ses.c revision 1.32.12.2 1 /* $NetBSD: ses.c,v 1.32.12.2 2006/05/24 15:50:29 tron Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.32.12.2 2006/05/24 15:50:29 tron Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsipiconf.h>
57 #include <dev/scsipi/scsipi_base.h>
58 #include <dev/scsipi/ses.h>
59
60 /*
61 * Platform Independent Driver Internal Definitions for SES devices.
62 */
63 typedef enum {
64 SES_NONE,
65 SES_SES_SCSI2,
66 SES_SES,
67 SES_SES_PASSTHROUGH,
68 SES_SEN,
69 SES_SAFT
70 } enctyp;
71
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 int (*softc_init)(ses_softc_t *, int);
76 int (*init_enc)(ses_softc_t *);
77 int (*get_encstat)(ses_softc_t *, int);
78 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82
83 #define ENCI_SVALID 0x80
84
85 typedef struct {
86 uint32_t
87 enctype : 8, /* enclosure type */
88 subenclosure : 8, /* subenclosure id */
89 svalid : 1, /* enclosure information valid */
90 priv : 15; /* private data, per object */
91 uint8_t encstat[4]; /* state && stats */
92 } encobj;
93
94 #define SEN_ID "UNISYS SUN_SEN"
95 #define SEN_ID_LEN 24
96
97 static enctyp ses_type(struct scsipi_inquiry_data *);
98
99
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114
115 /*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119 #define STRNCMP strncmp
120 #define PRINTF printf
121 #define SES_LOG ses_log
122 #if defined(DEBUG) || defined(SCSIDEBUG)
123 #define SES_VLOG ses_log
124 #else
125 #define SES_VLOG if (0) ses_log
126 #endif
127 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
129 #define MEMZERO(dest, amt) memset(dest, 0, amt)
130 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
131 #define RECEIVE_DIAGNOSTIC 0x1c
132 #define SEND_DIAGNOSTIC 0x1d
133 #define WRITE_BUFFER 0x3b
134 #define READ_BUFFER 0x3c
135
136 static dev_type_open(sesopen);
137 static dev_type_close(sesclose);
138 static dev_type_ioctl(sesioctl);
139
140 const struct cdevsw ses_cdevsw = {
141 sesopen, sesclose, noread, nowrite, sesioctl,
142 nostop, notty, nopoll, nommap, nokqfilter,
143 };
144
145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146 static void ses_log(struct ses_softc *, const char *, ...)
147 __attribute__((__format__(__printf__, 2, 3)));
148
149 /*
150 * General NetBSD kernel stuff.
151 */
152
153 struct ses_softc {
154 struct device sc_device;
155 struct scsipi_periph *sc_periph;
156 enctyp ses_type; /* type of enclosure */
157 encvec ses_vec; /* vector to handlers */
158 void * ses_private; /* per-type private data */
159 encobj * ses_objmap; /* objects */
160 u_int32_t ses_nobjects; /* number of objects */
161 ses_encstat ses_encstat; /* overall status */
162 u_int8_t ses_flags;
163 };
164 #define SES_FLAG_INVALID 0x01
165 #define SES_FLAG_OPEN 0x02
166 #define SES_FLAG_INITIALIZED 0x04
167
168 #define SESUNIT(x) (minor((x)))
169
170 static int ses_match(struct device *, struct cfdata *, void *);
171 static void ses_attach(struct device *, struct device *, void *);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173
174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
175 ses_match, ses_attach, NULL, NULL);
176
177 extern struct cfdriver ses_cd;
178
179 static const struct scsipi_periphsw ses_switch = {
180 NULL,
181 NULL,
182 NULL,
183 NULL
184 };
185
186 static int
187 ses_match(struct device *parent, struct cfdata *match, void *aux)
188 {
189 struct scsipibus_attach_args *sa = aux;
190
191 switch (ses_device_type(sa)) {
192 case SES_SES:
193 case SES_SES_SCSI2:
194 case SES_SEN:
195 case SES_SAFT:
196 case SES_SES_PASSTHROUGH:
197 /*
198 * For these devices, it's a perfect match.
199 */
200 return (24);
201 default:
202 return (0);
203 }
204 }
205
206
207 /*
208 * Complete the attachment.
209 *
210 * We have to repeat the rerun of INQUIRY data as above because
211 * it's not until the return from the match routine that we have
212 * the softc available to set stuff in.
213 */
214 static void
215 ses_attach(struct device *parent, struct device *self, void *aux)
216 {
217 const char *tname;
218 struct ses_softc *softc = device_private(self);
219 struct scsipibus_attach_args *sa = aux;
220 struct scsipi_periph *periph = sa->sa_periph;
221
222 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 softc->sc_periph = periph;
224 periph->periph_dev = &softc->sc_device;
225 periph->periph_switch = &ses_switch;
226 periph->periph_openings = 1;
227
228 softc->ses_type = ses_device_type(sa);
229 switch (softc->ses_type) {
230 case SES_SES:
231 case SES_SES_SCSI2:
232 case SES_SES_PASSTHROUGH:
233 softc->ses_vec.softc_init = ses_softc_init;
234 softc->ses_vec.init_enc = ses_init_enc;
235 softc->ses_vec.get_encstat = ses_get_encstat;
236 softc->ses_vec.set_encstat = ses_set_encstat;
237 softc->ses_vec.get_objstat = ses_get_objstat;
238 softc->ses_vec.set_objstat = ses_set_objstat;
239 break;
240 case SES_SAFT:
241 softc->ses_vec.softc_init = safte_softc_init;
242 softc->ses_vec.init_enc = safte_init_enc;
243 softc->ses_vec.get_encstat = safte_get_encstat;
244 softc->ses_vec.set_encstat = safte_set_encstat;
245 softc->ses_vec.get_objstat = safte_get_objstat;
246 softc->ses_vec.set_objstat = safte_set_objstat;
247 break;
248 case SES_SEN:
249 break;
250 case SES_NONE:
251 default:
252 break;
253 }
254
255 switch (softc->ses_type) {
256 default:
257 case SES_NONE:
258 tname = "No SES device";
259 break;
260 case SES_SES_SCSI2:
261 tname = "SCSI-2 SES Device";
262 break;
263 case SES_SES:
264 tname = "SCSI-3 SES Device";
265 break;
266 case SES_SES_PASSTHROUGH:
267 tname = "SES Passthrough Device";
268 break;
269 case SES_SEN:
270 tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 break;
272 case SES_SAFT:
273 tname = "SAF-TE Compliant Device";
274 break;
275 }
276 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278
279
280 static enctyp
281 ses_device_type(struct scsipibus_attach_args *sa)
282 {
283 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284
285 if (inqp == NULL)
286 return (SES_NONE);
287
288 return (ses_type(inqp));
289 }
290
291 static int
292 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
293 {
294 struct ses_softc *softc;
295 int error, unit;
296
297 unit = SESUNIT(dev);
298 if (unit >= ses_cd.cd_ndevs)
299 return (ENXIO);
300 softc = ses_cd.cd_devs[unit];
301 if (softc == NULL)
302 return (ENXIO);
303
304 if (softc->ses_flags & SES_FLAG_INVALID) {
305 error = ENXIO;
306 goto out;
307 }
308 if (softc->ses_flags & SES_FLAG_OPEN) {
309 error = EBUSY;
310 goto out;
311 }
312 if (softc->ses_vec.softc_init == NULL) {
313 error = ENXIO;
314 goto out;
315 }
316 error = scsipi_adapter_addref(
317 softc->sc_periph->periph_channel->chan_adapter);
318 if (error != 0)
319 goto out;
320
321
322 softc->ses_flags |= SES_FLAG_OPEN;
323 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
324 error = (*softc->ses_vec.softc_init)(softc, 1);
325 if (error)
326 softc->ses_flags &= ~SES_FLAG_OPEN;
327 else
328 softc->ses_flags |= SES_FLAG_INITIALIZED;
329 }
330
331 out:
332 return (error);
333 }
334
335 static int
336 sesclose(dev_t dev, int flags, int fmt, struct lwp *l)
337 {
338 struct ses_softc *softc;
339 int unit;
340
341 unit = SESUNIT(dev);
342 if (unit >= ses_cd.cd_ndevs)
343 return (ENXIO);
344 softc = ses_cd.cd_devs[unit];
345 if (softc == NULL)
346 return (ENXIO);
347
348 scsipi_wait_drain(softc->sc_periph);
349 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
350 softc->ses_flags &= ~SES_FLAG_OPEN;
351 return (0);
352 }
353
354 static int
355 sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct lwp *l)
356 {
357 ses_encstat tmp;
358 ses_objstat objs;
359 ses_object obj, *uobj;
360 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
361 void *addr;
362 int error, i;
363
364
365 if (arg_addr)
366 addr = *((caddr_t *) arg_addr);
367 else
368 addr = NULL;
369
370 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
371
372 /*
373 * Now check to see whether we're initialized or not.
374 */
375 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
376 return (ENODEV);
377 }
378
379 error = 0;
380
381 /*
382 * If this command can change the device's state,
383 * we must have the device open for writing.
384 */
385 switch (cmd) {
386 case SESIOC_GETNOBJ:
387 case SESIOC_GETOBJMAP:
388 case SESIOC_GETENCSTAT:
389 case SESIOC_GETOBJSTAT:
390 break;
391 default:
392 if ((flag & FWRITE) == 0) {
393 return (EBADF);
394 }
395 }
396
397 switch (cmd) {
398 case SESIOC_GETNOBJ:
399 if (addr == NULL)
400 return EINVAL;
401 error = copyout(&ssc->ses_nobjects, addr,
402 sizeof (ssc->ses_nobjects));
403 break;
404
405 case SESIOC_GETOBJMAP:
406 if (addr == NULL)
407 return EINVAL;
408 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
409 obj.obj_id = i;
410 obj.subencid = ssc->ses_objmap[i].subenclosure;
411 obj.object_type = ssc->ses_objmap[i].enctype;
412 error = copyout(&obj, uobj, sizeof (ses_object));
413 if (error) {
414 break;
415 }
416 }
417 break;
418
419 case SESIOC_GETENCSTAT:
420 if (addr == NULL)
421 return EINVAL;
422 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
423 if (error)
424 break;
425 tmp = ssc->ses_encstat & ~ENCI_SVALID;
426 error = copyout(&tmp, addr, sizeof (ses_encstat));
427 ssc->ses_encstat = tmp;
428 break;
429
430 case SESIOC_SETENCSTAT:
431 if (addr == NULL)
432 return EINVAL;
433 error = copyin(addr, &tmp, sizeof (ses_encstat));
434 if (error)
435 break;
436 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
437 break;
438
439 case SESIOC_GETOBJSTAT:
440 if (addr == NULL)
441 return EINVAL;
442 error = copyin(addr, &objs, sizeof (ses_objstat));
443 if (error)
444 break;
445 if (objs.obj_id >= ssc->ses_nobjects) {
446 error = EINVAL;
447 break;
448 }
449 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
450 if (error)
451 break;
452 error = copyout(&objs, addr, sizeof (ses_objstat));
453 /*
454 * Always (for now) invalidate entry.
455 */
456 ssc->ses_objmap[objs.obj_id].svalid = 0;
457 break;
458
459 case SESIOC_SETOBJSTAT:
460 if (addr == NULL)
461 return EINVAL;
462 error = copyin(addr, &objs, sizeof (ses_objstat));
463 if (error)
464 break;
465
466 if (objs.obj_id >= ssc->ses_nobjects) {
467 error = EINVAL;
468 break;
469 }
470 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
471
472 /*
473 * Always (for now) invalidate entry.
474 */
475 ssc->ses_objmap[objs.obj_id].svalid = 0;
476 break;
477
478 case SESIOC_INIT:
479
480 error = (*ssc->ses_vec.init_enc)(ssc);
481 break;
482
483 default:
484 error = scsipi_do_ioctl(ssc->sc_periph,
485 dev, cmd, arg_addr, flag, l);
486 break;
487 }
488 return (error);
489 }
490
491 static int
492 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
493 {
494 struct scsipi_generic sgen;
495 int dl, flg, error;
496
497 if (dptr) {
498 if ((dl = *dlenp) < 0) {
499 dl = -dl;
500 flg = XS_CTL_DATA_OUT;
501 } else {
502 flg = XS_CTL_DATA_IN;
503 }
504 } else {
505 dl = 0;
506 flg = 0;
507 }
508
509 if (cdbl > sizeof (struct scsipi_generic)) {
510 cdbl = sizeof (struct scsipi_generic);
511 }
512 memcpy(&sgen, cdb, cdbl);
513 #ifndef SCSIDEBUG
514 flg |= XS_CTL_SILENT;
515 #endif
516 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
517 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
518
519 if (error == 0 && dptr)
520 *dlenp = 0;
521
522 return (error);
523 }
524
525 static void
526 ses_log(struct ses_softc *ssc, const char *fmt, ...)
527 {
528 va_list ap;
529
530 printf("%s: ", ssc->sc_device.dv_xname);
531 va_start(ap, fmt);
532 vprintf(fmt, ap);
533 va_end(ap);
534 }
535
536 /*
537 * The code after this point runs on many platforms,
538 * so forgive the slightly awkward and nonconforming
539 * appearance.
540 */
541
542 /*
543 * Is this a device that supports enclosure services?
544 *
545 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
546 * an SES device. If it happens to be an old UNISYS SEN device, we can
547 * handle that too.
548 */
549
550 #define SAFTE_START 44
551 #define SAFTE_END 50
552 #define SAFTE_LEN SAFTE_END-SAFTE_START
553
554 static enctyp
555 ses_type(struct scsipi_inquiry_data *inqp)
556 {
557 size_t given_len = inqp->additional_length + 4;
558
559 if (given_len < 8+SEN_ID_LEN)
560 return (SES_NONE);
561
562 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
563 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
564 return (SES_SEN);
565 } else if ((inqp->version & SID_ANSII) > 2) {
566 return (SES_SES);
567 } else {
568 return (SES_SES_SCSI2);
569 }
570 return (SES_NONE);
571 }
572
573 #ifdef SES_ENABLE_PASSTHROUGH
574 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
575 /*
576 * PassThrough Device.
577 */
578 return (SES_SES_PASSTHROUGH);
579 }
580 #endif
581
582 /*
583 * The comparison is short for a reason-
584 * some vendors were chopping it short.
585 */
586
587 if (given_len < SAFTE_END - 2) {
588 return (SES_NONE);
589 }
590
591 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
592 SAFTE_LEN - 2) == 0) {
593 return (SES_SAFT);
594 }
595
596 return (SES_NONE);
597 }
598
599 /*
600 * SES Native Type Device Support
601 */
602
603 /*
604 * SES Diagnostic Page Codes
605 */
606
607 typedef enum {
608 SesConfigPage = 0x1,
609 SesControlPage,
610 #define SesStatusPage SesControlPage
611 SesHelpTxt,
612 SesStringOut,
613 #define SesStringIn SesStringOut
614 SesThresholdOut,
615 #define SesThresholdIn SesThresholdOut
616 SesArrayControl,
617 #define SesArrayStatus SesArrayControl
618 SesElementDescriptor,
619 SesShortStatus
620 } SesDiagPageCodes;
621
622 /*
623 * minimal amounts
624 */
625
626 /*
627 * Minimum amount of data, starting from byte 0, to have
628 * the config header.
629 */
630 #define SES_CFGHDR_MINLEN 12
631
632 /*
633 * Minimum amount of data, starting from byte 0, to have
634 * the config header and one enclosure header.
635 */
636 #define SES_ENCHDR_MINLEN 48
637
638 /*
639 * Take this value, subtract it from VEnclen and you know
640 * the length of the vendor unique bytes.
641 */
642 #define SES_ENCHDR_VMIN 36
643
644 /*
645 * SES Data Structures
646 */
647
648 typedef struct {
649 uint32_t GenCode; /* Generation Code */
650 uint8_t Nsubenc; /* Number of Subenclosures */
651 } SesCfgHdr;
652
653 typedef struct {
654 uint8_t Subencid; /* SubEnclosure Identifier */
655 uint8_t Ntypes; /* # of supported types */
656 uint8_t VEnclen; /* Enclosure Descriptor Length */
657 } SesEncHdr;
658
659 typedef struct {
660 uint8_t encWWN[8]; /* XXX- Not Right Yet */
661 uint8_t encVid[8];
662 uint8_t encPid[16];
663 uint8_t encRev[4];
664 uint8_t encVen[1];
665 } SesEncDesc;
666
667 typedef struct {
668 uint8_t enc_type; /* type of element */
669 uint8_t enc_maxelt; /* maximum supported */
670 uint8_t enc_subenc; /* in SubEnc # N */
671 uint8_t enc_tlen; /* Type Descriptor Text Length */
672 } SesThdr;
673
674 typedef struct {
675 uint8_t comstatus;
676 uint8_t comstat[3];
677 } SesComStat;
678
679 struct typidx {
680 int ses_tidx;
681 int ses_oidx;
682 };
683
684 struct sscfg {
685 uint8_t ses_ntypes; /* total number of types supported */
686
687 /*
688 * We need to keep a type index as well as an
689 * object index for each object in an enclosure.
690 */
691 struct typidx *ses_typidx;
692
693 /*
694 * We also need to keep track of the number of elements
695 * per type of element. This is needed later so that we
696 * can find precisely in the returned status data the
697 * status for the Nth element of the Kth type.
698 */
699 uint8_t * ses_eltmap;
700 };
701
702
703 /*
704 * (de)canonicalization defines
705 */
706 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
707 #define sbit(x, bit) (((uint32_t)(x)) << bit)
708 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
709
710 #define sset16(outp, idx, sval) \
711 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
712 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
713
714
715 #define sset24(outp, idx, sval) \
716 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
717 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
718 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
719
720
721 #define sset32(outp, idx, sval) \
722 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
723 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
724 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
725 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726
727 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
728 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
729 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
730 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
731
732 #define sget16(inp, idx, lval) \
733 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
734 (((uint8_t *)(inp))[idx+1]), idx += 2
735
736 #define gget16(inp, idx, lval) \
737 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
738 (((uint8_t *)(inp))[idx+1])
739
740 #define sget24(inp, idx, lval) \
741 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
742 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
743 (((uint8_t *)(inp))[idx+2]), idx += 3
744
745 #define gget24(inp, idx, lval) \
746 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
747 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
748 (((uint8_t *)(inp))[idx+2])
749
750 #define sget32(inp, idx, lval) \
751 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
752 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
753 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
754 (((uint8_t *)(inp))[idx+3]), idx += 4
755
756 #define gget32(inp, idx, lval) \
757 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
758 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
759 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
760 (((uint8_t *)(inp))[idx+3])
761
762 #define SCSZ 0x2000
763 #define CFLEN (256 + SES_ENCHDR_MINLEN)
764
765 /*
766 * Routines specific && private to SES only
767 */
768
769 static int ses_getconfig(ses_softc_t *);
770 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
771 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
772 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
773 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
774 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
775 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
776 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
777
778 static int
779 ses_softc_init(ses_softc_t *ssc, int doinit)
780 {
781 if (doinit == 0) {
782 struct sscfg *cc;
783 if (ssc->ses_nobjects) {
784 SES_FREE(ssc->ses_objmap,
785 ssc->ses_nobjects * sizeof (encobj));
786 ssc->ses_objmap = NULL;
787 }
788 if ((cc = ssc->ses_private) != NULL) {
789 if (cc->ses_eltmap && cc->ses_ntypes) {
790 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
791 cc->ses_eltmap = NULL;
792 cc->ses_ntypes = 0;
793 }
794 if (cc->ses_typidx && ssc->ses_nobjects) {
795 SES_FREE(cc->ses_typidx,
796 ssc->ses_nobjects * sizeof (struct typidx));
797 cc->ses_typidx = NULL;
798 }
799 SES_FREE(cc, sizeof (struct sscfg));
800 ssc->ses_private = NULL;
801 }
802 ssc->ses_nobjects = 0;
803 return (0);
804 }
805 if (ssc->ses_private == NULL) {
806 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
807 }
808 if (ssc->ses_private == NULL) {
809 return (ENOMEM);
810 }
811 ssc->ses_nobjects = 0;
812 ssc->ses_encstat = 0;
813 return (ses_getconfig(ssc));
814 }
815
816 static int
817 ses_init_enc(ses_softc_t *ssc)
818 {
819 return (0);
820 }
821
822 static int
823 ses_get_encstat(ses_softc_t *ssc, int slpflag)
824 {
825 SesComStat ComStat;
826 int status;
827
828 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
829 return (status);
830 }
831 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
832 return (0);
833 }
834
835 static int
836 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
837 {
838 SesComStat ComStat;
839 int status;
840
841 ComStat.comstatus = encstat & 0xf;
842 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
843 return (status);
844 }
845 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
846 return (0);
847 }
848
849 static int
850 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
851 {
852 int i = (int)obp->obj_id;
853
854 if (ssc->ses_objmap[i].svalid == 0) {
855 SesComStat ComStat;
856 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
857 if (err)
858 return (err);
859 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
860 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
861 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
862 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
863 ssc->ses_objmap[i].svalid = 1;
864 }
865 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
866 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
867 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
868 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
869 return (0);
870 }
871
872 static int
873 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
874 {
875 SesComStat ComStat;
876 int err;
877 /*
878 * If this is clear, we don't do diddly.
879 */
880 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
881 return (0);
882 }
883 ComStat.comstatus = obp->cstat[0];
884 ComStat.comstat[0] = obp->cstat[1];
885 ComStat.comstat[1] = obp->cstat[2];
886 ComStat.comstat[2] = obp->cstat[3];
887 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
888 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
889 return (err);
890 }
891
892 static int
893 ses_getconfig(ses_softc_t *ssc)
894 {
895 struct sscfg *cc;
896 SesCfgHdr cf;
897 SesEncHdr hd;
898 SesEncDesc *cdp;
899 SesThdr thdr;
900 int err, amt, i, nobj, ntype, maxima;
901 char storage[CFLEN], *sdata;
902 static char cdb[6] = {
903 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
904 };
905
906 cc = ssc->ses_private;
907 if (cc == NULL) {
908 return (ENXIO);
909 }
910
911 sdata = SES_MALLOC(SCSZ);
912 if (sdata == NULL)
913 return (ENOMEM);
914
915 amt = SCSZ;
916 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
917 if (err) {
918 SES_FREE(sdata, SCSZ);
919 return (err);
920 }
921 amt = SCSZ - amt;
922
923 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
924 SES_LOG(ssc, "Unable to parse SES Config Header\n");
925 SES_FREE(sdata, SCSZ);
926 return (EIO);
927 }
928 if (amt < SES_ENCHDR_MINLEN) {
929 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
930 SES_FREE(sdata, SCSZ);
931 return (EIO);
932 }
933
934 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
935
936 /*
937 * Now waltz through all the subenclosures toting up the
938 * number of types available in each. For this, we only
939 * really need the enclosure header. However, we get the
940 * enclosure descriptor for debug purposes, as well
941 * as self-consistency checking purposes.
942 */
943
944 maxima = cf.Nsubenc + 1;
945 cdp = (SesEncDesc *) storage;
946 for (ntype = i = 0; i < maxima; i++) {
947 MEMZERO((caddr_t)cdp, sizeof (*cdp));
948 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
949 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
950 SES_FREE(sdata, SCSZ);
951 return (EIO);
952 }
953 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
954 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
955
956 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
957 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
958 SES_FREE(sdata, SCSZ);
959 return (EIO);
960 }
961 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
962 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
963 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
964 cdp->encWWN[6], cdp->encWWN[7]);
965 ntype += hd.Ntypes;
966 }
967
968 /*
969 * Now waltz through all the types that are available, getting
970 * the type header so we can start adding up the number of
971 * objects available.
972 */
973 for (nobj = i = 0; i < ntype; i++) {
974 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
975 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
976 SES_FREE(sdata, SCSZ);
977 return (EIO);
978 }
979 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
980 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
981 thdr.enc_subenc, thdr.enc_tlen);
982 nobj += thdr.enc_maxelt;
983 }
984
985
986 /*
987 * Now allocate the object array and type map.
988 */
989
990 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
991 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
992 cc->ses_eltmap = SES_MALLOC(ntype);
993
994 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
995 cc->ses_eltmap == NULL) {
996 if (ssc->ses_objmap) {
997 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
998 ssc->ses_objmap = NULL;
999 }
1000 if (cc->ses_typidx) {
1001 SES_FREE(cc->ses_typidx,
1002 (nobj * sizeof (struct typidx)));
1003 cc->ses_typidx = NULL;
1004 }
1005 if (cc->ses_eltmap) {
1006 SES_FREE(cc->ses_eltmap, ntype);
1007 cc->ses_eltmap = NULL;
1008 }
1009 SES_FREE(sdata, SCSZ);
1010 return (ENOMEM);
1011 }
1012 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1013 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1014 MEMZERO(cc->ses_eltmap, ntype);
1015 cc->ses_ntypes = (uint8_t) ntype;
1016 ssc->ses_nobjects = nobj;
1017
1018 /*
1019 * Now waltz through the # of types again to fill in the types
1020 * (and subenclosure ids) of the allocated objects.
1021 */
1022 nobj = 0;
1023 for (i = 0; i < ntype; i++) {
1024 int j;
1025 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1026 continue;
1027 }
1028 cc->ses_eltmap[i] = thdr.enc_maxelt;
1029 for (j = 0; j < thdr.enc_maxelt; j++) {
1030 cc->ses_typidx[nobj].ses_tidx = i;
1031 cc->ses_typidx[nobj].ses_oidx = j;
1032 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1033 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1034 }
1035 }
1036 SES_FREE(sdata, SCSZ);
1037 return (0);
1038 }
1039
1040 static int
1041 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1042 {
1043 struct sscfg *cc;
1044 int err, amt, bufsiz, tidx, oidx;
1045 char cdb[6], *sdata;
1046
1047 cc = ssc->ses_private;
1048 if (cc == NULL) {
1049 return (ENXIO);
1050 }
1051
1052 /*
1053 * If we're just getting overall enclosure status,
1054 * we only need 2 bytes of data storage.
1055 *
1056 * If we're getting anything else, we know how much
1057 * storage we need by noting that starting at offset
1058 * 8 in returned data, all object status bytes are 4
1059 * bytes long, and are stored in chunks of types(M)
1060 * and nth+1 instances of type M.
1061 */
1062 if (objid == -1) {
1063 bufsiz = 2;
1064 } else {
1065 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1066 }
1067 sdata = SES_MALLOC(bufsiz);
1068 if (sdata == NULL)
1069 return (ENOMEM);
1070
1071 cdb[0] = RECEIVE_DIAGNOSTIC;
1072 cdb[1] = 1;
1073 cdb[2] = SesStatusPage;
1074 cdb[3] = bufsiz >> 8;
1075 cdb[4] = bufsiz & 0xff;
1076 cdb[5] = 0;
1077 amt = bufsiz;
1078 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1079 if (err) {
1080 SES_FREE(sdata, bufsiz);
1081 return (err);
1082 }
1083 amt = bufsiz - amt;
1084
1085 if (objid == -1) {
1086 tidx = -1;
1087 oidx = -1;
1088 } else {
1089 tidx = cc->ses_typidx[objid].ses_tidx;
1090 oidx = cc->ses_typidx[objid].ses_oidx;
1091 }
1092 if (in) {
1093 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1094 err = ENODEV;
1095 }
1096 } else {
1097 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1098 err = ENODEV;
1099 } else {
1100 cdb[0] = SEND_DIAGNOSTIC;
1101 cdb[1] = 0x10;
1102 cdb[2] = 0;
1103 cdb[3] = bufsiz >> 8;
1104 cdb[4] = bufsiz & 0xff;
1105 cdb[5] = 0;
1106 amt = -bufsiz;
1107 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1108 }
1109 }
1110 SES_FREE(sdata, bufsiz);
1111 return (0);
1112 }
1113
1114
1115 /*
1116 * Routines to parse returned SES data structures.
1117 * Architecture and compiler independent.
1118 */
1119
1120 static int
1121 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1122 {
1123 if (buflen < SES_CFGHDR_MINLEN) {
1124 return (-1);
1125 }
1126 gget8(buffer, 1, cfp->Nsubenc);
1127 gget32(buffer, 4, cfp->GenCode);
1128 return (0);
1129 }
1130
1131 static int
1132 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1133 {
1134 int s, off = 8;
1135 for (s = 0; s < SubEncId; s++) {
1136 if (off + 3 > amt)
1137 return (-1);
1138 off += buffer[off+3] + 4;
1139 }
1140 if (off + 3 > amt) {
1141 return (-1);
1142 }
1143 gget8(buffer, off+1, chp->Subencid);
1144 gget8(buffer, off+2, chp->Ntypes);
1145 gget8(buffer, off+3, chp->VEnclen);
1146 return (0);
1147 }
1148
1149 static int
1150 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1151 {
1152 int s, e, enclen, off = 8;
1153 for (s = 0; s < SubEncId; s++) {
1154 if (off + 3 > amt)
1155 return (-1);
1156 off += buffer[off+3] + 4;
1157 }
1158 if (off + 3 > amt) {
1159 return (-1);
1160 }
1161 gget8(buffer, off+3, enclen);
1162 off += 4;
1163 if (off >= amt)
1164 return (-1);
1165
1166 e = off + enclen;
1167 if (e > amt) {
1168 e = amt;
1169 }
1170 MEMCPY(cdp, &buffer[off], e - off);
1171 return (0);
1172 }
1173
1174 static int
1175 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1176 {
1177 int s, off = 8;
1178
1179 if (amt < SES_CFGHDR_MINLEN) {
1180 return (-1);
1181 }
1182 for (s = 0; s < buffer[1]; s++) {
1183 if (off + 3 > amt)
1184 return (-1);
1185 off += buffer[off+3] + 4;
1186 }
1187 if (off + 3 > amt) {
1188 return (-1);
1189 }
1190 off += buffer[off+3] + 4 + (nth * 4);
1191 if (amt < (off + 4))
1192 return (-1);
1193
1194 gget8(buffer, off++, thp->enc_type);
1195 gget8(buffer, off++, thp->enc_maxelt);
1196 gget8(buffer, off++, thp->enc_subenc);
1197 gget8(buffer, off, thp->enc_tlen);
1198 return (0);
1199 }
1200
1201 /*
1202 * This function needs a little explanation.
1203 *
1204 * The arguments are:
1205 *
1206 *
1207 * char *b, int amt
1208 *
1209 * These describes the raw input SES status data and length.
1210 *
1211 * uint8_t *ep
1212 *
1213 * This is a map of the number of types for each element type
1214 * in the enclosure.
1215 *
1216 * int elt
1217 *
1218 * This is the element type being sought. If elt is -1,
1219 * then overall enclosure status is being sought.
1220 *
1221 * int elm
1222 *
1223 * This is the ordinal Mth element of type elt being sought.
1224 *
1225 * SesComStat *sp
1226 *
1227 * This is the output area to store the status for
1228 * the Mth element of type Elt.
1229 */
1230
1231 static int
1232 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1233 {
1234 int idx, i;
1235
1236 /*
1237 * If it's overall enclosure status being sought, get that.
1238 * We need at least 2 bytes of status data to get that.
1239 */
1240 if (elt == -1) {
1241 if (amt < 2)
1242 return (-1);
1243 gget8(b, 1, sp->comstatus);
1244 sp->comstat[0] = 0;
1245 sp->comstat[1] = 0;
1246 sp->comstat[2] = 0;
1247 return (0);
1248 }
1249
1250 /*
1251 * Check to make sure that the Mth element is legal for type Elt.
1252 */
1253
1254 if (elm >= ep[elt])
1255 return (-1);
1256
1257 /*
1258 * Starting at offset 8, start skipping over the storage
1259 * for the element types we're not interested in.
1260 */
1261 for (idx = 8, i = 0; i < elt; i++) {
1262 idx += ((ep[i] + 1) * 4);
1263 }
1264
1265 /*
1266 * Skip over Overall status for this element type.
1267 */
1268 idx += 4;
1269
1270 /*
1271 * And skip to the index for the Mth element that we're going for.
1272 */
1273 idx += (4 * elm);
1274
1275 /*
1276 * Make sure we haven't overflowed the buffer.
1277 */
1278 if (idx+4 > amt)
1279 return (-1);
1280
1281 /*
1282 * Retrieve the status.
1283 */
1284 gget8(b, idx++, sp->comstatus);
1285 gget8(b, idx++, sp->comstat[0]);
1286 gget8(b, idx++, sp->comstat[1]);
1287 gget8(b, idx++, sp->comstat[2]);
1288 #if 0
1289 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1290 #endif
1291 return (0);
1292 }
1293
1294 /*
1295 * This is the mirror function to ses_decode, but we set the 'select'
1296 * bit for the object which we're interested in. All other objects,
1297 * after a status fetch, should have that bit off. Hmm. It'd be easy
1298 * enough to ensure this, so we will.
1299 */
1300
1301 static int
1302 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1303 {
1304 int idx, i;
1305
1306 /*
1307 * If it's overall enclosure status being sought, get that.
1308 * We need at least 2 bytes of status data to get that.
1309 */
1310 if (elt == -1) {
1311 if (amt < 2)
1312 return (-1);
1313 i = 0;
1314 sset8(b, i, 0);
1315 sset8(b, i, sp->comstatus & 0xf);
1316 #if 0
1317 PRINTF("set EncStat %x\n", sp->comstatus);
1318 #endif
1319 return (0);
1320 }
1321
1322 /*
1323 * Check to make sure that the Mth element is legal for type Elt.
1324 */
1325
1326 if (elm >= ep[elt])
1327 return (-1);
1328
1329 /*
1330 * Starting at offset 8, start skipping over the storage
1331 * for the element types we're not interested in.
1332 */
1333 for (idx = 8, i = 0; i < elt; i++) {
1334 idx += ((ep[i] + 1) * 4);
1335 }
1336
1337 /*
1338 * Skip over Overall status for this element type.
1339 */
1340 idx += 4;
1341
1342 /*
1343 * And skip to the index for the Mth element that we're going for.
1344 */
1345 idx += (4 * elm);
1346
1347 /*
1348 * Make sure we haven't overflowed the buffer.
1349 */
1350 if (idx+4 > amt)
1351 return (-1);
1352
1353 /*
1354 * Set the status.
1355 */
1356 sset8(b, idx, sp->comstatus);
1357 sset8(b, idx, sp->comstat[0]);
1358 sset8(b, idx, sp->comstat[1]);
1359 sset8(b, idx, sp->comstat[2]);
1360 idx -= 4;
1361
1362 #if 0
1363 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1364 elt, elm, idx, sp->comstatus, sp->comstat[0],
1365 sp->comstat[1], sp->comstat[2]);
1366 #endif
1367
1368 /*
1369 * Now make sure all other 'Select' bits are off.
1370 */
1371 for (i = 8; i < amt; i += 4) {
1372 if (i != idx)
1373 b[i] &= ~0x80;
1374 }
1375 /*
1376 * And make sure the INVOP bit is clear.
1377 */
1378 b[2] &= ~0x10;
1379
1380 return (0);
1381 }
1382
1383 /*
1384 * SAF-TE Type Device Emulation
1385 */
1386
1387 static int safte_getconfig(ses_softc_t *);
1388 static int safte_rdstat(ses_softc_t *, int);
1389 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1390 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1391 static void wrslot_stat(ses_softc_t *, int);
1392 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1393
1394 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1395 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1396 /*
1397 * SAF-TE specific defines- Mandatory ones only...
1398 */
1399
1400 /*
1401 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1402 */
1403 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1404 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1405 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1406
1407 /*
1408 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1409 */
1410 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1411 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1412 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1413 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1414 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1415
1416
1417 #define SAFT_SCRATCH 64
1418 #define NPSEUDO_THERM 16
1419 #define NPSEUDO_ALARM 1
1420 struct scfg {
1421 /*
1422 * Cached Configuration
1423 */
1424 uint8_t Nfans; /* Number of Fans */
1425 uint8_t Npwr; /* Number of Power Supplies */
1426 uint8_t Nslots; /* Number of Device Slots */
1427 uint8_t DoorLock; /* Door Lock Installed */
1428 uint8_t Ntherm; /* Number of Temperature Sensors */
1429 uint8_t Nspkrs; /* Number of Speakers */
1430 uint8_t Nalarm; /* Number of Alarms (at least one) */
1431 /*
1432 * Cached Flag Bytes for Global Status
1433 */
1434 uint8_t flag1;
1435 uint8_t flag2;
1436 /*
1437 * What object index ID is where various slots start.
1438 */
1439 uint8_t pwroff;
1440 uint8_t slotoff;
1441 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1442 };
1443
1444 #define SAFT_FLG1_ALARM 0x1
1445 #define SAFT_FLG1_GLOBFAIL 0x2
1446 #define SAFT_FLG1_GLOBWARN 0x4
1447 #define SAFT_FLG1_ENCPWROFF 0x8
1448 #define SAFT_FLG1_ENCFANFAIL 0x10
1449 #define SAFT_FLG1_ENCPWRFAIL 0x20
1450 #define SAFT_FLG1_ENCDRVFAIL 0x40
1451 #define SAFT_FLG1_ENCDRVWARN 0x80
1452
1453 #define SAFT_FLG2_LOCKDOOR 0x4
1454 #define SAFT_PRIVATE sizeof (struct scfg)
1455
1456 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1457 #define SAFT_BAIL(r, x, k, l) \
1458 if (r >= x) { \
1459 SES_LOG(ssc, safte_2little, x, __LINE__);\
1460 SES_FREE(k, l); \
1461 return (EIO); \
1462 }
1463
1464
1465 static int
1466 safte_softc_init(ses_softc_t *ssc, int doinit)
1467 {
1468 int err, i, r;
1469 struct scfg *cc;
1470
1471 if (doinit == 0) {
1472 if (ssc->ses_nobjects) {
1473 if (ssc->ses_objmap) {
1474 SES_FREE(ssc->ses_objmap,
1475 ssc->ses_nobjects * sizeof (encobj));
1476 ssc->ses_objmap = NULL;
1477 }
1478 ssc->ses_nobjects = 0;
1479 }
1480 if (ssc->ses_private) {
1481 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1482 ssc->ses_private = NULL;
1483 }
1484 return (0);
1485 }
1486
1487 if (ssc->ses_private == NULL) {
1488 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1489 if (ssc->ses_private == NULL) {
1490 return (ENOMEM);
1491 }
1492 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1493 }
1494
1495 ssc->ses_nobjects = 0;
1496 ssc->ses_encstat = 0;
1497
1498 if ((err = safte_getconfig(ssc)) != 0) {
1499 return (err);
1500 }
1501
1502 /*
1503 * The number of objects here, as well as that reported by the
1504 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1505 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1506 */
1507 cc = ssc->ses_private;
1508 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1509 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1510 ssc->ses_objmap = (encobj *)
1511 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1512 if (ssc->ses_objmap == NULL) {
1513 return (ENOMEM);
1514 }
1515 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1516
1517 r = 0;
1518 /*
1519 * Note that this is all arranged for the convenience
1520 * in later fetches of status.
1521 */
1522 for (i = 0; i < cc->Nfans; i++)
1523 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1524 cc->pwroff = (uint8_t) r;
1525 for (i = 0; i < cc->Npwr; i++)
1526 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1527 for (i = 0; i < cc->DoorLock; i++)
1528 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1529 for (i = 0; i < cc->Nspkrs; i++)
1530 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1531 for (i = 0; i < cc->Ntherm; i++)
1532 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1533 for (i = 0; i < NPSEUDO_THERM; i++)
1534 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1535 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1536 cc->slotoff = (uint8_t) r;
1537 for (i = 0; i < cc->Nslots; i++)
1538 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1539 return (0);
1540 }
1541
1542 static int
1543 safte_init_enc(ses_softc_t *ssc)
1544 {
1545 int err, amt;
1546 char *sdata;
1547 static char cdb0[6] = { SEND_DIAGNOSTIC };
1548 static char cdb[10] =
1549 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1550
1551 sdata = SES_MALLOC(SAFT_SCRATCH);
1552 if (sdata == NULL)
1553 return (ENOMEM);
1554
1555 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1556 if (err) {
1557 SES_FREE(sdata, SAFT_SCRATCH);
1558 return (err);
1559 }
1560 sdata[0] = SAFTE_WT_GLOBAL;
1561 MEMZERO(&sdata[1], 15);
1562 amt = -SAFT_SCRATCH;
1563 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1564 SES_FREE(sdata, SAFT_SCRATCH);
1565 return (err);
1566 }
1567
1568 static int
1569 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1570 {
1571 return (safte_rdstat(ssc, slpflg));
1572 }
1573
1574 static int
1575 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1576 {
1577 struct scfg *cc = ssc->ses_private;
1578 if (cc == NULL)
1579 return (0);
1580 /*
1581 * Since SAF-TE devices aren't necessarily sticky in terms
1582 * of state, make our soft copy of enclosure status 'sticky'-
1583 * that is, things set in enclosure status stay set (as implied
1584 * by conditions set in reading object status) until cleared.
1585 */
1586 ssc->ses_encstat &= ~ALL_ENC_STAT;
1587 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1588 ssc->ses_encstat |= ENCI_SVALID;
1589 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1590 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1591 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1592 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1593 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1594 }
1595 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1596 }
1597
1598 static int
1599 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1600 {
1601 int i = (int)obp->obj_id;
1602
1603 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1604 (ssc->ses_objmap[i].svalid) == 0) {
1605 int err = safte_rdstat(ssc, slpflg);
1606 if (err)
1607 return (err);
1608 }
1609 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1610 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1611 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1612 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1613 return (0);
1614 }
1615
1616
1617 static int
1618 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1619 {
1620 int idx, err;
1621 encobj *ep;
1622 struct scfg *cc;
1623
1624
1625 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1626 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1627 obp->cstat[3]);
1628
1629 /*
1630 * If this is clear, we don't do diddly.
1631 */
1632 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1633 return (0);
1634 }
1635
1636 err = 0;
1637 /*
1638 * Check to see if the common bits are set and do them first.
1639 */
1640 if (obp->cstat[0] & ~SESCTL_CSEL) {
1641 err = set_objstat_sel(ssc, obp, slp);
1642 if (err)
1643 return (err);
1644 }
1645
1646 cc = ssc->ses_private;
1647 if (cc == NULL)
1648 return (0);
1649
1650 idx = (int)obp->obj_id;
1651 ep = &ssc->ses_objmap[idx];
1652
1653 switch (ep->enctype) {
1654 case SESTYP_DEVICE:
1655 {
1656 uint8_t slotop = 0;
1657 /*
1658 * XXX: I should probably cache the previous state
1659 * XXX: of SESCTL_DEVOFF so that when it goes from
1660 * XXX: true to false I can then set PREPARE FOR OPERATION
1661 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1662 */
1663 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1664 slotop |= 0x2;
1665 }
1666 if (obp->cstat[2] & SESCTL_RQSID) {
1667 slotop |= 0x4;
1668 }
1669 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1670 slotop, slp);
1671 if (err)
1672 return (err);
1673 if (obp->cstat[3] & SESCTL_RQSFLT) {
1674 ep->priv |= 0x2;
1675 } else {
1676 ep->priv &= ~0x2;
1677 }
1678 if (ep->priv & 0xc6) {
1679 ep->priv &= ~0x1;
1680 } else {
1681 ep->priv |= 0x1; /* no errors */
1682 }
1683 wrslot_stat(ssc, slp);
1684 break;
1685 }
1686 case SESTYP_POWER:
1687 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1688 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1689 } else {
1690 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1691 }
1692 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1693 cc->flag2, 0, slp);
1694 if (err)
1695 return (err);
1696 if (obp->cstat[3] & SESCTL_RQSTON) {
1697 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1698 idx - cc->pwroff, 0, 0, slp);
1699 } else {
1700 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1701 idx - cc->pwroff, 0, 1, slp);
1702 }
1703 break;
1704 case SESTYP_FAN:
1705 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1706 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1707 } else {
1708 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1709 }
1710 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1711 cc->flag2, 0, slp);
1712 if (err)
1713 return (err);
1714 if (obp->cstat[3] & SESCTL_RQSTON) {
1715 uint8_t fsp;
1716 if ((obp->cstat[3] & 0x7) == 7) {
1717 fsp = 4;
1718 } else if ((obp->cstat[3] & 0x7) == 6) {
1719 fsp = 3;
1720 } else if ((obp->cstat[3] & 0x7) == 4) {
1721 fsp = 2;
1722 } else {
1723 fsp = 1;
1724 }
1725 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1726 } else {
1727 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1728 }
1729 break;
1730 case SESTYP_DOORLOCK:
1731 if (obp->cstat[3] & 0x1) {
1732 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1733 } else {
1734 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1735 }
1736 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1737 cc->flag2, 0, slp);
1738 break;
1739 case SESTYP_ALARM:
1740 /*
1741 * On all nonzero but the 'muted' bit, we turn on the alarm,
1742 */
1743 obp->cstat[3] &= ~0xa;
1744 if (obp->cstat[3] & 0x40) {
1745 cc->flag2 &= ~SAFT_FLG1_ALARM;
1746 } else if (obp->cstat[3] != 0) {
1747 cc->flag2 |= SAFT_FLG1_ALARM;
1748 } else {
1749 cc->flag2 &= ~SAFT_FLG1_ALARM;
1750 }
1751 ep->priv = obp->cstat[3];
1752 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1753 cc->flag2, 0, slp);
1754 break;
1755 default:
1756 break;
1757 }
1758 ep->svalid = 0;
1759 return (0);
1760 }
1761
1762 static int
1763 safte_getconfig(ses_softc_t *ssc)
1764 {
1765 struct scfg *cfg;
1766 int err, amt;
1767 char *sdata;
1768 static char cdb[10] =
1769 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1770
1771 cfg = ssc->ses_private;
1772 if (cfg == NULL)
1773 return (ENXIO);
1774
1775 sdata = SES_MALLOC(SAFT_SCRATCH);
1776 if (sdata == NULL)
1777 return (ENOMEM);
1778
1779 amt = SAFT_SCRATCH;
1780 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1781 if (err) {
1782 SES_FREE(sdata, SAFT_SCRATCH);
1783 return (err);
1784 }
1785 amt = SAFT_SCRATCH - amt;
1786 if (amt < 6) {
1787 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1788 SES_FREE(sdata, SAFT_SCRATCH);
1789 return (EIO);
1790 }
1791 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1792 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1793 cfg->Nfans = sdata[0];
1794 cfg->Npwr = sdata[1];
1795 cfg->Nslots = sdata[2];
1796 cfg->DoorLock = sdata[3];
1797 cfg->Ntherm = sdata[4];
1798 cfg->Nspkrs = sdata[5];
1799 cfg->Nalarm = NPSEUDO_ALARM;
1800 SES_FREE(sdata, SAFT_SCRATCH);
1801 return (0);
1802 }
1803
1804 static int
1805 safte_rdstat(ses_softc_t *ssc, int slpflg)
1806 {
1807 int err, oid, r, i, hiwater, nitems, amt;
1808 uint16_t tempflags;
1809 size_t buflen;
1810 uint8_t status, oencstat;
1811 char *sdata, cdb[10];
1812 struct scfg *cc = ssc->ses_private;
1813
1814
1815 /*
1816 * The number of objects overstates things a bit,
1817 * both for the bogus 'thermometer' entries and
1818 * the drive status (which isn't read at the same
1819 * time as the enclosure status), but that's okay.
1820 */
1821 buflen = 4 * cc->Nslots;
1822 if (ssc->ses_nobjects > buflen)
1823 buflen = ssc->ses_nobjects;
1824 sdata = SES_MALLOC(buflen);
1825 if (sdata == NULL)
1826 return (ENOMEM);
1827
1828 cdb[0] = READ_BUFFER;
1829 cdb[1] = 1;
1830 cdb[2] = SAFTE_RD_RDESTS;
1831 cdb[3] = 0;
1832 cdb[4] = 0;
1833 cdb[5] = 0;
1834 cdb[6] = 0;
1835 cdb[7] = (buflen >> 8) & 0xff;
1836 cdb[8] = buflen & 0xff;
1837 cdb[9] = 0;
1838 amt = buflen;
1839 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1840 if (err) {
1841 SES_FREE(sdata, buflen);
1842 return (err);
1843 }
1844 hiwater = buflen - amt;
1845
1846
1847 /*
1848 * invalidate all status bits.
1849 */
1850 for (i = 0; i < ssc->ses_nobjects; i++)
1851 ssc->ses_objmap[i].svalid = 0;
1852 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1853 ssc->ses_encstat = 0;
1854
1855
1856 /*
1857 * Now parse returned buffer.
1858 * If we didn't get enough data back,
1859 * that's considered a fatal error.
1860 */
1861 oid = r = 0;
1862
1863 for (nitems = i = 0; i < cc->Nfans; i++) {
1864 SAFT_BAIL(r, hiwater, sdata, buflen);
1865 /*
1866 * 0 = Fan Operational
1867 * 1 = Fan is malfunctioning
1868 * 2 = Fan is not present
1869 * 0x80 = Unknown or Not Reportable Status
1870 */
1871 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1872 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1873 switch ((int)(uint8_t)sdata[r]) {
1874 case 0:
1875 nitems++;
1876 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1877 /*
1878 * We could get fancier and cache
1879 * fan speeds that we have set, but
1880 * that isn't done now.
1881 */
1882 ssc->ses_objmap[oid].encstat[3] = 7;
1883 break;
1884
1885 case 1:
1886 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1887 /*
1888 * FAIL and FAN STOPPED synthesized
1889 */
1890 ssc->ses_objmap[oid].encstat[3] = 0x40;
1891 /*
1892 * Enclosure marked with CRITICAL error
1893 * if only one fan or no thermometers,
1894 * else the NONCRITICAL error is set.
1895 */
1896 if (cc->Nfans == 1 || cc->Ntherm == 0)
1897 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1898 else
1899 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1900 break;
1901 case 2:
1902 ssc->ses_objmap[oid].encstat[0] =
1903 SES_OBJSTAT_NOTINSTALLED;
1904 ssc->ses_objmap[oid].encstat[3] = 0;
1905 /*
1906 * Enclosure marked with CRITICAL error
1907 * if only one fan or no thermometers,
1908 * else the NONCRITICAL error is set.
1909 */
1910 if (cc->Nfans == 1)
1911 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1912 else
1913 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1914 break;
1915 case 0x80:
1916 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1917 ssc->ses_objmap[oid].encstat[3] = 0;
1918 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1919 break;
1920 default:
1921 ssc->ses_objmap[oid].encstat[0] =
1922 SES_OBJSTAT_UNSUPPORTED;
1923 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1924 sdata[r] & 0xff);
1925 break;
1926 }
1927 ssc->ses_objmap[oid++].svalid = 1;
1928 r++;
1929 }
1930
1931 /*
1932 * No matter how you cut it, no cooling elements when there
1933 * should be some there is critical.
1934 */
1935 if (cc->Nfans && nitems == 0) {
1936 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1937 }
1938
1939
1940 for (i = 0; i < cc->Npwr; i++) {
1941 SAFT_BAIL(r, hiwater, sdata, buflen);
1942 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1943 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1944 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1945 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1946 switch ((uint8_t)sdata[r]) {
1947 case 0x00: /* pws operational and on */
1948 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1949 break;
1950 case 0x01: /* pws operational and off */
1951 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1952 ssc->ses_objmap[oid].encstat[3] = 0x10;
1953 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1954 break;
1955 case 0x10: /* pws is malfunctioning and commanded on */
1956 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1957 ssc->ses_objmap[oid].encstat[3] = 0x61;
1958 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1959 break;
1960
1961 case 0x11: /* pws is malfunctioning and commanded off */
1962 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1963 ssc->ses_objmap[oid].encstat[3] = 0x51;
1964 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1965 break;
1966 case 0x20: /* pws is not present */
1967 ssc->ses_objmap[oid].encstat[0] =
1968 SES_OBJSTAT_NOTINSTALLED;
1969 ssc->ses_objmap[oid].encstat[3] = 0;
1970 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1971 break;
1972 case 0x21: /* pws is present */
1973 /*
1974 * This is for enclosures that cannot tell whether the
1975 * device is on or malfunctioning, but know that it is
1976 * present. Just fall through.
1977 */
1978 /* FALLTHROUGH */
1979 case 0x80: /* Unknown or Not Reportable Status */
1980 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1981 ssc->ses_objmap[oid].encstat[3] = 0;
1982 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1983 break;
1984 default:
1985 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1986 i, sdata[r] & 0xff);
1987 break;
1988 }
1989 ssc->ses_objmap[oid++].svalid = 1;
1990 r++;
1991 }
1992
1993 /*
1994 * Skip over Slot SCSI IDs
1995 */
1996 r += cc->Nslots;
1997
1998 /*
1999 * We always have doorlock status, no matter what,
2000 * but we only save the status if we have one.
2001 */
2002 SAFT_BAIL(r, hiwater, sdata, buflen);
2003 if (cc->DoorLock) {
2004 /*
2005 * 0 = Door Locked
2006 * 1 = Door Unlocked, or no Lock Installed
2007 * 0x80 = Unknown or Not Reportable Status
2008 */
2009 ssc->ses_objmap[oid].encstat[1] = 0;
2010 ssc->ses_objmap[oid].encstat[2] = 0;
2011 switch ((uint8_t)sdata[r]) {
2012 case 0:
2013 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2014 ssc->ses_objmap[oid].encstat[3] = 0;
2015 break;
2016 case 1:
2017 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2018 ssc->ses_objmap[oid].encstat[3] = 1;
2019 break;
2020 case 0x80:
2021 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2022 ssc->ses_objmap[oid].encstat[3] = 0;
2023 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2024 break;
2025 default:
2026 ssc->ses_objmap[oid].encstat[0] =
2027 SES_OBJSTAT_UNSUPPORTED;
2028 SES_LOG(ssc, "unknown lock status 0x%x\n",
2029 sdata[r] & 0xff);
2030 break;
2031 }
2032 ssc->ses_objmap[oid++].svalid = 1;
2033 }
2034 r++;
2035
2036 /*
2037 * We always have speaker status, no matter what,
2038 * but we only save the status if we have one.
2039 */
2040 SAFT_BAIL(r, hiwater, sdata, buflen);
2041 if (cc->Nspkrs) {
2042 ssc->ses_objmap[oid].encstat[1] = 0;
2043 ssc->ses_objmap[oid].encstat[2] = 0;
2044 if (sdata[r] == 1) {
2045 /*
2046 * We need to cache tone urgency indicators.
2047 * Someday.
2048 */
2049 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2050 ssc->ses_objmap[oid].encstat[3] = 0x8;
2051 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2052 } else if (sdata[r] == 0) {
2053 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2054 ssc->ses_objmap[oid].encstat[3] = 0;
2055 } else {
2056 ssc->ses_objmap[oid].encstat[0] =
2057 SES_OBJSTAT_UNSUPPORTED;
2058 ssc->ses_objmap[oid].encstat[3] = 0;
2059 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2060 sdata[r] & 0xff);
2061 }
2062 ssc->ses_objmap[oid++].svalid = 1;
2063 }
2064 r++;
2065
2066 for (i = 0; i < cc->Ntherm; i++) {
2067 SAFT_BAIL(r, hiwater, sdata, buflen);
2068 /*
2069 * Status is a range from -10 to 245 deg Celsius,
2070 * which we need to normalize to -20 to -245 according
2071 * to the latest SCSI spec, which makes little
2072 * sense since this would overflow an 8bit value.
2073 * Well, still, the base normalization is -20,
2074 * not -10, so we have to adjust.
2075 *
2076 * So what's over and under temperature?
2077 * Hmm- we'll state that 'normal' operating
2078 * is 10 to 40 deg Celsius.
2079 */
2080
2081 /*
2082 * Actually.... All of the units that people out in the world
2083 * seem to have do not come even close to setting a value that
2084 * complies with this spec.
2085 *
2086 * The closest explanation I could find was in an
2087 * LSI-Logic manual, which seemed to indicate that
2088 * this value would be set by whatever the I2C code
2089 * would interpolate from the output of an LM75
2090 * temperature sensor.
2091 *
2092 * This means that it is impossible to use the actual
2093 * numeric value to predict anything. But we don't want
2094 * to lose the value. So, we'll propagate the *uncorrected*
2095 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2096 * temperature flags for warnings.
2097 */
2098 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2099 ssc->ses_objmap[oid].encstat[1] = 0;
2100 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2101 ssc->ses_objmap[oid].encstat[3] = 0;
2102 ssc->ses_objmap[oid++].svalid = 1;
2103 r++;
2104 }
2105
2106 /*
2107 * Now, for "pseudo" thermometers, we have two bytes
2108 * of information in enclosure status- 16 bits. Actually,
2109 * the MSB is a single TEMP ALERT flag indicating whether
2110 * any other bits are set, but, thanks to fuzzy thinking,
2111 * in the SAF-TE spec, this can also be set even if no
2112 * other bits are set, thus making this really another
2113 * binary temperature sensor.
2114 */
2115
2116 SAFT_BAIL(r, hiwater, sdata, buflen);
2117 tempflags = sdata[r++];
2118 SAFT_BAIL(r, hiwater, sdata, buflen);
2119 tempflags |= (tempflags << 8) | sdata[r++];
2120
2121 for (i = 0; i < NPSEUDO_THERM; i++) {
2122 ssc->ses_objmap[oid].encstat[1] = 0;
2123 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2124 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2125 ssc->ses_objmap[4].encstat[2] = 0xff;
2126 /*
2127 * Set 'over temperature' failure.
2128 */
2129 ssc->ses_objmap[oid].encstat[3] = 8;
2130 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2131 } else {
2132 /*
2133 * We used to say 'not available' and synthesize a
2134 * nominal 30 deg (C)- that was wrong. Actually,
2135 * Just say 'OK', and use the reserved value of
2136 * zero.
2137 */
2138 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2139 ssc->ses_objmap[oid].encstat[2] = 0;
2140 ssc->ses_objmap[oid].encstat[3] = 0;
2141 }
2142 ssc->ses_objmap[oid++].svalid = 1;
2143 }
2144
2145 /*
2146 * Get alarm status.
2147 */
2148 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2149 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2150 ssc->ses_objmap[oid++].svalid = 1;
2151
2152 /*
2153 * Now get drive slot status
2154 */
2155 cdb[2] = SAFTE_RD_RDDSTS;
2156 amt = buflen;
2157 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2158 if (err) {
2159 SES_FREE(sdata, buflen);
2160 return (err);
2161 }
2162 hiwater = buflen - amt;
2163 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2164 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2165 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2166 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2167 ssc->ses_objmap[oid].encstat[2] = 0;
2168 ssc->ses_objmap[oid].encstat[3] = 0;
2169 status = sdata[r+3];
2170 if ((status & 0x1) == 0) { /* no device */
2171 ssc->ses_objmap[oid].encstat[0] =
2172 SES_OBJSTAT_NOTINSTALLED;
2173 } else {
2174 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2175 }
2176 if (status & 0x2) {
2177 ssc->ses_objmap[oid].encstat[2] = 0x8;
2178 }
2179 if ((status & 0x4) == 0) {
2180 ssc->ses_objmap[oid].encstat[3] = 0x10;
2181 }
2182 ssc->ses_objmap[oid++].svalid = 1;
2183 }
2184 /* see comment below about sticky enclosure status */
2185 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2186 SES_FREE(sdata, buflen);
2187 return (0);
2188 }
2189
2190 static int
2191 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2192 {
2193 int idx;
2194 encobj *ep;
2195 struct scfg *cc = ssc->ses_private;
2196
2197 if (cc == NULL)
2198 return (0);
2199
2200 idx = (int)obp->obj_id;
2201 ep = &ssc->ses_objmap[idx];
2202
2203 switch (ep->enctype) {
2204 case SESTYP_DEVICE:
2205 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2206 ep->priv |= 0x40;
2207 }
2208 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2209 if (obp->cstat[0] & SESCTL_DISABLE) {
2210 ep->priv |= 0x80;
2211 /*
2212 * Hmm. Try to set the 'No Drive' flag.
2213 * Maybe that will count as a 'disable'.
2214 */
2215 }
2216 if (ep->priv & 0xc6) {
2217 ep->priv &= ~0x1;
2218 } else {
2219 ep->priv |= 0x1; /* no errors */
2220 }
2221 wrslot_stat(ssc, slp);
2222 break;
2223 case SESTYP_POWER:
2224 /*
2225 * Okay- the only one that makes sense here is to
2226 * do the 'disable' for a power supply.
2227 */
2228 if (obp->cstat[0] & SESCTL_DISABLE) {
2229 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2230 idx - cc->pwroff, 0, 0, slp);
2231 }
2232 break;
2233 case SESTYP_FAN:
2234 /*
2235 * Okay- the only one that makes sense here is to
2236 * set fan speed to zero on disable.
2237 */
2238 if (obp->cstat[0] & SESCTL_DISABLE) {
2239 /* remember- fans are the first items, so idx works */
2240 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2241 }
2242 break;
2243 case SESTYP_DOORLOCK:
2244 /*
2245 * Well, we can 'disable' the lock.
2246 */
2247 if (obp->cstat[0] & SESCTL_DISABLE) {
2248 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2249 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2250 cc->flag2, 0, slp);
2251 }
2252 break;
2253 case SESTYP_ALARM:
2254 /*
2255 * Well, we can 'disable' the alarm.
2256 */
2257 if (obp->cstat[0] & SESCTL_DISABLE) {
2258 cc->flag2 &= ~SAFT_FLG1_ALARM;
2259 ep->priv |= 0x40; /* Muted */
2260 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2261 cc->flag2, 0, slp);
2262 }
2263 break;
2264 default:
2265 break;
2266 }
2267 ep->svalid = 0;
2268 return (0);
2269 }
2270
2271 /*
2272 * This function handles all of the 16 byte WRITE BUFFER commands.
2273 */
2274 static int
2275 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2276 uint8_t b3, int slp)
2277 {
2278 int err, amt;
2279 char *sdata;
2280 struct scfg *cc = ssc->ses_private;
2281 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2282
2283 if (cc == NULL)
2284 return (0);
2285
2286 sdata = SES_MALLOC(16);
2287 if (sdata == NULL)
2288 return (ENOMEM);
2289
2290 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2291
2292 sdata[0] = op;
2293 sdata[1] = b1;
2294 sdata[2] = b2;
2295 sdata[3] = b3;
2296 MEMZERO(&sdata[4], 12);
2297 amt = -16;
2298 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2299 SES_FREE(sdata, 16);
2300 return (err);
2301 }
2302
2303 /*
2304 * This function updates the status byte for the device slot described.
2305 *
2306 * Since this is an optional SAF-TE command, there's no point in
2307 * returning an error.
2308 */
2309 static void
2310 wrslot_stat(ses_softc_t *ssc, int slp)
2311 {
2312 int i, amt;
2313 encobj *ep;
2314 char cdb[10], *sdata;
2315 struct scfg *cc = ssc->ses_private;
2316
2317 if (cc == NULL)
2318 return;
2319
2320 SES_VLOG(ssc, "saf_wrslot\n");
2321 cdb[0] = WRITE_BUFFER;
2322 cdb[1] = 1;
2323 cdb[2] = 0;
2324 cdb[3] = 0;
2325 cdb[4] = 0;
2326 cdb[5] = 0;
2327 cdb[6] = 0;
2328 cdb[7] = 0;
2329 cdb[8] = cc->Nslots * 3 + 1;
2330 cdb[9] = 0;
2331
2332 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2333 if (sdata == NULL)
2334 return;
2335 MEMZERO(sdata, cc->Nslots * 3 + 1);
2336
2337 sdata[0] = SAFTE_WT_DSTAT;
2338 for (i = 0; i < cc->Nslots; i++) {
2339 ep = &ssc->ses_objmap[cc->slotoff + i];
2340 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2341 sdata[1 + (3 * i)] = ep->priv & 0xff;
2342 }
2343 amt = -(cc->Nslots * 3 + 1);
2344 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2345 SES_FREE(sdata, cc->Nslots * 3 + 1);
2346 }
2347
2348 /*
2349 * This function issues the "PERFORM SLOT OPERATION" command.
2350 */
2351 static int
2352 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2353 {
2354 int err, amt;
2355 char *sdata;
2356 struct scfg *cc = ssc->ses_private;
2357 static char cdb[10] =
2358 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2359
2360 if (cc == NULL)
2361 return (0);
2362
2363 sdata = SES_MALLOC(SAFT_SCRATCH);
2364 if (sdata == NULL)
2365 return (ENOMEM);
2366 MEMZERO(sdata, SAFT_SCRATCH);
2367
2368 sdata[0] = SAFTE_WT_SLTOP;
2369 sdata[1] = slot;
2370 sdata[2] = opflag;
2371 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2372 amt = -SAFT_SCRATCH;
2373 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2374 SES_FREE(sdata, SAFT_SCRATCH);
2375 return (err);
2376 }
2377