ses.c revision 1.13.10.1 1 /* $NetBSD: ses.c,v 1.13.10.1 2003/06/16 12:42:44 grant Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.13.10.1 2003/06/16 12:42:44 grant Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsiconf.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init) __P((ses_softc_t *, int));
75 int (*init_enc) __P((ses_softc_t *));
76 int (*get_encstat) __P((ses_softc_t *, int));
77 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
78 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type __P((struct scsipi_inquiry_data *));
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init __P((ses_softc_t *, int));
101 static int ses_init_enc __P((ses_softc_t *));
102 static int ses_get_encstat __P((ses_softc_t *, int));
103 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
104 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
105 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
106
107 static int safte_softc_init __P((ses_softc_t *, int));
108 static int safte_init_enc __P((ses_softc_t *));
109 static int safte_get_encstat __P((ses_softc_t *, int));
110 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
111 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
112 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 int sesopen __P((dev_t, int, int, struct proc *));
136 int sesclose __P((dev_t, int, int, struct proc *));
137 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
138
139 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
140 static void ses_log __P((struct ses_softc *, const char *, ...))
141 __attribute__((__format__(__printf__, 2, 3)));
142
143 /*
144 * General NetBSD kernel stuff.
145 */
146
147 struct ses_softc {
148 struct device sc_device;
149 struct scsipi_periph *sc_periph;
150 enctyp ses_type; /* type of enclosure */
151 encvec ses_vec; /* vector to handlers */
152 void * ses_private; /* per-type private data */
153 encobj * ses_objmap; /* objects */
154 u_int32_t ses_nobjects; /* number of objects */
155 ses_encstat ses_encstat; /* overall status */
156 u_int8_t ses_flags;
157 };
158 #define SES_FLAG_INVALID 0x01
159 #define SES_FLAG_OPEN 0x02
160 #define SES_FLAG_INITIALIZED 0x04
161
162 #define SESUNIT(x) (minor((x)))
163
164 static int ses_match __P((struct device *, struct cfdata *, void *));
165 static void ses_attach __P((struct device *, struct device *, void *));
166 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
167
168 struct cfattach ses_ca = {
169 sizeof (struct ses_softc), ses_match, ses_attach
170 };
171 extern struct cfdriver ses_cd;
172
173 const struct scsipi_periphsw ses_switch = {
174 NULL,
175 NULL,
176 NULL,
177 NULL
178 };
179
180
181 int
182 ses_match(parent, match, aux)
183 struct device *parent;
184 struct cfdata *match;
185 void *aux;
186 {
187 struct scsipibus_attach_args *sa = aux;
188
189 switch (ses_device_type(sa)) {
190 case SES_SES:
191 case SES_SES_SCSI2:
192 case SES_SEN:
193 case SES_SAFT:
194 case SES_SES_PASSTHROUGH:
195 /*
196 * For these devices, it's a perfect match.
197 */
198 return (24);
199 default:
200 return (0);
201 }
202 }
203
204
205 /*
206 * Complete the attachment.
207 *
208 * We have to repeat the rerun of INQUIRY data as above because
209 * it's not until the return from the match routine that we have
210 * the softc available to set stuff in.
211 */
212 void
213 ses_attach(parent, self, aux)
214 struct device *parent;
215 struct device *self;
216 void *aux;
217 {
218 char *tname;
219 struct ses_softc *softc = (void *)self;
220 struct scsipibus_attach_args *sa = aux;
221 struct scsipi_periph *periph = sa->sa_periph;
222
223 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
224 softc->sc_periph = periph;
225 periph->periph_dev = &softc->sc_device;
226 periph->periph_switch = &ses_switch;
227 periph->periph_openings = 1;
228
229 softc->ses_type = ses_device_type(sa);
230 switch (softc->ses_type) {
231 case SES_SES:
232 case SES_SES_SCSI2:
233 case SES_SES_PASSTHROUGH:
234 softc->ses_vec.softc_init = ses_softc_init;
235 softc->ses_vec.init_enc = ses_init_enc;
236 softc->ses_vec.get_encstat = ses_get_encstat;
237 softc->ses_vec.set_encstat = ses_set_encstat;
238 softc->ses_vec.get_objstat = ses_get_objstat;
239 softc->ses_vec.set_objstat = ses_set_objstat;
240 break;
241 case SES_SAFT:
242 softc->ses_vec.softc_init = safte_softc_init;
243 softc->ses_vec.init_enc = safte_init_enc;
244 softc->ses_vec.get_encstat = safte_get_encstat;
245 softc->ses_vec.set_encstat = safte_set_encstat;
246 softc->ses_vec.get_objstat = safte_get_objstat;
247 softc->ses_vec.set_objstat = safte_set_objstat;
248 break;
249 case SES_SEN:
250 break;
251 case SES_NONE:
252 default:
253 break;
254 }
255
256 switch (softc->ses_type) {
257 default:
258 case SES_NONE:
259 tname = "No SES device";
260 break;
261 case SES_SES_SCSI2:
262 tname = "SCSI-2 SES Device";
263 break;
264 case SES_SES:
265 tname = "SCSI-3 SES Device";
266 break;
267 case SES_SES_PASSTHROUGH:
268 tname = "SES Passthrough Device";
269 break;
270 case SES_SEN:
271 tname = "UNISYS SEN Device (NOT HANDLED YET)";
272 break;
273 case SES_SAFT:
274 tname = "SAF-TE Compliant Device";
275 break;
276 }
277 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
278 }
279
280
281 static enctyp
282 ses_device_type(sa)
283 struct scsipibus_attach_args *sa;
284 {
285 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
286
287 if (inqp == NULL)
288 return (SES_NONE);
289
290 return (ses_type(inqp));
291 }
292
293 int
294 sesopen(dev, flags, fmt, p)
295 dev_t dev;
296 int flags;
297 int fmt;
298 struct proc *p;
299 {
300 struct ses_softc *softc;
301 int error, unit;
302
303 unit = SESUNIT(dev);
304 if (unit >= ses_cd.cd_ndevs)
305 return (ENXIO);
306 softc = ses_cd.cd_devs[unit];
307 if (softc == NULL)
308 return (ENXIO);
309
310 if (softc->ses_flags & SES_FLAG_INVALID) {
311 error = ENXIO;
312 goto out;
313 }
314 if (softc->ses_flags & SES_FLAG_OPEN) {
315 error = EBUSY;
316 goto out;
317 }
318 if (softc->ses_vec.softc_init == NULL) {
319 error = ENXIO;
320 goto out;
321 }
322 error = scsipi_adapter_addref(
323 softc->sc_periph->periph_channel->chan_adapter);
324 if (error != 0)
325 goto out;
326
327
328 softc->ses_flags |= SES_FLAG_OPEN;
329 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
330 error = (*softc->ses_vec.softc_init)(softc, 1);
331 if (error)
332 softc->ses_flags &= ~SES_FLAG_OPEN;
333 else
334 softc->ses_flags |= SES_FLAG_INITIALIZED;
335 }
336
337 out:
338 return (error);
339 }
340
341 int
342 sesclose(dev, flags, fmt, p)
343 dev_t dev;
344 int flags;
345 int fmt;
346 struct proc *p;
347 {
348 struct ses_softc *softc;
349 int unit;
350
351 unit = SESUNIT(dev);
352 if (unit >= ses_cd.cd_ndevs)
353 return (ENXIO);
354 softc = ses_cd.cd_devs[unit];
355 if (softc == NULL)
356 return (ENXIO);
357
358 scsipi_wait_drain(softc->sc_periph);
359 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
360 softc->ses_flags &= ~SES_FLAG_OPEN;
361 return (0);
362 }
363
364 int
365 sesioctl(dev, cmd, arg_addr, flag, p)
366 dev_t dev;
367 u_long cmd;
368 caddr_t arg_addr;
369 int flag;
370 struct proc *p;
371 {
372 ses_encstat tmp;
373 ses_objstat objs;
374 ses_object obj, *uobj;
375 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
376 void *addr;
377 int error, i;
378
379
380 if (arg_addr)
381 addr = *((caddr_t *) arg_addr);
382 else
383 addr = NULL;
384
385 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
386
387 /*
388 * Now check to see whether we're initialized or not.
389 */
390 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
391 return (ENODEV);
392 }
393
394 error = 0;
395
396 /*
397 * If this command can change the device's state,
398 * we must have the device open for writing.
399 */
400 switch (cmd) {
401 case SESIOC_GETNOBJ:
402 case SESIOC_GETOBJMAP:
403 case SESIOC_GETENCSTAT:
404 case SESIOC_GETOBJSTAT:
405 break;
406 default:
407 if ((flag & FWRITE) == 0) {
408 return (EBADF);
409 }
410 }
411
412 switch (cmd) {
413 case SESIOC_GETNOBJ:
414 error = copyout(&ssc->ses_nobjects, addr,
415 sizeof (ssc->ses_nobjects));
416 break;
417
418 case SESIOC_GETOBJMAP:
419 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
420 obj.obj_id = i;
421 obj.subencid = ssc->ses_objmap[i].subenclosure;
422 obj.object_type = ssc->ses_objmap[i].enctype;
423 error = copyout(&obj, uobj, sizeof (ses_object));
424 if (error) {
425 break;
426 }
427 }
428 break;
429
430 case SESIOC_GETENCSTAT:
431 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
432 if (error)
433 break;
434 tmp = ssc->ses_encstat & ~ENCI_SVALID;
435 error = copyout(&tmp, addr, sizeof (ses_encstat));
436 ssc->ses_encstat = tmp;
437 break;
438
439 case SESIOC_SETENCSTAT:
440 error = copyin(addr, &tmp, sizeof (ses_encstat));
441 if (error)
442 break;
443 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
444 break;
445
446 case SESIOC_GETOBJSTAT:
447 error = copyin(addr, &objs, sizeof (ses_objstat));
448 if (error)
449 break;
450 if (objs.obj_id >= ssc->ses_nobjects) {
451 error = EINVAL;
452 break;
453 }
454 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
455 if (error)
456 break;
457 error = copyout(&objs, addr, sizeof (ses_objstat));
458 /*
459 * Always (for now) invalidate entry.
460 */
461 ssc->ses_objmap[objs.obj_id].svalid = 0;
462 break;
463
464 case SESIOC_SETOBJSTAT:
465 error = copyin(addr, &objs, sizeof (ses_objstat));
466 if (error)
467 break;
468
469 if (objs.obj_id >= ssc->ses_nobjects) {
470 error = EINVAL;
471 break;
472 }
473 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
474
475 /*
476 * Always (for now) invalidate entry.
477 */
478 ssc->ses_objmap[objs.obj_id].svalid = 0;
479 break;
480
481 case SESIOC_INIT:
482
483 error = (*ssc->ses_vec.init_enc)(ssc);
484 break;
485
486 default:
487 error = scsipi_do_ioctl(ssc->sc_periph,
488 dev, cmd, addr, flag, p);
489 break;
490 }
491 return (error);
492 }
493
494 static int
495 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
496 {
497 struct scsipi_generic sgen;
498 int dl, flg, error;
499
500 if (dptr) {
501 if ((dl = *dlenp) < 0) {
502 dl = -dl;
503 flg = XS_CTL_DATA_OUT;
504 } else {
505 flg = XS_CTL_DATA_IN;
506 }
507 } else {
508 dl = 0;
509 flg = 0;
510 }
511
512 if (cdbl > sizeof (struct scsipi_generic)) {
513 cdbl = sizeof (struct scsipi_generic);
514 }
515 memcpy(&sgen, cdb, cdbl);
516 #ifndef SCSIDEBUG
517 flg |= XS_CTL_SILENT;
518 #endif
519 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
520 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
521
522 if (error == 0 && dptr)
523 *dlenp = 0;
524
525 return (error);
526 }
527
528 #ifdef __STDC__
529 static void
530 ses_log(struct ses_softc *ssc, const char *fmt, ...)
531 {
532 va_list ap;
533
534 printf("%s: ", ssc->sc_device.dv_xname);
535 va_start(ap, fmt);
536 vprintf(fmt, ap);
537 va_end(ap);
538 }
539 #else
540 static void
541 ses_log(ssc, fmt, va_alist)
542 struct ses_softc *ssc;
543 char *fmt;
544 va_dcl
545 {
546 va_list ap;
547
548 printf("%s: ", ssc->sc_device.dv_xname);
549 va_start(ap, fmt);
550 vprintf(fmt, ap);
551 va_end(ap);
552 }
553 #endif
554
555 /*
556 * The code after this point runs on many platforms,
557 * so forgive the slightly awkward and nonconforming
558 * appearance.
559 */
560
561 /*
562 * Is this a device that supports enclosure services?
563 *
564 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
565 * an SES device. If it happens to be an old UNISYS SEN device, we can
566 * handle that too.
567 */
568
569 #define SAFTE_START 44
570 #define SAFTE_END 50
571 #define SAFTE_LEN SAFTE_END-SAFTE_START
572
573 static enctyp
574 ses_type(inqp)
575 struct scsipi_inquiry_data *inqp;
576 {
577 size_t given_len = inqp->additional_length + 4;
578
579 if (given_len < 8+SEN_ID_LEN)
580 return (SES_NONE);
581
582 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
583 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
584 return (SES_SEN);
585 } else if ((inqp->version & SID_ANSII) > 2) {
586 return (SES_SES);
587 } else {
588 return (SES_SES_SCSI2);
589 }
590 return (SES_NONE);
591 }
592
593 #ifdef SES_ENABLE_PASSTHROUGH
594 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
595 /*
596 * PassThrough Device.
597 */
598 return (SES_SES_PASSTHROUGH);
599 }
600 #endif
601
602 /*
603 * The comparison is short for a reason-
604 * some vendors were chopping it short.
605 */
606
607 if (given_len < SAFTE_END - 2) {
608 return (SES_NONE);
609 }
610
611 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
612 SAFTE_LEN - 2) == 0) {
613 return (SES_SAFT);
614 }
615
616 return (SES_NONE);
617 }
618
619 /*
620 * SES Native Type Device Support
621 */
622
623 /*
624 * SES Diagnostic Page Codes
625 */
626
627 typedef enum {
628 SesConfigPage = 0x1,
629 SesControlPage,
630 #define SesStatusPage SesControlPage
631 SesHelpTxt,
632 SesStringOut,
633 #define SesStringIn SesStringOut
634 SesThresholdOut,
635 #define SesThresholdIn SesThresholdOut
636 SesArrayControl,
637 #define SesArrayStatus SesArrayControl
638 SesElementDescriptor,
639 SesShortStatus
640 } SesDiagPageCodes;
641
642 /*
643 * minimal amounts
644 */
645
646 /*
647 * Minimum amount of data, starting from byte 0, to have
648 * the config header.
649 */
650 #define SES_CFGHDR_MINLEN 12
651
652 /*
653 * Minimum amount of data, starting from byte 0, to have
654 * the config header and one enclosure header.
655 */
656 #define SES_ENCHDR_MINLEN 48
657
658 /*
659 * Take this value, subtract it from VEnclen and you know
660 * the length of the vendor unique bytes.
661 */
662 #define SES_ENCHDR_VMIN 36
663
664 /*
665 * SES Data Structures
666 */
667
668 typedef struct {
669 uint32_t GenCode; /* Generation Code */
670 uint8_t Nsubenc; /* Number of Subenclosures */
671 } SesCfgHdr;
672
673 typedef struct {
674 uint8_t Subencid; /* SubEnclosure Identifier */
675 uint8_t Ntypes; /* # of supported types */
676 uint8_t VEnclen; /* Enclosure Descriptor Length */
677 } SesEncHdr;
678
679 typedef struct {
680 uint8_t encWWN[8]; /* XXX- Not Right Yet */
681 uint8_t encVid[8];
682 uint8_t encPid[16];
683 uint8_t encRev[4];
684 uint8_t encVen[1];
685 } SesEncDesc;
686
687 typedef struct {
688 uint8_t enc_type; /* type of element */
689 uint8_t enc_maxelt; /* maximum supported */
690 uint8_t enc_subenc; /* in SubEnc # N */
691 uint8_t enc_tlen; /* Type Descriptor Text Length */
692 } SesThdr;
693
694 typedef struct {
695 uint8_t comstatus;
696 uint8_t comstat[3];
697 } SesComStat;
698
699 struct typidx {
700 int ses_tidx;
701 int ses_oidx;
702 };
703
704 struct sscfg {
705 uint8_t ses_ntypes; /* total number of types supported */
706
707 /*
708 * We need to keep a type index as well as an
709 * object index for each object in an enclosure.
710 */
711 struct typidx *ses_typidx;
712
713 /*
714 * We also need to keep track of the number of elements
715 * per type of element. This is needed later so that we
716 * can find precisely in the returned status data the
717 * status for the Nth element of the Kth type.
718 */
719 uint8_t * ses_eltmap;
720 };
721
722
723 /*
724 * (de)canonicalization defines
725 */
726 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
727 #define sbit(x, bit) (((uint32_t)(x)) << bit)
728 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729
730 #define sset16(outp, idx, sval) \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
733
734
735 #define sset24(outp, idx, sval) \
736 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
737 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
738 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
739
740
741 #define sset32(outp, idx, sval) \
742 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
743 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
744 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
745 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
746
747 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
748 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
749 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
750 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
751
752 #define sget16(inp, idx, lval) \
753 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
754 (((uint8_t *)(inp))[idx+1]), idx += 2
755
756 #define gget16(inp, idx, lval) \
757 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
758 (((uint8_t *)(inp))[idx+1])
759
760 #define sget24(inp, idx, lval) \
761 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
762 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
763 (((uint8_t *)(inp))[idx+2]), idx += 3
764
765 #define gget24(inp, idx, lval) \
766 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
767 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
768 (((uint8_t *)(inp))[idx+2])
769
770 #define sget32(inp, idx, lval) \
771 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
772 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
773 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
774 (((uint8_t *)(inp))[idx+3]), idx += 4
775
776 #define gget32(inp, idx, lval) \
777 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
778 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
779 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
780 (((uint8_t *)(inp))[idx+3])
781
782 #define SCSZ 0x2000
783 #define CFLEN (256 + SES_ENCHDR_MINLEN)
784
785 /*
786 * Routines specific && private to SES only
787 */
788
789 static int ses_getconfig(ses_softc_t *);
790 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
791 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
792 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
793 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
794 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
795 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
796 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
797
798 static int
799 ses_softc_init(ses_softc_t *ssc, int doinit)
800 {
801 if (doinit == 0) {
802 struct sscfg *cc;
803 if (ssc->ses_nobjects) {
804 SES_FREE(ssc->ses_objmap,
805 ssc->ses_nobjects * sizeof (encobj));
806 ssc->ses_objmap = NULL;
807 }
808 if ((cc = ssc->ses_private) != NULL) {
809 if (cc->ses_eltmap && cc->ses_ntypes) {
810 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
811 cc->ses_eltmap = NULL;
812 cc->ses_ntypes = 0;
813 }
814 if (cc->ses_typidx && ssc->ses_nobjects) {
815 SES_FREE(cc->ses_typidx,
816 ssc->ses_nobjects * sizeof (struct typidx));
817 cc->ses_typidx = NULL;
818 }
819 SES_FREE(cc, sizeof (struct sscfg));
820 ssc->ses_private = NULL;
821 }
822 ssc->ses_nobjects = 0;
823 return (0);
824 }
825 if (ssc->ses_private == NULL) {
826 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
827 }
828 if (ssc->ses_private == NULL) {
829 return (ENOMEM);
830 }
831 ssc->ses_nobjects = 0;
832 ssc->ses_encstat = 0;
833 return (ses_getconfig(ssc));
834 }
835
836 static int
837 ses_init_enc(ses_softc_t *ssc)
838 {
839 return (0);
840 }
841
842 static int
843 ses_get_encstat(ses_softc_t *ssc, int slpflag)
844 {
845 SesComStat ComStat;
846 int status;
847
848 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
849 return (status);
850 }
851 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
852 return (0);
853 }
854
855 static int
856 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
857 {
858 SesComStat ComStat;
859 int status;
860
861 ComStat.comstatus = encstat & 0xf;
862 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
863 return (status);
864 }
865 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
866 return (0);
867 }
868
869 static int
870 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
871 {
872 int i = (int)obp->obj_id;
873
874 if (ssc->ses_objmap[i].svalid == 0) {
875 SesComStat ComStat;
876 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
877 if (err)
878 return (err);
879 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
880 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
881 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
882 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
883 ssc->ses_objmap[i].svalid = 1;
884 }
885 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
886 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
887 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
888 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
889 return (0);
890 }
891
892 static int
893 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
894 {
895 SesComStat ComStat;
896 int err;
897 /*
898 * If this is clear, we don't do diddly.
899 */
900 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
901 return (0);
902 }
903 ComStat.comstatus = obp->cstat[0];
904 ComStat.comstat[0] = obp->cstat[1];
905 ComStat.comstat[1] = obp->cstat[2];
906 ComStat.comstat[2] = obp->cstat[3];
907 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
908 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
909 return (err);
910 }
911
912 static int
913 ses_getconfig(ses_softc_t *ssc)
914 {
915 struct sscfg *cc;
916 SesCfgHdr cf;
917 SesEncHdr hd;
918 SesEncDesc *cdp;
919 SesThdr thdr;
920 int err, amt, i, nobj, ntype, maxima;
921 char storage[CFLEN], *sdata;
922 static char cdb[6] = {
923 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
924 };
925
926 cc = ssc->ses_private;
927 if (cc == NULL) {
928 return (ENXIO);
929 }
930
931 sdata = SES_MALLOC(SCSZ);
932 if (sdata == NULL)
933 return (ENOMEM);
934
935 amt = SCSZ;
936 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
937 if (err) {
938 SES_FREE(sdata, SCSZ);
939 return (err);
940 }
941 amt = SCSZ - amt;
942
943 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
944 SES_LOG(ssc, "Unable to parse SES Config Header\n");
945 SES_FREE(sdata, SCSZ);
946 return (EIO);
947 }
948 if (amt < SES_ENCHDR_MINLEN) {
949 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
950 SES_FREE(sdata, SCSZ);
951 return (EIO);
952 }
953
954 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
955
956 /*
957 * Now waltz through all the subenclosures toting up the
958 * number of types available in each. For this, we only
959 * really need the enclosure header. However, we get the
960 * enclosure descriptor for debug purposes, as well
961 * as self-consistency checking purposes.
962 */
963
964 maxima = cf.Nsubenc + 1;
965 cdp = (SesEncDesc *) storage;
966 for (ntype = i = 0; i < maxima; i++) {
967 MEMZERO((caddr_t)cdp, sizeof (*cdp));
968 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
969 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
970 SES_FREE(sdata, SCSZ);
971 return (EIO);
972 }
973 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
974 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
975
976 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
977 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
978 SES_FREE(sdata, SCSZ);
979 return (EIO);
980 }
981 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
982 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
983 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
984 cdp->encWWN[6], cdp->encWWN[7]);
985 ntype += hd.Ntypes;
986 }
987
988 /*
989 * Now waltz through all the types that are available, getting
990 * the type header so we can start adding up the number of
991 * objects available.
992 */
993 for (nobj = i = 0; i < ntype; i++) {
994 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
995 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
996 SES_FREE(sdata, SCSZ);
997 return (EIO);
998 }
999 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1000 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1001 thdr.enc_subenc, thdr.enc_tlen);
1002 nobj += thdr.enc_maxelt;
1003 }
1004
1005
1006 /*
1007 * Now allocate the object array and type map.
1008 */
1009
1010 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1011 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1012 cc->ses_eltmap = SES_MALLOC(ntype);
1013
1014 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1015 cc->ses_eltmap == NULL) {
1016 if (ssc->ses_objmap) {
1017 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1018 ssc->ses_objmap = NULL;
1019 }
1020 if (cc->ses_typidx) {
1021 SES_FREE(cc->ses_typidx,
1022 (nobj * sizeof (struct typidx)));
1023 cc->ses_typidx = NULL;
1024 }
1025 if (cc->ses_eltmap) {
1026 SES_FREE(cc->ses_eltmap, ntype);
1027 cc->ses_eltmap = NULL;
1028 }
1029 SES_FREE(sdata, SCSZ);
1030 return (ENOMEM);
1031 }
1032 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1033 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1034 MEMZERO(cc->ses_eltmap, ntype);
1035 cc->ses_ntypes = (uint8_t) ntype;
1036 ssc->ses_nobjects = nobj;
1037
1038 /*
1039 * Now waltz through the # of types again to fill in the types
1040 * (and subenclosure ids) of the allocated objects.
1041 */
1042 nobj = 0;
1043 for (i = 0; i < ntype; i++) {
1044 int j;
1045 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1046 continue;
1047 }
1048 cc->ses_eltmap[i] = thdr.enc_maxelt;
1049 for (j = 0; j < thdr.enc_maxelt; j++) {
1050 cc->ses_typidx[nobj].ses_tidx = i;
1051 cc->ses_typidx[nobj].ses_oidx = j;
1052 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1053 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1054 }
1055 }
1056 SES_FREE(sdata, SCSZ);
1057 return (0);
1058 }
1059
1060 static int
1061 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1062 {
1063 struct sscfg *cc;
1064 int err, amt, bufsiz, tidx, oidx;
1065 char cdb[6], *sdata;
1066
1067 cc = ssc->ses_private;
1068 if (cc == NULL) {
1069 return (ENXIO);
1070 }
1071
1072 /*
1073 * If we're just getting overall enclosure status,
1074 * we only need 2 bytes of data storage.
1075 *
1076 * If we're getting anything else, we know how much
1077 * storage we need by noting that starting at offset
1078 * 8 in returned data, all object status bytes are 4
1079 * bytes long, and are stored in chunks of types(M)
1080 * and nth+1 instances of type M.
1081 */
1082 if (objid == -1) {
1083 bufsiz = 2;
1084 } else {
1085 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1086 }
1087 sdata = SES_MALLOC(bufsiz);
1088 if (sdata == NULL)
1089 return (ENOMEM);
1090
1091 cdb[0] = RECEIVE_DIAGNOSTIC;
1092 cdb[1] = 1;
1093 cdb[2] = SesStatusPage;
1094 cdb[3] = bufsiz >> 8;
1095 cdb[4] = bufsiz & 0xff;
1096 cdb[5] = 0;
1097 amt = bufsiz;
1098 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1099 if (err) {
1100 SES_FREE(sdata, bufsiz);
1101 return (err);
1102 }
1103 amt = bufsiz - amt;
1104
1105 if (objid == -1) {
1106 tidx = -1;
1107 oidx = -1;
1108 } else {
1109 tidx = cc->ses_typidx[objid].ses_tidx;
1110 oidx = cc->ses_typidx[objid].ses_oidx;
1111 }
1112 if (in) {
1113 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1114 err = ENODEV;
1115 }
1116 } else {
1117 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1118 err = ENODEV;
1119 } else {
1120 cdb[0] = SEND_DIAGNOSTIC;
1121 cdb[1] = 0x10;
1122 cdb[2] = 0;
1123 cdb[3] = bufsiz >> 8;
1124 cdb[4] = bufsiz & 0xff;
1125 cdb[5] = 0;
1126 amt = -bufsiz;
1127 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1128 }
1129 }
1130 SES_FREE(sdata, bufsiz);
1131 return (0);
1132 }
1133
1134
1135 /*
1136 * Routines to parse returned SES data structures.
1137 * Architecture and compiler independent.
1138 */
1139
1140 static int
1141 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1142 {
1143 if (buflen < SES_CFGHDR_MINLEN) {
1144 return (-1);
1145 }
1146 gget8(buffer, 1, cfp->Nsubenc);
1147 gget32(buffer, 4, cfp->GenCode);
1148 return (0);
1149 }
1150
1151 static int
1152 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1153 {
1154 int s, off = 8;
1155 for (s = 0; s < SubEncId; s++) {
1156 if (off + 3 > amt)
1157 return (-1);
1158 off += buffer[off+3] + 4;
1159 }
1160 if (off + 3 > amt) {
1161 return (-1);
1162 }
1163 gget8(buffer, off+1, chp->Subencid);
1164 gget8(buffer, off+2, chp->Ntypes);
1165 gget8(buffer, off+3, chp->VEnclen);
1166 return (0);
1167 }
1168
1169 static int
1170 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1171 {
1172 int s, e, enclen, off = 8;
1173 for (s = 0; s < SubEncId; s++) {
1174 if (off + 3 > amt)
1175 return (-1);
1176 off += buffer[off+3] + 4;
1177 }
1178 if (off + 3 > amt) {
1179 return (-1);
1180 }
1181 gget8(buffer, off+3, enclen);
1182 off += 4;
1183 if (off >= amt)
1184 return (-1);
1185
1186 e = off + enclen;
1187 if (e > amt) {
1188 e = amt;
1189 }
1190 MEMCPY(cdp, &buffer[off], e - off);
1191 return (0);
1192 }
1193
1194 static int
1195 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1196 {
1197 int s, off = 8;
1198
1199 if (amt < SES_CFGHDR_MINLEN) {
1200 return (-1);
1201 }
1202 for (s = 0; s < buffer[1]; s++) {
1203 if (off + 3 > amt)
1204 return (-1);
1205 off += buffer[off+3] + 4;
1206 }
1207 if (off + 3 > amt) {
1208 return (-1);
1209 }
1210 off += buffer[off+3] + 4 + (nth * 4);
1211 if (amt < (off + 4))
1212 return (-1);
1213
1214 gget8(buffer, off++, thp->enc_type);
1215 gget8(buffer, off++, thp->enc_maxelt);
1216 gget8(buffer, off++, thp->enc_subenc);
1217 gget8(buffer, off, thp->enc_tlen);
1218 return (0);
1219 }
1220
1221 /*
1222 * This function needs a little explanation.
1223 *
1224 * The arguments are:
1225 *
1226 *
1227 * char *b, int amt
1228 *
1229 * These describes the raw input SES status data and length.
1230 *
1231 * uint8_t *ep
1232 *
1233 * This is a map of the number of types for each element type
1234 * in the enclosure.
1235 *
1236 * int elt
1237 *
1238 * This is the element type being sought. If elt is -1,
1239 * then overall enclosure status is being sought.
1240 *
1241 * int elm
1242 *
1243 * This is the ordinal Mth element of type elt being sought.
1244 *
1245 * SesComStat *sp
1246 *
1247 * This is the output area to store the status for
1248 * the Mth element of type Elt.
1249 */
1250
1251 static int
1252 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1253 {
1254 int idx, i;
1255
1256 /*
1257 * If it's overall enclosure status being sought, get that.
1258 * We need at least 2 bytes of status data to get that.
1259 */
1260 if (elt == -1) {
1261 if (amt < 2)
1262 return (-1);
1263 gget8(b, 1, sp->comstatus);
1264 sp->comstat[0] = 0;
1265 sp->comstat[1] = 0;
1266 sp->comstat[2] = 0;
1267 return (0);
1268 }
1269
1270 /*
1271 * Check to make sure that the Mth element is legal for type Elt.
1272 */
1273
1274 if (elm >= ep[elt])
1275 return (-1);
1276
1277 /*
1278 * Starting at offset 8, start skipping over the storage
1279 * for the element types we're not interested in.
1280 */
1281 for (idx = 8, i = 0; i < elt; i++) {
1282 idx += ((ep[i] + 1) * 4);
1283 }
1284
1285 /*
1286 * Skip over Overall status for this element type.
1287 */
1288 idx += 4;
1289
1290 /*
1291 * And skip to the index for the Mth element that we're going for.
1292 */
1293 idx += (4 * elm);
1294
1295 /*
1296 * Make sure we haven't overflowed the buffer.
1297 */
1298 if (idx+4 > amt)
1299 return (-1);
1300
1301 /*
1302 * Retrieve the status.
1303 */
1304 gget8(b, idx++, sp->comstatus);
1305 gget8(b, idx++, sp->comstat[0]);
1306 gget8(b, idx++, sp->comstat[1]);
1307 gget8(b, idx++, sp->comstat[2]);
1308 #if 0
1309 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1310 #endif
1311 return (0);
1312 }
1313
1314 /*
1315 * This is the mirror function to ses_decode, but we set the 'select'
1316 * bit for the object which we're interested in. All other objects,
1317 * after a status fetch, should have that bit off. Hmm. It'd be easy
1318 * enough to ensure this, so we will.
1319 */
1320
1321 static int
1322 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1323 {
1324 int idx, i;
1325
1326 /*
1327 * If it's overall enclosure status being sought, get that.
1328 * We need at least 2 bytes of status data to get that.
1329 */
1330 if (elt == -1) {
1331 if (amt < 2)
1332 return (-1);
1333 i = 0;
1334 sset8(b, i, 0);
1335 sset8(b, i, sp->comstatus & 0xf);
1336 #if 0
1337 PRINTF("set EncStat %x\n", sp->comstatus);
1338 #endif
1339 return (0);
1340 }
1341
1342 /*
1343 * Check to make sure that the Mth element is legal for type Elt.
1344 */
1345
1346 if (elm >= ep[elt])
1347 return (-1);
1348
1349 /*
1350 * Starting at offset 8, start skipping over the storage
1351 * for the element types we're not interested in.
1352 */
1353 for (idx = 8, i = 0; i < elt; i++) {
1354 idx += ((ep[i] + 1) * 4);
1355 }
1356
1357 /*
1358 * Skip over Overall status for this element type.
1359 */
1360 idx += 4;
1361
1362 /*
1363 * And skip to the index for the Mth element that we're going for.
1364 */
1365 idx += (4 * elm);
1366
1367 /*
1368 * Make sure we haven't overflowed the buffer.
1369 */
1370 if (idx+4 > amt)
1371 return (-1);
1372
1373 /*
1374 * Set the status.
1375 */
1376 sset8(b, idx, sp->comstatus);
1377 sset8(b, idx, sp->comstat[0]);
1378 sset8(b, idx, sp->comstat[1]);
1379 sset8(b, idx, sp->comstat[2]);
1380 idx -= 4;
1381
1382 #if 0
1383 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1384 elt, elm, idx, sp->comstatus, sp->comstat[0],
1385 sp->comstat[1], sp->comstat[2]);
1386 #endif
1387
1388 /*
1389 * Now make sure all other 'Select' bits are off.
1390 */
1391 for (i = 8; i < amt; i += 4) {
1392 if (i != idx)
1393 b[i] &= ~0x80;
1394 }
1395 /*
1396 * And make sure the INVOP bit is clear.
1397 */
1398 b[2] &= ~0x10;
1399
1400 return (0);
1401 }
1402
1403 /*
1404 * SAF-TE Type Device Emulation
1405 */
1406
1407 static int safte_getconfig(ses_softc_t *);
1408 static int safte_rdstat(ses_softc_t *, int);
1409 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1410 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1411 static void wrslot_stat(ses_softc_t *, int);
1412 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1413
1414 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1415 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1416 /*
1417 * SAF-TE specific defines- Mandatory ones only...
1418 */
1419
1420 /*
1421 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1422 */
1423 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1424 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1425 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1426
1427 /*
1428 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1429 */
1430 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1431 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1432 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1433 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1434 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1435
1436
1437 #define SAFT_SCRATCH 64
1438 #define NPSEUDO_THERM 16
1439 #define NPSEUDO_ALARM 1
1440 struct scfg {
1441 /*
1442 * Cached Configuration
1443 */
1444 uint8_t Nfans; /* Number of Fans */
1445 uint8_t Npwr; /* Number of Power Supplies */
1446 uint8_t Nslots; /* Number of Device Slots */
1447 uint8_t DoorLock; /* Door Lock Installed */
1448 uint8_t Ntherm; /* Number of Temperature Sensors */
1449 uint8_t Nspkrs; /* Number of Speakers */
1450 uint8_t Nalarm; /* Number of Alarms (at least one) */
1451 /*
1452 * Cached Flag Bytes for Global Status
1453 */
1454 uint8_t flag1;
1455 uint8_t flag2;
1456 /*
1457 * What object index ID is where various slots start.
1458 */
1459 uint8_t pwroff;
1460 uint8_t slotoff;
1461 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1462 };
1463
1464 #define SAFT_FLG1_ALARM 0x1
1465 #define SAFT_FLG1_GLOBFAIL 0x2
1466 #define SAFT_FLG1_GLOBWARN 0x4
1467 #define SAFT_FLG1_ENCPWROFF 0x8
1468 #define SAFT_FLG1_ENCFANFAIL 0x10
1469 #define SAFT_FLG1_ENCPWRFAIL 0x20
1470 #define SAFT_FLG1_ENCDRVFAIL 0x40
1471 #define SAFT_FLG1_ENCDRVWARN 0x80
1472
1473 #define SAFT_FLG2_LOCKDOOR 0x4
1474 #define SAFT_PRIVATE sizeof (struct scfg)
1475
1476 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1477 #define SAFT_BAIL(r, x, k, l) \
1478 if (r >= x) { \
1479 SES_LOG(ssc, safte_2little, x, __LINE__);\
1480 SES_FREE(k, l); \
1481 return (EIO); \
1482 }
1483
1484
1485 int
1486 safte_softc_init(ses_softc_t *ssc, int doinit)
1487 {
1488 int err, i, r;
1489 struct scfg *cc;
1490
1491 if (doinit == 0) {
1492 if (ssc->ses_nobjects) {
1493 if (ssc->ses_objmap) {
1494 SES_FREE(ssc->ses_objmap,
1495 ssc->ses_nobjects * sizeof (encobj));
1496 ssc->ses_objmap = NULL;
1497 }
1498 ssc->ses_nobjects = 0;
1499 }
1500 if (ssc->ses_private) {
1501 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1502 ssc->ses_private = NULL;
1503 }
1504 return (0);
1505 }
1506
1507 if (ssc->ses_private == NULL) {
1508 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1509 if (ssc->ses_private == NULL) {
1510 return (ENOMEM);
1511 }
1512 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1513 }
1514
1515 ssc->ses_nobjects = 0;
1516 ssc->ses_encstat = 0;
1517
1518 if ((err = safte_getconfig(ssc)) != 0) {
1519 return (err);
1520 }
1521
1522 /*
1523 * The number of objects here, as well as that reported by the
1524 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1525 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1526 */
1527 cc = ssc->ses_private;
1528 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1529 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1530 ssc->ses_objmap = (encobj *)
1531 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1532 if (ssc->ses_objmap == NULL) {
1533 return (ENOMEM);
1534 }
1535 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1536
1537 r = 0;
1538 /*
1539 * Note that this is all arranged for the convenience
1540 * in later fetches of status.
1541 */
1542 for (i = 0; i < cc->Nfans; i++)
1543 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1544 cc->pwroff = (uint8_t) r;
1545 for (i = 0; i < cc->Npwr; i++)
1546 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1547 for (i = 0; i < cc->DoorLock; i++)
1548 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1549 for (i = 0; i < cc->Nspkrs; i++)
1550 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1551 for (i = 0; i < cc->Ntherm; i++)
1552 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1553 for (i = 0; i < NPSEUDO_THERM; i++)
1554 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1555 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1556 cc->slotoff = (uint8_t) r;
1557 for (i = 0; i < cc->Nslots; i++)
1558 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1559 return (0);
1560 }
1561
1562 int
1563 safte_init_enc(ses_softc_t *ssc)
1564 {
1565 int err, amt;
1566 char *sdata;
1567 static char cdb0[6] = { SEND_DIAGNOSTIC };
1568 static char cdb[10] =
1569 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1570
1571 sdata = SES_MALLOC(SAFT_SCRATCH);
1572 if (sdata == NULL)
1573 return (ENOMEM);
1574
1575 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1576 if (err) {
1577 SES_FREE(sdata, SAFT_SCRATCH);
1578 return (err);
1579 }
1580 sdata[0] = SAFTE_WT_GLOBAL;
1581 MEMZERO(&sdata[1], 15);
1582 amt = -SAFT_SCRATCH;
1583 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1584 SES_FREE(sdata, SAFT_SCRATCH);
1585 return (err);
1586 }
1587
1588 int
1589 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1590 {
1591 return (safte_rdstat(ssc, slpflg));
1592 }
1593
1594 int
1595 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1596 {
1597 struct scfg *cc = ssc->ses_private;
1598 if (cc == NULL)
1599 return (0);
1600 /*
1601 * Since SAF-TE devices aren't necessarily sticky in terms
1602 * of state, make our soft copy of enclosure status 'sticky'-
1603 * that is, things set in enclosure status stay set (as implied
1604 * by conditions set in reading object status) until cleared.
1605 */
1606 ssc->ses_encstat &= ~ALL_ENC_STAT;
1607 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1608 ssc->ses_encstat |= ENCI_SVALID;
1609 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1610 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1611 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1612 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1613 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1614 }
1615 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1616 }
1617
1618 int
1619 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1620 {
1621 int i = (int)obp->obj_id;
1622
1623 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1624 (ssc->ses_objmap[i].svalid) == 0) {
1625 int err = safte_rdstat(ssc, slpflg);
1626 if (err)
1627 return (err);
1628 }
1629 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1630 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1631 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1632 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1633 return (0);
1634 }
1635
1636
1637 int
1638 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1639 {
1640 int idx, err;
1641 encobj *ep;
1642 struct scfg *cc;
1643
1644
1645 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1646 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1647 obp->cstat[3]);
1648
1649 /*
1650 * If this is clear, we don't do diddly.
1651 */
1652 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1653 return (0);
1654 }
1655
1656 err = 0;
1657 /*
1658 * Check to see if the common bits are set and do them first.
1659 */
1660 if (obp->cstat[0] & ~SESCTL_CSEL) {
1661 err = set_objstat_sel(ssc, obp, slp);
1662 if (err)
1663 return (err);
1664 }
1665
1666 cc = ssc->ses_private;
1667 if (cc == NULL)
1668 return (0);
1669
1670 idx = (int)obp->obj_id;
1671 ep = &ssc->ses_objmap[idx];
1672
1673 switch (ep->enctype) {
1674 case SESTYP_DEVICE:
1675 {
1676 uint8_t slotop = 0;
1677 /*
1678 * XXX: I should probably cache the previous state
1679 * XXX: of SESCTL_DEVOFF so that when it goes from
1680 * XXX: true to false I can then set PREPARE FOR OPERATION
1681 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1682 */
1683 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1684 slotop |= 0x2;
1685 }
1686 if (obp->cstat[2] & SESCTL_RQSID) {
1687 slotop |= 0x4;
1688 }
1689 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1690 slotop, slp);
1691 if (err)
1692 return (err);
1693 if (obp->cstat[3] & SESCTL_RQSFLT) {
1694 ep->priv |= 0x2;
1695 } else {
1696 ep->priv &= ~0x2;
1697 }
1698 if (ep->priv & 0xc6) {
1699 ep->priv &= ~0x1;
1700 } else {
1701 ep->priv |= 0x1; /* no errors */
1702 }
1703 wrslot_stat(ssc, slp);
1704 break;
1705 }
1706 case SESTYP_POWER:
1707 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1708 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1709 } else {
1710 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1711 }
1712 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1713 cc->flag2, 0, slp);
1714 if (err)
1715 return (err);
1716 if (obp->cstat[3] & SESCTL_RQSTON) {
1717 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1718 idx - cc->pwroff, 0, 0, slp);
1719 } else {
1720 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1721 idx - cc->pwroff, 0, 1, slp);
1722 }
1723 break;
1724 case SESTYP_FAN:
1725 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1726 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1727 } else {
1728 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1729 }
1730 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1731 cc->flag2, 0, slp);
1732 if (err)
1733 return (err);
1734 if (obp->cstat[3] & SESCTL_RQSTON) {
1735 uint8_t fsp;
1736 if ((obp->cstat[3] & 0x7) == 7) {
1737 fsp = 4;
1738 } else if ((obp->cstat[3] & 0x7) == 6) {
1739 fsp = 3;
1740 } else if ((obp->cstat[3] & 0x7) == 4) {
1741 fsp = 2;
1742 } else {
1743 fsp = 1;
1744 }
1745 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1746 } else {
1747 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1748 }
1749 break;
1750 case SESTYP_DOORLOCK:
1751 if (obp->cstat[3] & 0x1) {
1752 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1753 } else {
1754 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1755 }
1756 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1757 cc->flag2, 0, slp);
1758 break;
1759 case SESTYP_ALARM:
1760 /*
1761 * On all nonzero but the 'muted' bit, we turn on the alarm,
1762 */
1763 obp->cstat[3] &= ~0xa;
1764 if (obp->cstat[3] & 0x40) {
1765 cc->flag2 &= ~SAFT_FLG1_ALARM;
1766 } else if (obp->cstat[3] != 0) {
1767 cc->flag2 |= SAFT_FLG1_ALARM;
1768 } else {
1769 cc->flag2 &= ~SAFT_FLG1_ALARM;
1770 }
1771 ep->priv = obp->cstat[3];
1772 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1773 cc->flag2, 0, slp);
1774 break;
1775 default:
1776 break;
1777 }
1778 ep->svalid = 0;
1779 return (0);
1780 }
1781
1782 static int
1783 safte_getconfig(ses_softc_t *ssc)
1784 {
1785 struct scfg *cfg;
1786 int err, amt;
1787 char *sdata;
1788 static char cdb[10] =
1789 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1790
1791 cfg = ssc->ses_private;
1792 if (cfg == NULL)
1793 return (ENXIO);
1794
1795 sdata = SES_MALLOC(SAFT_SCRATCH);
1796 if (sdata == NULL)
1797 return (ENOMEM);
1798
1799 amt = SAFT_SCRATCH;
1800 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1801 if (err) {
1802 SES_FREE(sdata, SAFT_SCRATCH);
1803 return (err);
1804 }
1805 amt = SAFT_SCRATCH - amt;
1806 if (amt < 6) {
1807 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1808 SES_FREE(sdata, SAFT_SCRATCH);
1809 return (EIO);
1810 }
1811 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1812 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1813 cfg->Nfans = sdata[0];
1814 cfg->Npwr = sdata[1];
1815 cfg->Nslots = sdata[2];
1816 cfg->DoorLock = sdata[3];
1817 cfg->Ntherm = sdata[4];
1818 cfg->Nspkrs = sdata[5];
1819 cfg->Nalarm = NPSEUDO_ALARM;
1820 SES_FREE(sdata, SAFT_SCRATCH);
1821 return (0);
1822 }
1823
1824 static int
1825 safte_rdstat(ses_softc_t *ssc, int slpflg)
1826 {
1827 int err, oid, r, i, hiwater, nitems, amt;
1828 uint16_t tempflags;
1829 size_t buflen;
1830 uint8_t status, oencstat;
1831 char *sdata, cdb[10];
1832 struct scfg *cc = ssc->ses_private;
1833
1834
1835 /*
1836 * The number of objects overstates things a bit,
1837 * both for the bogus 'thermometer' entries and
1838 * the drive status (which isn't read at the same
1839 * time as the enclosure status), but that's okay.
1840 */
1841 buflen = 4 * cc->Nslots;
1842 if (ssc->ses_nobjects > buflen)
1843 buflen = ssc->ses_nobjects;
1844 sdata = SES_MALLOC(buflen);
1845 if (sdata == NULL)
1846 return (ENOMEM);
1847
1848 cdb[0] = READ_BUFFER;
1849 cdb[1] = 1;
1850 cdb[2] = SAFTE_RD_RDESTS;
1851 cdb[3] = 0;
1852 cdb[4] = 0;
1853 cdb[5] = 0;
1854 cdb[6] = 0;
1855 cdb[7] = (buflen >> 8) & 0xff;
1856 cdb[8] = buflen & 0xff;
1857 cdb[9] = 0;
1858 amt = buflen;
1859 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1860 if (err) {
1861 SES_FREE(sdata, buflen);
1862 return (err);
1863 }
1864 hiwater = buflen - amt;
1865
1866
1867 /*
1868 * invalidate all status bits.
1869 */
1870 for (i = 0; i < ssc->ses_nobjects; i++)
1871 ssc->ses_objmap[i].svalid = 0;
1872 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1873 ssc->ses_encstat = 0;
1874
1875
1876 /*
1877 * Now parse returned buffer.
1878 * If we didn't get enough data back,
1879 * that's considered a fatal error.
1880 */
1881 oid = r = 0;
1882
1883 for (nitems = i = 0; i < cc->Nfans; i++) {
1884 SAFT_BAIL(r, hiwater, sdata, buflen);
1885 /*
1886 * 0 = Fan Operational
1887 * 1 = Fan is malfunctioning
1888 * 2 = Fan is not present
1889 * 0x80 = Unknown or Not Reportable Status
1890 */
1891 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1892 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1893 switch ((int)(uint8_t)sdata[r]) {
1894 case 0:
1895 nitems++;
1896 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1897 /*
1898 * We could get fancier and cache
1899 * fan speeds that we have set, but
1900 * that isn't done now.
1901 */
1902 ssc->ses_objmap[oid].encstat[3] = 7;
1903 break;
1904
1905 case 1:
1906 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1907 /*
1908 * FAIL and FAN STOPPED synthesized
1909 */
1910 ssc->ses_objmap[oid].encstat[3] = 0x40;
1911 /*
1912 * Enclosure marked with CRITICAL error
1913 * if only one fan or no thermometers,
1914 * else the NONCRITICAL error is set.
1915 */
1916 if (cc->Nfans == 1 || cc->Ntherm == 0)
1917 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1918 else
1919 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1920 break;
1921 case 2:
1922 ssc->ses_objmap[oid].encstat[0] =
1923 SES_OBJSTAT_NOTINSTALLED;
1924 ssc->ses_objmap[oid].encstat[3] = 0;
1925 /*
1926 * Enclosure marked with CRITICAL error
1927 * if only one fan or no thermometers,
1928 * else the NONCRITICAL error is set.
1929 */
1930 if (cc->Nfans == 1)
1931 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1932 else
1933 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1934 break;
1935 case 0x80:
1936 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1937 ssc->ses_objmap[oid].encstat[3] = 0;
1938 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1939 break;
1940 default:
1941 ssc->ses_objmap[oid].encstat[0] =
1942 SES_OBJSTAT_UNSUPPORTED;
1943 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1944 sdata[r] & 0xff);
1945 break;
1946 }
1947 ssc->ses_objmap[oid++].svalid = 1;
1948 r++;
1949 }
1950
1951 /*
1952 * No matter how you cut it, no cooling elements when there
1953 * should be some there is critical.
1954 */
1955 if (cc->Nfans && nitems == 0) {
1956 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1957 }
1958
1959
1960 for (i = 0; i < cc->Npwr; i++) {
1961 SAFT_BAIL(r, hiwater, sdata, buflen);
1962 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1963 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1964 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1965 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1966 switch ((uint8_t)sdata[r]) {
1967 case 0x00: /* pws operational and on */
1968 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1969 break;
1970 case 0x01: /* pws operational and off */
1971 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1972 ssc->ses_objmap[oid].encstat[3] = 0x10;
1973 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1974 break;
1975 case 0x10: /* pws is malfunctioning and commanded on */
1976 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1977 ssc->ses_objmap[oid].encstat[3] = 0x61;
1978 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1979 break;
1980
1981 case 0x11: /* pws is malfunctioning and commanded off */
1982 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1983 ssc->ses_objmap[oid].encstat[3] = 0x51;
1984 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1985 break;
1986 case 0x20: /* pws is not present */
1987 ssc->ses_objmap[oid].encstat[0] =
1988 SES_OBJSTAT_NOTINSTALLED;
1989 ssc->ses_objmap[oid].encstat[3] = 0;
1990 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1991 break;
1992 case 0x21: /* pws is present */
1993 /*
1994 * This is for enclosures that cannot tell whether the
1995 * device is on or malfunctioning, but know that it is
1996 * present. Just fall through.
1997 */
1998 /* FALLTHROUGH */
1999 case 0x80: /* Unknown or Not Reportable Status */
2000 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2001 ssc->ses_objmap[oid].encstat[3] = 0;
2002 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2003 break;
2004 default:
2005 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2006 i, sdata[r] & 0xff);
2007 break;
2008 }
2009 ssc->ses_objmap[oid++].svalid = 1;
2010 r++;
2011 }
2012
2013 /*
2014 * Skip over Slot SCSI IDs
2015 */
2016 r += cc->Nslots;
2017
2018 /*
2019 * We always have doorlock status, no matter what,
2020 * but we only save the status if we have one.
2021 */
2022 SAFT_BAIL(r, hiwater, sdata, buflen);
2023 if (cc->DoorLock) {
2024 /*
2025 * 0 = Door Locked
2026 * 1 = Door Unlocked, or no Lock Installed
2027 * 0x80 = Unknown or Not Reportable Status
2028 */
2029 ssc->ses_objmap[oid].encstat[1] = 0;
2030 ssc->ses_objmap[oid].encstat[2] = 0;
2031 switch ((uint8_t)sdata[r]) {
2032 case 0:
2033 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2034 ssc->ses_objmap[oid].encstat[3] = 0;
2035 break;
2036 case 1:
2037 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2038 ssc->ses_objmap[oid].encstat[3] = 1;
2039 break;
2040 case 0x80:
2041 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2042 ssc->ses_objmap[oid].encstat[3] = 0;
2043 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2044 break;
2045 default:
2046 ssc->ses_objmap[oid].encstat[0] =
2047 SES_OBJSTAT_UNSUPPORTED;
2048 SES_LOG(ssc, "unknown lock status 0x%x\n",
2049 sdata[r] & 0xff);
2050 break;
2051 }
2052 ssc->ses_objmap[oid++].svalid = 1;
2053 }
2054 r++;
2055
2056 /*
2057 * We always have speaker status, no matter what,
2058 * but we only save the status if we have one.
2059 */
2060 SAFT_BAIL(r, hiwater, sdata, buflen);
2061 if (cc->Nspkrs) {
2062 ssc->ses_objmap[oid].encstat[1] = 0;
2063 ssc->ses_objmap[oid].encstat[2] = 0;
2064 if (sdata[r] == 1) {
2065 /*
2066 * We need to cache tone urgency indicators.
2067 * Someday.
2068 */
2069 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2070 ssc->ses_objmap[oid].encstat[3] = 0x8;
2071 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2072 } else if (sdata[r] == 0) {
2073 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2074 ssc->ses_objmap[oid].encstat[3] = 0;
2075 } else {
2076 ssc->ses_objmap[oid].encstat[0] =
2077 SES_OBJSTAT_UNSUPPORTED;
2078 ssc->ses_objmap[oid].encstat[3] = 0;
2079 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2080 sdata[r] & 0xff);
2081 }
2082 ssc->ses_objmap[oid++].svalid = 1;
2083 }
2084 r++;
2085
2086 for (i = 0; i < cc->Ntherm; i++) {
2087 SAFT_BAIL(r, hiwater, sdata, buflen);
2088 /*
2089 * Status is a range from -10 to 245 deg Celsius,
2090 * which we need to normalize to -20 to -245 according
2091 * to the latest SCSI spec, which makes little
2092 * sense since this would overflow an 8bit value.
2093 * Well, still, the base normalization is -20,
2094 * not -10, so we have to adjust.
2095 *
2096 * So what's over and under temperature?
2097 * Hmm- we'll state that 'normal' operating
2098 * is 10 to 40 deg Celsius.
2099 */
2100
2101 /*
2102 * Actually.... All of the units that people out in the world
2103 * seem to have do not come even close to setting a value that
2104 * complies with this spec.
2105 *
2106 * The closest explanation I could find was in an
2107 * LSI-Logic manual, which seemed to indicate that
2108 * this value would be set by whatever the I2C code
2109 * would interpolate from the output of an LM75
2110 * temperature sensor.
2111 *
2112 * This means that it is impossible to use the actual
2113 * numeric value to predict anything. But we don't want
2114 * to lose the value. So, we'll propagate the *uncorrected*
2115 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2116 * temperature flags for warnings.
2117 */
2118 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2119 ssc->ses_objmap[oid].encstat[1] = 0;
2120 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2121 ssc->ses_objmap[oid].encstat[3] = 0;
2122 ssc->ses_objmap[oid++].svalid = 1;
2123 r++;
2124 }
2125
2126 /*
2127 * Now, for "pseudo" thermometers, we have two bytes
2128 * of information in enclosure status- 16 bits. Actually,
2129 * the MSB is a single TEMP ALERT flag indicating whether
2130 * any other bits are set, but, thanks to fuzzy thinking,
2131 * in the SAF-TE spec, this can also be set even if no
2132 * other bits are set, thus making this really another
2133 * binary temperature sensor.
2134 */
2135
2136 SAFT_BAIL(r, hiwater, sdata, buflen);
2137 tempflags = sdata[r++];
2138 SAFT_BAIL(r, hiwater, sdata, buflen);
2139 tempflags |= (tempflags << 8) | sdata[r++];
2140
2141 for (i = 0; i < NPSEUDO_THERM; i++) {
2142 ssc->ses_objmap[oid].encstat[1] = 0;
2143 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2144 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2145 ssc->ses_objmap[4].encstat[2] = 0xff;
2146 /*
2147 * Set 'over temperature' failure.
2148 */
2149 ssc->ses_objmap[oid].encstat[3] = 8;
2150 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2151 } else {
2152 /*
2153 * We used to say 'not available' and synthesize a
2154 * nominal 30 deg (C)- that was wrong. Actually,
2155 * Just say 'OK', and use the reserved value of
2156 * zero.
2157 */
2158 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2159 ssc->ses_objmap[oid].encstat[2] = 0;
2160 ssc->ses_objmap[oid].encstat[3] = 0;
2161 }
2162 ssc->ses_objmap[oid++].svalid = 1;
2163 }
2164
2165 /*
2166 * Get alarm status.
2167 */
2168 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2169 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2170 ssc->ses_objmap[oid++].svalid = 1;
2171
2172 /*
2173 * Now get drive slot status
2174 */
2175 cdb[2] = SAFTE_RD_RDDSTS;
2176 amt = buflen;
2177 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2178 if (err) {
2179 SES_FREE(sdata, buflen);
2180 return (err);
2181 }
2182 hiwater = buflen - amt;
2183 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2184 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2185 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2186 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2187 ssc->ses_objmap[oid].encstat[2] = 0;
2188 ssc->ses_objmap[oid].encstat[3] = 0;
2189 status = sdata[r+3];
2190 if ((status & 0x1) == 0) { /* no device */
2191 ssc->ses_objmap[oid].encstat[0] =
2192 SES_OBJSTAT_NOTINSTALLED;
2193 } else {
2194 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2195 }
2196 if (status & 0x2) {
2197 ssc->ses_objmap[oid].encstat[2] = 0x8;
2198 }
2199 if ((status & 0x4) == 0) {
2200 ssc->ses_objmap[oid].encstat[3] = 0x10;
2201 }
2202 ssc->ses_objmap[oid++].svalid = 1;
2203 }
2204 /* see comment below about sticky enclosure status */
2205 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2206 SES_FREE(sdata, buflen);
2207 return (0);
2208 }
2209
2210 static int
2211 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2212 {
2213 int idx;
2214 encobj *ep;
2215 struct scfg *cc = ssc->ses_private;
2216
2217 if (cc == NULL)
2218 return (0);
2219
2220 idx = (int)obp->obj_id;
2221 ep = &ssc->ses_objmap[idx];
2222
2223 switch (ep->enctype) {
2224 case SESTYP_DEVICE:
2225 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2226 ep->priv |= 0x40;
2227 }
2228 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2229 if (obp->cstat[0] & SESCTL_DISABLE) {
2230 ep->priv |= 0x80;
2231 /*
2232 * Hmm. Try to set the 'No Drive' flag.
2233 * Maybe that will count as a 'disable'.
2234 */
2235 }
2236 if (ep->priv & 0xc6) {
2237 ep->priv &= ~0x1;
2238 } else {
2239 ep->priv |= 0x1; /* no errors */
2240 }
2241 wrslot_stat(ssc, slp);
2242 break;
2243 case SESTYP_POWER:
2244 /*
2245 * Okay- the only one that makes sense here is to
2246 * do the 'disable' for a power supply.
2247 */
2248 if (obp->cstat[0] & SESCTL_DISABLE) {
2249 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2250 idx - cc->pwroff, 0, 0, slp);
2251 }
2252 break;
2253 case SESTYP_FAN:
2254 /*
2255 * Okay- the only one that makes sense here is to
2256 * set fan speed to zero on disable.
2257 */
2258 if (obp->cstat[0] & SESCTL_DISABLE) {
2259 /* remember- fans are the first items, so idx works */
2260 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2261 }
2262 break;
2263 case SESTYP_DOORLOCK:
2264 /*
2265 * Well, we can 'disable' the lock.
2266 */
2267 if (obp->cstat[0] & SESCTL_DISABLE) {
2268 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2269 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2270 cc->flag2, 0, slp);
2271 }
2272 break;
2273 case SESTYP_ALARM:
2274 /*
2275 * Well, we can 'disable' the alarm.
2276 */
2277 if (obp->cstat[0] & SESCTL_DISABLE) {
2278 cc->flag2 &= ~SAFT_FLG1_ALARM;
2279 ep->priv |= 0x40; /* Muted */
2280 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2281 cc->flag2, 0, slp);
2282 }
2283 break;
2284 default:
2285 break;
2286 }
2287 ep->svalid = 0;
2288 return (0);
2289 }
2290
2291 /*
2292 * This function handles all of the 16 byte WRITE BUFFER commands.
2293 */
2294 static int
2295 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2296 uint8_t b3, int slp)
2297 {
2298 int err, amt;
2299 char *sdata;
2300 struct scfg *cc = ssc->ses_private;
2301 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2302
2303 if (cc == NULL)
2304 return (0);
2305
2306 sdata = SES_MALLOC(16);
2307 if (sdata == NULL)
2308 return (ENOMEM);
2309
2310 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2311
2312 sdata[0] = op;
2313 sdata[1] = b1;
2314 sdata[2] = b2;
2315 sdata[3] = b3;
2316 MEMZERO(&sdata[4], 12);
2317 amt = -16;
2318 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2319 SES_FREE(sdata, 16);
2320 return (err);
2321 }
2322
2323 /*
2324 * This function updates the status byte for the device slot described.
2325 *
2326 * Since this is an optional SAF-TE command, there's no point in
2327 * returning an error.
2328 */
2329 static void
2330 wrslot_stat(ses_softc_t *ssc, int slp)
2331 {
2332 int i, amt;
2333 encobj *ep;
2334 char cdb[10], *sdata;
2335 struct scfg *cc = ssc->ses_private;
2336
2337 if (cc == NULL)
2338 return;
2339
2340 SES_VLOG(ssc, "saf_wrslot\n");
2341 cdb[0] = WRITE_BUFFER;
2342 cdb[1] = 1;
2343 cdb[2] = 0;
2344 cdb[3] = 0;
2345 cdb[4] = 0;
2346 cdb[5] = 0;
2347 cdb[6] = 0;
2348 cdb[7] = 0;
2349 cdb[8] = cc->Nslots * 3 + 1;
2350 cdb[9] = 0;
2351
2352 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2353 if (sdata == NULL)
2354 return;
2355 MEMZERO(sdata, cc->Nslots * 3 + 1);
2356
2357 sdata[0] = SAFTE_WT_DSTAT;
2358 for (i = 0; i < cc->Nslots; i++) {
2359 ep = &ssc->ses_objmap[cc->slotoff + i];
2360 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2361 sdata[1 + (3 * i)] = ep->priv & 0xff;
2362 }
2363 amt = -(cc->Nslots * 3 + 1);
2364 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2365 SES_FREE(sdata, cc->Nslots * 3 + 1);
2366 }
2367
2368 /*
2369 * This function issues the "PERFORM SLOT OPERATION" command.
2370 */
2371 static int
2372 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2373 {
2374 int err, amt;
2375 char *sdata;
2376 struct scfg *cc = ssc->ses_private;
2377 static char cdb[10] =
2378 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2379
2380 if (cc == NULL)
2381 return (0);
2382
2383 sdata = SES_MALLOC(SAFT_SCRATCH);
2384 if (sdata == NULL)
2385 return (ENOMEM);
2386 MEMZERO(sdata, SAFT_SCRATCH);
2387
2388 sdata[0] = SAFTE_WT_SLTOP;
2389 sdata[1] = slot;
2390 sdata[2] = opflag;
2391 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2392 amt = -SAFT_SCRATCH;
2393 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2394 SES_FREE(sdata, SAFT_SCRATCH);
2395 return (err);
2396 }
2397