUPPORTED;
2073 ssc->ses_objmap[oid].encstat[3] = 0;
2074 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2075 sdata[r] & 0xff);
2076 }
2077 ssc->ses_objmap[oid++].svalid = 1;
2078 }
2079 r++;
2080
2081 for (i = 0; i < cc->Ntherm; i++) {
2082 SAFT_BAIL(r, hiwater, sdata, buflen);
2083 /*
2084 * Status is a range from -10 to 245 deg Celsius,
2085 * which we need to normalize to -20 to -245 according
2086 * to the latest SCSI spec, which makes little
2087 * sense since this would overflow an 8bit value.
2088 * Well, still, the base normalization is -20,
2089 * not -10, so we have to adjust.
2090 *
2091 * So what's over and under temperature?
2092 * Hmm- we'll state that 'normal' operating
2093 * is 10 to 40 deg Celsius.
2094 */
2095
2096 /*
2097 * Actually.... All of the units that people out in the world
2098 * seem to have do not come even close to setting a value that
2099 * complies with this spec.
2100 *
2101 * The closest explanation I could find was in an
2102 * LSI-Logic manual, which seemed to indicate that
2103 * this value would be set by whatever the I2C code
2104 * would interpolate from the output of an LM75
2105 * temperature sensor.
2106 *
2107 * This means that it is impossible to use the actual
2108 * numeric value to predict anything. But we don't want
2109 * to lose the value. So, we'll propagate the *uncorrected*
2110 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2111 * temperature flags for warnings.
2112 */
2113 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2114 ssc->ses_objmap[oid].encstat[1] = 0;
2115 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2116 ssc->ses_objmap[oid].encstat[3] = 0;;
2117 ssc->ses_objmap[oid++].svalid = 1;
2118 r++;
2119 }
2120
2121 /*
2122 * Now, for "pseudo" thermometers, we have two bytes
2123 * of information in enclosure status- 16 bits. Actually,
2124 * the MSB is a single TEMP ALERT flag indicating whether
2125 * any other bits are set, but, thanks to fuzzy thinking,
2126 * in the SAF-TE spec, this can also be set even if no
2127 * other bits are set, thus making this really another
2128 * binary temperature sensor.
2129 */
2130
2131 SAFT_BAIL(r, hiwater, sdata, buflen);
2132 tempflags = sdata[r++];
2133 SAFT_BAIL(r, hiwater, sdata, buflen);
2134 tempflags |= (tempflags << 8) | sdata[r++];
2135
2136 for (i = 0; i < NPSEUDO_THERM; i++) {
2137 ssc->ses_objmap[oid].encstat[1] = 0;
2138 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2139 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2140 ssc->ses_objmap[4].encstat[2] = 0xff;
2141 /*
2142 * Set 'over temperature' failure.
2143 */
2144 ssc->ses_objmap[oid].encstat[3] = 8;
2145 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2146 } else {
2147 /*
2148 * We used to say 'not available' and synthesize a
2149 * nominal 30 deg (C)- that was wrong. Actually,
2150 * Just say 'OK', and use the reserved value of
2151 * zero.
2152 */
2153 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2154 ssc->ses_objmap[oid].encstat[2] = 0;
2155 ssc->ses_objmap[oid].encstat[3] = 0;
2156 }
2157 ssc->ses_objmap[oid++].svalid = 1;
2158 }
2159
2160 /*
2161 * Get alarm status.
2162 */
2163 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2164 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2165 ssc->ses_objmap[oid++].svalid = 1;
2166
2167 /*
2168 * Now get drive slot status
2169 */
2170 cdb[2] = SAFTE_RD_RDDSTS;
2171 amt = buflen;
2172 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2173 if (err) {
2174 SES_FREE(sdata, buflen);
2175 return (err);
2176 }
2177 hiwater = buflen - amt;
2178 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2179 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2180 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2181 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2182 ssc->ses_objmap[oid].encstat[2] = 0;
2183 ssc->ses_objmap[oid].encstat[3] = 0;
2184 status = sdata[r+3];
2185 if ((status & 0x1) == 0) { /* no device */
2186 ssc->ses_objmap[oid].encstat[0] =
2187 SES_OBJSTAT_NOTINSTALLED;
2188 } else {
2189 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2190 }
2191 if (status & 0x2) {
2192 ssc->ses_objmap[oid].encstat[2] = 0x8;
2193 }
2194 if ((status & 0x4) == 0) {
2195 ssc->ses_objmap[oid].encstat[3] = 0x10;
2196 }
2197 ssc->ses_objmap[oid++].svalid = 1;
2198 }
2199 /* see comment below about sticky enclosure status */
2200 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2201 SES_FREE(sdata, buflen);
2202 return (0);
2203 }
2204
2205 static int
2206 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2207 {
2208 int idx;
2209 encobj *ep;
2210 struct scfg *cc = ssc->ses_private;
2211
2212 if (cc == NULL)
2213 return (0);
2214
2215 idx = (int)obp->obj_id;
2216 ep = &ssc->ses_objmap[idx];
2217
2218 switch (ep->enctype) {
2219 case SESTYP_DEVICE:
2220 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2221 ep->priv |= 0x40;
2222 }
2223 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2224 if (obp->cstat[0] & SESCTL_DISABLE) {
2225 ep->priv |= 0x80;
2226 /*
2227 * Hmm. Try to set the 'No Drive' flag.
2228 * Maybe that will count as a 'disable'.
2229 */
2230 }
2231 if (ep->priv & 0xc6) {
2232 ep->priv &= ~0x1;
2233 } else {
2234 ep->priv |= 0x1; /* no errors */
2235 }
2236 wrslot_stat(ssc, slp);
2237 break;
2238 case SESTYP_POWER:
2239 /*
2240 * Okay- the only one that makes sense here is to
2241 * do the 'disable' for a power supply.
2242 */
2243 if (obp->cstat[0] & SESCTL_DISABLE) {
2244 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2245 idx - cc->pwroff, 0, 0, slp);
2246 }
2247 break;
2248 case SESTYP_FAN:
2249 /*
2250 * Okay- the only one that makes sense here is to
2251 * set fan speed to zero on disable.
2252 */
2253 if (obp->cstat[0] & SESCTL_DISABLE) {
2254 /* remember- fans are the first items, so idx works */
2255 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2256 }
2257 break;
2258 case SESTYP_DOORLOCK:
2259 /*
2260 * Well, we can 'disable' the lock.
2261 */
2262 if (obp->cstat[0] & SESCTL_DISABLE) {
2263 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2264 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2265 cc->flag2, 0, slp);
2266 }
2267 break;
2268 case SESTYP_ALARM:
2269 /*
2270 * Well, we can 'disable' the alarm.
2271 */
2272 if (obp->cstat[0] & SESCTL_DISABLE) {
2273 cc->flag2 &= ~SAFT_FLG1_ALARM;
2274 ep->priv |= 0x40; /* Muted */
2275 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2276 cc->flag2, 0, slp);
2277 }
2278 break;
2279 default:
2280 break;
2281 }
2282 ep->svalid = 0;
2283 return (0);
2284 }
2285
2286 /*
2287 * This function handles all of the 16 byte WRITE BUFFER commands.
2288 */
2289 static int
2290 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2291 uint8_t b3, int slp)
2292 {
2293 int err, amt;
2294 char *sdata;
2295 struct scfg *cc = ssc->ses_private;
2296 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2297
2298 if (cc == NULL)
2299 return (0);
2300
2301 sdata = SES_MALLOC(16);
2302 if (sdata == NULL)
2303 return (ENOMEM);
2304
2305 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2306
2307 sdata[0] = op;
2308 sdata[1] = b1;
2309 sdata[2] = b2;
2310 sdata[3] = b3;
2311 MEMZERO(&sdata[4], 12);
2312 amt = -16;
2313 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2314 SES_FREE(sdata, 16);
2315 return (err);
2316 }
2317
2318 /*
2319 * This function updates the status byte for the device slot described.
2320 *
2321 * Since this is an optional SAF-TE command, there's no point in
2322 * returning an error.
2323 */
2324 static void
2325 wrslot_stat(ses_softc_t *ssc, int slp)
2326 {
2327 int i, amt;
2328 encobj *ep;
2329 char cdb[10], *sdata;
2330 struct scfg *cc = ssc->ses_private;
2331
2332 if (cc == NULL)
2333 return;
2334
2335 SES_VLOG(ssc, "saf_wrslot\n");
2336 cdb[0] = WRITE_BUFFER;
2337 cdb[1] = 1;
2338 cdb[2] = 0;
2339 cdb[3] = 0;
2340 cdb[4] = 0;
2341 cdb[5] = 0;
2342 cdb[6] = 0;
2343 cdb[7] = 0;
2344 cdb[8] = cc->Nslots * 3 + 1;
2345 cdb[9] = 0;
2346
2347 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2348 if (sdata == NULL)
2349 return;
2350 MEMZERO(sdata, cc->Nslots * 3 + 1);
2351
2352 sdata[0] = SAFTE_WT_DSTAT;
2353 for (i = 0; i < cc->Nslots; i++) {
2354 ep = &ssc->ses_objmap[cc->slotoff + i];
2355 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2356 sdata[1 + (3 * i)] = ep->priv & 0xff;
2357 }
2358 amt = -(cc->Nslots * 3 + 1);
2359 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2360 SES_FREE(sdata, cc->Nslots * 3 + 1);
2361 }
2362
2363 /*
2364 * This function issues the "PERFORM SLOT OPERATION" command.
2365 */
2366 static int
2367 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2368 {
2369 int err, amt;
2370 char *sdata;
2371 struct scfg *cc = ssc->ses_private;
2372 static char cdb[10] =
2373 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2374
2375 if (cc == NULL)
2376 return (0);
2377
2378 sdata = SES_MALLOC(SAFT_SCRATCH);
2379 if (sdata == NULL)
2380 return (ENOMEM);
2381 MEMZERO(sdata, SAFT_SCRATCH);
2382
2383 sdata[0] = SAFTE_WT_SLTOP;
2384 sdata[1] = slot;
2385 sdata[2] = opflag;
2386 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2387 amt = -SAFT_SCRATCH;
2388 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2389 SES_FREE(sdata, SAFT_SCRATCH);
2390 return (err);
2391 }
2392