ses.c revision 1.22.2.2 1 /* $NetBSD: ses.c,v 1.22.2.2 2004/08/25 06:58:43 skrll Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.22.2.2 2004/08/25 06:58:43 skrll Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsiconf.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init)(ses_softc_t *, int);
75 int (*init_enc)(ses_softc_t *);
76 int (*get_encstat)(ses_softc_t *, int);
77 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138
139 const struct cdevsw ses_cdevsw = {
140 sesopen, sesclose, noread, nowrite, sesioctl,
141 nostop, notty, nopoll, nommap, nokqfilter,
142 };
143
144 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
145 static void ses_log(struct ses_softc *, const char *, ...)
146 __attribute__((__format__(__printf__, 2, 3)));
147
148 /*
149 * General NetBSD kernel stuff.
150 */
151
152 struct ses_softc {
153 struct device sc_device;
154 struct scsipi_periph *sc_periph;
155 enctyp ses_type; /* type of enclosure */
156 encvec ses_vec; /* vector to handlers */
157 void * ses_private; /* per-type private data */
158 encobj * ses_objmap; /* objects */
159 u_int32_t ses_nobjects; /* number of objects */
160 ses_encstat ses_encstat; /* overall status */
161 u_int8_t ses_flags;
162 };
163 #define SES_FLAG_INVALID 0x01
164 #define SES_FLAG_OPEN 0x02
165 #define SES_FLAG_INITIALIZED 0x04
166
167 #define SESUNIT(x) (minor((x)))
168
169 static int ses_match(struct device *, struct cfdata *, void *);
170 static void ses_attach(struct device *, struct device *, void *);
171 static enctyp ses_device_type(struct scsipibus_attach_args *);
172
173 CFATTACH_DECL(ses, sizeof (struct ses_softc),
174 ses_match, ses_attach, NULL, NULL);
175
176 extern struct cfdriver ses_cd;
177
178 static const struct scsipi_periphsw ses_switch = {
179 NULL,
180 NULL,
181 NULL,
182 NULL
183 };
184
185 static int
186 ses_match(struct device *parent, struct cfdata *match, void *aux)
187 {
188 struct scsipibus_attach_args *sa = aux;
189
190 switch (ses_device_type(sa)) {
191 case SES_SES:
192 case SES_SES_SCSI2:
193 case SES_SEN:
194 case SES_SAFT:
195 case SES_SES_PASSTHROUGH:
196 /*
197 * For these devices, it's a perfect match.
198 */
199 return (24);
200 default:
201 return (0);
202 }
203 }
204
205
206 /*
207 * Complete the attachment.
208 *
209 * We have to repeat the rerun of INQUIRY data as above because
210 * it's not until the return from the match routine that we have
211 * the softc available to set stuff in.
212 */
213 static void
214 ses_attach(struct device *parent, struct device *self, void *aux)
215 {
216 char *tname;
217 struct ses_softc *softc = (void *)self;
218 struct scsipibus_attach_args *sa = aux;
219 struct scsipi_periph *periph = sa->sa_periph;
220
221 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
222 softc->sc_periph = periph;
223 periph->periph_dev = &softc->sc_device;
224 periph->periph_switch = &ses_switch;
225 periph->periph_openings = 1;
226
227 softc->ses_type = ses_device_type(sa);
228 switch (softc->ses_type) {
229 case SES_SES:
230 case SES_SES_SCSI2:
231 case SES_SES_PASSTHROUGH:
232 softc->ses_vec.softc_init = ses_softc_init;
233 softc->ses_vec.init_enc = ses_init_enc;
234 softc->ses_vec.get_encstat = ses_get_encstat;
235 softc->ses_vec.set_encstat = ses_set_encstat;
236 softc->ses_vec.get_objstat = ses_get_objstat;
237 softc->ses_vec.set_objstat = ses_set_objstat;
238 break;
239 case SES_SAFT:
240 softc->ses_vec.softc_init = safte_softc_init;
241 softc->ses_vec.init_enc = safte_init_enc;
242 softc->ses_vec.get_encstat = safte_get_encstat;
243 softc->ses_vec.set_encstat = safte_set_encstat;
244 softc->ses_vec.get_objstat = safte_get_objstat;
245 softc->ses_vec.set_objstat = safte_set_objstat;
246 break;
247 case SES_SEN:
248 break;
249 case SES_NONE:
250 default:
251 break;
252 }
253
254 switch (softc->ses_type) {
255 default:
256 case SES_NONE:
257 tname = "No SES device";
258 break;
259 case SES_SES_SCSI2:
260 tname = "SCSI-2 SES Device";
261 break;
262 case SES_SES:
263 tname = "SCSI-3 SES Device";
264 break;
265 case SES_SES_PASSTHROUGH:
266 tname = "SES Passthrough Device";
267 break;
268 case SES_SEN:
269 tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 break;
271 case SES_SAFT:
272 tname = "SAF-TE Compliant Device";
273 break;
274 }
275 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277
278
279 static enctyp
280 ses_device_type(struct scsipibus_attach_args *sa)
281 {
282 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
283
284 if (inqp == NULL)
285 return (SES_NONE);
286
287 return (ses_type(inqp));
288 }
289
290 static int
291 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
292 {
293 struct ses_softc *softc;
294 int error, unit;
295
296 unit = SESUNIT(dev);
297 if (unit >= ses_cd.cd_ndevs)
298 return (ENXIO);
299 softc = ses_cd.cd_devs[unit];
300 if (softc == NULL)
301 return (ENXIO);
302
303 if (softc->ses_flags & SES_FLAG_INVALID) {
304 error = ENXIO;
305 goto out;
306 }
307 if (softc->ses_flags & SES_FLAG_OPEN) {
308 error = EBUSY;
309 goto out;
310 }
311 if (softc->ses_vec.softc_init == NULL) {
312 error = ENXIO;
313 goto out;
314 }
315 error = scsipi_adapter_addref(
316 softc->sc_periph->periph_channel->chan_adapter);
317 if (error != 0)
318 goto out;
319
320
321 softc->ses_flags |= SES_FLAG_OPEN;
322 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
323 error = (*softc->ses_vec.softc_init)(softc, 1);
324 if (error)
325 softc->ses_flags &= ~SES_FLAG_OPEN;
326 else
327 softc->ses_flags |= SES_FLAG_INITIALIZED;
328 }
329
330 out:
331 return (error);
332 }
333
334 static int
335 sesclose(dev_t dev, int flags, int fmt, struct lwp *l)
336 {
337 struct ses_softc *softc;
338 int unit;
339
340 unit = SESUNIT(dev);
341 if (unit >= ses_cd.cd_ndevs)
342 return (ENXIO);
343 softc = ses_cd.cd_devs[unit];
344 if (softc == NULL)
345 return (ENXIO);
346
347 scsipi_wait_drain(softc->sc_periph);
348 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
349 softc->ses_flags &= ~SES_FLAG_OPEN;
350 return (0);
351 }
352
353 static int
354 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct lwp *l)
355 {
356 ses_encstat tmp;
357 ses_objstat objs;
358 ses_object obj, *uobj;
359 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
360 void *addr;
361 int error, i;
362
363
364 if (arg_addr)
365 addr = *((caddr_t *) arg_addr);
366 else
367 addr = NULL;
368
369 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
370
371 /*
372 * Now check to see whether we're initialized or not.
373 */
374 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
375 return (ENODEV);
376 }
377
378 error = 0;
379
380 /*
381 * If this command can change the device's state,
382 * we must have the device open for writing.
383 */
384 switch (cmd) {
385 case SESIOC_GETNOBJ:
386 case SESIOC_GETOBJMAP:
387 case SESIOC_GETENCSTAT:
388 case SESIOC_GETOBJSTAT:
389 break;
390 default:
391 if ((flag & FWRITE) == 0) {
392 return (EBADF);
393 }
394 }
395
396 switch (cmd) {
397 case SESIOC_GETNOBJ:
398 error = copyout(&ssc->ses_nobjects, addr,
399 sizeof (ssc->ses_nobjects));
400 break;
401
402 case SESIOC_GETOBJMAP:
403 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
404 obj.obj_id = i;
405 obj.subencid = ssc->ses_objmap[i].subenclosure;
406 obj.object_type = ssc->ses_objmap[i].enctype;
407 error = copyout(&obj, uobj, sizeof (ses_object));
408 if (error) {
409 break;
410 }
411 }
412 break;
413
414 case SESIOC_GETENCSTAT:
415 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
416 if (error)
417 break;
418 tmp = ssc->ses_encstat & ~ENCI_SVALID;
419 error = copyout(&tmp, addr, sizeof (ses_encstat));
420 ssc->ses_encstat = tmp;
421 break;
422
423 case SESIOC_SETENCSTAT:
424 error = copyin(addr, &tmp, sizeof (ses_encstat));
425 if (error)
426 break;
427 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
428 break;
429
430 case SESIOC_GETOBJSTAT:
431 error = copyin(addr, &objs, sizeof (ses_objstat));
432 if (error)
433 break;
434 if (objs.obj_id >= ssc->ses_nobjects) {
435 error = EINVAL;
436 break;
437 }
438 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
439 if (error)
440 break;
441 error = copyout(&objs, addr, sizeof (ses_objstat));
442 /*
443 * Always (for now) invalidate entry.
444 */
445 ssc->ses_objmap[objs.obj_id].svalid = 0;
446 break;
447
448 case SESIOC_SETOBJSTAT:
449 error = copyin(addr, &objs, sizeof (ses_objstat));
450 if (error)
451 break;
452
453 if (objs.obj_id >= ssc->ses_nobjects) {
454 error = EINVAL;
455 break;
456 }
457 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
458
459 /*
460 * Always (for now) invalidate entry.
461 */
462 ssc->ses_objmap[objs.obj_id].svalid = 0;
463 break;
464
465 case SESIOC_INIT:
466
467 error = (*ssc->ses_vec.init_enc)(ssc);
468 break;
469
470 default:
471 error = scsipi_do_ioctl(ssc->sc_periph,
472 dev, cmd, arg_addr, flag, l);
473 break;
474 }
475 return (error);
476 }
477
478 static int
479 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
480 {
481 struct scsipi_generic sgen;
482 int dl, flg, error;
483
484 if (dptr) {
485 if ((dl = *dlenp) < 0) {
486 dl = -dl;
487 flg = XS_CTL_DATA_OUT;
488 } else {
489 flg = XS_CTL_DATA_IN;
490 }
491 } else {
492 dl = 0;
493 flg = 0;
494 }
495
496 if (cdbl > sizeof (struct scsipi_generic)) {
497 cdbl = sizeof (struct scsipi_generic);
498 }
499 memcpy(&sgen, cdb, cdbl);
500 #ifndef SCSIDEBUG
501 flg |= XS_CTL_SILENT;
502 #endif
503 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
504 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
505
506 if (error == 0 && dptr)
507 *dlenp = 0;
508
509 return (error);
510 }
511
512 static void
513 ses_log(struct ses_softc *ssc, const char *fmt, ...)
514 {
515 va_list ap;
516
517 printf("%s: ", ssc->sc_device.dv_xname);
518 va_start(ap, fmt);
519 vprintf(fmt, ap);
520 va_end(ap);
521 }
522
523 /*
524 * The code after this point runs on many platforms,
525 * so forgive the slightly awkward and nonconforming
526 * appearance.
527 */
528
529 /*
530 * Is this a device that supports enclosure services?
531 *
532 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
533 * an SES device. If it happens to be an old UNISYS SEN device, we can
534 * handle that too.
535 */
536
537 #define SAFTE_START 44
538 #define SAFTE_END 50
539 #define SAFTE_LEN SAFTE_END-SAFTE_START
540
541 static enctyp
542 ses_type(struct scsipi_inquiry_data *inqp)
543 {
544 size_t given_len = inqp->additional_length + 4;
545
546 if (given_len < 8+SEN_ID_LEN)
547 return (SES_NONE);
548
549 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
550 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
551 return (SES_SEN);
552 } else if ((inqp->version & SID_ANSII) > 2) {
553 return (SES_SES);
554 } else {
555 return (SES_SES_SCSI2);
556 }
557 return (SES_NONE);
558 }
559
560 #ifdef SES_ENABLE_PASSTHROUGH
561 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
562 /*
563 * PassThrough Device.
564 */
565 return (SES_SES_PASSTHROUGH);
566 }
567 #endif
568
569 /*
570 * The comparison is short for a reason-
571 * some vendors were chopping it short.
572 */
573
574 if (given_len < SAFTE_END - 2) {
575 return (SES_NONE);
576 }
577
578 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
579 SAFTE_LEN - 2) == 0) {
580 return (SES_SAFT);
581 }
582
583 return (SES_NONE);
584 }
585
586 /*
587 * SES Native Type Device Support
588 */
589
590 /*
591 * SES Diagnostic Page Codes
592 */
593
594 typedef enum {
595 SesConfigPage = 0x1,
596 SesControlPage,
597 #define SesStatusPage SesControlPage
598 SesHelpTxt,
599 SesStringOut,
600 #define SesStringIn SesStringOut
601 SesThresholdOut,
602 #define SesThresholdIn SesThresholdOut
603 SesArrayControl,
604 #define SesArrayStatus SesArrayControl
605 SesElementDescriptor,
606 SesShortStatus
607 } SesDiagPageCodes;
608
609 /*
610 * minimal amounts
611 */
612
613 /*
614 * Minimum amount of data, starting from byte 0, to have
615 * the config header.
616 */
617 #define SES_CFGHDR_MINLEN 12
618
619 /*
620 * Minimum amount of data, starting from byte 0, to have
621 * the config header and one enclosure header.
622 */
623 #define SES_ENCHDR_MINLEN 48
624
625 /*
626 * Take this value, subtract it from VEnclen and you know
627 * the length of the vendor unique bytes.
628 */
629 #define SES_ENCHDR_VMIN 36
630
631 /*
632 * SES Data Structures
633 */
634
635 typedef struct {
636 uint32_t GenCode; /* Generation Code */
637 uint8_t Nsubenc; /* Number of Subenclosures */
638 } SesCfgHdr;
639
640 typedef struct {
641 uint8_t Subencid; /* SubEnclosure Identifier */
642 uint8_t Ntypes; /* # of supported types */
643 uint8_t VEnclen; /* Enclosure Descriptor Length */
644 } SesEncHdr;
645
646 typedef struct {
647 uint8_t encWWN[8]; /* XXX- Not Right Yet */
648 uint8_t encVid[8];
649 uint8_t encPid[16];
650 uint8_t encRev[4];
651 uint8_t encVen[1];
652 } SesEncDesc;
653
654 typedef struct {
655 uint8_t enc_type; /* type of element */
656 uint8_t enc_maxelt; /* maximum supported */
657 uint8_t enc_subenc; /* in SubEnc # N */
658 uint8_t enc_tlen; /* Type Descriptor Text Length */
659 } SesThdr;
660
661 typedef struct {
662 uint8_t comstatus;
663 uint8_t comstat[3];
664 } SesComStat;
665
666 struct typidx {
667 int ses_tidx;
668 int ses_oidx;
669 };
670
671 struct sscfg {
672 uint8_t ses_ntypes; /* total number of types supported */
673
674 /*
675 * We need to keep a type index as well as an
676 * object index for each object in an enclosure.
677 */
678 struct typidx *ses_typidx;
679
680 /*
681 * We also need to keep track of the number of elements
682 * per type of element. This is needed later so that we
683 * can find precisely in the returned status data the
684 * status for the Nth element of the Kth type.
685 */
686 uint8_t * ses_eltmap;
687 };
688
689
690 /*
691 * (de)canonicalization defines
692 */
693 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
694 #define sbit(x, bit) (((uint32_t)(x)) << bit)
695 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
696
697 #define sset16(outp, idx, sval) \
698 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
699 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
700
701
702 #define sset24(outp, idx, sval) \
703 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
704 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
705 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
706
707
708 #define sset32(outp, idx, sval) \
709 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
710 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
711 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
712 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
713
714 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
715 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
716 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
717 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
718
719 #define sget16(inp, idx, lval) \
720 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
721 (((uint8_t *)(inp))[idx+1]), idx += 2
722
723 #define gget16(inp, idx, lval) \
724 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
725 (((uint8_t *)(inp))[idx+1])
726
727 #define sget24(inp, idx, lval) \
728 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
729 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
730 (((uint8_t *)(inp))[idx+2]), idx += 3
731
732 #define gget24(inp, idx, lval) \
733 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
734 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
735 (((uint8_t *)(inp))[idx+2])
736
737 #define sget32(inp, idx, lval) \
738 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
739 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
740 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
741 (((uint8_t *)(inp))[idx+3]), idx += 4
742
743 #define gget32(inp, idx, lval) \
744 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
745 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
746 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
747 (((uint8_t *)(inp))[idx+3])
748
749 #define SCSZ 0x2000
750 #define CFLEN (256 + SES_ENCHDR_MINLEN)
751
752 /*
753 * Routines specific && private to SES only
754 */
755
756 static int ses_getconfig(ses_softc_t *);
757 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
758 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
759 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
760 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
761 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
762 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
763 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
764
765 static int
766 ses_softc_init(ses_softc_t *ssc, int doinit)
767 {
768 if (doinit == 0) {
769 struct sscfg *cc;
770 if (ssc->ses_nobjects) {
771 SES_FREE(ssc->ses_objmap,
772 ssc->ses_nobjects * sizeof (encobj));
773 ssc->ses_objmap = NULL;
774 }
775 if ((cc = ssc->ses_private) != NULL) {
776 if (cc->ses_eltmap && cc->ses_ntypes) {
777 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
778 cc->ses_eltmap = NULL;
779 cc->ses_ntypes = 0;
780 }
781 if (cc->ses_typidx && ssc->ses_nobjects) {
782 SES_FREE(cc->ses_typidx,
783 ssc->ses_nobjects * sizeof (struct typidx));
784 cc->ses_typidx = NULL;
785 }
786 SES_FREE(cc, sizeof (struct sscfg));
787 ssc->ses_private = NULL;
788 }
789 ssc->ses_nobjects = 0;
790 return (0);
791 }
792 if (ssc->ses_private == NULL) {
793 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
794 }
795 if (ssc->ses_private == NULL) {
796 return (ENOMEM);
797 }
798 ssc->ses_nobjects = 0;
799 ssc->ses_encstat = 0;
800 return (ses_getconfig(ssc));
801 }
802
803 static int
804 ses_init_enc(ses_softc_t *ssc)
805 {
806 return (0);
807 }
808
809 static int
810 ses_get_encstat(ses_softc_t *ssc, int slpflag)
811 {
812 SesComStat ComStat;
813 int status;
814
815 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
816 return (status);
817 }
818 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
819 return (0);
820 }
821
822 static int
823 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
824 {
825 SesComStat ComStat;
826 int status;
827
828 ComStat.comstatus = encstat & 0xf;
829 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
830 return (status);
831 }
832 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
833 return (0);
834 }
835
836 static int
837 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
838 {
839 int i = (int)obp->obj_id;
840
841 if (ssc->ses_objmap[i].svalid == 0) {
842 SesComStat ComStat;
843 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
844 if (err)
845 return (err);
846 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
847 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
848 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
849 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
850 ssc->ses_objmap[i].svalid = 1;
851 }
852 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
853 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
854 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
855 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
856 return (0);
857 }
858
859 static int
860 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
861 {
862 SesComStat ComStat;
863 int err;
864 /*
865 * If this is clear, we don't do diddly.
866 */
867 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
868 return (0);
869 }
870 ComStat.comstatus = obp->cstat[0];
871 ComStat.comstat[0] = obp->cstat[1];
872 ComStat.comstat[1] = obp->cstat[2];
873 ComStat.comstat[2] = obp->cstat[3];
874 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
875 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
876 return (err);
877 }
878
879 static int
880 ses_getconfig(ses_softc_t *ssc)
881 {
882 struct sscfg *cc;
883 SesCfgHdr cf;
884 SesEncHdr hd;
885 SesEncDesc *cdp;
886 SesThdr thdr;
887 int err, amt, i, nobj, ntype, maxima;
888 char storage[CFLEN], *sdata;
889 static char cdb[6] = {
890 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
891 };
892
893 cc = ssc->ses_private;
894 if (cc == NULL) {
895 return (ENXIO);
896 }
897
898 sdata = SES_MALLOC(SCSZ);
899 if (sdata == NULL)
900 return (ENOMEM);
901
902 amt = SCSZ;
903 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
904 if (err) {
905 SES_FREE(sdata, SCSZ);
906 return (err);
907 }
908 amt = SCSZ - amt;
909
910 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
911 SES_LOG(ssc, "Unable to parse SES Config Header\n");
912 SES_FREE(sdata, SCSZ);
913 return (EIO);
914 }
915 if (amt < SES_ENCHDR_MINLEN) {
916 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
917 SES_FREE(sdata, SCSZ);
918 return (EIO);
919 }
920
921 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
922
923 /*
924 * Now waltz through all the subenclosures toting up the
925 * number of types available in each. For this, we only
926 * really need the enclosure header. However, we get the
927 * enclosure descriptor for debug purposes, as well
928 * as self-consistency checking purposes.
929 */
930
931 maxima = cf.Nsubenc + 1;
932 cdp = (SesEncDesc *) storage;
933 for (ntype = i = 0; i < maxima; i++) {
934 MEMZERO((caddr_t)cdp, sizeof (*cdp));
935 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
936 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
937 SES_FREE(sdata, SCSZ);
938 return (EIO);
939 }
940 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
941 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
942
943 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
944 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
945 SES_FREE(sdata, SCSZ);
946 return (EIO);
947 }
948 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
949 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
950 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
951 cdp->encWWN[6], cdp->encWWN[7]);
952 ntype += hd.Ntypes;
953 }
954
955 /*
956 * Now waltz through all the types that are available, getting
957 * the type header so we can start adding up the number of
958 * objects available.
959 */
960 for (nobj = i = 0; i < ntype; i++) {
961 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
962 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
963 SES_FREE(sdata, SCSZ);
964 return (EIO);
965 }
966 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
967 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
968 thdr.enc_subenc, thdr.enc_tlen);
969 nobj += thdr.enc_maxelt;
970 }
971
972
973 /*
974 * Now allocate the object array and type map.
975 */
976
977 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
978 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
979 cc->ses_eltmap = SES_MALLOC(ntype);
980
981 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
982 cc->ses_eltmap == NULL) {
983 if (ssc->ses_objmap) {
984 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
985 ssc->ses_objmap = NULL;
986 }
987 if (cc->ses_typidx) {
988 SES_FREE(cc->ses_typidx,
989 (nobj * sizeof (struct typidx)));
990 cc->ses_typidx = NULL;
991 }
992 if (cc->ses_eltmap) {
993 SES_FREE(cc->ses_eltmap, ntype);
994 cc->ses_eltmap = NULL;
995 }
996 SES_FREE(sdata, SCSZ);
997 return (ENOMEM);
998 }
999 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1000 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1001 MEMZERO(cc->ses_eltmap, ntype);
1002 cc->ses_ntypes = (uint8_t) ntype;
1003 ssc->ses_nobjects = nobj;
1004
1005 /*
1006 * Now waltz through the # of types again to fill in the types
1007 * (and subenclosure ids) of the allocated objects.
1008 */
1009 nobj = 0;
1010 for (i = 0; i < ntype; i++) {
1011 int j;
1012 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1013 continue;
1014 }
1015 cc->ses_eltmap[i] = thdr.enc_maxelt;
1016 for (j = 0; j < thdr.enc_maxelt; j++) {
1017 cc->ses_typidx[nobj].ses_tidx = i;
1018 cc->ses_typidx[nobj].ses_oidx = j;
1019 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1020 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1021 }
1022 }
1023 SES_FREE(sdata, SCSZ);
1024 return (0);
1025 }
1026
1027 static int
1028 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1029 {
1030 struct sscfg *cc;
1031 int err, amt, bufsiz, tidx, oidx;
1032 char cdb[6], *sdata;
1033
1034 cc = ssc->ses_private;
1035 if (cc == NULL) {
1036 return (ENXIO);
1037 }
1038
1039 /*
1040 * If we're just getting overall enclosure status,
1041 * we only need 2 bytes of data storage.
1042 *
1043 * If we're getting anything else, we know how much
1044 * storage we need by noting that starting at offset
1045 * 8 in returned data, all object status bytes are 4
1046 * bytes long, and are stored in chunks of types(M)
1047 * and nth+1 instances of type M.
1048 */
1049 if (objid == -1) {
1050 bufsiz = 2;
1051 } else {
1052 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1053 }
1054 sdata = SES_MALLOC(bufsiz);
1055 if (sdata == NULL)
1056 return (ENOMEM);
1057
1058 cdb[0] = RECEIVE_DIAGNOSTIC;
1059 cdb[1] = 1;
1060 cdb[2] = SesStatusPage;
1061 cdb[3] = bufsiz >> 8;
1062 cdb[4] = bufsiz & 0xff;
1063 cdb[5] = 0;
1064 amt = bufsiz;
1065 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1066 if (err) {
1067 SES_FREE(sdata, bufsiz);
1068 return (err);
1069 }
1070 amt = bufsiz - amt;
1071
1072 if (objid == -1) {
1073 tidx = -1;
1074 oidx = -1;
1075 } else {
1076 tidx = cc->ses_typidx[objid].ses_tidx;
1077 oidx = cc->ses_typidx[objid].ses_oidx;
1078 }
1079 if (in) {
1080 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1081 err = ENODEV;
1082 }
1083 } else {
1084 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1085 err = ENODEV;
1086 } else {
1087 cdb[0] = SEND_DIAGNOSTIC;
1088 cdb[1] = 0x10;
1089 cdb[2] = 0;
1090 cdb[3] = bufsiz >> 8;
1091 cdb[4] = bufsiz & 0xff;
1092 cdb[5] = 0;
1093 amt = -bufsiz;
1094 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1095 }
1096 }
1097 SES_FREE(sdata, bufsiz);
1098 return (0);
1099 }
1100
1101
1102 /*
1103 * Routines to parse returned SES data structures.
1104 * Architecture and compiler independent.
1105 */
1106
1107 static int
1108 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1109 {
1110 if (buflen < SES_CFGHDR_MINLEN) {
1111 return (-1);
1112 }
1113 gget8(buffer, 1, cfp->Nsubenc);
1114 gget32(buffer, 4, cfp->GenCode);
1115 return (0);
1116 }
1117
1118 static int
1119 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1120 {
1121 int s, off = 8;
1122 for (s = 0; s < SubEncId; s++) {
1123 if (off + 3 > amt)
1124 return (-1);
1125 off += buffer[off+3] + 4;
1126 }
1127 if (off + 3 > amt) {
1128 return (-1);
1129 }
1130 gget8(buffer, off+1, chp->Subencid);
1131 gget8(buffer, off+2, chp->Ntypes);
1132 gget8(buffer, off+3, chp->VEnclen);
1133 return (0);
1134 }
1135
1136 static int
1137 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1138 {
1139 int s, e, enclen, off = 8;
1140 for (s = 0; s < SubEncId; s++) {
1141 if (off + 3 > amt)
1142 return (-1);
1143 off += buffer[off+3] + 4;
1144 }
1145 if (off + 3 > amt) {
1146 return (-1);
1147 }
1148 gget8(buffer, off+3, enclen);
1149 off += 4;
1150 if (off >= amt)
1151 return (-1);
1152
1153 e = off + enclen;
1154 if (e > amt) {
1155 e = amt;
1156 }
1157 MEMCPY(cdp, &buffer[off], e - off);
1158 return (0);
1159 }
1160
1161 static int
1162 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1163 {
1164 int s, off = 8;
1165
1166 if (amt < SES_CFGHDR_MINLEN) {
1167 return (-1);
1168 }
1169 for (s = 0; s < buffer[1]; s++) {
1170 if (off + 3 > amt)
1171 return (-1);
1172 off += buffer[off+3] + 4;
1173 }
1174 if (off + 3 > amt) {
1175 return (-1);
1176 }
1177 off += buffer[off+3] + 4 + (nth * 4);
1178 if (amt < (off + 4))
1179 return (-1);
1180
1181 gget8(buffer, off++, thp->enc_type);
1182 gget8(buffer, off++, thp->enc_maxelt);
1183 gget8(buffer, off++, thp->enc_subenc);
1184 gget8(buffer, off, thp->enc_tlen);
1185 return (0);
1186 }
1187
1188 /*
1189 * This function needs a little explanation.
1190 *
1191 * The arguments are:
1192 *
1193 *
1194 * char *b, int amt
1195 *
1196 * These describes the raw input SES status data and length.
1197 *
1198 * uint8_t *ep
1199 *
1200 * This is a map of the number of types for each element type
1201 * in the enclosure.
1202 *
1203 * int elt
1204 *
1205 * This is the element type being sought. If elt is -1,
1206 * then overall enclosure status is being sought.
1207 *
1208 * int elm
1209 *
1210 * This is the ordinal Mth element of type elt being sought.
1211 *
1212 * SesComStat *sp
1213 *
1214 * This is the output area to store the status for
1215 * the Mth element of type Elt.
1216 */
1217
1218 static int
1219 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1220 {
1221 int idx, i;
1222
1223 /*
1224 * If it's overall enclosure status being sought, get that.
1225 * We need at least 2 bytes of status data to get that.
1226 */
1227 if (elt == -1) {
1228 if (amt < 2)
1229 return (-1);
1230 gget8(b, 1, sp->comstatus);
1231 sp->comstat[0] = 0;
1232 sp->comstat[1] = 0;
1233 sp->comstat[2] = 0;
1234 return (0);
1235 }
1236
1237 /*
1238 * Check to make sure that the Mth element is legal for type Elt.
1239 */
1240
1241 if (elm >= ep[elt])
1242 return (-1);
1243
1244 /*
1245 * Starting at offset 8, start skipping over the storage
1246 * for the element types we're not interested in.
1247 */
1248 for (idx = 8, i = 0; i < elt; i++) {
1249 idx += ((ep[i] + 1) * 4);
1250 }
1251
1252 /*
1253 * Skip over Overall status for this element type.
1254 */
1255 idx += 4;
1256
1257 /*
1258 * And skip to the index for the Mth element that we're going for.
1259 */
1260 idx += (4 * elm);
1261
1262 /*
1263 * Make sure we haven't overflowed the buffer.
1264 */
1265 if (idx+4 > amt)
1266 return (-1);
1267
1268 /*
1269 * Retrieve the status.
1270 */
1271 gget8(b, idx++, sp->comstatus);
1272 gget8(b, idx++, sp->comstat[0]);
1273 gget8(b, idx++, sp->comstat[1]);
1274 gget8(b, idx++, sp->comstat[2]);
1275 #if 0
1276 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1277 #endif
1278 return (0);
1279 }
1280
1281 /*
1282 * This is the mirror function to ses_decode, but we set the 'select'
1283 * bit for the object which we're interested in. All other objects,
1284 * after a status fetch, should have that bit off. Hmm. It'd be easy
1285 * enough to ensure this, so we will.
1286 */
1287
1288 static int
1289 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1290 {
1291 int idx, i;
1292
1293 /*
1294 * If it's overall enclosure status being sought, get that.
1295 * We need at least 2 bytes of status data to get that.
1296 */
1297 if (elt == -1) {
1298 if (amt < 2)
1299 return (-1);
1300 i = 0;
1301 sset8(b, i, 0);
1302 sset8(b, i, sp->comstatus & 0xf);
1303 #if 0
1304 PRINTF("set EncStat %x\n", sp->comstatus);
1305 #endif
1306 return (0);
1307 }
1308
1309 /*
1310 * Check to make sure that the Mth element is legal for type Elt.
1311 */
1312
1313 if (elm >= ep[elt])
1314 return (-1);
1315
1316 /*
1317 * Starting at offset 8, start skipping over the storage
1318 * for the element types we're not interested in.
1319 */
1320 for (idx = 8, i = 0; i < elt; i++) {
1321 idx += ((ep[i] + 1) * 4);
1322 }
1323
1324 /*
1325 * Skip over Overall status for this element type.
1326 */
1327 idx += 4;
1328
1329 /*
1330 * And skip to the index for the Mth element that we're going for.
1331 */
1332 idx += (4 * elm);
1333
1334 /*
1335 * Make sure we haven't overflowed the buffer.
1336 */
1337 if (idx+4 > amt)
1338 return (-1);
1339
1340 /*
1341 * Set the status.
1342 */
1343 sset8(b, idx, sp->comstatus);
1344 sset8(b, idx, sp->comstat[0]);
1345 sset8(b, idx, sp->comstat[1]);
1346 sset8(b, idx, sp->comstat[2]);
1347 idx -= 4;
1348
1349 #if 0
1350 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1351 elt, elm, idx, sp->comstatus, sp->comstat[0],
1352 sp->comstat[1], sp->comstat[2]);
1353 #endif
1354
1355 /*
1356 * Now make sure all other 'Select' bits are off.
1357 */
1358 for (i = 8; i < amt; i += 4) {
1359 if (i != idx)
1360 b[i] &= ~0x80;
1361 }
1362 /*
1363 * And make sure the INVOP bit is clear.
1364 */
1365 b[2] &= ~0x10;
1366
1367 return (0);
1368 }
1369
1370 /*
1371 * SAF-TE Type Device Emulation
1372 */
1373
1374 static int safte_getconfig(ses_softc_t *);
1375 static int safte_rdstat(ses_softc_t *, int);
1376 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1377 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1378 static void wrslot_stat(ses_softc_t *, int);
1379 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1380
1381 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1382 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1383 /*
1384 * SAF-TE specific defines- Mandatory ones only...
1385 */
1386
1387 /*
1388 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1389 */
1390 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1391 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1392 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1393
1394 /*
1395 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1396 */
1397 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1398 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1399 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1400 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1401 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1402
1403
1404 #define SAFT_SCRATCH 64
1405 #define NPSEUDO_THERM 16
1406 #define NPSEUDO_ALARM 1
1407 struct scfg {
1408 /*
1409 * Cached Configuration
1410 */
1411 uint8_t Nfans; /* Number of Fans */
1412 uint8_t Npwr; /* Number of Power Supplies */
1413 uint8_t Nslots; /* Number of Device Slots */
1414 uint8_t DoorLock; /* Door Lock Installed */
1415 uint8_t Ntherm; /* Number of Temperature Sensors */
1416 uint8_t Nspkrs; /* Number of Speakers */
1417 uint8_t Nalarm; /* Number of Alarms (at least one) */
1418 /*
1419 * Cached Flag Bytes for Global Status
1420 */
1421 uint8_t flag1;
1422 uint8_t flag2;
1423 /*
1424 * What object index ID is where various slots start.
1425 */
1426 uint8_t pwroff;
1427 uint8_t slotoff;
1428 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1429 };
1430
1431 #define SAFT_FLG1_ALARM 0x1
1432 #define SAFT_FLG1_GLOBFAIL 0x2
1433 #define SAFT_FLG1_GLOBWARN 0x4
1434 #define SAFT_FLG1_ENCPWROFF 0x8
1435 #define SAFT_FLG1_ENCFANFAIL 0x10
1436 #define SAFT_FLG1_ENCPWRFAIL 0x20
1437 #define SAFT_FLG1_ENCDRVFAIL 0x40
1438 #define SAFT_FLG1_ENCDRVWARN 0x80
1439
1440 #define SAFT_FLG2_LOCKDOOR 0x4
1441 #define SAFT_PRIVATE sizeof (struct scfg)
1442
1443 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1444 #define SAFT_BAIL(r, x, k, l) \
1445 if (r >= x) { \
1446 SES_LOG(ssc, safte_2little, x, __LINE__);\
1447 SES_FREE(k, l); \
1448 return (EIO); \
1449 }
1450
1451
1452 static int
1453 safte_softc_init(ses_softc_t *ssc, int doinit)
1454 {
1455 int err, i, r;
1456 struct scfg *cc;
1457
1458 if (doinit == 0) {
1459 if (ssc->ses_nobjects) {
1460 if (ssc->ses_objmap) {
1461 SES_FREE(ssc->ses_objmap,
1462 ssc->ses_nobjects * sizeof (encobj));
1463 ssc->ses_objmap = NULL;
1464 }
1465 ssc->ses_nobjects = 0;
1466 }
1467 if (ssc->ses_private) {
1468 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1469 ssc->ses_private = NULL;
1470 }
1471 return (0);
1472 }
1473
1474 if (ssc->ses_private == NULL) {
1475 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1476 if (ssc->ses_private == NULL) {
1477 return (ENOMEM);
1478 }
1479 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1480 }
1481
1482 ssc->ses_nobjects = 0;
1483 ssc->ses_encstat = 0;
1484
1485 if ((err = safte_getconfig(ssc)) != 0) {
1486 return (err);
1487 }
1488
1489 /*
1490 * The number of objects here, as well as that reported by the
1491 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1492 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1493 */
1494 cc = ssc->ses_private;
1495 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1496 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1497 ssc->ses_objmap = (encobj *)
1498 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1499 if (ssc->ses_objmap == NULL) {
1500 return (ENOMEM);
1501 }
1502 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1503
1504 r = 0;
1505 /*
1506 * Note that this is all arranged for the convenience
1507 * in later fetches of status.
1508 */
1509 for (i = 0; i < cc->Nfans; i++)
1510 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1511 cc->pwroff = (uint8_t) r;
1512 for (i = 0; i < cc->Npwr; i++)
1513 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1514 for (i = 0; i < cc->DoorLock; i++)
1515 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1516 for (i = 0; i < cc->Nspkrs; i++)
1517 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1518 for (i = 0; i < cc->Ntherm; i++)
1519 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1520 for (i = 0; i < NPSEUDO_THERM; i++)
1521 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1522 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1523 cc->slotoff = (uint8_t) r;
1524 for (i = 0; i < cc->Nslots; i++)
1525 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1526 return (0);
1527 }
1528
1529 static int
1530 safte_init_enc(ses_softc_t *ssc)
1531 {
1532 int err, amt;
1533 char *sdata;
1534 static char cdb0[6] = { SEND_DIAGNOSTIC };
1535 static char cdb[10] =
1536 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1537
1538 sdata = SES_MALLOC(SAFT_SCRATCH);
1539 if (sdata == NULL)
1540 return (ENOMEM);
1541
1542 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1543 if (err) {
1544 SES_FREE(sdata, SAFT_SCRATCH);
1545 return (err);
1546 }
1547 sdata[0] = SAFTE_WT_GLOBAL;
1548 MEMZERO(&sdata[1], 15);
1549 amt = -SAFT_SCRATCH;
1550 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1551 SES_FREE(sdata, SAFT_SCRATCH);
1552 return (err);
1553 }
1554
1555 static int
1556 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1557 {
1558 return (safte_rdstat(ssc, slpflg));
1559 }
1560
1561 static int
1562 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1563 {
1564 struct scfg *cc = ssc->ses_private;
1565 if (cc == NULL)
1566 return (0);
1567 /*
1568 * Since SAF-TE devices aren't necessarily sticky in terms
1569 * of state, make our soft copy of enclosure status 'sticky'-
1570 * that is, things set in enclosure status stay set (as implied
1571 * by conditions set in reading object status) until cleared.
1572 */
1573 ssc->ses_encstat &= ~ALL_ENC_STAT;
1574 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1575 ssc->ses_encstat |= ENCI_SVALID;
1576 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1577 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1578 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1579 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1580 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1581 }
1582 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1583 }
1584
1585 static int
1586 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1587 {
1588 int i = (int)obp->obj_id;
1589
1590 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1591 (ssc->ses_objmap[i].svalid) == 0) {
1592 int err = safte_rdstat(ssc, slpflg);
1593 if (err)
1594 return (err);
1595 }
1596 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1597 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1598 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1599 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1600 return (0);
1601 }
1602
1603
1604 static int
1605 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1606 {
1607 int idx, err;
1608 encobj *ep;
1609 struct scfg *cc;
1610
1611
1612 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1613 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1614 obp->cstat[3]);
1615
1616 /*
1617 * If this is clear, we don't do diddly.
1618 */
1619 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1620 return (0);
1621 }
1622
1623 err = 0;
1624 /*
1625 * Check to see if the common bits are set and do them first.
1626 */
1627 if (obp->cstat[0] & ~SESCTL_CSEL) {
1628 err = set_objstat_sel(ssc, obp, slp);
1629 if (err)
1630 return (err);
1631 }
1632
1633 cc = ssc->ses_private;
1634 if (cc == NULL)
1635 return (0);
1636
1637 idx = (int)obp->obj_id;
1638 ep = &ssc->ses_objmap[idx];
1639
1640 switch (ep->enctype) {
1641 case SESTYP_DEVICE:
1642 {
1643 uint8_t slotop = 0;
1644 /*
1645 * XXX: I should probably cache the previous state
1646 * XXX: of SESCTL_DEVOFF so that when it goes from
1647 * XXX: true to false I can then set PREPARE FOR OPERATION
1648 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1649 */
1650 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1651 slotop |= 0x2;
1652 }
1653 if (obp->cstat[2] & SESCTL_RQSID) {
1654 slotop |= 0x4;
1655 }
1656 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1657 slotop, slp);
1658 if (err)
1659 return (err);
1660 if (obp->cstat[3] & SESCTL_RQSFLT) {
1661 ep->priv |= 0x2;
1662 } else {
1663 ep->priv &= ~0x2;
1664 }
1665 if (ep->priv & 0xc6) {
1666 ep->priv &= ~0x1;
1667 } else {
1668 ep->priv |= 0x1; /* no errors */
1669 }
1670 wrslot_stat(ssc, slp);
1671 break;
1672 }
1673 case SESTYP_POWER:
1674 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1675 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1676 } else {
1677 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1678 }
1679 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1680 cc->flag2, 0, slp);
1681 if (err)
1682 return (err);
1683 if (obp->cstat[3] & SESCTL_RQSTON) {
1684 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1685 idx - cc->pwroff, 0, 0, slp);
1686 } else {
1687 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1688 idx - cc->pwroff, 0, 1, slp);
1689 }
1690 break;
1691 case SESTYP_FAN:
1692 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1693 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1694 } else {
1695 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1696 }
1697 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1698 cc->flag2, 0, slp);
1699 if (err)
1700 return (err);
1701 if (obp->cstat[3] & SESCTL_RQSTON) {
1702 uint8_t fsp;
1703 if ((obp->cstat[3] & 0x7) == 7) {
1704 fsp = 4;
1705 } else if ((obp->cstat[3] & 0x7) == 6) {
1706 fsp = 3;
1707 } else if ((obp->cstat[3] & 0x7) == 4) {
1708 fsp = 2;
1709 } else {
1710 fsp = 1;
1711 }
1712 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1713 } else {
1714 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1715 }
1716 break;
1717 case SESTYP_DOORLOCK:
1718 if (obp->cstat[3] & 0x1) {
1719 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1720 } else {
1721 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1722 }
1723 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1724 cc->flag2, 0, slp);
1725 break;
1726 case SESTYP_ALARM:
1727 /*
1728 * On all nonzero but the 'muted' bit, we turn on the alarm,
1729 */
1730 obp->cstat[3] &= ~0xa;
1731 if (obp->cstat[3] & 0x40) {
1732 cc->flag2 &= ~SAFT_FLG1_ALARM;
1733 } else if (obp->cstat[3] != 0) {
1734 cc->flag2 |= SAFT_FLG1_ALARM;
1735 } else {
1736 cc->flag2 &= ~SAFT_FLG1_ALARM;
1737 }
1738 ep->priv = obp->cstat[3];
1739 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1740 cc->flag2, 0, slp);
1741 break;
1742 default:
1743 break;
1744 }
1745 ep->svalid = 0;
1746 return (0);
1747 }
1748
1749 static int
1750 safte_getconfig(ses_softc_t *ssc)
1751 {
1752 struct scfg *cfg;
1753 int err, amt;
1754 char *sdata;
1755 static char cdb[10] =
1756 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1757
1758 cfg = ssc->ses_private;
1759 if (cfg == NULL)
1760 return (ENXIO);
1761
1762 sdata = SES_MALLOC(SAFT_SCRATCH);
1763 if (sdata == NULL)
1764 return (ENOMEM);
1765
1766 amt = SAFT_SCRATCH;
1767 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1768 if (err) {
1769 SES_FREE(sdata, SAFT_SCRATCH);
1770 return (err);
1771 }
1772 amt = SAFT_SCRATCH - amt;
1773 if (amt < 6) {
1774 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1775 SES_FREE(sdata, SAFT_SCRATCH);
1776 return (EIO);
1777 }
1778 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1779 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1780 cfg->Nfans = sdata[0];
1781 cfg->Npwr = sdata[1];
1782 cfg->Nslots = sdata[2];
1783 cfg->DoorLock = sdata[3];
1784 cfg->Ntherm = sdata[4];
1785 cfg->Nspkrs = sdata[5];
1786 cfg->Nalarm = NPSEUDO_ALARM;
1787 SES_FREE(sdata, SAFT_SCRATCH);
1788 return (0);
1789 }
1790
1791 static int
1792 safte_rdstat(ses_softc_t *ssc, int slpflg)
1793 {
1794 int err, oid, r, i, hiwater, nitems, amt;
1795 uint16_t tempflags;
1796 size_t buflen;
1797 uint8_t status, oencstat;
1798 char *sdata, cdb[10];
1799 struct scfg *cc = ssc->ses_private;
1800
1801
1802 /*
1803 * The number of objects overstates things a bit,
1804 * both for the bogus 'thermometer' entries and
1805 * the drive status (which isn't read at the same
1806 * time as the enclosure status), but that's okay.
1807 */
1808 buflen = 4 * cc->Nslots;
1809 if (ssc->ses_nobjects > buflen)
1810 buflen = ssc->ses_nobjects;
1811 sdata = SES_MALLOC(buflen);
1812 if (sdata == NULL)
1813 return (ENOMEM);
1814
1815 cdb[0] = READ_BUFFER;
1816 cdb[1] = 1;
1817 cdb[2] = SAFTE_RD_RDESTS;
1818 cdb[3] = 0;
1819 cdb[4] = 0;
1820 cdb[5] = 0;
1821 cdb[6] = 0;
1822 cdb[7] = (buflen >> 8) & 0xff;
1823 cdb[8] = buflen & 0xff;
1824 cdb[9] = 0;
1825 amt = buflen;
1826 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1827 if (err) {
1828 SES_FREE(sdata, buflen);
1829 return (err);
1830 }
1831 hiwater = buflen - amt;
1832
1833
1834 /*
1835 * invalidate all status bits.
1836 */
1837 for (i = 0; i < ssc->ses_nobjects; i++)
1838 ssc->ses_objmap[i].svalid = 0;
1839 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1840 ssc->ses_encstat = 0;
1841
1842
1843 /*
1844 * Now parse returned buffer.
1845 * If we didn't get enough data back,
1846 * that's considered a fatal error.
1847 */
1848 oid = r = 0;
1849
1850 for (nitems = i = 0; i < cc->Nfans; i++) {
1851 SAFT_BAIL(r, hiwater, sdata, buflen);
1852 /*
1853 * 0 = Fan Operational
1854 * 1 = Fan is malfunctioning
1855 * 2 = Fan is not present
1856 * 0x80 = Unknown or Not Reportable Status
1857 */
1858 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1859 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1860 switch ((int)(uint8_t)sdata[r]) {
1861 case 0:
1862 nitems++;
1863 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1864 /*
1865 * We could get fancier and cache
1866 * fan speeds that we have set, but
1867 * that isn't done now.
1868 */
1869 ssc->ses_objmap[oid].encstat[3] = 7;
1870 break;
1871
1872 case 1:
1873 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1874 /*
1875 * FAIL and FAN STOPPED synthesized
1876 */
1877 ssc->ses_objmap[oid].encstat[3] = 0x40;
1878 /*
1879 * Enclosure marked with CRITICAL error
1880 * if only one fan or no thermometers,
1881 * else the NONCRITICAL error is set.
1882 */
1883 if (cc->Nfans == 1 || cc->Ntherm == 0)
1884 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1885 else
1886 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1887 break;
1888 case 2:
1889 ssc->ses_objmap[oid].encstat[0] =
1890 SES_OBJSTAT_NOTINSTALLED;
1891 ssc->ses_objmap[oid].encstat[3] = 0;
1892 /*
1893 * Enclosure marked with CRITICAL error
1894 * if only one fan or no thermometers,
1895 * else the NONCRITICAL error is set.
1896 */
1897 if (cc->Nfans == 1)
1898 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1899 else
1900 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1901 break;
1902 case 0x80:
1903 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1904 ssc->ses_objmap[oid].encstat[3] = 0;
1905 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1906 break;
1907 default:
1908 ssc->ses_objmap[oid].encstat[0] =
1909 SES_OBJSTAT_UNSUPPORTED;
1910 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1911 sdata[r] & 0xff);
1912 break;
1913 }
1914 ssc->ses_objmap[oid++].svalid = 1;
1915 r++;
1916 }
1917
1918 /*
1919 * No matter how you cut it, no cooling elements when there
1920 * should be some there is critical.
1921 */
1922 if (cc->Nfans && nitems == 0) {
1923 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1924 }
1925
1926
1927 for (i = 0; i < cc->Npwr; i++) {
1928 SAFT_BAIL(r, hiwater, sdata, buflen);
1929 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1930 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1931 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1932 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1933 switch ((uint8_t)sdata[r]) {
1934 case 0x00: /* pws operational and on */
1935 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1936 break;
1937 case 0x01: /* pws operational and off */
1938 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1939 ssc->ses_objmap[oid].encstat[3] = 0x10;
1940 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1941 break;
1942 case 0x10: /* pws is malfunctioning and commanded on */
1943 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1944 ssc->ses_objmap[oid].encstat[3] = 0x61;
1945 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1946 break;
1947
1948 case 0x11: /* pws is malfunctioning and commanded off */
1949 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1950 ssc->ses_objmap[oid].encstat[3] = 0x51;
1951 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1952 break;
1953 case 0x20: /* pws is not present */
1954 ssc->ses_objmap[oid].encstat[0] =
1955 SES_OBJSTAT_NOTINSTALLED;
1956 ssc->ses_objmap[oid].encstat[3] = 0;
1957 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1958 break;
1959 case 0x21: /* pws is present */
1960 /*
1961 * This is for enclosures that cannot tell whether the
1962 * device is on or malfunctioning, but know that it is
1963 * present. Just fall through.
1964 */
1965 /* FALLTHROUGH */
1966 case 0x80: /* Unknown or Not Reportable Status */
1967 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1968 ssc->ses_objmap[oid].encstat[3] = 0;
1969 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1970 break;
1971 default:
1972 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1973 i, sdata[r] & 0xff);
1974 break;
1975 }
1976 ssc->ses_objmap[oid++].svalid = 1;
1977 r++;
1978 }
1979
1980 /*
1981 * Skip over Slot SCSI IDs
1982 */
1983 r += cc->Nslots;
1984
1985 /*
1986 * We always have doorlock status, no matter what,
1987 * but we only save the status if we have one.
1988 */
1989 SAFT_BAIL(r, hiwater, sdata, buflen);
1990 if (cc->DoorLock) {
1991 /*
1992 * 0 = Door Locked
1993 * 1 = Door Unlocked, or no Lock Installed
1994 * 0x80 = Unknown or Not Reportable Status
1995 */
1996 ssc->ses_objmap[oid].encstat[1] = 0;
1997 ssc->ses_objmap[oid].encstat[2] = 0;
1998 switch ((uint8_t)sdata[r]) {
1999 case 0:
2000 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2001 ssc->ses_objmap[oid].encstat[3] = 0;
2002 break;
2003 case 1:
2004 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2005 ssc->ses_objmap[oid].encstat[3] = 1;
2006 break;
2007 case 0x80:
2008 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2009 ssc->ses_objmap[oid].encstat[3] = 0;
2010 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2011 break;
2012 default:
2013 ssc->ses_objmap[oid].encstat[0] =
2014 SES_OBJSTAT_UNSUPPORTED;
2015 SES_LOG(ssc, "unknown lock status 0x%x\n",
2016 sdata[r] & 0xff);
2017 break;
2018 }
2019 ssc->ses_objmap[oid++].svalid = 1;
2020 }
2021 r++;
2022
2023 /*
2024 * We always have speaker status, no matter what,
2025 * but we only save the status if we have one.
2026 */
2027 SAFT_BAIL(r, hiwater, sdata, buflen);
2028 if (cc->Nspkrs) {
2029 ssc->ses_objmap[oid].encstat[1] = 0;
2030 ssc->ses_objmap[oid].encstat[2] = 0;
2031 if (sdata[r] == 1) {
2032 /*
2033 * We need to cache tone urgency indicators.
2034 * Someday.
2035 */
2036 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2037 ssc->ses_objmap[oid].encstat[3] = 0x8;
2038 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2039 } else if (sdata[r] == 0) {
2040 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2041 ssc->ses_objmap[oid].encstat[3] = 0;
2042 } else {
2043 ssc->ses_objmap[oid].encstat[0] =
2044 SES_OBJSTAT_UNSUPPORTED;
2045 ssc->ses_objmap[oid].encstat[3] = 0;
2046 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2047 sdata[r] & 0xff);
2048 }
2049 ssc->ses_objmap[oid++].svalid = 1;
2050 }
2051 r++;
2052
2053 for (i = 0; i < cc->Ntherm; i++) {
2054 SAFT_BAIL(r, hiwater, sdata, buflen);
2055 /*
2056 * Status is a range from -10 to 245 deg Celsius,
2057 * which we need to normalize to -20 to -245 according
2058 * to the latest SCSI spec, which makes little
2059 * sense since this would overflow an 8bit value.
2060 * Well, still, the base normalization is -20,
2061 * not -10, so we have to adjust.
2062 *
2063 * So what's over and under temperature?
2064 * Hmm- we'll state that 'normal' operating
2065 * is 10 to 40 deg Celsius.
2066 */
2067
2068 /*
2069 * Actually.... All of the units that people out in the world
2070 * seem to have do not come even close to setting a value that
2071 * complies with this spec.
2072 *
2073 * The closest explanation I could find was in an
2074 * LSI-Logic manual, which seemed to indicate that
2075 * this value would be set by whatever the I2C code
2076 * would interpolate from the output of an LM75
2077 * temperature sensor.
2078 *
2079 * This means that it is impossible to use the actual
2080 * numeric value to predict anything. But we don't want
2081 * to lose the value. So, we'll propagate the *uncorrected*
2082 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2083 * temperature flags for warnings.
2084 */
2085 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2086 ssc->ses_objmap[oid].encstat[1] = 0;
2087 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2088 ssc->ses_objmap[oid].encstat[3] = 0;
2089 ssc->ses_objmap[oid++].svalid = 1;
2090 r++;
2091 }
2092
2093 /*
2094 * Now, for "pseudo" thermometers, we have two bytes
2095 * of information in enclosure status- 16 bits. Actually,
2096 * the MSB is a single TEMP ALERT flag indicating whether
2097 * any other bits are set, but, thanks to fuzzy thinking,
2098 * in the SAF-TE spec, this can also be set even if no
2099 * other bits are set, thus making this really another
2100 * binary temperature sensor.
2101 */
2102
2103 SAFT_BAIL(r, hiwater, sdata, buflen);
2104 tempflags = sdata[r++];
2105 SAFT_BAIL(r, hiwater, sdata, buflen);
2106 tempflags |= (tempflags << 8) | sdata[r++];
2107
2108 for (i = 0; i < NPSEUDO_THERM; i++) {
2109 ssc->ses_objmap[oid].encstat[1] = 0;
2110 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2111 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2112 ssc->ses_objmap[4].encstat[2] = 0xff;
2113 /*
2114 * Set 'over temperature' failure.
2115 */
2116 ssc->ses_objmap[oid].encstat[3] = 8;
2117 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2118 } else {
2119 /*
2120 * We used to say 'not available' and synthesize a
2121 * nominal 30 deg (C)- that was wrong. Actually,
2122 * Just say 'OK', and use the reserved value of
2123 * zero.
2124 */
2125 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2126 ssc->ses_objmap[oid].encstat[2] = 0;
2127 ssc->ses_objmap[oid].encstat[3] = 0;
2128 }
2129 ssc->ses_objmap[oid++].svalid = 1;
2130 }
2131
2132 /*
2133 * Get alarm status.
2134 */
2135 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2136 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2137 ssc->ses_objmap[oid++].svalid = 1;
2138
2139 /*
2140 * Now get drive slot status
2141 */
2142 cdb[2] = SAFTE_RD_RDDSTS;
2143 amt = buflen;
2144 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2145 if (err) {
2146 SES_FREE(sdata, buflen);
2147 return (err);
2148 }
2149 hiwater = buflen - amt;
2150 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2151 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2152 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2153 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2154 ssc->ses_objmap[oid].encstat[2] = 0;
2155 ssc->ses_objmap[oid].encstat[3] = 0;
2156 status = sdata[r+3];
2157 if ((status & 0x1) == 0) { /* no device */
2158 ssc->ses_objmap[oid].encstat[0] =
2159 SES_OBJSTAT_NOTINSTALLED;
2160 } else {
2161 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2162 }
2163 if (status & 0x2) {
2164 ssc->ses_objmap[oid].encstat[2] = 0x8;
2165 }
2166 if ((status & 0x4) == 0) {
2167 ssc->ses_objmap[oid].encstat[3] = 0x10;
2168 }
2169 ssc->ses_objmap[oid++].svalid = 1;
2170 }
2171 /* see comment below about sticky enclosure status */
2172 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2173 SES_FREE(sdata, buflen);
2174 return (0);
2175 }
2176
2177 static int
2178 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2179 {
2180 int idx;
2181 encobj *ep;
2182 struct scfg *cc = ssc->ses_private;
2183
2184 if (cc == NULL)
2185 return (0);
2186
2187 idx = (int)obp->obj_id;
2188 ep = &ssc->ses_objmap[idx];
2189
2190 switch (ep->enctype) {
2191 case SESTYP_DEVICE:
2192 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2193 ep->priv |= 0x40;
2194 }
2195 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2196 if (obp->cstat[0] & SESCTL_DISABLE) {
2197 ep->priv |= 0x80;
2198 /*
2199 * Hmm. Try to set the 'No Drive' flag.
2200 * Maybe that will count as a 'disable'.
2201 */
2202 }
2203 if (ep->priv & 0xc6) {
2204 ep->priv &= ~0x1;
2205 } else {
2206 ep->priv |= 0x1; /* no errors */
2207 }
2208 wrslot_stat(ssc, slp);
2209 break;
2210 case SESTYP_POWER:
2211 /*
2212 * Okay- the only one that makes sense here is to
2213 * do the 'disable' for a power supply.
2214 */
2215 if (obp->cstat[0] & SESCTL_DISABLE) {
2216 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2217 idx - cc->pwroff, 0, 0, slp);
2218 }
2219 break;
2220 case SESTYP_FAN:
2221 /*
2222 * Okay- the only one that makes sense here is to
2223 * set fan speed to zero on disable.
2224 */
2225 if (obp->cstat[0] & SESCTL_DISABLE) {
2226 /* remember- fans are the first items, so idx works */
2227 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2228 }
2229 break;
2230 case SESTYP_DOORLOCK:
2231 /*
2232 * Well, we can 'disable' the lock.
2233 */
2234 if (obp->cstat[0] & SESCTL_DISABLE) {
2235 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2236 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2237 cc->flag2, 0, slp);
2238 }
2239 break;
2240 case SESTYP_ALARM:
2241 /*
2242 * Well, we can 'disable' the alarm.
2243 */
2244 if (obp->cstat[0] & SESCTL_DISABLE) {
2245 cc->flag2 &= ~SAFT_FLG1_ALARM;
2246 ep->priv |= 0x40; /* Muted */
2247 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2248 cc->flag2, 0, slp);
2249 }
2250 break;
2251 default:
2252 break;
2253 }
2254 ep->svalid = 0;
2255 return (0);
2256 }
2257
2258 /*
2259 * This function handles all of the 16 byte WRITE BUFFER commands.
2260 */
2261 static int
2262 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2263 uint8_t b3, int slp)
2264 {
2265 int err, amt;
2266 char *sdata;
2267 struct scfg *cc = ssc->ses_private;
2268 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2269
2270 if (cc == NULL)
2271 return (0);
2272
2273 sdata = SES_MALLOC(16);
2274 if (sdata == NULL)
2275 return (ENOMEM);
2276
2277 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2278
2279 sdata[0] = op;
2280 sdata[1] = b1;
2281 sdata[2] = b2;
2282 sdata[3] = b3;
2283 MEMZERO(&sdata[4], 12);
2284 amt = -16;
2285 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2286 SES_FREE(sdata, 16);
2287 return (err);
2288 }
2289
2290 /*
2291 * This function updates the status byte for the device slot described.
2292 *
2293 * Since this is an optional SAF-TE command, there's no point in
2294 * returning an error.
2295 */
2296 static void
2297 wrslot_stat(ses_softc_t *ssc, int slp)
2298 {
2299 int i, amt;
2300 encobj *ep;
2301 char cdb[10], *sdata;
2302 struct scfg *cc = ssc->ses_private;
2303
2304 if (cc == NULL)
2305 return;
2306
2307 SES_VLOG(ssc, "saf_wrslot\n");
2308 cdb[0] = WRITE_BUFFER;
2309 cdb[1] = 1;
2310 cdb[2] = 0;
2311 cdb[3] = 0;
2312 cdb[4] = 0;
2313 cdb[5] = 0;
2314 cdb[6] = 0;
2315 cdb[7] = 0;
2316 cdb[8] = cc->Nslots * 3 + 1;
2317 cdb[9] = 0;
2318
2319 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2320 if (sdata == NULL)
2321 return;
2322 MEMZERO(sdata, cc->Nslots * 3 + 1);
2323
2324 sdata[0] = SAFTE_WT_DSTAT;
2325 for (i = 0; i < cc->Nslots; i++) {
2326 ep = &ssc->ses_objmap[cc->slotoff + i];
2327 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2328 sdata[1 + (3 * i)] = ep->priv & 0xff;
2329 }
2330 amt = -(cc->Nslots * 3 + 1);
2331 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2332 SES_FREE(sdata, cc->Nslots * 3 + 1);
2333 }
2334
2335 /*
2336 * This function issues the "PERFORM SLOT OPERATION" command.
2337 */
2338 static int
2339 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2340 {
2341 int err, amt;
2342 char *sdata;
2343 struct scfg *cc = ssc->ses_private;
2344 static char cdb[10] =
2345 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2346
2347 if (cc == NULL)
2348 return (0);
2349
2350 sdata = SES_MALLOC(SAFT_SCRATCH);
2351 if (sdata == NULL)
2352 return (ENOMEM);
2353 MEMZERO(sdata, SAFT_SCRATCH);
2354
2355 sdata[0] = SAFTE_WT_SLTOP;
2356 sdata[1] = slot;
2357 sdata[2] = opflag;
2358 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2359 amt = -SAFT_SCRATCH;
2360 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2361 SES_FREE(sdata, SAFT_SCRATCH);
2362 return (err);
2363 }
2364