ses.c revision 1.3 1 /* $NetBSD: ses.c,v 1.3 2000/01/21 21:19:57 mjacob Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57
58 /*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61 typedef enum {
62 SES_NONE,
63 SES_SES_SCSI2,
64 SES_SES,
65 SES_SES_PASSTHROUGH,
66 SES_SEN,
67 SES_SAFT
68 } enctyp;
69
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 int (*softc_init) __P((ses_softc_t *, int));
74 int (*init_enc) __P((ses_softc_t *));
75 int (*get_encstat) __P((ses_softc_t *, int));
76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80
81 #define ENCI_SVALID 0x80
82
83 typedef struct {
84 uint32_t
85 enctype : 8, /* enclosure type */
86 subenclosure : 8, /* subenclosure id */
87 svalid : 1, /* enclosure information valid */
88 priv : 15; /* private data, per object */
89 uint8_t encstat[4]; /* state && stats */
90 } encobj;
91
92 #define SEN_ID "UNISYS SUN_SEN"
93 #define SEN_ID_LEN 24
94
95 static enctyp ses_type __P((void *, int));
96
97
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112
113 /*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117 #define STRNCMP strncmp
118 #define PRINTF printf
119 #define SES_LOG ses_log
120 #if defined(DEBUG) || defined(SCSIDEBUG)
121 #define SES_VLOG ses_log
122 #else
123 #define SES_VLOG if (0) ses_log
124 #endif
125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
127 #define MEMZERO bzero
128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
129 #define RECEIVE_DIAGNOSTIC 0x1c
130 #define SEND_DIAGNOSTIC 0x1d
131 #define WRITE_BUFFER 0x3b
132 #define READ_BUFFER 0x3c
133
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...));
140
141 /*
142 * General NetBSD kernel stuff.
143 */
144
145 struct ses_softc {
146 struct device sc_device;
147 struct scsipi_link *sc_link;
148 enctyp ses_type; /* type of enclosure */
149 encvec ses_vec; /* vector to handlers */
150 void * ses_private; /* per-type private data */
151 encobj * ses_objmap; /* objects */
152 u_int32_t ses_nobjects; /* number of objects */
153 ses_encstat ses_encstat; /* overall status */
154 u_int8_t ses_flags;
155 };
156 #define SES_FLAG_INVALID 0x01
157 #define SES_FLAG_OPEN 0x02
158 #define SES_FLAG_INITIALIZED 0x04
159
160 #define SESUNIT(x) (minor((x)))
161
162 static int ses_match __P((struct device *, struct cfdata *, void *));
163 static void ses_attach __P((struct device *, struct device *, void *));
164 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
165
166 struct cfattach ses_ca = {
167 sizeof (struct ses_softc), ses_match, ses_attach
168 };
169 extern struct cfdriver ses_cd;
170
171 struct scsipi_device ses_switch = {
172 NULL,
173 NULL,
174 NULL,
175 NULL
176 };
177
178
179 int
180 ses_match(parent, match, aux)
181 struct device *parent;
182 struct cfdata *match;
183 void *aux;
184 {
185 struct scsipibus_attach_args *sa = aux;
186
187 switch (ses_device_type(sa)) {
188 case SES_SES:
189 case SES_SES_SCSI2:
190 case SES_SEN:
191 case SES_SAFT:
192 case SES_SES_PASSTHROUGH:
193 /*
194 * For these devices, it's a perfect match.
195 */
196 return (24);
197 default:
198 return (0);
199 }
200 }
201
202
203 /*
204 * Complete the attachment.
205 *
206 * We have to repeat the rerun of INQUIRY data as above because
207 * it's not until the return from the match routine that we have
208 * the softc available to set stuff in.
209 */
210 void
211 ses_attach(parent, self, aux)
212 struct device *parent;
213 struct device *self;
214 void *aux;
215 {
216 char *tname;
217 struct ses_softc *softc = (void *)self;
218 struct scsipibus_attach_args *sa = aux;
219 struct scsipi_link *sc_link = sa->sa_sc_link;
220
221 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
222 softc->sc_link = sa->sa_sc_link;
223 sc_link->device = &ses_switch;
224 sc_link->device_softc = softc;
225 sc_link->openings = 1;
226
227 softc->ses_type = ses_device_type(sa);
228 switch (softc->ses_type) {
229 case SES_SES:
230 case SES_SES_SCSI2:
231 case SES_SES_PASSTHROUGH:
232 softc->ses_vec.softc_init = ses_softc_init;
233 softc->ses_vec.init_enc = ses_init_enc;
234 softc->ses_vec.get_encstat = ses_get_encstat;
235 softc->ses_vec.set_encstat = ses_set_encstat;
236 softc->ses_vec.get_objstat = ses_get_objstat;
237 softc->ses_vec.set_objstat = ses_set_objstat;
238 break;
239 case SES_SAFT:
240 softc->ses_vec.softc_init = safte_softc_init;
241 softc->ses_vec.init_enc = safte_init_enc;
242 softc->ses_vec.get_encstat = safte_get_encstat;
243 softc->ses_vec.set_encstat = safte_set_encstat;
244 softc->ses_vec.get_objstat = safte_get_objstat;
245 softc->ses_vec.set_objstat = safte_set_objstat;
246 break;
247 case SES_SEN:
248 break;
249 case SES_NONE:
250 default:
251 break;
252 }
253
254 switch (softc->ses_type) {
255 default:
256 case SES_NONE:
257 tname = "No SES device";
258 break;
259 case SES_SES_SCSI2:
260 tname = "SCSI-2 SES Device";
261 break;
262 case SES_SES:
263 tname = "SCSI-3 SES Device";
264 break;
265 case SES_SES_PASSTHROUGH:
266 tname = "SES Passthrough Device";
267 break;
268 case SES_SEN:
269 tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 break;
271 case SES_SAFT:
272 tname = "SAF-TE Compliant Device";
273 break;
274 }
275 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277
278
279 #define NETBSD_SAFTE_END 50
280
281 static enctyp
282 ses_device_type(sa)
283 struct scsipibus_attach_args *sa;
284 {
285 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
286 int length;
287
288 if (inqp == NULL)
289 return (SES_NONE);
290
291 /*
292 * If we can get longer data to check for the
293 * presence of a SAF-TE device, try and do so.
294 *
295 * Because we do deferred target attach in NetBSD,
296 * we don't have to run this as a polled command.
297 */
298
299 if (inqp->additional_length >= NETBSD_SAFTE_END-4) {
300 size_t amt = inqp->additional_length + 4;
301 struct scsipi_generic cmd;
302 static u_char more[64];
303
304 bzero(&cmd, sizeof(cmd));
305 cmd.opcode = INQUIRY;
306 cmd.bytes[3] = amt;
307 if (scsipi_command(sa->sa_sc_link, &cmd, 6, more, amt,
308 SCSIPIRETRIES, 10000, NULL,
309 XS_CTL_DATA_IN | XS_CTL_DISCOVERY) == 0) {
310 length = amt;
311 inqp = (struct scsipi_inquiry_data *) more;
312 }
313 } else {
314 length = sizeof (struct scsipi_inquiry_data);
315 }
316 return (ses_type(inqp, length));
317 }
318
319 int
320 sesopen(dev, flags, fmt, p)
321 dev_t dev;
322 int flags;
323 int fmt;
324 struct proc *p;
325 {
326 struct ses_softc *softc;
327 int error, unit;
328
329 unit = SESUNIT(dev);
330 if (unit >= ses_cd.cd_ndevs)
331 return (ENXIO);
332 softc = ses_cd.cd_devs[unit];
333 if (softc == NULL)
334 return (ENXIO);
335
336 if (softc->ses_flags & SES_FLAG_INVALID) {
337 error = ENXIO;
338 goto out;
339 }
340 if (softc->ses_flags & SES_FLAG_OPEN) {
341 error = EBUSY;
342 goto out;
343 }
344 if (softc->ses_vec.softc_init == NULL) {
345 error = ENXIO;
346 goto out;
347 }
348 error = scsipi_adapter_addref(softc->sc_link);
349 if (error != 0)
350 goto out;
351
352
353 softc->ses_flags |= SES_FLAG_OPEN;
354 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
355 error = (*softc->ses_vec.softc_init)(softc, 1);
356 if (error)
357 softc->ses_flags &= ~SES_FLAG_OPEN;
358 else
359 softc->ses_flags |= SES_FLAG_INITIALIZED;
360 }
361
362 out:
363 return (error);
364 }
365
366 int
367 sesclose(dev, flags, fmt, p)
368 dev_t dev;
369 int flags;
370 int fmt;
371 struct proc *p;
372 {
373 struct ses_softc *softc;
374 int unit;
375
376 unit = SESUNIT(dev);
377 if (unit >= ses_cd.cd_ndevs)
378 return (ENXIO);
379 softc = ses_cd.cd_devs[unit];
380 if (softc == NULL)
381 return (ENXIO);
382
383 scsipi_wait_drain(softc->sc_link);
384 scsipi_adapter_delref(softc->sc_link);
385 softc->ses_flags &= ~SES_FLAG_OPEN;
386 return (0);
387 }
388
389 int
390 sesioctl(dev, cmd, arg_addr, flag, p)
391 dev_t dev;
392 u_long cmd;
393 caddr_t arg_addr;
394 int flag;
395 struct proc *p;
396 {
397 ses_encstat tmp;
398 ses_objstat objs;
399 ses_object obj, *uobj;
400 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
401 void *addr;
402 int error, i;
403
404
405 if (arg_addr)
406 addr = *((caddr_t *) arg_addr);
407 else
408 addr = NULL;
409
410 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
411
412 /*
413 * Now check to see whether we're initialized or not.
414 */
415 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
416 return (ENODEV);
417 }
418
419 error = 0;
420
421 /*
422 * If this command can change the device's state,
423 * we must have the device open for writing.
424 */
425 switch (cmd) {
426 case SESIOC_GETNOBJ:
427 case SESIOC_GETOBJMAP:
428 case SESIOC_GETENCSTAT:
429 case SESIOC_GETOBJSTAT:
430 break;
431 default:
432 if ((flag & FWRITE) == 0) {
433 return (EBADF);
434 }
435 }
436
437 switch (cmd) {
438 case SESIOC_GETNOBJ:
439 error = copyout(&ssc->ses_nobjects, addr,
440 sizeof (ssc->ses_nobjects));
441 break;
442
443 case SESIOC_GETOBJMAP:
444 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
445 obj.obj_id = i;
446 obj.subencid = ssc->ses_objmap[i].subenclosure;
447 obj.object_type = ssc->ses_objmap[i].enctype;
448 error = copyout(&obj, uobj, sizeof (ses_object));
449 if (error) {
450 break;
451 }
452 }
453 break;
454
455 case SESIOC_GETENCSTAT:
456 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
457 if (error)
458 break;
459 tmp = ssc->ses_encstat & ~ENCI_SVALID;
460 error = copyout(&tmp, addr, sizeof (ses_encstat));
461 ssc->ses_encstat = tmp;
462 break;
463
464 case SESIOC_SETENCSTAT:
465 error = copyin(addr, &tmp, sizeof (ses_encstat));
466 if (error)
467 break;
468 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
469 break;
470
471 case SESIOC_GETOBJSTAT:
472 error = copyin(addr, &objs, sizeof (ses_objstat));
473 if (error)
474 break;
475 if (objs.obj_id >= ssc->ses_nobjects) {
476 error = EINVAL;
477 break;
478 }
479 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
480 if (error)
481 break;
482 error = copyout(&objs, addr, sizeof (ses_objstat));
483 /*
484 * Always (for now) invalidate entry.
485 */
486 ssc->ses_objmap[objs.obj_id].svalid = 0;
487 break;
488
489 case SESIOC_SETOBJSTAT:
490 error = copyin(addr, &objs, sizeof (ses_objstat));
491 if (error)
492 break;
493
494 if (objs.obj_id >= ssc->ses_nobjects) {
495 error = EINVAL;
496 break;
497 }
498 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
499
500 /*
501 * Always (for now) invalidate entry.
502 */
503 ssc->ses_objmap[objs.obj_id].svalid = 0;
504 break;
505
506 case SESIOC_INIT:
507
508 error = (*ssc->ses_vec.init_enc)(ssc);
509 break;
510
511 default:
512 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
513 break;
514 }
515 return (error);
516 }
517
518 static int
519 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
520 {
521 struct scsipi_generic sgen;
522 int dl, flg, error;
523
524 if (dptr) {
525 if ((dl = *dlenp) < 0) {
526 dl = -dl;
527 flg = XS_CTL_DATA_OUT;
528 } else {
529 flg = XS_CTL_DATA_IN;
530 }
531 } else {
532 dl = 0;
533 flg = 0;
534 }
535
536 if (cdbl > sizeof (struct scsipi_generic)) {
537 cdbl = sizeof (struct scsipi_generic);
538 }
539 bcopy(cdb, &sgen, cdbl);
540 #ifndef SCSIDEBUG
541 flg |= XS_CTL_SILENT;
542 #endif
543
544 error = scsipi_command(ssc->sc_link, &sgen, cdbl,
545 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
546
547 if (error == 0 && dptr)
548 *dlenp = 0;
549
550 return (error);
551 }
552
553 #ifdef __STDC__
554 static void
555 ses_log(struct ses_softc *ssc, const char *fmt, ...)
556 {
557 va_list ap;
558
559 printf("%s: ", ssc->sc_device.dv_xname);
560 va_start(ap, fmt);
561 vprintf(fmt, ap);
562 va_end(ap);
563 }
564 #else
565 static void
566 ses_log(ssc, fmt, va_alist)
567 struct ses_softc *ssc;
568 char *fmt;
569 va_dcl
570 {
571 va_list ap;
572
573 printf("%s: ", ssc->sc_device.dv_xname);
574 va_start(ap, fmt);
575 vprintf(fmt, ap);
576 va_end(ap);
577 }
578 #endif
579
580 /*
581 * The code after this point runs on many platforms,
582 * so forgive the slightly awkward and nonconforming
583 * appearance.
584 */
585
586 /*
587 * Is this a device that supports enclosure services?
588 *
589 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
590 * an SES device. If it happens to be an old UNISYS SEN device, we can
591 * handle that too.
592 */
593
594 #define SAFTE_START 44
595 #define SAFTE_END 50
596 #define SAFTE_LEN SAFTE_END-SAFTE_START
597
598 static enctyp
599 ses_type(void *buf, int buflen)
600 {
601 unsigned char *iqd = buf;
602
603 if (buflen < 8+SEN_ID_LEN)
604 return (SES_NONE);
605
606 if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
607 if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
608 return (SES_SEN);
609 } else if ((iqd[2] & 0x7) > 2) {
610 return (SES_SES);
611 } else {
612 return (SES_SES_SCSI2);
613 }
614 return (SES_NONE);
615 }
616
617 #ifdef SES_ENABLE_PASSTHROUGH
618 if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
619 /*
620 * PassThrough Device.
621 */
622 return (SES_SES_PASSTHROUGH);
623 }
624 #endif
625
626 /*
627 * The comparison is short for a reason-
628 * some vendors were chopping it short.
629 */
630
631 if (buflen < SAFTE_END - 2) {
632 return (SES_NONE);
633 }
634
635 if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
636 return (SES_SAFT);
637 }
638 return (SES_NONE);
639 }
640
641 /*
642 * SES Native Type Device Support
643 */
644
645 /*
646 * SES Diagnostic Page Codes
647 */
648
649 typedef enum {
650 SesConfigPage = 0x1,
651 SesControlPage,
652 #define SesStatusPage SesControlPage
653 SesHelpTxt,
654 SesStringOut,
655 #define SesStringIn SesStringOut
656 SesThresholdOut,
657 #define SesThresholdIn SesThresholdOut
658 SesArrayControl,
659 #define SesArrayStatus SesArrayControl
660 SesElementDescriptor,
661 SesShortStatus
662 } SesDiagPageCodes;
663
664 /*
665 * minimal amounts
666 */
667
668 /*
669 * Minimum amount of data, starting from byte 0, to have
670 * the config header.
671 */
672 #define SES_CFGHDR_MINLEN 12
673
674 /*
675 * Minimum amount of data, starting from byte 0, to have
676 * the config header and one enclosure header.
677 */
678 #define SES_ENCHDR_MINLEN 48
679
680 /*
681 * Take this value, subtract it from VEnclen and you know
682 * the length of the vendor unique bytes.
683 */
684 #define SES_ENCHDR_VMIN 36
685
686 /*
687 * SES Data Structures
688 */
689
690 typedef struct {
691 uint32_t GenCode; /* Generation Code */
692 uint8_t Nsubenc; /* Number of Subenclosures */
693 } SesCfgHdr;
694
695 typedef struct {
696 uint8_t Subencid; /* SubEnclosure Identifier */
697 uint8_t Ntypes; /* # of supported types */
698 uint8_t VEnclen; /* Enclosure Descriptor Length */
699 } SesEncHdr;
700
701 typedef struct {
702 uint8_t encWWN[8]; /* XXX- Not Right Yet */
703 uint8_t encVid[8];
704 uint8_t encPid[16];
705 uint8_t encRev[4];
706 uint8_t encVen[1];
707 } SesEncDesc;
708
709 typedef struct {
710 uint8_t enc_type; /* type of element */
711 uint8_t enc_maxelt; /* maximum supported */
712 uint8_t enc_subenc; /* in SubEnc # N */
713 uint8_t enc_tlen; /* Type Descriptor Text Length */
714 } SesThdr;
715
716 typedef struct {
717 uint8_t comstatus;
718 uint8_t comstat[3];
719 } SesComStat;
720
721 struct typidx {
722 int ses_tidx;
723 int ses_oidx;
724 };
725
726 struct sscfg {
727 uint8_t ses_ntypes; /* total number of types supported */
728
729 /*
730 * We need to keep a type index as well as an
731 * object index for each object in an enclosure.
732 */
733 struct typidx *ses_typidx;
734
735 /*
736 * We also need to keep track of the number of elements
737 * per type of element. This is needed later so that we
738 * can find precisely in the returned status data the
739 * status for the Nth element of the Kth type.
740 */
741 uint8_t * ses_eltmap;
742 };
743
744
745 /*
746 * (de)canonicalization defines
747 */
748 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
749 #define sbit(x, bit) (((uint32_t)(x)) << bit)
750 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
751
752 #define sset16(outp, idx, sval) \
753 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
754 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
755
756
757 #define sset24(outp, idx, sval) \
758 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
759 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
760 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
761
762
763 #define sset32(outp, idx, sval) \
764 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
765 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
766 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
767 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
768
769 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
770 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
771 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
772 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
773
774 #define sget16(inp, idx, lval) \
775 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
776 (((uint8_t *)(inp))[idx+1]), idx += 2
777
778 #define gget16(inp, idx, lval) \
779 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
780 (((uint8_t *)(inp))[idx+1])
781
782 #define sget24(inp, idx, lval) \
783 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
784 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
785 (((uint8_t *)(inp))[idx+2]), idx += 3
786
787 #define gget24(inp, idx, lval) \
788 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
789 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
790 (((uint8_t *)(inp))[idx+2])
791
792 #define sget32(inp, idx, lval) \
793 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
794 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
795 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
796 (((uint8_t *)(inp))[idx+3]), idx += 4
797
798 #define gget32(inp, idx, lval) \
799 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
800 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
801 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
802 (((uint8_t *)(inp))[idx+3])
803
804 #define SCSZ 0x2000
805 #define CFLEN (256 + SES_ENCHDR_MINLEN)
806
807 /*
808 * Routines specific && private to SES only
809 */
810
811 static int ses_getconfig(ses_softc_t *);
812 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
813 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
814 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
815 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
816 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
817 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
818 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
819
820 static int
821 ses_softc_init(ses_softc_t *ssc, int doinit)
822 {
823 if (doinit == 0) {
824 struct sscfg *cc;
825 if (ssc->ses_nobjects) {
826 SES_FREE(ssc->ses_objmap,
827 ssc->ses_nobjects * sizeof (encobj));
828 ssc->ses_objmap = NULL;
829 }
830 if ((cc = ssc->ses_private) != NULL) {
831 if (cc->ses_eltmap && cc->ses_ntypes) {
832 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
833 cc->ses_eltmap = NULL;
834 cc->ses_ntypes = 0;
835 }
836 if (cc->ses_typidx && ssc->ses_nobjects) {
837 SES_FREE(cc->ses_typidx,
838 ssc->ses_nobjects * sizeof (struct typidx));
839 cc->ses_typidx = NULL;
840 }
841 SES_FREE(cc, sizeof (struct sscfg));
842 ssc->ses_private = NULL;
843 }
844 ssc->ses_nobjects = 0;
845 return (0);
846 }
847 if (ssc->ses_private == NULL) {
848 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
849 }
850 if (ssc->ses_private == NULL) {
851 return (ENOMEM);
852 }
853 ssc->ses_nobjects = 0;
854 ssc->ses_encstat = 0;
855 return (ses_getconfig(ssc));
856 }
857
858 static int
859 ses_init_enc(ses_softc_t *ssc)
860 {
861 return (0);
862 }
863
864 static int
865 ses_get_encstat(ses_softc_t *ssc, int slpflag)
866 {
867 SesComStat ComStat;
868 int status;
869
870 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
871 return (status);
872 }
873 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
874 return (0);
875 }
876
877 static int
878 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
879 {
880 SesComStat ComStat;
881 int status;
882
883 ComStat.comstatus = encstat & 0xf;
884 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
885 return (status);
886 }
887 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
888 return (0);
889 }
890
891 static int
892 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
893 {
894 int i = (int)obp->obj_id;
895
896 if (ssc->ses_objmap[i].svalid == 0) {
897 SesComStat ComStat;
898 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
899 if (err)
900 return (err);
901 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
902 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
903 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
904 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
905 ssc->ses_objmap[i].svalid = 1;
906 }
907 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
908 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
909 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
910 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
911 return (0);
912 }
913
914 static int
915 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
916 {
917 SesComStat ComStat;
918 int err;
919 /*
920 * If this is clear, we don't do diddly.
921 */
922 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
923 return (0);
924 }
925 ComStat.comstatus = obp->cstat[0];
926 ComStat.comstat[0] = obp->cstat[1];
927 ComStat.comstat[1] = obp->cstat[2];
928 ComStat.comstat[2] = obp->cstat[3];
929 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
930 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
931 return (err);
932 }
933
934 static int
935 ses_getconfig(ses_softc_t *ssc)
936 {
937 struct sscfg *cc;
938 SesCfgHdr cf;
939 SesEncHdr hd;
940 SesEncDesc *cdp;
941 SesThdr thdr;
942 int err, amt, i, nobj, ntype, maxima;
943 char storage[CFLEN], *sdata;
944 static char cdb[6] = {
945 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
946 };
947
948 cc = ssc->ses_private;
949 if (cc == NULL) {
950 return (ENXIO);
951 }
952
953 sdata = SES_MALLOC(SCSZ);
954 if (sdata == NULL)
955 return (ENOMEM);
956
957 amt = SCSZ;
958 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
959 if (err) {
960 SES_FREE(sdata, SCSZ);
961 return (err);
962 }
963 amt = SCSZ - amt;
964
965 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
966 SES_LOG(ssc, "Unable to parse SES Config Header\n");
967 SES_FREE(sdata, SCSZ);
968 return (EIO);
969 }
970 if (amt < SES_ENCHDR_MINLEN) {
971 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
972 SES_FREE(sdata, SCSZ);
973 return (EIO);
974 }
975
976 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
977
978 /*
979 * Now waltz through all the subenclosures toting up the
980 * number of types available in each. For this, we only
981 * really need the enclosure header. However, we get the
982 * enclosure descriptor for debug purposes, as well
983 * as self-consistency checking purposes.
984 */
985
986 maxima = cf.Nsubenc + 1;
987 cdp = (SesEncDesc *) storage;
988 for (ntype = i = 0; i < maxima; i++) {
989 MEMZERO((caddr_t)cdp, sizeof (*cdp));
990 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
991 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
992 SES_FREE(sdata, SCSZ);
993 return (EIO);
994 }
995 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
996 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
997
998 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
999 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
1000 SES_FREE(sdata, SCSZ);
1001 return (EIO);
1002 }
1003 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1004 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1005 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1006 cdp->encWWN[6], cdp->encWWN[7]);
1007 ntype += hd.Ntypes;
1008 }
1009
1010 /*
1011 * Now waltz through all the types that are available, getting
1012 * the type header so we can start adding up the number of
1013 * objects available.
1014 */
1015 for (nobj = i = 0; i < ntype; i++) {
1016 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1017 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1018 SES_FREE(sdata, SCSZ);
1019 return (EIO);
1020 }
1021 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1022 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1023 thdr.enc_subenc, thdr.enc_tlen);
1024 nobj += thdr.enc_maxelt;
1025 }
1026
1027
1028 /*
1029 * Now allocate the object array and type map.
1030 */
1031
1032 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1033 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1034 cc->ses_eltmap = SES_MALLOC(ntype);
1035
1036 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1037 cc->ses_eltmap == NULL) {
1038 if (ssc->ses_objmap) {
1039 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1040 ssc->ses_objmap = NULL;
1041 }
1042 if (cc->ses_typidx) {
1043 SES_FREE(cc->ses_typidx,
1044 (nobj * sizeof (struct typidx)));
1045 cc->ses_typidx = NULL;
1046 }
1047 if (cc->ses_eltmap) {
1048 SES_FREE(cc->ses_eltmap, ntype);
1049 cc->ses_eltmap = NULL;
1050 }
1051 SES_FREE(sdata, SCSZ);
1052 return (ENOMEM);
1053 }
1054 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1055 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1056 MEMZERO(cc->ses_eltmap, ntype);
1057 cc->ses_ntypes = (uint8_t) ntype;
1058 ssc->ses_nobjects = nobj;
1059
1060 /*
1061 * Now waltz through the # of types again to fill in the types
1062 * (and subenclosure ids) of the allocated objects.
1063 */
1064 nobj = 0;
1065 for (i = 0; i < ntype; i++) {
1066 int j;
1067 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1068 continue;
1069 }
1070 cc->ses_eltmap[i] = thdr.enc_maxelt;
1071 for (j = 0; j < thdr.enc_maxelt; j++) {
1072 cc->ses_typidx[nobj].ses_tidx = i;
1073 cc->ses_typidx[nobj].ses_oidx = j;
1074 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1075 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1076 }
1077 }
1078 SES_FREE(sdata, SCSZ);
1079 return (0);
1080 }
1081
1082 static int
1083 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1084 {
1085 struct sscfg *cc;
1086 int err, amt, bufsiz, tidx, oidx;
1087 char cdb[6], *sdata;
1088
1089 cc = ssc->ses_private;
1090 if (cc == NULL) {
1091 return (ENXIO);
1092 }
1093
1094 /*
1095 * If we're just getting overall enclosure status,
1096 * we only need 2 bytes of data storage.
1097 *
1098 * If we're getting anything else, we know how much
1099 * storage we need by noting that starting at offset
1100 * 8 in returned data, all object status bytes are 4
1101 * bytes long, and are stored in chunks of types(M)
1102 * and nth+1 instances of type M.
1103 */
1104 if (objid == -1) {
1105 bufsiz = 2;
1106 } else {
1107 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1108 }
1109 sdata = SES_MALLOC(bufsiz);
1110 if (sdata == NULL)
1111 return (ENOMEM);
1112
1113 cdb[0] = RECEIVE_DIAGNOSTIC;
1114 cdb[1] = 1;
1115 cdb[2] = SesStatusPage;
1116 cdb[3] = bufsiz >> 8;
1117 cdb[4] = bufsiz & 0xff;
1118 cdb[5] = 0;
1119 amt = bufsiz;
1120 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1121 if (err) {
1122 SES_FREE(sdata, bufsiz);
1123 return (err);
1124 }
1125 amt = bufsiz - amt;
1126
1127 if (objid == -1) {
1128 tidx = -1;
1129 oidx = -1;
1130 } else {
1131 tidx = cc->ses_typidx[objid].ses_tidx;
1132 oidx = cc->ses_typidx[objid].ses_oidx;
1133 }
1134 if (in) {
1135 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1136 err = ENODEV;
1137 }
1138 } else {
1139 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1140 err = ENODEV;
1141 } else {
1142 cdb[0] = SEND_DIAGNOSTIC;
1143 cdb[1] = 0x10;
1144 cdb[2] = 0;
1145 cdb[3] = bufsiz >> 8;
1146 cdb[4] = bufsiz & 0xff;
1147 cdb[5] = 0;
1148 amt = -bufsiz;
1149 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1150 }
1151 }
1152 SES_FREE(sdata, bufsiz);
1153 return (0);
1154 }
1155
1156
1157 /*
1158 * Routines to parse returned SES data structures.
1159 * Architecture and compiler independent.
1160 */
1161
1162 static int
1163 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1164 {
1165 if (buflen < SES_CFGHDR_MINLEN) {
1166 return (-1);
1167 }
1168 gget8(buffer, 1, cfp->Nsubenc);
1169 gget32(buffer, 4, cfp->GenCode);
1170 return (0);
1171 }
1172
1173 static int
1174 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1175 {
1176 int s, off = 8;
1177 for (s = 0; s < SubEncId; s++) {
1178 if (off + 3 > amt)
1179 return (-1);
1180 off += buffer[off+3] + 4;
1181 }
1182 if (off + 3 > amt) {
1183 return (-1);
1184 }
1185 gget8(buffer, off+1, chp->Subencid);
1186 gget8(buffer, off+2, chp->Ntypes);
1187 gget8(buffer, off+3, chp->VEnclen);
1188 return (0);
1189 }
1190
1191 static int
1192 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1193 {
1194 int s, e, enclen, off = 8;
1195 for (s = 0; s < SubEncId; s++) {
1196 if (off + 3 > amt)
1197 return (-1);
1198 off += buffer[off+3] + 4;
1199 }
1200 if (off + 3 > amt) {
1201 return (-1);
1202 }
1203 gget8(buffer, off+3, enclen);
1204 off += 4;
1205 if (off >= amt)
1206 return (-1);
1207
1208 e = off + enclen;
1209 if (e > amt) {
1210 e = amt;
1211 }
1212 MEMCPY(cdp, &buffer[off], e - off);
1213 return (0);
1214 }
1215
1216 static int
1217 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1218 {
1219 int s, off = 8;
1220
1221 if (amt < SES_CFGHDR_MINLEN) {
1222 return (-1);
1223 }
1224 for (s = 0; s < buffer[1]; s++) {
1225 if (off + 3 > amt)
1226 return (-1);
1227 off += buffer[off+3] + 4;
1228 }
1229 if (off + 3 > amt) {
1230 return (-1);
1231 }
1232 off += buffer[off+3] + 4 + (nth * 4);
1233 if (amt < (off + 4))
1234 return (-1);
1235
1236 gget8(buffer, off++, thp->enc_type);
1237 gget8(buffer, off++, thp->enc_maxelt);
1238 gget8(buffer, off++, thp->enc_subenc);
1239 gget8(buffer, off, thp->enc_tlen);
1240 return (0);
1241 }
1242
1243 /*
1244 * This function needs a little explanation.
1245 *
1246 * The arguments are:
1247 *
1248 *
1249 * char *b, int amt
1250 *
1251 * These describes the raw input SES status data and length.
1252 *
1253 * uint8_t *ep
1254 *
1255 * This is a map of the number of types for each element type
1256 * in the enclosure.
1257 *
1258 * int elt
1259 *
1260 * This is the element type being sought. If elt is -1,
1261 * then overall enclosure status is being sought.
1262 *
1263 * int elm
1264 *
1265 * This is the ordinal Mth element of type elt being sought.
1266 *
1267 * SesComStat *sp
1268 *
1269 * This is the output area to store the status for
1270 * the Mth element of type Elt.
1271 */
1272
1273 static int
1274 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1275 {
1276 int idx, i;
1277
1278 /*
1279 * If it's overall enclosure status being sought, get that.
1280 * We need at least 2 bytes of status data to get that.
1281 */
1282 if (elt == -1) {
1283 if (amt < 2)
1284 return (-1);
1285 gget8(b, 1, sp->comstatus);
1286 sp->comstat[0] = 0;
1287 sp->comstat[1] = 0;
1288 sp->comstat[2] = 0;
1289 return (0);
1290 }
1291
1292 /*
1293 * Check to make sure that the Mth element is legal for type Elt.
1294 */
1295
1296 if (elm >= ep[elt])
1297 return (-1);
1298
1299 /*
1300 * Starting at offset 8, start skipping over the storage
1301 * for the element types we're not interested in.
1302 */
1303 for (idx = 8, i = 0; i < elt; i++) {
1304 idx += ((ep[i] + 1) * 4);
1305 }
1306
1307 /*
1308 * Skip over Overall status for this element type.
1309 */
1310 idx += 4;
1311
1312 /*
1313 * And skip to the index for the Mth element that we're going for.
1314 */
1315 idx += (4 * elm);
1316
1317 /*
1318 * Make sure we haven't overflowed the buffer.
1319 */
1320 if (idx+4 > amt)
1321 return (-1);
1322
1323 /*
1324 * Retrieve the status.
1325 */
1326 gget8(b, idx++, sp->comstatus);
1327 gget8(b, idx++, sp->comstat[0]);
1328 gget8(b, idx++, sp->comstat[1]);
1329 gget8(b, idx++, sp->comstat[2]);
1330 #if 0
1331 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1332 #endif
1333 return (0);
1334 }
1335
1336 /*
1337 * This is the mirror function to ses_decode, but we set the 'select'
1338 * bit for the object which we're interested in. All other objects,
1339 * after a status fetch, should have that bit off. Hmm. It'd be easy
1340 * enough to ensure this, so we will.
1341 */
1342
1343 static int
1344 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1345 {
1346 int idx, i;
1347
1348 /*
1349 * If it's overall enclosure status being sought, get that.
1350 * We need at least 2 bytes of status data to get that.
1351 */
1352 if (elt == -1) {
1353 if (amt < 2)
1354 return (-1);
1355 i = 0;
1356 sset8(b, i, 0);
1357 sset8(b, i, sp->comstatus & 0xf);
1358 #if 0
1359 PRINTF("set EncStat %x\n", sp->comstatus);
1360 #endif
1361 return (0);
1362 }
1363
1364 /*
1365 * Check to make sure that the Mth element is legal for type Elt.
1366 */
1367
1368 if (elm >= ep[elt])
1369 return (-1);
1370
1371 /*
1372 * Starting at offset 8, start skipping over the storage
1373 * for the element types we're not interested in.
1374 */
1375 for (idx = 8, i = 0; i < elt; i++) {
1376 idx += ((ep[i] + 1) * 4);
1377 }
1378
1379 /*
1380 * Skip over Overall status for this element type.
1381 */
1382 idx += 4;
1383
1384 /*
1385 * And skip to the index for the Mth element that we're going for.
1386 */
1387 idx += (4 * elm);
1388
1389 /*
1390 * Make sure we haven't overflowed the buffer.
1391 */
1392 if (idx+4 > amt)
1393 return (-1);
1394
1395 /*
1396 * Set the status.
1397 */
1398 sset8(b, idx, sp->comstatus);
1399 sset8(b, idx, sp->comstat[0]);
1400 sset8(b, idx, sp->comstat[1]);
1401 sset8(b, idx, sp->comstat[2]);
1402 idx -= 4;
1403
1404 #if 0
1405 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1406 elt, elm, idx, sp->comstatus, sp->comstat[0],
1407 sp->comstat[1], sp->comstat[2]);
1408 #endif
1409
1410 /*
1411 * Now make sure all other 'Select' bits are off.
1412 */
1413 for (i = 8; i < amt; i += 4) {
1414 if (i != idx)
1415 b[i] &= ~0x80;
1416 }
1417 /*
1418 * And make sure the INVOP bit is clear.
1419 */
1420 b[2] &= ~0x10;
1421
1422 return (0);
1423 }
1424
1425 /*
1426 * SAF-TE Type Device Emulation
1427 */
1428
1429 static int safte_getconfig(ses_softc_t *);
1430 static int safte_rdstat(ses_softc_t *, int);;
1431 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1432 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1433 static void wrslot_stat(ses_softc_t *, int);
1434 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1435
1436 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1437 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1438 /*
1439 * SAF-TE specific defines- Mandatory ones only...
1440 */
1441
1442 /*
1443 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1444 */
1445 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1446 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1447 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1448
1449 /*
1450 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1451 */
1452 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1453 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1454 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1455 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1456 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1457
1458
1459 #define SAFT_SCRATCH 64
1460 #define NPSEUDO_THERM 16
1461 #define NPSEUDO_ALARM 1
1462 struct scfg {
1463 /*
1464 * Cached Configuration
1465 */
1466 uint8_t Nfans; /* Number of Fans */
1467 uint8_t Npwr; /* Number of Power Supplies */
1468 uint8_t Nslots; /* Number of Device Slots */
1469 uint8_t DoorLock; /* Door Lock Installed */
1470 uint8_t Ntherm; /* Number of Temperature Sensors */
1471 uint8_t Nspkrs; /* Number of Speakers */
1472 uint8_t Nalarm; /* Number of Alarms (at least one) */
1473 /*
1474 * Cached Flag Bytes for Global Status
1475 */
1476 uint8_t flag1;
1477 uint8_t flag2;
1478 /*
1479 * What object index ID is where various slots start.
1480 */
1481 uint8_t pwroff;
1482 uint8_t slotoff;
1483 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1484 };
1485
1486 #define SAFT_FLG1_ALARM 0x1
1487 #define SAFT_FLG1_GLOBFAIL 0x2
1488 #define SAFT_FLG1_GLOBWARN 0x4
1489 #define SAFT_FLG1_ENCPWROFF 0x8
1490 #define SAFT_FLG1_ENCFANFAIL 0x10
1491 #define SAFT_FLG1_ENCPWRFAIL 0x20
1492 #define SAFT_FLG1_ENCDRVFAIL 0x40
1493 #define SAFT_FLG1_ENCDRVWARN 0x80
1494
1495 #define SAFT_FLG2_LOCKDOOR 0x4
1496 #define SAFT_PRIVATE sizeof (struct scfg)
1497
1498 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1499 #define SAFT_BAIL(r, x, k, l) \
1500 if (r >= x) { \
1501 SES_LOG(ssc, safte_2little, x, __LINE__);\
1502 SES_FREE(k, l); \
1503 return (EIO); \
1504 }
1505
1506
1507 int
1508 safte_softc_init(ses_softc_t *ssc, int doinit)
1509 {
1510 int err, i, r;
1511 struct scfg *cc;
1512
1513 if (doinit == 0) {
1514 if (ssc->ses_nobjects) {
1515 if (ssc->ses_objmap) {
1516 SES_FREE(ssc->ses_objmap,
1517 ssc->ses_nobjects * sizeof (encobj));
1518 ssc->ses_objmap = NULL;
1519 }
1520 ssc->ses_nobjects = 0;
1521 }
1522 if (ssc->ses_private) {
1523 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1524 ssc->ses_private = NULL;
1525 }
1526 return (0);
1527 }
1528
1529 if (ssc->ses_private == NULL) {
1530 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1531 if (ssc->ses_private == NULL) {
1532 return (ENOMEM);
1533 }
1534 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1535 }
1536
1537 ssc->ses_nobjects = 0;
1538 ssc->ses_encstat = 0;
1539
1540 if ((err = safte_getconfig(ssc)) != 0) {
1541 return (err);
1542 }
1543
1544 /*
1545 * The number of objects here, as well as that reported by the
1546 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1547 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1548 */
1549 cc = ssc->ses_private;
1550 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1551 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1552 ssc->ses_objmap = (encobj *)
1553 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1554 if (ssc->ses_objmap == NULL) {
1555 return (ENOMEM);
1556 }
1557 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1558
1559 r = 0;
1560 /*
1561 * Note that this is all arranged for the convenience
1562 * in later fetches of status.
1563 */
1564 for (i = 0; i < cc->Nfans; i++)
1565 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1566 cc->pwroff = (uint8_t) r;
1567 for (i = 0; i < cc->Npwr; i++)
1568 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1569 for (i = 0; i < cc->DoorLock; i++)
1570 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1571 for (i = 0; i < cc->Nspkrs; i++)
1572 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1573 for (i = 0; i < cc->Ntherm; i++)
1574 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1575 for (i = 0; i < NPSEUDO_THERM; i++)
1576 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1577 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1578 cc->slotoff = (uint8_t) r;
1579 for (i = 0; i < cc->Nslots; i++)
1580 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1581 return (0);
1582 }
1583
1584 int
1585 safte_init_enc(ses_softc_t *ssc)
1586 {
1587 int err, amt;
1588 char *sdata;
1589 static char cdb0[10] = { SEND_DIAGNOSTIC };
1590 static char cdb[10] =
1591 { WRITE_BUFFER , 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1592
1593 sdata = SES_MALLOC(SAFT_SCRATCH);
1594 if (sdata == NULL)
1595 return (ENOMEM);
1596
1597 err = ses_runcmd(ssc, cdb0, 10, NULL, 0);
1598 if (err) {
1599 SES_FREE(sdata, SAFT_SCRATCH);
1600 return (err);
1601 }
1602 sdata[0] = SAFTE_WT_GLOBAL;
1603 MEMZERO(&sdata[1], SAFT_SCRATCH - 1);
1604 amt = -SAFT_SCRATCH;
1605 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1606 SES_FREE(sdata, SAFT_SCRATCH);
1607 return (err);
1608 }
1609
1610 int
1611 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1612 {
1613 return (safte_rdstat(ssc, slpflg));
1614 }
1615
1616 int
1617 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1618 {
1619 struct scfg *cc = ssc->ses_private;
1620 if (cc == NULL)
1621 return (0);
1622 /*
1623 * Since SAF-TE devices aren't necessarily sticky in terms
1624 * of state, make our soft copy of enclosure status 'sticky'-
1625 * that is, things set in enclosure status stay set (as implied
1626 * by conditions set in reading object status) until cleared.
1627 */
1628 ssc->ses_encstat &= ~ALL_ENC_STAT;
1629 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1630 ssc->ses_encstat |= ENCI_SVALID;
1631 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1632 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1633 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1634 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1635 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1636 }
1637 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1638 }
1639
1640 int
1641 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1642 {
1643 int i = (int)obp->obj_id;
1644
1645 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1646 (ssc->ses_objmap[i].svalid) == 0) {
1647 int err = safte_rdstat(ssc, slpflg);
1648 if (err)
1649 return (err);
1650 }
1651 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1652 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1653 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1654 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1655 return (0);
1656 }
1657
1658
1659 int
1660 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1661 {
1662 int idx, err;
1663 encobj *ep;
1664 struct scfg *cc;
1665
1666
1667 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1668 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1669 obp->cstat[3]);
1670
1671 /*
1672 * If this is clear, we don't do diddly.
1673 */
1674 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1675 return (0);
1676 }
1677
1678 err = 0;
1679 /*
1680 * Check to see if the common bits are set and do them first.
1681 */
1682 if (obp->cstat[0] & ~SESCTL_CSEL) {
1683 err = set_objstat_sel(ssc, obp, slp);
1684 if (err)
1685 return (err);
1686 }
1687
1688 cc = ssc->ses_private;
1689 if (cc == NULL)
1690 return (0);
1691
1692 idx = (int)obp->obj_id;
1693 ep = &ssc->ses_objmap[idx];
1694
1695 switch (ep->enctype) {
1696 case SESTYP_DEVICE:
1697 {
1698 uint8_t slotop = 0;
1699 /*
1700 * XXX: I should probably cache the previous state
1701 * XXX: of SESCTL_DEVOFF so that when it goes from
1702 * XXX: true to false I can then set PREPARE FOR OPERATION
1703 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1704 */
1705 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1706 slotop |= 0x2;
1707 }
1708 if (obp->cstat[2] & SESCTL_RQSID) {
1709 slotop |= 0x4;
1710 }
1711 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1712 slotop, slp);
1713 if (err)
1714 return (err);
1715 if (obp->cstat[3] & SESCTL_RQSFLT) {
1716 ep->priv |= 0x2;
1717 } else {
1718 ep->priv &= ~0x2;
1719 }
1720 if (ep->priv & 0xc6) {
1721 ep->priv &= ~0x1;
1722 } else {
1723 ep->priv |= 0x1; /* no errors */
1724 }
1725 wrslot_stat(ssc, slp);
1726 break;
1727 }
1728 case SESTYP_POWER:
1729 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1730 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1731 } else {
1732 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1733 }
1734 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1735 cc->flag2, 0, slp);
1736 if (err)
1737 return (err);
1738 if (obp->cstat[3] & SESCTL_RQSTON) {
1739 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1740 idx - cc->pwroff, 0, 0, slp);
1741 } else {
1742 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1743 idx - cc->pwroff, 0, 1, slp);
1744 }
1745 break;
1746 case SESTYP_FAN:
1747 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1748 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1749 } else {
1750 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1751 }
1752 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1753 cc->flag2, 0, slp);
1754 if (err)
1755 return (err);
1756 if (obp->cstat[3] & SESCTL_RQSTON) {
1757 uint8_t fsp;
1758 if ((obp->cstat[3] & 0x7) == 7) {
1759 fsp = 4;
1760 } else if ((obp->cstat[3] & 0x7) == 6) {
1761 fsp = 3;
1762 } else if ((obp->cstat[3] & 0x7) == 4) {
1763 fsp = 2;
1764 } else {
1765 fsp = 1;
1766 }
1767 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1768 } else {
1769 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1770 }
1771 break;
1772 case SESTYP_DOORLOCK:
1773 if (obp->cstat[3] & 0x1) {
1774 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1775 } else {
1776 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1777 }
1778 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1779 cc->flag2, 0, slp);
1780 break;
1781 case SESTYP_ALARM:
1782 /*
1783 * On all nonzero but the 'muted' bit, we turn on the alarm,
1784 */
1785 obp->cstat[3] &= ~0xa;
1786 if (obp->cstat[3] & 0x40) {
1787 cc->flag2 &= ~SAFT_FLG1_ALARM;
1788 } else if (obp->cstat[3] != 0) {
1789 cc->flag2 |= SAFT_FLG1_ALARM;
1790 } else {
1791 cc->flag2 &= ~SAFT_FLG1_ALARM;
1792 }
1793 ep->priv = obp->cstat[3];
1794 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1795 cc->flag2, 0, slp);
1796 break;
1797 default:
1798 break;
1799 }
1800 ep->svalid = 0;
1801 return (0);
1802 }
1803
1804 static int
1805 safte_getconfig(ses_softc_t *ssc)
1806 {
1807 struct scfg *cfg;
1808 int err, amt;
1809 char *sdata;
1810 static char cdb[10] =
1811 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1812
1813 cfg = ssc->ses_private;
1814 if (cfg == NULL)
1815 return (ENXIO);
1816
1817 sdata = SES_MALLOC(SAFT_SCRATCH);
1818 if (sdata == NULL)
1819 return (ENOMEM);
1820
1821 amt = SAFT_SCRATCH;
1822 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1823 if (err) {
1824 SES_FREE(sdata, SAFT_SCRATCH);
1825 return (err);
1826 }
1827 amt = SAFT_SCRATCH - amt;
1828 if (amt < 6) {
1829 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1830 SES_FREE(sdata, SAFT_SCRATCH);
1831 return (EIO);
1832 }
1833 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1834 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1835 cfg->Nfans = sdata[0];
1836 cfg->Npwr = sdata[1];
1837 cfg->Nslots = sdata[2];
1838 cfg->DoorLock = sdata[3];
1839 cfg->Ntherm = sdata[4];
1840 cfg->Nspkrs = sdata[5];
1841 cfg->Nalarm = NPSEUDO_ALARM;
1842 SES_FREE(sdata, SAFT_SCRATCH);
1843 return (0);
1844 }
1845
1846 static int
1847 safte_rdstat(ses_softc_t *ssc, int slpflg)
1848 {
1849 int err, oid, r, i, hiwater, nitems, amt;
1850 uint16_t tempflags;
1851 size_t buflen;
1852 uint8_t status, oencstat;
1853 char *sdata, cdb[10];
1854 struct scfg *cc = ssc->ses_private;
1855
1856
1857 /*
1858 * The number of objects overstates things a bit,
1859 * both for the bogus 'thermometer' entries and
1860 * the drive status (which isn't read at the same
1861 * time as the enclosure status), but that's okay.
1862 */
1863 buflen = 4 * cc->Nslots;
1864 if (ssc->ses_nobjects > buflen)
1865 buflen = ssc->ses_nobjects;
1866 sdata = SES_MALLOC(buflen);
1867 if (sdata == NULL)
1868 return (ENOMEM);
1869
1870 cdb[0] = READ_BUFFER;
1871 cdb[1] = 1;
1872 cdb[2] = SAFTE_RD_RDESTS;
1873 cdb[3] = 0;
1874 cdb[4] = 0;
1875 cdb[5] = 0;
1876 cdb[6] = 0;
1877 cdb[7] = (buflen >> 8) & 0xff;
1878 cdb[8] = buflen & 0xff;
1879 cdb[9] = 0;
1880 amt = buflen;
1881 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1882 if (err) {
1883 SES_FREE(sdata, buflen);
1884 return (err);
1885 }
1886 hiwater = buflen - amt;
1887
1888
1889 /*
1890 * invalidate all status bits.
1891 */
1892 for (i = 0; i < ssc->ses_nobjects; i++)
1893 ssc->ses_objmap[i].svalid = 0;
1894 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1895 ssc->ses_encstat = 0;
1896
1897
1898 /*
1899 * Now parse returned buffer.
1900 * If we didn't get enough data back,
1901 * that's considered a fatal error.
1902 */
1903 oid = r = 0;
1904
1905 for (nitems = i = 0; i < cc->Nfans; i++) {
1906 SAFT_BAIL(r, hiwater, sdata, buflen);
1907 /*
1908 * 0 = Fan Operational
1909 * 1 = Fan is malfunctioning
1910 * 2 = Fan is not present
1911 * 0x80 = Unknown or Not Reportable Status
1912 */
1913 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1914 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1915 switch ((int)(uint8_t)sdata[r]) {
1916 case 0:
1917 nitems++;
1918 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1919 /*
1920 * We could get fancier and cache
1921 * fan speeds that we have set, but
1922 * that isn't done now.
1923 */
1924 ssc->ses_objmap[oid].encstat[3] = 7;
1925 break;
1926
1927 case 1:
1928 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1929 /*
1930 * FAIL and FAN STOPPED synthesized
1931 */
1932 ssc->ses_objmap[oid].encstat[3] = 0x40;
1933 /*
1934 * Enclosure marked with CRITICAL error
1935 * if only one fan or no thermometers,
1936 * else the NONCRITICAL error is set.
1937 */
1938 if (cc->Nfans == 1 || cc->Ntherm == 0)
1939 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1940 else
1941 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1942 break;
1943 case 2:
1944 ssc->ses_objmap[oid].encstat[0] =
1945 SES_OBJSTAT_NOTINSTALLED;
1946 ssc->ses_objmap[oid].encstat[3] = 0;
1947 /*
1948 * Enclosure marked with CRITICAL error
1949 * if only one fan or no thermometers,
1950 * else the NONCRITICAL error is set.
1951 */
1952 if (cc->Nfans == 1)
1953 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1954 else
1955 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1956 break;
1957 case 0x80:
1958 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1959 ssc->ses_objmap[oid].encstat[3] = 0;
1960 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1961 break;
1962 default:
1963 ssc->ses_objmap[oid].encstat[0] =
1964 SES_OBJSTAT_UNSUPPORTED;
1965 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1966 sdata[r] & 0xff);
1967 break;
1968 }
1969 ssc->ses_objmap[oid++].svalid = 1;
1970 r++;
1971 }
1972
1973 /*
1974 * No matter how you cut it, no cooling elements when there
1975 * should be some there is critical.
1976 */
1977 if (cc->Nfans && nitems == 0) {
1978 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1979 }
1980
1981
1982 for (i = 0; i < cc->Npwr; i++) {
1983 SAFT_BAIL(r, hiwater, sdata, buflen);
1984 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1985 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1986 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1987 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1988 switch ((uint8_t)sdata[r]) {
1989 case 0x00: /* pws operational and on */
1990 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1991 break;
1992 case 0x01: /* pws operational and off */
1993 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1994 ssc->ses_objmap[oid].encstat[3] = 0x10;
1995 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1996 break;
1997 case 0x10: /* pws is malfunctioning and commanded on */
1998 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1999 ssc->ses_objmap[oid].encstat[3] = 0x61;
2000 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2001 break;
2002
2003 case 0x11: /* pws is malfunctioning and commanded off */
2004 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2005 ssc->ses_objmap[oid].encstat[3] = 0x51;
2006 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2007 break;
2008 case 0x20: /* pws is not present */
2009 ssc->ses_objmap[oid].encstat[0] =
2010 SES_OBJSTAT_NOTINSTALLED;
2011 ssc->ses_objmap[oid].encstat[3] = 0;
2012 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2013 break;
2014 case 0x21: /* pws is present */
2015 /*
2016 * This is for enclosures that cannot tell whether the
2017 * device is on or malfunctioning, but know that it is
2018 * present. Just fall through.
2019 */
2020 /* FALLTHROUGH */
2021 case 0x80: /* Unknown or Not Reportable Status */
2022 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2023 ssc->ses_objmap[oid].encstat[3] = 0;
2024 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2025 break;
2026 default:
2027 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2028 i, sdata[r] & 0xff);
2029 break;
2030 }
2031 ssc->ses_objmap[oid++].svalid = 1;
2032 r++;
2033 }
2034
2035 /*
2036 * Skip over Slot SCSI IDs
2037 */
2038 r += cc->Nslots;
2039
2040 /*
2041 * We always have doorlock status, no matter what,
2042 * but we only save the status if we have one.
2043 */
2044 SAFT_BAIL(r, hiwater, sdata, buflen);
2045 if (cc->DoorLock) {
2046 /*
2047 * 0 = Door Locked
2048 * 1 = Door Unlocked, or no Lock Installed
2049 * 0x80 = Unknown or Not Reportable Status
2050 */
2051 ssc->ses_objmap[oid].encstat[1] = 0;
2052 ssc->ses_objmap[oid].encstat[2] = 0;
2053 switch ((uint8_t)sdata[r]) {
2054 case 0:
2055 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2056 ssc->ses_objmap[oid].encstat[3] = 0;
2057 break;
2058 case 1:
2059 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2060 ssc->ses_objmap[oid].encstat[3] = 1;
2061 break;
2062 case 0x80:
2063 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2064 ssc->ses_objmap[oid].encstat[3] = 0;
2065 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2066 break;
2067 default:
2068 ssc->ses_objmap[oid].encstat[0] =
2069 SES_OBJSTAT_UNSUPPORTED;
2070 SES_LOG(ssc, "unknown lock status 0x%x\n",
2071 sdata[r] & 0xff);
2072 break;
2073 }
2074 ssc->ses_objmap[oid++].svalid = 1;
2075 }
2076 r++;
2077
2078 /*
2079 * We always have speaker status, no matter what,
2080 * but we only save the status if we have one.
2081 */
2082 SAFT_BAIL(r, hiwater, sdata, buflen);
2083 if (cc->Nspkrs) {
2084 ssc->ses_objmap[oid].encstat[1] = 0;
2085 ssc->ses_objmap[oid].encstat[2] = 0;
2086 if (sdata[r] == 1) {
2087 /*
2088 * We need to cache tone urgency indicators.
2089 * Someday.
2090 */
2091 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2092 ssc->ses_objmap[oid].encstat[3] = 0x8;
2093 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2094 } else if (sdata[r] == 0) {
2095 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2096 ssc->ses_objmap[oid].encstat[3] = 0;
2097 } else {
2098 ssc->ses_objmap[oid].encstat[0] =
2099 SES_OBJSTAT_UNSUPPORTED;
2100 ssc->ses_objmap[oid].encstat[3] = 0;
2101 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2102 sdata[r] & 0xff);
2103 }
2104 ssc->ses_objmap[oid++].svalid = 1;
2105 }
2106 r++;
2107
2108 for (i = 0; i < cc->Ntherm; i++) {
2109 SAFT_BAIL(r, hiwater, sdata, buflen);
2110 /*
2111 * Status is a range from -10 to 245 deg Celsius,
2112 * which we need to normalize to -20 to -245 according
2113 * to the latest SCSI spec, which makes little
2114 * sense since this would overflow an 8bit value.
2115 * Well, still, the base normalization is -20,
2116 * not -10, so we have to adjust.
2117 *
2118 * So what's over and under temperature?
2119 * Hmm- we'll state that 'normal' operating
2120 * is 10 to 40 deg Celsius.
2121 */
2122 ssc->ses_objmap[oid].encstat[1] = 0;
2123 ssc->ses_objmap[oid].encstat[2] =
2124 ((unsigned int) sdata[r]) - 10;
2125 if (sdata[r] < 20) {
2126 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2127 /*
2128 * Set 'under temperature' failure.
2129 */
2130 ssc->ses_objmap[oid].encstat[3] = 2;
2131 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2132 } else if (sdata[r] > 30) {
2133 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2134 /*
2135 * Set 'over temperature' failure.
2136 */
2137 ssc->ses_objmap[oid].encstat[3] = 8;
2138 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2139 } else {
2140 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2141 }
2142 ssc->ses_objmap[oid++].svalid = 1;
2143 r++;
2144 }
2145
2146 /*
2147 * Now, for "pseudo" thermometers, we have two bytes
2148 * of information in enclosure status- 16 bits. Actually,
2149 * the MSB is a single TEMP ALERT flag indicating whether
2150 * any other bits are set, but, thanks to fuzzy thinking,
2151 * in the SAF-TE spec, this can also be set even if no
2152 * other bits are set, thus making this really another
2153 * binary temperature sensor.
2154 */
2155
2156 SAFT_BAIL(r, hiwater, sdata, buflen);
2157 tempflags = sdata[r++];
2158 SAFT_BAIL(r, hiwater, sdata, buflen);
2159 tempflags |= (tempflags << 8) | sdata[r++];
2160
2161 for (i = 0; i < NPSEUDO_THERM; i++) {
2162 ssc->ses_objmap[oid].encstat[1] = 0;
2163 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2164 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2165 ssc->ses_objmap[4].encstat[2] = 0xff;
2166 /*
2167 * Set 'over temperature' failure.
2168 */
2169 ssc->ses_objmap[oid].encstat[3] = 8;
2170 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2171 } else {
2172 /*
2173 * We used to say 'not available' and synthesize a
2174 * nominal 30 deg (C)- that was wrong. Actually,
2175 * Just say 'OK', and use the reserved value of
2176 * zero.
2177 */
2178 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2179 ssc->ses_objmap[oid].encstat[2] = 0;
2180 ssc->ses_objmap[oid].encstat[3] = 0;
2181 }
2182 ssc->ses_objmap[oid++].svalid = 1;
2183 }
2184
2185 /*
2186 * Get alarm status.
2187 */
2188 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2189 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2190 ssc->ses_objmap[oid++].svalid = 1;
2191
2192 /*
2193 * Now get drive slot status
2194 */
2195 cdb[2] = SAFTE_RD_RDDSTS;
2196 amt = buflen;
2197 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2198 if (err) {
2199 SES_FREE(sdata, buflen);
2200 return (err);
2201 }
2202 hiwater = buflen - amt;
2203 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2204 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2205 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2206 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2207 ssc->ses_objmap[oid].encstat[2] = 0;
2208 ssc->ses_objmap[oid].encstat[3] = 0;
2209 status = sdata[r+3];
2210 if ((status & 0x1) == 0) { /* no device */
2211 ssc->ses_objmap[oid].encstat[0] =
2212 SES_OBJSTAT_NOTINSTALLED;
2213 } else {
2214 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2215 }
2216 if (status & 0x2) {
2217 ssc->ses_objmap[oid].encstat[2] = 0x8;
2218 }
2219 if ((status & 0x4) == 0) {
2220 ssc->ses_objmap[oid].encstat[3] = 0x10;
2221 }
2222 ssc->ses_objmap[oid++].svalid = 1;
2223 }
2224 /* see comment below about sticky enclosure status */
2225 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2226 SES_FREE(sdata, buflen);
2227 return (0);
2228 }
2229
2230 static int
2231 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2232 {
2233 int idx;
2234 encobj *ep;
2235 struct scfg *cc = ssc->ses_private;
2236
2237 if (cc == NULL)
2238 return (0);
2239
2240 idx = (int)obp->obj_id;
2241 ep = &ssc->ses_objmap[idx];
2242
2243 switch (ep->enctype) {
2244 case SESTYP_DEVICE:
2245 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2246 ep->priv |= 0x40;
2247 }
2248 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2249 if (obp->cstat[0] & SESCTL_DISABLE) {
2250 ep->priv |= 0x80;
2251 /*
2252 * Hmm. Try to set the 'No Drive' flag.
2253 * Maybe that will count as a 'disable'.
2254 */
2255 }
2256 if (ep->priv & 0xc6) {
2257 ep->priv &= ~0x1;
2258 } else {
2259 ep->priv |= 0x1; /* no errors */
2260 }
2261 wrslot_stat(ssc, slp);
2262 break;
2263 case SESTYP_POWER:
2264 /*
2265 * Okay- the only one that makes sense here is to
2266 * do the 'disable' for a power supply.
2267 */
2268 if (obp->cstat[0] & SESCTL_DISABLE) {
2269 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2270 idx - cc->pwroff, 0, 0, slp);
2271 }
2272 break;
2273 case SESTYP_FAN:
2274 /*
2275 * Okay- the only one that makes sense here is to
2276 * set fan speed to zero on disable.
2277 */
2278 if (obp->cstat[0] & SESCTL_DISABLE) {
2279 /* remember- fans are the first items, so idx works */
2280 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2281 }
2282 break;
2283 case SESTYP_DOORLOCK:
2284 /*
2285 * Well, we can 'disable' the lock.
2286 */
2287 if (obp->cstat[0] & SESCTL_DISABLE) {
2288 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2289 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2290 cc->flag2, 0, slp);
2291 }
2292 break;
2293 case SESTYP_ALARM:
2294 /*
2295 * Well, we can 'disable' the alarm.
2296 */
2297 if (obp->cstat[0] & SESCTL_DISABLE) {
2298 cc->flag2 &= ~SAFT_FLG1_ALARM;
2299 ep->priv |= 0x40; /* Muted */
2300 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2301 cc->flag2, 0, slp);
2302 }
2303 break;
2304 default:
2305 break;
2306 }
2307 ep->svalid = 0;
2308 return (0);
2309 }
2310
2311 /*
2312 * This function handles all of the 16 byte WRITE BUFFER commands.
2313 */
2314 static int
2315 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2316 uint8_t b3, int slp)
2317 {
2318 int err, amt;
2319 char *sdata;
2320 struct scfg *cc = ssc->ses_private;
2321 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2322
2323 if (cc == NULL)
2324 return (0);
2325
2326 sdata = SES_MALLOC(16);
2327 if (sdata == NULL)
2328 return (ENOMEM);
2329
2330 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2331
2332 sdata[0] = op;
2333 sdata[1] = b1;
2334 sdata[2] = b2;
2335 sdata[3] = b3;
2336 MEMZERO(&sdata[4], 12);
2337 amt = -16;
2338 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2339 SES_FREE(sdata, 16);
2340 return (err);
2341 }
2342
2343 /*
2344 * This function updates the status byte for the device slot described.
2345 *
2346 * Since this is an optional SAF-TE command, there's no point in
2347 * returning an error.
2348 */
2349 static void
2350 wrslot_stat(ses_softc_t *ssc, int slp)
2351 {
2352 int i, amt;
2353 encobj *ep;
2354 char cdb[10], *sdata;
2355 struct scfg *cc = ssc->ses_private;
2356
2357 if (cc == NULL)
2358 return;
2359
2360 SES_VLOG(ssc, "saf_wrslot\n");
2361 cdb[0] = WRITE_BUFFER;
2362 cdb[1] = 1;
2363 cdb[2] = 0;
2364 cdb[3] = 0;
2365 cdb[4] = 0;
2366 cdb[5] = 0;
2367 cdb[6] = 0;
2368 cdb[7] = 0;
2369 cdb[8] = cc->Nslots * 3 + 1;
2370 cdb[9] = 0;
2371
2372 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2373 if (sdata == NULL)
2374 return;
2375 MEMZERO(sdata, cc->Nslots * 3 + 1);
2376
2377 sdata[0] = SAFTE_WT_DSTAT;
2378 for (i = 0; i < cc->Nslots; i++) {
2379 ep = &ssc->ses_objmap[cc->slotoff + i];
2380 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2381 sdata[1 + (3 * i)] = ep->priv & 0xff;
2382 }
2383 amt = -(cc->Nslots * 3 + 1);
2384 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2385 SES_FREE(sdata, cc->Nslots * 3 + 1);
2386 }
2387
2388 /*
2389 * This function issues the "PERFORM SLOT OPERATION" command.
2390 */
2391 static int
2392 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2393 {
2394 int err, amt;
2395 char *sdata;
2396 struct scfg *cc = ssc->ses_private;
2397 static char cdb[10] =
2398 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2399
2400 if (cc == NULL)
2401 return (0);
2402
2403 sdata = SES_MALLOC(SAFT_SCRATCH);
2404 if (sdata == NULL)
2405 return (ENOMEM);
2406 MEMZERO(sdata, SAFT_SCRATCH);
2407
2408 sdata[0] = SAFTE_WT_SLTOP;
2409 sdata[1] = slot;
2410 sdata[2] = opflag;
2411 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2412 amt = -SAFT_SCRATCH;
2413 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2414 SES_FREE(sdata, SAFT_SCRATCH);
2415 return (err);
2416 }
2417