ses.c revision 1.19 1 /* $NetBSD: ses.c,v 1.19 2003/01/20 05:30:09 simonb Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.19 2003/01/20 05:30:09 simonb Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsiconf.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init) __P((ses_softc_t *, int));
75 int (*init_enc) __P((ses_softc_t *));
76 int (*get_encstat) __P((ses_softc_t *, int));
77 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
78 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type __P((struct scsipi_inquiry_data *));
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init __P((ses_softc_t *, int));
101 static int ses_init_enc __P((ses_softc_t *));
102 static int ses_get_encstat __P((ses_softc_t *, int));
103 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
104 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
105 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
106
107 static int safte_softc_init __P((ses_softc_t *, int));
108 static int safte_init_enc __P((ses_softc_t *));
109 static int safte_get_encstat __P((ses_softc_t *, int));
110 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
111 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
112 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 dev_type_open(sesopen);
136 dev_type_close(sesclose);
137 dev_type_ioctl(sesioctl);
138
139 const struct cdevsw ses_cdevsw = {
140 sesopen, sesclose, noread, nowrite, sesioctl,
141 nostop, notty, nopoll, nommap, nokqfilter,
142 };
143
144 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
145 static void ses_log __P((struct ses_softc *, const char *, ...))
146 __attribute__((__format__(__printf__, 2, 3)));
147
148 /*
149 * General NetBSD kernel stuff.
150 */
151
152 struct ses_softc {
153 struct device sc_device;
154 struct scsipi_periph *sc_periph;
155 enctyp ses_type; /* type of enclosure */
156 encvec ses_vec; /* vector to handlers */
157 void * ses_private; /* per-type private data */
158 encobj * ses_objmap; /* objects */
159 u_int32_t ses_nobjects; /* number of objects */
160 ses_encstat ses_encstat; /* overall status */
161 u_int8_t ses_flags;
162 };
163 #define SES_FLAG_INVALID 0x01
164 #define SES_FLAG_OPEN 0x02
165 #define SES_FLAG_INITIALIZED 0x04
166
167 #define SESUNIT(x) (minor((x)))
168
169 static int ses_match __P((struct device *, struct cfdata *, void *));
170 static void ses_attach __P((struct device *, struct device *, void *));
171 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
172
173 CFATTACH_DECL(ses, sizeof (struct ses_softc),
174 ses_match, ses_attach, NULL, NULL);
175
176 extern struct cfdriver ses_cd;
177
178 const struct scsipi_periphsw ses_switch = {
179 NULL,
180 NULL,
181 NULL,
182 NULL
183 };
184
185
186 int
187 ses_match(parent, match, aux)
188 struct device *parent;
189 struct cfdata *match;
190 void *aux;
191 {
192 struct scsipibus_attach_args *sa = aux;
193
194 switch (ses_device_type(sa)) {
195 case SES_SES:
196 case SES_SES_SCSI2:
197 case SES_SEN:
198 case SES_SAFT:
199 case SES_SES_PASSTHROUGH:
200 /*
201 * For these devices, it's a perfect match.
202 */
203 return (24);
204 default:
205 return (0);
206 }
207 }
208
209
210 /*
211 * Complete the attachment.
212 *
213 * We have to repeat the rerun of INQUIRY data as above because
214 * it's not until the return from the match routine that we have
215 * the softc available to set stuff in.
216 */
217 void
218 ses_attach(parent, self, aux)
219 struct device *parent;
220 struct device *self;
221 void *aux;
222 {
223 char *tname;
224 struct ses_softc *softc = (void *)self;
225 struct scsipibus_attach_args *sa = aux;
226 struct scsipi_periph *periph = sa->sa_periph;
227
228 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
229 softc->sc_periph = periph;
230 periph->periph_dev = &softc->sc_device;
231 periph->periph_switch = &ses_switch;
232 periph->periph_openings = 1;
233
234 softc->ses_type = ses_device_type(sa);
235 switch (softc->ses_type) {
236 case SES_SES:
237 case SES_SES_SCSI2:
238 case SES_SES_PASSTHROUGH:
239 softc->ses_vec.softc_init = ses_softc_init;
240 softc->ses_vec.init_enc = ses_init_enc;
241 softc->ses_vec.get_encstat = ses_get_encstat;
242 softc->ses_vec.set_encstat = ses_set_encstat;
243 softc->ses_vec.get_objstat = ses_get_objstat;
244 softc->ses_vec.set_objstat = ses_set_objstat;
245 break;
246 case SES_SAFT:
247 softc->ses_vec.softc_init = safte_softc_init;
248 softc->ses_vec.init_enc = safte_init_enc;
249 softc->ses_vec.get_encstat = safte_get_encstat;
250 softc->ses_vec.set_encstat = safte_set_encstat;
251 softc->ses_vec.get_objstat = safte_get_objstat;
252 softc->ses_vec.set_objstat = safte_set_objstat;
253 break;
254 case SES_SEN:
255 break;
256 case SES_NONE:
257 default:
258 break;
259 }
260
261 switch (softc->ses_type) {
262 default:
263 case SES_NONE:
264 tname = "No SES device";
265 break;
266 case SES_SES_SCSI2:
267 tname = "SCSI-2 SES Device";
268 break;
269 case SES_SES:
270 tname = "SCSI-3 SES Device";
271 break;
272 case SES_SES_PASSTHROUGH:
273 tname = "SES Passthrough Device";
274 break;
275 case SES_SEN:
276 tname = "UNISYS SEN Device (NOT HANDLED YET)";
277 break;
278 case SES_SAFT:
279 tname = "SAF-TE Compliant Device";
280 break;
281 }
282 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
283 }
284
285
286 static enctyp
287 ses_device_type(sa)
288 struct scsipibus_attach_args *sa;
289 {
290 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
291
292 if (inqp == NULL)
293 return (SES_NONE);
294
295 return (ses_type(inqp));
296 }
297
298 int
299 sesopen(dev, flags, fmt, p)
300 dev_t dev;
301 int flags;
302 int fmt;
303 struct proc *p;
304 {
305 struct ses_softc *softc;
306 int error, unit;
307
308 unit = SESUNIT(dev);
309 if (unit >= ses_cd.cd_ndevs)
310 return (ENXIO);
311 softc = ses_cd.cd_devs[unit];
312 if (softc == NULL)
313 return (ENXIO);
314
315 if (softc->ses_flags & SES_FLAG_INVALID) {
316 error = ENXIO;
317 goto out;
318 }
319 if (softc->ses_flags & SES_FLAG_OPEN) {
320 error = EBUSY;
321 goto out;
322 }
323 if (softc->ses_vec.softc_init == NULL) {
324 error = ENXIO;
325 goto out;
326 }
327 error = scsipi_adapter_addref(
328 softc->sc_periph->periph_channel->chan_adapter);
329 if (error != 0)
330 goto out;
331
332
333 softc->ses_flags |= SES_FLAG_OPEN;
334 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
335 error = (*softc->ses_vec.softc_init)(softc, 1);
336 if (error)
337 softc->ses_flags &= ~SES_FLAG_OPEN;
338 else
339 softc->ses_flags |= SES_FLAG_INITIALIZED;
340 }
341
342 out:
343 return (error);
344 }
345
346 int
347 sesclose(dev, flags, fmt, p)
348 dev_t dev;
349 int flags;
350 int fmt;
351 struct proc *p;
352 {
353 struct ses_softc *softc;
354 int unit;
355
356 unit = SESUNIT(dev);
357 if (unit >= ses_cd.cd_ndevs)
358 return (ENXIO);
359 softc = ses_cd.cd_devs[unit];
360 if (softc == NULL)
361 return (ENXIO);
362
363 scsipi_wait_drain(softc->sc_periph);
364 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
365 softc->ses_flags &= ~SES_FLAG_OPEN;
366 return (0);
367 }
368
369 int
370 sesioctl(dev, cmd, arg_addr, flag, p)
371 dev_t dev;
372 u_long cmd;
373 caddr_t arg_addr;
374 int flag;
375 struct proc *p;
376 {
377 ses_encstat tmp;
378 ses_objstat objs;
379 ses_object obj, *uobj;
380 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
381 void *addr;
382 int error, i;
383
384
385 if (arg_addr)
386 addr = *((caddr_t *) arg_addr);
387 else
388 addr = NULL;
389
390 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
391
392 /*
393 * Now check to see whether we're initialized or not.
394 */
395 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
396 return (ENODEV);
397 }
398
399 error = 0;
400
401 /*
402 * If this command can change the device's state,
403 * we must have the device open for writing.
404 */
405 switch (cmd) {
406 case SESIOC_GETNOBJ:
407 case SESIOC_GETOBJMAP:
408 case SESIOC_GETENCSTAT:
409 case SESIOC_GETOBJSTAT:
410 break;
411 default:
412 if ((flag & FWRITE) == 0) {
413 return (EBADF);
414 }
415 }
416
417 switch (cmd) {
418 case SESIOC_GETNOBJ:
419 error = copyout(&ssc->ses_nobjects, addr,
420 sizeof (ssc->ses_nobjects));
421 break;
422
423 case SESIOC_GETOBJMAP:
424 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
425 obj.obj_id = i;
426 obj.subencid = ssc->ses_objmap[i].subenclosure;
427 obj.object_type = ssc->ses_objmap[i].enctype;
428 error = copyout(&obj, uobj, sizeof (ses_object));
429 if (error) {
430 break;
431 }
432 }
433 break;
434
435 case SESIOC_GETENCSTAT:
436 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
437 if (error)
438 break;
439 tmp = ssc->ses_encstat & ~ENCI_SVALID;
440 error = copyout(&tmp, addr, sizeof (ses_encstat));
441 ssc->ses_encstat = tmp;
442 break;
443
444 case SESIOC_SETENCSTAT:
445 error = copyin(addr, &tmp, sizeof (ses_encstat));
446 if (error)
447 break;
448 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
449 break;
450
451 case SESIOC_GETOBJSTAT:
452 error = copyin(addr, &objs, sizeof (ses_objstat));
453 if (error)
454 break;
455 if (objs.obj_id >= ssc->ses_nobjects) {
456 error = EINVAL;
457 break;
458 }
459 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
460 if (error)
461 break;
462 error = copyout(&objs, addr, sizeof (ses_objstat));
463 /*
464 * Always (for now) invalidate entry.
465 */
466 ssc->ses_objmap[objs.obj_id].svalid = 0;
467 break;
468
469 case SESIOC_SETOBJSTAT:
470 error = copyin(addr, &objs, sizeof (ses_objstat));
471 if (error)
472 break;
473
474 if (objs.obj_id >= ssc->ses_nobjects) {
475 error = EINVAL;
476 break;
477 }
478 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
479
480 /*
481 * Always (for now) invalidate entry.
482 */
483 ssc->ses_objmap[objs.obj_id].svalid = 0;
484 break;
485
486 case SESIOC_INIT:
487
488 error = (*ssc->ses_vec.init_enc)(ssc);
489 break;
490
491 default:
492 error = scsipi_do_ioctl(ssc->sc_periph,
493 dev, cmd, addr, flag, p);
494 break;
495 }
496 return (error);
497 }
498
499 static int
500 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
501 {
502 struct scsipi_generic sgen;
503 int dl, flg, error;
504
505 if (dptr) {
506 if ((dl = *dlenp) < 0) {
507 dl = -dl;
508 flg = XS_CTL_DATA_OUT;
509 } else {
510 flg = XS_CTL_DATA_IN;
511 }
512 } else {
513 dl = 0;
514 flg = 0;
515 }
516
517 if (cdbl > sizeof (struct scsipi_generic)) {
518 cdbl = sizeof (struct scsipi_generic);
519 }
520 memcpy(&sgen, cdb, cdbl);
521 #ifndef SCSIDEBUG
522 flg |= XS_CTL_SILENT;
523 #endif
524 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
525 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
526
527 if (error == 0 && dptr)
528 *dlenp = 0;
529
530 return (error);
531 }
532
533 #ifdef __STDC__
534 static void
535 ses_log(struct ses_softc *ssc, const char *fmt, ...)
536 {
537 va_list ap;
538
539 printf("%s: ", ssc->sc_device.dv_xname);
540 va_start(ap, fmt);
541 vprintf(fmt, ap);
542 va_end(ap);
543 }
544 #else
545 static void
546 ses_log(ssc, fmt, va_alist)
547 struct ses_softc *ssc;
548 char *fmt;
549 va_dcl
550 {
551 va_list ap;
552
553 printf("%s: ", ssc->sc_device.dv_xname);
554 va_start(ap, fmt);
555 vprintf(fmt, ap);
556 va_end(ap);
557 }
558 #endif
559
560 /*
561 * The code after this point runs on many platforms,
562 * so forgive the slightly awkward and nonconforming
563 * appearance.
564 */
565
566 /*
567 * Is this a device that supports enclosure services?
568 *
569 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
570 * an SES device. If it happens to be an old UNISYS SEN device, we can
571 * handle that too.
572 */
573
574 #define SAFTE_START 44
575 #define SAFTE_END 50
576 #define SAFTE_LEN SAFTE_END-SAFTE_START
577
578 static enctyp
579 ses_type(inqp)
580 struct scsipi_inquiry_data *inqp;
581 {
582 size_t given_len = inqp->additional_length + 4;
583
584 if (given_len < 8+SEN_ID_LEN)
585 return (SES_NONE);
586
587 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
588 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
589 return (SES_SEN);
590 } else if ((inqp->version & SID_ANSII) > 2) {
591 return (SES_SES);
592 } else {
593 return (SES_SES_SCSI2);
594 }
595 return (SES_NONE);
596 }
597
598 #ifdef SES_ENABLE_PASSTHROUGH
599 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
600 /*
601 * PassThrough Device.
602 */
603 return (SES_SES_PASSTHROUGH);
604 }
605 #endif
606
607 /*
608 * The comparison is short for a reason-
609 * some vendors were chopping it short.
610 */
611
612 if (given_len < SAFTE_END - 2) {
613 return (SES_NONE);
614 }
615
616 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
617 SAFTE_LEN - 2) == 0) {
618 return (SES_SAFT);
619 }
620
621 return (SES_NONE);
622 }
623
624 /*
625 * SES Native Type Device Support
626 */
627
628 /*
629 * SES Diagnostic Page Codes
630 */
631
632 typedef enum {
633 SesConfigPage = 0x1,
634 SesControlPage,
635 #define SesStatusPage SesControlPage
636 SesHelpTxt,
637 SesStringOut,
638 #define SesStringIn SesStringOut
639 SesThresholdOut,
640 #define SesThresholdIn SesThresholdOut
641 SesArrayControl,
642 #define SesArrayStatus SesArrayControl
643 SesElementDescriptor,
644 SesShortStatus
645 } SesDiagPageCodes;
646
647 /*
648 * minimal amounts
649 */
650
651 /*
652 * Minimum amount of data, starting from byte 0, to have
653 * the config header.
654 */
655 #define SES_CFGHDR_MINLEN 12
656
657 /*
658 * Minimum amount of data, starting from byte 0, to have
659 * the config header and one enclosure header.
660 */
661 #define SES_ENCHDR_MINLEN 48
662
663 /*
664 * Take this value, subtract it from VEnclen and you know
665 * the length of the vendor unique bytes.
666 */
667 #define SES_ENCHDR_VMIN 36
668
669 /*
670 * SES Data Structures
671 */
672
673 typedef struct {
674 uint32_t GenCode; /* Generation Code */
675 uint8_t Nsubenc; /* Number of Subenclosures */
676 } SesCfgHdr;
677
678 typedef struct {
679 uint8_t Subencid; /* SubEnclosure Identifier */
680 uint8_t Ntypes; /* # of supported types */
681 uint8_t VEnclen; /* Enclosure Descriptor Length */
682 } SesEncHdr;
683
684 typedef struct {
685 uint8_t encWWN[8]; /* XXX- Not Right Yet */
686 uint8_t encVid[8];
687 uint8_t encPid[16];
688 uint8_t encRev[4];
689 uint8_t encVen[1];
690 } SesEncDesc;
691
692 typedef struct {
693 uint8_t enc_type; /* type of element */
694 uint8_t enc_maxelt; /* maximum supported */
695 uint8_t enc_subenc; /* in SubEnc # N */
696 uint8_t enc_tlen; /* Type Descriptor Text Length */
697 } SesThdr;
698
699 typedef struct {
700 uint8_t comstatus;
701 uint8_t comstat[3];
702 } SesComStat;
703
704 struct typidx {
705 int ses_tidx;
706 int ses_oidx;
707 };
708
709 struct sscfg {
710 uint8_t ses_ntypes; /* total number of types supported */
711
712 /*
713 * We need to keep a type index as well as an
714 * object index for each object in an enclosure.
715 */
716 struct typidx *ses_typidx;
717
718 /*
719 * We also need to keep track of the number of elements
720 * per type of element. This is needed later so that we
721 * can find precisely in the returned status data the
722 * status for the Nth element of the Kth type.
723 */
724 uint8_t * ses_eltmap;
725 };
726
727
728 /*
729 * (de)canonicalization defines
730 */
731 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
732 #define sbit(x, bit) (((uint32_t)(x)) << bit)
733 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
734
735 #define sset16(outp, idx, sval) \
736 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738
739
740 #define sset24(outp, idx, sval) \
741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
742 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
743 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
744
745
746 #define sset32(outp, idx, sval) \
747 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
748 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
749 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
750 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
751
752 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
753 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
754 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
755 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
756
757 #define sget16(inp, idx, lval) \
758 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
759 (((uint8_t *)(inp))[idx+1]), idx += 2
760
761 #define gget16(inp, idx, lval) \
762 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
763 (((uint8_t *)(inp))[idx+1])
764
765 #define sget24(inp, idx, lval) \
766 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
767 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
768 (((uint8_t *)(inp))[idx+2]), idx += 3
769
770 #define gget24(inp, idx, lval) \
771 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
772 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
773 (((uint8_t *)(inp))[idx+2])
774
775 #define sget32(inp, idx, lval) \
776 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
777 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
778 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
779 (((uint8_t *)(inp))[idx+3]), idx += 4
780
781 #define gget32(inp, idx, lval) \
782 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
783 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
784 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
785 (((uint8_t *)(inp))[idx+3])
786
787 #define SCSZ 0x2000
788 #define CFLEN (256 + SES_ENCHDR_MINLEN)
789
790 /*
791 * Routines specific && private to SES only
792 */
793
794 static int ses_getconfig(ses_softc_t *);
795 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
796 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
797 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
798 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
799 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
800 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
801 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
802
803 static int
804 ses_softc_init(ses_softc_t *ssc, int doinit)
805 {
806 if (doinit == 0) {
807 struct sscfg *cc;
808 if (ssc->ses_nobjects) {
809 SES_FREE(ssc->ses_objmap,
810 ssc->ses_nobjects * sizeof (encobj));
811 ssc->ses_objmap = NULL;
812 }
813 if ((cc = ssc->ses_private) != NULL) {
814 if (cc->ses_eltmap && cc->ses_ntypes) {
815 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
816 cc->ses_eltmap = NULL;
817 cc->ses_ntypes = 0;
818 }
819 if (cc->ses_typidx && ssc->ses_nobjects) {
820 SES_FREE(cc->ses_typidx,
821 ssc->ses_nobjects * sizeof (struct typidx));
822 cc->ses_typidx = NULL;
823 }
824 SES_FREE(cc, sizeof (struct sscfg));
825 ssc->ses_private = NULL;
826 }
827 ssc->ses_nobjects = 0;
828 return (0);
829 }
830 if (ssc->ses_private == NULL) {
831 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
832 }
833 if (ssc->ses_private == NULL) {
834 return (ENOMEM);
835 }
836 ssc->ses_nobjects = 0;
837 ssc->ses_encstat = 0;
838 return (ses_getconfig(ssc));
839 }
840
841 static int
842 ses_init_enc(ses_softc_t *ssc)
843 {
844 return (0);
845 }
846
847 static int
848 ses_get_encstat(ses_softc_t *ssc, int slpflag)
849 {
850 SesComStat ComStat;
851 int status;
852
853 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
854 return (status);
855 }
856 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
857 return (0);
858 }
859
860 static int
861 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
862 {
863 SesComStat ComStat;
864 int status;
865
866 ComStat.comstatus = encstat & 0xf;
867 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
868 return (status);
869 }
870 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
871 return (0);
872 }
873
874 static int
875 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
876 {
877 int i = (int)obp->obj_id;
878
879 if (ssc->ses_objmap[i].svalid == 0) {
880 SesComStat ComStat;
881 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
882 if (err)
883 return (err);
884 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
885 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
886 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
887 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
888 ssc->ses_objmap[i].svalid = 1;
889 }
890 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
891 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
892 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
893 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
894 return (0);
895 }
896
897 static int
898 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
899 {
900 SesComStat ComStat;
901 int err;
902 /*
903 * If this is clear, we don't do diddly.
904 */
905 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
906 return (0);
907 }
908 ComStat.comstatus = obp->cstat[0];
909 ComStat.comstat[0] = obp->cstat[1];
910 ComStat.comstat[1] = obp->cstat[2];
911 ComStat.comstat[2] = obp->cstat[3];
912 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
913 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
914 return (err);
915 }
916
917 static int
918 ses_getconfig(ses_softc_t *ssc)
919 {
920 struct sscfg *cc;
921 SesCfgHdr cf;
922 SesEncHdr hd;
923 SesEncDesc *cdp;
924 SesThdr thdr;
925 int err, amt, i, nobj, ntype, maxima;
926 char storage[CFLEN], *sdata;
927 static char cdb[6] = {
928 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
929 };
930
931 cc = ssc->ses_private;
932 if (cc == NULL) {
933 return (ENXIO);
934 }
935
936 sdata = SES_MALLOC(SCSZ);
937 if (sdata == NULL)
938 return (ENOMEM);
939
940 amt = SCSZ;
941 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
942 if (err) {
943 SES_FREE(sdata, SCSZ);
944 return (err);
945 }
946 amt = SCSZ - amt;
947
948 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
949 SES_LOG(ssc, "Unable to parse SES Config Header\n");
950 SES_FREE(sdata, SCSZ);
951 return (EIO);
952 }
953 if (amt < SES_ENCHDR_MINLEN) {
954 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
955 SES_FREE(sdata, SCSZ);
956 return (EIO);
957 }
958
959 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
960
961 /*
962 * Now waltz through all the subenclosures toting up the
963 * number of types available in each. For this, we only
964 * really need the enclosure header. However, we get the
965 * enclosure descriptor for debug purposes, as well
966 * as self-consistency checking purposes.
967 */
968
969 maxima = cf.Nsubenc + 1;
970 cdp = (SesEncDesc *) storage;
971 for (ntype = i = 0; i < maxima; i++) {
972 MEMZERO((caddr_t)cdp, sizeof (*cdp));
973 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
974 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
975 SES_FREE(sdata, SCSZ);
976 return (EIO);
977 }
978 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
979 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
980
981 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
982 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
983 SES_FREE(sdata, SCSZ);
984 return (EIO);
985 }
986 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
987 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
988 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
989 cdp->encWWN[6], cdp->encWWN[7]);
990 ntype += hd.Ntypes;
991 }
992
993 /*
994 * Now waltz through all the types that are available, getting
995 * the type header so we can start adding up the number of
996 * objects available.
997 */
998 for (nobj = i = 0; i < ntype; i++) {
999 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1000 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1001 SES_FREE(sdata, SCSZ);
1002 return (EIO);
1003 }
1004 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1005 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1006 thdr.enc_subenc, thdr.enc_tlen);
1007 nobj += thdr.enc_maxelt;
1008 }
1009
1010
1011 /*
1012 * Now allocate the object array and type map.
1013 */
1014
1015 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1016 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1017 cc->ses_eltmap = SES_MALLOC(ntype);
1018
1019 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1020 cc->ses_eltmap == NULL) {
1021 if (ssc->ses_objmap) {
1022 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1023 ssc->ses_objmap = NULL;
1024 }
1025 if (cc->ses_typidx) {
1026 SES_FREE(cc->ses_typidx,
1027 (nobj * sizeof (struct typidx)));
1028 cc->ses_typidx = NULL;
1029 }
1030 if (cc->ses_eltmap) {
1031 SES_FREE(cc->ses_eltmap, ntype);
1032 cc->ses_eltmap = NULL;
1033 }
1034 SES_FREE(sdata, SCSZ);
1035 return (ENOMEM);
1036 }
1037 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1038 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1039 MEMZERO(cc->ses_eltmap, ntype);
1040 cc->ses_ntypes = (uint8_t) ntype;
1041 ssc->ses_nobjects = nobj;
1042
1043 /*
1044 * Now waltz through the # of types again to fill in the types
1045 * (and subenclosure ids) of the allocated objects.
1046 */
1047 nobj = 0;
1048 for (i = 0; i < ntype; i++) {
1049 int j;
1050 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1051 continue;
1052 }
1053 cc->ses_eltmap[i] = thdr.enc_maxelt;
1054 for (j = 0; j < thdr.enc_maxelt; j++) {
1055 cc->ses_typidx[nobj].ses_tidx = i;
1056 cc->ses_typidx[nobj].ses_oidx = j;
1057 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1058 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1059 }
1060 }
1061 SES_FREE(sdata, SCSZ);
1062 return (0);
1063 }
1064
1065 static int
1066 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1067 {
1068 struct sscfg *cc;
1069 int err, amt, bufsiz, tidx, oidx;
1070 char cdb[6], *sdata;
1071
1072 cc = ssc->ses_private;
1073 if (cc == NULL) {
1074 return (ENXIO);
1075 }
1076
1077 /*
1078 * If we're just getting overall enclosure status,
1079 * we only need 2 bytes of data storage.
1080 *
1081 * If we're getting anything else, we know how much
1082 * storage we need by noting that starting at offset
1083 * 8 in returned data, all object status bytes are 4
1084 * bytes long, and are stored in chunks of types(M)
1085 * and nth+1 instances of type M.
1086 */
1087 if (objid == -1) {
1088 bufsiz = 2;
1089 } else {
1090 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1091 }
1092 sdata = SES_MALLOC(bufsiz);
1093 if (sdata == NULL)
1094 return (ENOMEM);
1095
1096 cdb[0] = RECEIVE_DIAGNOSTIC;
1097 cdb[1] = 1;
1098 cdb[2] = SesStatusPage;
1099 cdb[3] = bufsiz >> 8;
1100 cdb[4] = bufsiz & 0xff;
1101 cdb[5] = 0;
1102 amt = bufsiz;
1103 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1104 if (err) {
1105 SES_FREE(sdata, bufsiz);
1106 return (err);
1107 }
1108 amt = bufsiz - amt;
1109
1110 if (objid == -1) {
1111 tidx = -1;
1112 oidx = -1;
1113 } else {
1114 tidx = cc->ses_typidx[objid].ses_tidx;
1115 oidx = cc->ses_typidx[objid].ses_oidx;
1116 }
1117 if (in) {
1118 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1119 err = ENODEV;
1120 }
1121 } else {
1122 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1123 err = ENODEV;
1124 } else {
1125 cdb[0] = SEND_DIAGNOSTIC;
1126 cdb[1] = 0x10;
1127 cdb[2] = 0;
1128 cdb[3] = bufsiz >> 8;
1129 cdb[4] = bufsiz & 0xff;
1130 cdb[5] = 0;
1131 amt = -bufsiz;
1132 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1133 }
1134 }
1135 SES_FREE(sdata, bufsiz);
1136 return (0);
1137 }
1138
1139
1140 /*
1141 * Routines to parse returned SES data structures.
1142 * Architecture and compiler independent.
1143 */
1144
1145 static int
1146 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1147 {
1148 if (buflen < SES_CFGHDR_MINLEN) {
1149 return (-1);
1150 }
1151 gget8(buffer, 1, cfp->Nsubenc);
1152 gget32(buffer, 4, cfp->GenCode);
1153 return (0);
1154 }
1155
1156 static int
1157 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1158 {
1159 int s, off = 8;
1160 for (s = 0; s < SubEncId; s++) {
1161 if (off + 3 > amt)
1162 return (-1);
1163 off += buffer[off+3] + 4;
1164 }
1165 if (off + 3 > amt) {
1166 return (-1);
1167 }
1168 gget8(buffer, off+1, chp->Subencid);
1169 gget8(buffer, off+2, chp->Ntypes);
1170 gget8(buffer, off+3, chp->VEnclen);
1171 return (0);
1172 }
1173
1174 static int
1175 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1176 {
1177 int s, e, enclen, off = 8;
1178 for (s = 0; s < SubEncId; s++) {
1179 if (off + 3 > amt)
1180 return (-1);
1181 off += buffer[off+3] + 4;
1182 }
1183 if (off + 3 > amt) {
1184 return (-1);
1185 }
1186 gget8(buffer, off+3, enclen);
1187 off += 4;
1188 if (off >= amt)
1189 return (-1);
1190
1191 e = off + enclen;
1192 if (e > amt) {
1193 e = amt;
1194 }
1195 MEMCPY(cdp, &buffer[off], e - off);
1196 return (0);
1197 }
1198
1199 static int
1200 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1201 {
1202 int s, off = 8;
1203
1204 if (amt < SES_CFGHDR_MINLEN) {
1205 return (-1);
1206 }
1207 for (s = 0; s < buffer[1]; s++) {
1208 if (off + 3 > amt)
1209 return (-1);
1210 off += buffer[off+3] + 4;
1211 }
1212 if (off + 3 > amt) {
1213 return (-1);
1214 }
1215 off += buffer[off+3] + 4 + (nth * 4);
1216 if (amt < (off + 4))
1217 return (-1);
1218
1219 gget8(buffer, off++, thp->enc_type);
1220 gget8(buffer, off++, thp->enc_maxelt);
1221 gget8(buffer, off++, thp->enc_subenc);
1222 gget8(buffer, off, thp->enc_tlen);
1223 return (0);
1224 }
1225
1226 /*
1227 * This function needs a little explanation.
1228 *
1229 * The arguments are:
1230 *
1231 *
1232 * char *b, int amt
1233 *
1234 * These describes the raw input SES status data and length.
1235 *
1236 * uint8_t *ep
1237 *
1238 * This is a map of the number of types for each element type
1239 * in the enclosure.
1240 *
1241 * int elt
1242 *
1243 * This is the element type being sought. If elt is -1,
1244 * then overall enclosure status is being sought.
1245 *
1246 * int elm
1247 *
1248 * This is the ordinal Mth element of type elt being sought.
1249 *
1250 * SesComStat *sp
1251 *
1252 * This is the output area to store the status for
1253 * the Mth element of type Elt.
1254 */
1255
1256 static int
1257 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1258 {
1259 int idx, i;
1260
1261 /*
1262 * If it's overall enclosure status being sought, get that.
1263 * We need at least 2 bytes of status data to get that.
1264 */
1265 if (elt == -1) {
1266 if (amt < 2)
1267 return (-1);
1268 gget8(b, 1, sp->comstatus);
1269 sp->comstat[0] = 0;
1270 sp->comstat[1] = 0;
1271 sp->comstat[2] = 0;
1272 return (0);
1273 }
1274
1275 /*
1276 * Check to make sure that the Mth element is legal for type Elt.
1277 */
1278
1279 if (elm >= ep[elt])
1280 return (-1);
1281
1282 /*
1283 * Starting at offset 8, start skipping over the storage
1284 * for the element types we're not interested in.
1285 */
1286 for (idx = 8, i = 0; i < elt; i++) {
1287 idx += ((ep[i] + 1) * 4);
1288 }
1289
1290 /*
1291 * Skip over Overall status for this element type.
1292 */
1293 idx += 4;
1294
1295 /*
1296 * And skip to the index for the Mth element that we're going for.
1297 */
1298 idx += (4 * elm);
1299
1300 /*
1301 * Make sure we haven't overflowed the buffer.
1302 */
1303 if (idx+4 > amt)
1304 return (-1);
1305
1306 /*
1307 * Retrieve the status.
1308 */
1309 gget8(b, idx++, sp->comstatus);
1310 gget8(b, idx++, sp->comstat[0]);
1311 gget8(b, idx++, sp->comstat[1]);
1312 gget8(b, idx++, sp->comstat[2]);
1313 #if 0
1314 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1315 #endif
1316 return (0);
1317 }
1318
1319 /*
1320 * This is the mirror function to ses_decode, but we set the 'select'
1321 * bit for the object which we're interested in. All other objects,
1322 * after a status fetch, should have that bit off. Hmm. It'd be easy
1323 * enough to ensure this, so we will.
1324 */
1325
1326 static int
1327 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1328 {
1329 int idx, i;
1330
1331 /*
1332 * If it's overall enclosure status being sought, get that.
1333 * We need at least 2 bytes of status data to get that.
1334 */
1335 if (elt == -1) {
1336 if (amt < 2)
1337 return (-1);
1338 i = 0;
1339 sset8(b, i, 0);
1340 sset8(b, i, sp->comstatus & 0xf);
1341 #if 0
1342 PRINTF("set EncStat %x\n", sp->comstatus);
1343 #endif
1344 return (0);
1345 }
1346
1347 /*
1348 * Check to make sure that the Mth element is legal for type Elt.
1349 */
1350
1351 if (elm >= ep[elt])
1352 return (-1);
1353
1354 /*
1355 * Starting at offset 8, start skipping over the storage
1356 * for the element types we're not interested in.
1357 */
1358 for (idx = 8, i = 0; i < elt; i++) {
1359 idx += ((ep[i] + 1) * 4);
1360 }
1361
1362 /*
1363 * Skip over Overall status for this element type.
1364 */
1365 idx += 4;
1366
1367 /*
1368 * And skip to the index for the Mth element that we're going for.
1369 */
1370 idx += (4 * elm);
1371
1372 /*
1373 * Make sure we haven't overflowed the buffer.
1374 */
1375 if (idx+4 > amt)
1376 return (-1);
1377
1378 /*
1379 * Set the status.
1380 */
1381 sset8(b, idx, sp->comstatus);
1382 sset8(b, idx, sp->comstat[0]);
1383 sset8(b, idx, sp->comstat[1]);
1384 sset8(b, idx, sp->comstat[2]);
1385 idx -= 4;
1386
1387 #if 0
1388 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1389 elt, elm, idx, sp->comstatus, sp->comstat[0],
1390 sp->comstat[1], sp->comstat[2]);
1391 #endif
1392
1393 /*
1394 * Now make sure all other 'Select' bits are off.
1395 */
1396 for (i = 8; i < amt; i += 4) {
1397 if (i != idx)
1398 b[i] &= ~0x80;
1399 }
1400 /*
1401 * And make sure the INVOP bit is clear.
1402 */
1403 b[2] &= ~0x10;
1404
1405 return (0);
1406 }
1407
1408 /*
1409 * SAF-TE Type Device Emulation
1410 */
1411
1412 static int safte_getconfig(ses_softc_t *);
1413 static int safte_rdstat(ses_softc_t *, int);
1414 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1415 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1416 static void wrslot_stat(ses_softc_t *, int);
1417 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1418
1419 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1420 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1421 /*
1422 * SAF-TE specific defines- Mandatory ones only...
1423 */
1424
1425 /*
1426 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1427 */
1428 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1429 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1430 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1431
1432 /*
1433 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1434 */
1435 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1436 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1437 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1438 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1439 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1440
1441
1442 #define SAFT_SCRATCH 64
1443 #define NPSEUDO_THERM 16
1444 #define NPSEUDO_ALARM 1
1445 struct scfg {
1446 /*
1447 * Cached Configuration
1448 */
1449 uint8_t Nfans; /* Number of Fans */
1450 uint8_t Npwr; /* Number of Power Supplies */
1451 uint8_t Nslots; /* Number of Device Slots */
1452 uint8_t DoorLock; /* Door Lock Installed */
1453 uint8_t Ntherm; /* Number of Temperature Sensors */
1454 uint8_t Nspkrs; /* Number of Speakers */
1455 uint8_t Nalarm; /* Number of Alarms (at least one) */
1456 /*
1457 * Cached Flag Bytes for Global Status
1458 */
1459 uint8_t flag1;
1460 uint8_t flag2;
1461 /*
1462 * What object index ID is where various slots start.
1463 */
1464 uint8_t pwroff;
1465 uint8_t slotoff;
1466 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1467 };
1468
1469 #define SAFT_FLG1_ALARM 0x1
1470 #define SAFT_FLG1_GLOBFAIL 0x2
1471 #define SAFT_FLG1_GLOBWARN 0x4
1472 #define SAFT_FLG1_ENCPWROFF 0x8
1473 #define SAFT_FLG1_ENCFANFAIL 0x10
1474 #define SAFT_FLG1_ENCPWRFAIL 0x20
1475 #define SAFT_FLG1_ENCDRVFAIL 0x40
1476 #define SAFT_FLG1_ENCDRVWARN 0x80
1477
1478 #define SAFT_FLG2_LOCKDOOR 0x4
1479 #define SAFT_PRIVATE sizeof (struct scfg)
1480
1481 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1482 #define SAFT_BAIL(r, x, k, l) \
1483 if (r >= x) { \
1484 SES_LOG(ssc, safte_2little, x, __LINE__);\
1485 SES_FREE(k, l); \
1486 return (EIO); \
1487 }
1488
1489
1490 int
1491 safte_softc_init(ses_softc_t *ssc, int doinit)
1492 {
1493 int err, i, r;
1494 struct scfg *cc;
1495
1496 if (doinit == 0) {
1497 if (ssc->ses_nobjects) {
1498 if (ssc->ses_objmap) {
1499 SES_FREE(ssc->ses_objmap,
1500 ssc->ses_nobjects * sizeof (encobj));
1501 ssc->ses_objmap = NULL;
1502 }
1503 ssc->ses_nobjects = 0;
1504 }
1505 if (ssc->ses_private) {
1506 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1507 ssc->ses_private = NULL;
1508 }
1509 return (0);
1510 }
1511
1512 if (ssc->ses_private == NULL) {
1513 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1514 if (ssc->ses_private == NULL) {
1515 return (ENOMEM);
1516 }
1517 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1518 }
1519
1520 ssc->ses_nobjects = 0;
1521 ssc->ses_encstat = 0;
1522
1523 if ((err = safte_getconfig(ssc)) != 0) {
1524 return (err);
1525 }
1526
1527 /*
1528 * The number of objects here, as well as that reported by the
1529 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1530 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1531 */
1532 cc = ssc->ses_private;
1533 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1534 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1535 ssc->ses_objmap = (encobj *)
1536 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1537 if (ssc->ses_objmap == NULL) {
1538 return (ENOMEM);
1539 }
1540 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1541
1542 r = 0;
1543 /*
1544 * Note that this is all arranged for the convenience
1545 * in later fetches of status.
1546 */
1547 for (i = 0; i < cc->Nfans; i++)
1548 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1549 cc->pwroff = (uint8_t) r;
1550 for (i = 0; i < cc->Npwr; i++)
1551 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1552 for (i = 0; i < cc->DoorLock; i++)
1553 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1554 for (i = 0; i < cc->Nspkrs; i++)
1555 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1556 for (i = 0; i < cc->Ntherm; i++)
1557 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1558 for (i = 0; i < NPSEUDO_THERM; i++)
1559 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1560 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1561 cc->slotoff = (uint8_t) r;
1562 for (i = 0; i < cc->Nslots; i++)
1563 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1564 return (0);
1565 }
1566
1567 int
1568 safte_init_enc(ses_softc_t *ssc)
1569 {
1570 int err, amt;
1571 char *sdata;
1572 static char cdb0[6] = { SEND_DIAGNOSTIC };
1573 static char cdb[10] =
1574 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1575
1576 sdata = SES_MALLOC(SAFT_SCRATCH);
1577 if (sdata == NULL)
1578 return (ENOMEM);
1579
1580 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1581 if (err) {
1582 SES_FREE(sdata, SAFT_SCRATCH);
1583 return (err);
1584 }
1585 sdata[0] = SAFTE_WT_GLOBAL;
1586 MEMZERO(&sdata[1], 15);
1587 amt = -SAFT_SCRATCH;
1588 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1589 SES_FREE(sdata, SAFT_SCRATCH);
1590 return (err);
1591 }
1592
1593 int
1594 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1595 {
1596 return (safte_rdstat(ssc, slpflg));
1597 }
1598
1599 int
1600 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1601 {
1602 struct scfg *cc = ssc->ses_private;
1603 if (cc == NULL)
1604 return (0);
1605 /*
1606 * Since SAF-TE devices aren't necessarily sticky in terms
1607 * of state, make our soft copy of enclosure status 'sticky'-
1608 * that is, things set in enclosure status stay set (as implied
1609 * by conditions set in reading object status) until cleared.
1610 */
1611 ssc->ses_encstat &= ~ALL_ENC_STAT;
1612 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1613 ssc->ses_encstat |= ENCI_SVALID;
1614 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1615 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1616 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1617 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1618 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1619 }
1620 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1621 }
1622
1623 int
1624 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1625 {
1626 int i = (int)obp->obj_id;
1627
1628 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1629 (ssc->ses_objmap[i].svalid) == 0) {
1630 int err = safte_rdstat(ssc, slpflg);
1631 if (err)
1632 return (err);
1633 }
1634 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1635 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1636 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1637 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1638 return (0);
1639 }
1640
1641
1642 int
1643 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1644 {
1645 int idx, err;
1646 encobj *ep;
1647 struct scfg *cc;
1648
1649
1650 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1651 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1652 obp->cstat[3]);
1653
1654 /*
1655 * If this is clear, we don't do diddly.
1656 */
1657 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1658 return (0);
1659 }
1660
1661 err = 0;
1662 /*
1663 * Check to see if the common bits are set and do them first.
1664 */
1665 if (obp->cstat[0] & ~SESCTL_CSEL) {
1666 err = set_objstat_sel(ssc, obp, slp);
1667 if (err)
1668 return (err);
1669 }
1670
1671 cc = ssc->ses_private;
1672 if (cc == NULL)
1673 return (0);
1674
1675 idx = (int)obp->obj_id;
1676 ep = &ssc->ses_objmap[idx];
1677
1678 switch (ep->enctype) {
1679 case SESTYP_DEVICE:
1680 {
1681 uint8_t slotop = 0;
1682 /*
1683 * XXX: I should probably cache the previous state
1684 * XXX: of SESCTL_DEVOFF so that when it goes from
1685 * XXX: true to false I can then set PREPARE FOR OPERATION
1686 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1687 */
1688 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1689 slotop |= 0x2;
1690 }
1691 if (obp->cstat[2] & SESCTL_RQSID) {
1692 slotop |= 0x4;
1693 }
1694 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1695 slotop, slp);
1696 if (err)
1697 return (err);
1698 if (obp->cstat[3] & SESCTL_RQSFLT) {
1699 ep->priv |= 0x2;
1700 } else {
1701 ep->priv &= ~0x2;
1702 }
1703 if (ep->priv & 0xc6) {
1704 ep->priv &= ~0x1;
1705 } else {
1706 ep->priv |= 0x1; /* no errors */
1707 }
1708 wrslot_stat(ssc, slp);
1709 break;
1710 }
1711 case SESTYP_POWER:
1712 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1713 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1714 } else {
1715 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1716 }
1717 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1718 cc->flag2, 0, slp);
1719 if (err)
1720 return (err);
1721 if (obp->cstat[3] & SESCTL_RQSTON) {
1722 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1723 idx - cc->pwroff, 0, 0, slp);
1724 } else {
1725 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1726 idx - cc->pwroff, 0, 1, slp);
1727 }
1728 break;
1729 case SESTYP_FAN:
1730 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1731 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1732 } else {
1733 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1734 }
1735 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1736 cc->flag2, 0, slp);
1737 if (err)
1738 return (err);
1739 if (obp->cstat[3] & SESCTL_RQSTON) {
1740 uint8_t fsp;
1741 if ((obp->cstat[3] & 0x7) == 7) {
1742 fsp = 4;
1743 } else if ((obp->cstat[3] & 0x7) == 6) {
1744 fsp = 3;
1745 } else if ((obp->cstat[3] & 0x7) == 4) {
1746 fsp = 2;
1747 } else {
1748 fsp = 1;
1749 }
1750 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1751 } else {
1752 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1753 }
1754 break;
1755 case SESTYP_DOORLOCK:
1756 if (obp->cstat[3] & 0x1) {
1757 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1758 } else {
1759 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1760 }
1761 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1762 cc->flag2, 0, slp);
1763 break;
1764 case SESTYP_ALARM:
1765 /*
1766 * On all nonzero but the 'muted' bit, we turn on the alarm,
1767 */
1768 obp->cstat[3] &= ~0xa;
1769 if (obp->cstat[3] & 0x40) {
1770 cc->flag2 &= ~SAFT_FLG1_ALARM;
1771 } else if (obp->cstat[3] != 0) {
1772 cc->flag2 |= SAFT_FLG1_ALARM;
1773 } else {
1774 cc->flag2 &= ~SAFT_FLG1_ALARM;
1775 }
1776 ep->priv = obp->cstat[3];
1777 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1778 cc->flag2, 0, slp);
1779 break;
1780 default:
1781 break;
1782 }
1783 ep->svalid = 0;
1784 return (0);
1785 }
1786
1787 static int
1788 safte_getconfig(ses_softc_t *ssc)
1789 {
1790 struct scfg *cfg;
1791 int err, amt;
1792 char *sdata;
1793 static char cdb[10] =
1794 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1795
1796 cfg = ssc->ses_private;
1797 if (cfg == NULL)
1798 return (ENXIO);
1799
1800 sdata = SES_MALLOC(SAFT_SCRATCH);
1801 if (sdata == NULL)
1802 return (ENOMEM);
1803
1804 amt = SAFT_SCRATCH;
1805 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1806 if (err) {
1807 SES_FREE(sdata, SAFT_SCRATCH);
1808 return (err);
1809 }
1810 amt = SAFT_SCRATCH - amt;
1811 if (amt < 6) {
1812 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1813 SES_FREE(sdata, SAFT_SCRATCH);
1814 return (EIO);
1815 }
1816 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1817 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1818 cfg->Nfans = sdata[0];
1819 cfg->Npwr = sdata[1];
1820 cfg->Nslots = sdata[2];
1821 cfg->DoorLock = sdata[3];
1822 cfg->Ntherm = sdata[4];
1823 cfg->Nspkrs = sdata[5];
1824 cfg->Nalarm = NPSEUDO_ALARM;
1825 SES_FREE(sdata, SAFT_SCRATCH);
1826 return (0);
1827 }
1828
1829 static int
1830 safte_rdstat(ses_softc_t *ssc, int slpflg)
1831 {
1832 int err, oid, r, i, hiwater, nitems, amt;
1833 uint16_t tempflags;
1834 size_t buflen;
1835 uint8_t status, oencstat;
1836 char *sdata, cdb[10];
1837 struct scfg *cc = ssc->ses_private;
1838
1839
1840 /*
1841 * The number of objects overstates things a bit,
1842 * both for the bogus 'thermometer' entries and
1843 * the drive status (which isn't read at the same
1844 * time as the enclosure status), but that's okay.
1845 */
1846 buflen = 4 * cc->Nslots;
1847 if (ssc->ses_nobjects > buflen)
1848 buflen = ssc->ses_nobjects;
1849 sdata = SES_MALLOC(buflen);
1850 if (sdata == NULL)
1851 return (ENOMEM);
1852
1853 cdb[0] = READ_BUFFER;
1854 cdb[1] = 1;
1855 cdb[2] = SAFTE_RD_RDESTS;
1856 cdb[3] = 0;
1857 cdb[4] = 0;
1858 cdb[5] = 0;
1859 cdb[6] = 0;
1860 cdb[7] = (buflen >> 8) & 0xff;
1861 cdb[8] = buflen & 0xff;
1862 cdb[9] = 0;
1863 amt = buflen;
1864 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1865 if (err) {
1866 SES_FREE(sdata, buflen);
1867 return (err);
1868 }
1869 hiwater = buflen - amt;
1870
1871
1872 /*
1873 * invalidate all status bits.
1874 */
1875 for (i = 0; i < ssc->ses_nobjects; i++)
1876 ssc->ses_objmap[i].svalid = 0;
1877 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1878 ssc->ses_encstat = 0;
1879
1880
1881 /*
1882 * Now parse returned buffer.
1883 * If we didn't get enough data back,
1884 * that's considered a fatal error.
1885 */
1886 oid = r = 0;
1887
1888 for (nitems = i = 0; i < cc->Nfans; i++) {
1889 SAFT_BAIL(r, hiwater, sdata, buflen);
1890 /*
1891 * 0 = Fan Operational
1892 * 1 = Fan is malfunctioning
1893 * 2 = Fan is not present
1894 * 0x80 = Unknown or Not Reportable Status
1895 */
1896 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1897 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1898 switch ((int)(uint8_t)sdata[r]) {
1899 case 0:
1900 nitems++;
1901 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1902 /*
1903 * We could get fancier and cache
1904 * fan speeds that we have set, but
1905 * that isn't done now.
1906 */
1907 ssc->ses_objmap[oid].encstat[3] = 7;
1908 break;
1909
1910 case 1:
1911 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1912 /*
1913 * FAIL and FAN STOPPED synthesized
1914 */
1915 ssc->ses_objmap[oid].encstat[3] = 0x40;
1916 /*
1917 * Enclosure marked with CRITICAL error
1918 * if only one fan or no thermometers,
1919 * else the NONCRITICAL error is set.
1920 */
1921 if (cc->Nfans == 1 || cc->Ntherm == 0)
1922 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1923 else
1924 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1925 break;
1926 case 2:
1927 ssc->ses_objmap[oid].encstat[0] =
1928 SES_OBJSTAT_NOTINSTALLED;
1929 ssc->ses_objmap[oid].encstat[3] = 0;
1930 /*
1931 * Enclosure marked with CRITICAL error
1932 * if only one fan or no thermometers,
1933 * else the NONCRITICAL error is set.
1934 */
1935 if (cc->Nfans == 1)
1936 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1937 else
1938 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1939 break;
1940 case 0x80:
1941 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1942 ssc->ses_objmap[oid].encstat[3] = 0;
1943 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1944 break;
1945 default:
1946 ssc->ses_objmap[oid].encstat[0] =
1947 SES_OBJSTAT_UNSUPPORTED;
1948 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1949 sdata[r] & 0xff);
1950 break;
1951 }
1952 ssc->ses_objmap[oid++].svalid = 1;
1953 r++;
1954 }
1955
1956 /*
1957 * No matter how you cut it, no cooling elements when there
1958 * should be some there is critical.
1959 */
1960 if (cc->Nfans && nitems == 0) {
1961 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1962 }
1963
1964
1965 for (i = 0; i < cc->Npwr; i++) {
1966 SAFT_BAIL(r, hiwater, sdata, buflen);
1967 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1968 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1969 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1970 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1971 switch ((uint8_t)sdata[r]) {
1972 case 0x00: /* pws operational and on */
1973 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1974 break;
1975 case 0x01: /* pws operational and off */
1976 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1977 ssc->ses_objmap[oid].encstat[3] = 0x10;
1978 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1979 break;
1980 case 0x10: /* pws is malfunctioning and commanded on */
1981 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1982 ssc->ses_objmap[oid].encstat[3] = 0x61;
1983 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1984 break;
1985
1986 case 0x11: /* pws is malfunctioning and commanded off */
1987 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1988 ssc->ses_objmap[oid].encstat[3] = 0x51;
1989 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1990 break;
1991 case 0x20: /* pws is not present */
1992 ssc->ses_objmap[oid].encstat[0] =
1993 SES_OBJSTAT_NOTINSTALLED;
1994 ssc->ses_objmap[oid].encstat[3] = 0;
1995 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1996 break;
1997 case 0x21: /* pws is present */
1998 /*
1999 * This is for enclosures that cannot tell whether the
2000 * device is on or malfunctioning, but know that it is
2001 * present. Just fall through.
2002 */
2003 /* FALLTHROUGH */
2004 case 0x80: /* Unknown or Not Reportable Status */
2005 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2006 ssc->ses_objmap[oid].encstat[3] = 0;
2007 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2008 break;
2009 default:
2010 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2011 i, sdata[r] & 0xff);
2012 break;
2013 }
2014 ssc->ses_objmap[oid++].svalid = 1;
2015 r++;
2016 }
2017
2018 /*
2019 * Skip over Slot SCSI IDs
2020 */
2021 r += cc->Nslots;
2022
2023 /*
2024 * We always have doorlock status, no matter what,
2025 * but we only save the status if we have one.
2026 */
2027 SAFT_BAIL(r, hiwater, sdata, buflen);
2028 if (cc->DoorLock) {
2029 /*
2030 * 0 = Door Locked
2031 * 1 = Door Unlocked, or no Lock Installed
2032 * 0x80 = Unknown or Not Reportable Status
2033 */
2034 ssc->ses_objmap[oid].encstat[1] = 0;
2035 ssc->ses_objmap[oid].encstat[2] = 0;
2036 switch ((uint8_t)sdata[r]) {
2037 case 0:
2038 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2039 ssc->ses_objmap[oid].encstat[3] = 0;
2040 break;
2041 case 1:
2042 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2043 ssc->ses_objmap[oid].encstat[3] = 1;
2044 break;
2045 case 0x80:
2046 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2047 ssc->ses_objmap[oid].encstat[3] = 0;
2048 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2049 break;
2050 default:
2051 ssc->ses_objmap[oid].encstat[0] =
2052 SES_OBJSTAT_UNSUPPORTED;
2053 SES_LOG(ssc, "unknown lock status 0x%x\n",
2054 sdata[r] & 0xff);
2055 break;
2056 }
2057 ssc->ses_objmap[oid++].svalid = 1;
2058 }
2059 r++;
2060
2061 /*
2062 * We always have speaker status, no matter what,
2063 * but we only save the status if we have one.
2064 */
2065 SAFT_BAIL(r, hiwater, sdata, buflen);
2066 if (cc->Nspkrs) {
2067 ssc->ses_objmap[oid].encstat[1] = 0;
2068 ssc->ses_objmap[oid].encstat[2] = 0;
2069 if (sdata[r] == 1) {
2070 /*
2071 * We need to cache tone urgency indicators.
2072 * Someday.
2073 */
2074 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2075 ssc->ses_objmap[oid].encstat[3] = 0x8;
2076 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2077 } else if (sdata[r] == 0) {
2078 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2079 ssc->ses_objmap[oid].encstat[3] = 0;
2080 } else {
2081 ssc->ses_objmap[oid].encstat[0] =
2082 SES_OBJSTAT_UNSUPPORTED;
2083 ssc->ses_objmap[oid].encstat[3] = 0;
2084 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2085 sdata[r] & 0xff);
2086 }
2087 ssc->ses_objmap[oid++].svalid = 1;
2088 }
2089 r++;
2090
2091 for (i = 0; i < cc->Ntherm; i++) {
2092 SAFT_BAIL(r, hiwater, sdata, buflen);
2093 /*
2094 * Status is a range from -10 to 245 deg Celsius,
2095 * which we need to normalize to -20 to -245 according
2096 * to the latest SCSI spec, which makes little
2097 * sense since this would overflow an 8bit value.
2098 * Well, still, the base normalization is -20,
2099 * not -10, so we have to adjust.
2100 *
2101 * So what's over and under temperature?
2102 * Hmm- we'll state that 'normal' operating
2103 * is 10 to 40 deg Celsius.
2104 */
2105
2106 /*
2107 * Actually.... All of the units that people out in the world
2108 * seem to have do not come even close to setting a value that
2109 * complies with this spec.
2110 *
2111 * The closest explanation I could find was in an
2112 * LSI-Logic manual, which seemed to indicate that
2113 * this value would be set by whatever the I2C code
2114 * would interpolate from the output of an LM75
2115 * temperature sensor.
2116 *
2117 * This means that it is impossible to use the actual
2118 * numeric value to predict anything. But we don't want
2119 * to lose the value. So, we'll propagate the *uncorrected*
2120 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2121 * temperature flags for warnings.
2122 */
2123 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2124 ssc->ses_objmap[oid].encstat[1] = 0;
2125 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2126 ssc->ses_objmap[oid].encstat[3] = 0;
2127 ssc->ses_objmap[oid++].svalid = 1;
2128 r++;
2129 }
2130
2131 /*
2132 * Now, for "pseudo" thermometers, we have two bytes
2133 * of information in enclosure status- 16 bits. Actually,
2134 * the MSB is a single TEMP ALERT flag indicating whether
2135 * any other bits are set, but, thanks to fuzzy thinking,
2136 * in the SAF-TE spec, this can also be set even if no
2137 * other bits are set, thus making this really another
2138 * binary temperature sensor.
2139 */
2140
2141 SAFT_BAIL(r, hiwater, sdata, buflen);
2142 tempflags = sdata[r++];
2143 SAFT_BAIL(r, hiwater, sdata, buflen);
2144 tempflags |= (tempflags << 8) | sdata[r++];
2145
2146 for (i = 0; i < NPSEUDO_THERM; i++) {
2147 ssc->ses_objmap[oid].encstat[1] = 0;
2148 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2149 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2150 ssc->ses_objmap[4].encstat[2] = 0xff;
2151 /*
2152 * Set 'over temperature' failure.
2153 */
2154 ssc->ses_objmap[oid].encstat[3] = 8;
2155 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2156 } else {
2157 /*
2158 * We used to say 'not available' and synthesize a
2159 * nominal 30 deg (C)- that was wrong. Actually,
2160 * Just say 'OK', and use the reserved value of
2161 * zero.
2162 */
2163 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2164 ssc->ses_objmap[oid].encstat[2] = 0;
2165 ssc->ses_objmap[oid].encstat[3] = 0;
2166 }
2167 ssc->ses_objmap[oid++].svalid = 1;
2168 }
2169
2170 /*
2171 * Get alarm status.
2172 */
2173 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2175 ssc->ses_objmap[oid++].svalid = 1;
2176
2177 /*
2178 * Now get drive slot status
2179 */
2180 cdb[2] = SAFTE_RD_RDDSTS;
2181 amt = buflen;
2182 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2183 if (err) {
2184 SES_FREE(sdata, buflen);
2185 return (err);
2186 }
2187 hiwater = buflen - amt;
2188 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2189 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2190 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2191 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2192 ssc->ses_objmap[oid].encstat[2] = 0;
2193 ssc->ses_objmap[oid].encstat[3] = 0;
2194 status = sdata[r+3];
2195 if ((status & 0x1) == 0) { /* no device */
2196 ssc->ses_objmap[oid].encstat[0] =
2197 SES_OBJSTAT_NOTINSTALLED;
2198 } else {
2199 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2200 }
2201 if (status & 0x2) {
2202 ssc->ses_objmap[oid].encstat[2] = 0x8;
2203 }
2204 if ((status & 0x4) == 0) {
2205 ssc->ses_objmap[oid].encstat[3] = 0x10;
2206 }
2207 ssc->ses_objmap[oid++].svalid = 1;
2208 }
2209 /* see comment below about sticky enclosure status */
2210 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2211 SES_FREE(sdata, buflen);
2212 return (0);
2213 }
2214
2215 static int
2216 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2217 {
2218 int idx;
2219 encobj *ep;
2220 struct scfg *cc = ssc->ses_private;
2221
2222 if (cc == NULL)
2223 return (0);
2224
2225 idx = (int)obp->obj_id;
2226 ep = &ssc->ses_objmap[idx];
2227
2228 switch (ep->enctype) {
2229 case SESTYP_DEVICE:
2230 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2231 ep->priv |= 0x40;
2232 }
2233 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2234 if (obp->cstat[0] & SESCTL_DISABLE) {
2235 ep->priv |= 0x80;
2236 /*
2237 * Hmm. Try to set the 'No Drive' flag.
2238 * Maybe that will count as a 'disable'.
2239 */
2240 }
2241 if (ep->priv & 0xc6) {
2242 ep->priv &= ~0x1;
2243 } else {
2244 ep->priv |= 0x1; /* no errors */
2245 }
2246 wrslot_stat(ssc, slp);
2247 break;
2248 case SESTYP_POWER:
2249 /*
2250 * Okay- the only one that makes sense here is to
2251 * do the 'disable' for a power supply.
2252 */
2253 if (obp->cstat[0] & SESCTL_DISABLE) {
2254 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2255 idx - cc->pwroff, 0, 0, slp);
2256 }
2257 break;
2258 case SESTYP_FAN:
2259 /*
2260 * Okay- the only one that makes sense here is to
2261 * set fan speed to zero on disable.
2262 */
2263 if (obp->cstat[0] & SESCTL_DISABLE) {
2264 /* remember- fans are the first items, so idx works */
2265 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2266 }
2267 break;
2268 case SESTYP_DOORLOCK:
2269 /*
2270 * Well, we can 'disable' the lock.
2271 */
2272 if (obp->cstat[0] & SESCTL_DISABLE) {
2273 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2274 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2275 cc->flag2, 0, slp);
2276 }
2277 break;
2278 case SESTYP_ALARM:
2279 /*
2280 * Well, we can 'disable' the alarm.
2281 */
2282 if (obp->cstat[0] & SESCTL_DISABLE) {
2283 cc->flag2 &= ~SAFT_FLG1_ALARM;
2284 ep->priv |= 0x40; /* Muted */
2285 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2286 cc->flag2, 0, slp);
2287 }
2288 break;
2289 default:
2290 break;
2291 }
2292 ep->svalid = 0;
2293 return (0);
2294 }
2295
2296 /*
2297 * This function handles all of the 16 byte WRITE BUFFER commands.
2298 */
2299 static int
2300 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2301 uint8_t b3, int slp)
2302 {
2303 int err, amt;
2304 char *sdata;
2305 struct scfg *cc = ssc->ses_private;
2306 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2307
2308 if (cc == NULL)
2309 return (0);
2310
2311 sdata = SES_MALLOC(16);
2312 if (sdata == NULL)
2313 return (ENOMEM);
2314
2315 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2316
2317 sdata[0] = op;
2318 sdata[1] = b1;
2319 sdata[2] = b2;
2320 sdata[3] = b3;
2321 MEMZERO(&sdata[4], 12);
2322 amt = -16;
2323 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2324 SES_FREE(sdata, 16);
2325 return (err);
2326 }
2327
2328 /*
2329 * This function updates the status byte for the device slot described.
2330 *
2331 * Since this is an optional SAF-TE command, there's no point in
2332 * returning an error.
2333 */
2334 static void
2335 wrslot_stat(ses_softc_t *ssc, int slp)
2336 {
2337 int i, amt;
2338 encobj *ep;
2339 char cdb[10], *sdata;
2340 struct scfg *cc = ssc->ses_private;
2341
2342 if (cc == NULL)
2343 return;
2344
2345 SES_VLOG(ssc, "saf_wrslot\n");
2346 cdb[0] = WRITE_BUFFER;
2347 cdb[1] = 1;
2348 cdb[2] = 0;
2349 cdb[3] = 0;
2350 cdb[4] = 0;
2351 cdb[5] = 0;
2352 cdb[6] = 0;
2353 cdb[7] = 0;
2354 cdb[8] = cc->Nslots * 3 + 1;
2355 cdb[9] = 0;
2356
2357 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2358 if (sdata == NULL)
2359 return;
2360 MEMZERO(sdata, cc->Nslots * 3 + 1);
2361
2362 sdata[0] = SAFTE_WT_DSTAT;
2363 for (i = 0; i < cc->Nslots; i++) {
2364 ep = &ssc->ses_objmap[cc->slotoff + i];
2365 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2366 sdata[1 + (3 * i)] = ep->priv & 0xff;
2367 }
2368 amt = -(cc->Nslots * 3 + 1);
2369 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2370 SES_FREE(sdata, cc->Nslots * 3 + 1);
2371 }
2372
2373 /*
2374 * This function issues the "PERFORM SLOT OPERATION" command.
2375 */
2376 static int
2377 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2378 {
2379 int err, amt;
2380 char *sdata;
2381 struct scfg *cc = ssc->ses_private;
2382 static char cdb[10] =
2383 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2384
2385 if (cc == NULL)
2386 return (0);
2387
2388 sdata = SES_MALLOC(SAFT_SCRATCH);
2389 if (sdata == NULL)
2390 return (ENOMEM);
2391 MEMZERO(sdata, SAFT_SCRATCH);
2392
2393 sdata[0] = SAFTE_WT_SLTOP;
2394 sdata[1] = slot;
2395 sdata[2] = opflag;
2396 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2397 amt = -SAFT_SCRATCH;
2398 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2399 SES_FREE(sdata, SAFT_SCRATCH);
2400 return (err);
2401 }
2402