ses.c revision 1.38.36.2 1 /* $NetBSD: ses.c,v 1.38.36.2 2008/06/02 13:23:51 mjf Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.38.36.2 2008/06/02 13:23:51 mjf Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsipiconf.h>
57 #include <dev/scsipi/scsipi_base.h>
58 #include <dev/scsipi/ses.h>
59
60 /*
61 * Platform Independent Driver Internal Definitions for SES devices.
62 */
63 typedef enum {
64 SES_NONE,
65 SES_SES_SCSI2,
66 SES_SES,
67 SES_SES_PASSTHROUGH,
68 SES_SEN,
69 SES_SAFT
70 } enctyp;
71
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 int (*softc_init)(ses_softc_t *, int);
76 int (*init_enc)(ses_softc_t *);
77 int (*get_encstat)(ses_softc_t *, int);
78 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82
83 #define ENCI_SVALID 0x80
84
85 typedef struct {
86 uint32_t
87 enctype : 8, /* enclosure type */
88 subenclosure : 8, /* subenclosure id */
89 svalid : 1, /* enclosure information valid */
90 priv : 15; /* private data, per object */
91 uint8_t encstat[4]; /* state && stats */
92 } encobj;
93
94 #define SEN_ID "UNISYS SUN_SEN"
95 #define SEN_ID_LEN 24
96
97 static enctyp ses_type(struct scsipi_inquiry_data *);
98
99
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114
115 /*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119 #define STRNCMP strncmp
120 #define PRINTF printf
121 #define SES_LOG ses_log
122 #if defined(DEBUG) || defined(SCSIDEBUG)
123 #define SES_VLOG ses_log
124 #else
125 #define SES_VLOG if (0) ses_log
126 #endif
127 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
129 #define MEMZERO(dest, amt) memset(dest, 0, amt)
130 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
131 #define RECEIVE_DIAGNOSTIC 0x1c
132 #define SEND_DIAGNOSTIC 0x1d
133 #define WRITE_BUFFER 0x3b
134 #define READ_BUFFER 0x3c
135
136 static dev_type_open(sesopen);
137 static dev_type_close(sesclose);
138 static dev_type_ioctl(sesioctl);
139
140 const struct cdevsw ses_cdevsw = {
141 sesopen, sesclose, noread, nowrite, sesioctl,
142 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
143 };
144
145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146 static void ses_log(struct ses_softc *, const char *, ...)
147 __attribute__((__format__(__printf__, 2, 3)));
148
149 /*
150 * General NetBSD kernel stuff.
151 */
152
153 struct ses_softc {
154 struct device sc_device;
155 struct scsipi_periph *sc_periph;
156 enctyp ses_type; /* type of enclosure */
157 encvec ses_vec; /* vector to handlers */
158 void * ses_private; /* per-type private data */
159 encobj * ses_objmap; /* objects */
160 u_int32_t ses_nobjects; /* number of objects */
161 ses_encstat ses_encstat; /* overall status */
162 u_int8_t ses_flags;
163 };
164 #define SES_FLAG_INVALID 0x01
165 #define SES_FLAG_OPEN 0x02
166 #define SES_FLAG_INITIALIZED 0x04
167
168 #define SESUNIT(x) (minor((x)))
169
170 static int ses_match(struct device *, struct cfdata *, void *);
171 static void ses_attach(struct device *, struct device *, void *);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173
174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
175 ses_match, ses_attach, NULL, NULL);
176
177 extern struct cfdriver ses_cd;
178
179 static const struct scsipi_periphsw ses_switch = {
180 NULL,
181 NULL,
182 NULL,
183 NULL
184 };
185
186 static int
187 ses_match(struct device *parent, struct cfdata *match,
188 void *aux)
189 {
190 struct scsipibus_attach_args *sa = aux;
191
192 switch (ses_device_type(sa)) {
193 case SES_SES:
194 case SES_SES_SCSI2:
195 case SES_SEN:
196 case SES_SAFT:
197 case SES_SES_PASSTHROUGH:
198 /*
199 * For these devices, it's a perfect match.
200 */
201 return (24);
202 default:
203 return (0);
204 }
205 }
206
207
208 /*
209 * Complete the attachment.
210 *
211 * We have to repeat the rerun of INQUIRY data as above because
212 * it's not until the return from the match routine that we have
213 * the softc available to set stuff in.
214 */
215 static void
216 ses_attach(struct device *parent, struct device *self, void *aux)
217 {
218 const char *tname;
219 struct ses_softc *softc = device_private(self);
220 struct scsipibus_attach_args *sa = aux;
221 struct scsipi_periph *periph = sa->sa_periph;
222 int maj;
223
224 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
225 softc->sc_periph = periph;
226 periph->periph_dev = &softc->sc_device;
227 periph->periph_switch = &ses_switch;
228 periph->periph_openings = 1;
229
230 softc->ses_type = ses_device_type(sa);
231 switch (softc->ses_type) {
232 case SES_SES:
233 case SES_SES_SCSI2:
234 case SES_SES_PASSTHROUGH:
235 softc->ses_vec.softc_init = ses_softc_init;
236 softc->ses_vec.init_enc = ses_init_enc;
237 softc->ses_vec.get_encstat = ses_get_encstat;
238 softc->ses_vec.set_encstat = ses_set_encstat;
239 softc->ses_vec.get_objstat = ses_get_objstat;
240 softc->ses_vec.set_objstat = ses_set_objstat;
241 break;
242 case SES_SAFT:
243 softc->ses_vec.softc_init = safte_softc_init;
244 softc->ses_vec.init_enc = safte_init_enc;
245 softc->ses_vec.get_encstat = safte_get_encstat;
246 softc->ses_vec.set_encstat = safte_set_encstat;
247 softc->ses_vec.get_objstat = safte_get_objstat;
248 softc->ses_vec.set_objstat = safte_set_objstat;
249 break;
250 case SES_SEN:
251 break;
252 case SES_NONE:
253 default:
254 break;
255 }
256
257 switch (softc->ses_type) {
258 default:
259 case SES_NONE:
260 tname = "No SES device";
261 break;
262 case SES_SES_SCSI2:
263 tname = "SCSI-2 SES Device";
264 break;
265 case SES_SES:
266 tname = "SCSI-3 SES Device";
267 break;
268 case SES_SES_PASSTHROUGH:
269 tname = "SES Passthrough Device";
270 break;
271 case SES_SEN:
272 tname = "UNISYS SEN Device (NOT HANDLED YET)";
273 break;
274 case SES_SAFT:
275 tname = "SAF-TE Compliant Device";
276 break;
277 }
278 printf("\n%s: %s\n", device_xname(&softc->sc_device), tname);
279
280 maj = cdevsw_lookup_major(&ses_cdevsw);
281 device_register_name(makedev(maj, device_unit(self)), self, true,
282 DEV_OTHER, device_xname(self));
283 }
284
285
286 static enctyp
287 ses_device_type(struct scsipibus_attach_args *sa)
288 {
289 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
290
291 if (inqp == NULL)
292 return (SES_NONE);
293
294 return (ses_type(inqp));
295 }
296
297 static int
298 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
299 {
300 struct ses_softc *softc;
301 int error, unit;
302
303 unit = SESUNIT(dev);
304 if (unit >= ses_cd.cd_ndevs)
305 return (ENXIO);
306 softc = ses_cd.cd_devs[unit];
307 if (softc == NULL)
308 return (ENXIO);
309
310 if (softc->ses_flags & SES_FLAG_INVALID) {
311 error = ENXIO;
312 goto out;
313 }
314 if (softc->ses_flags & SES_FLAG_OPEN) {
315 error = EBUSY;
316 goto out;
317 }
318 if (softc->ses_vec.softc_init == NULL) {
319 error = ENXIO;
320 goto out;
321 }
322 error = scsipi_adapter_addref(
323 softc->sc_periph->periph_channel->chan_adapter);
324 if (error != 0)
325 goto out;
326
327
328 softc->ses_flags |= SES_FLAG_OPEN;
329 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
330 error = (*softc->ses_vec.softc_init)(softc, 1);
331 if (error)
332 softc->ses_flags &= ~SES_FLAG_OPEN;
333 else
334 softc->ses_flags |= SES_FLAG_INITIALIZED;
335 }
336
337 out:
338 return (error);
339 }
340
341 static int
342 sesclose(dev_t dev, int flags, int fmt,
343 struct lwp *l)
344 {
345 struct ses_softc *softc;
346 int unit;
347
348 unit = SESUNIT(dev);
349 if (unit >= ses_cd.cd_ndevs)
350 return (ENXIO);
351 softc = ses_cd.cd_devs[unit];
352 if (softc == NULL)
353 return (ENXIO);
354
355 scsipi_wait_drain(softc->sc_periph);
356 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
357 softc->ses_flags &= ~SES_FLAG_OPEN;
358 return (0);
359 }
360
361 static int
362 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
363 {
364 ses_encstat tmp;
365 ses_objstat objs;
366 ses_object obj, *uobj;
367 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
368 void *addr;
369 int error, i;
370
371
372 if (arg_addr)
373 addr = *((void **) arg_addr);
374 else
375 addr = NULL;
376
377 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
378
379 /*
380 * Now check to see whether we're initialized or not.
381 */
382 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
383 return (ENODEV);
384 }
385
386 error = 0;
387
388 /*
389 * If this command can change the device's state,
390 * we must have the device open for writing.
391 */
392 switch (cmd) {
393 case SESIOC_GETNOBJ:
394 case SESIOC_GETOBJMAP:
395 case SESIOC_GETENCSTAT:
396 case SESIOC_GETOBJSTAT:
397 break;
398 default:
399 if ((flag & FWRITE) == 0) {
400 return (EBADF);
401 }
402 }
403
404 switch (cmd) {
405 case SESIOC_GETNOBJ:
406 if (addr == NULL)
407 return EINVAL;
408 error = copyout(&ssc->ses_nobjects, addr,
409 sizeof (ssc->ses_nobjects));
410 break;
411
412 case SESIOC_GETOBJMAP:
413 if (addr == NULL)
414 return EINVAL;
415 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
416 obj.obj_id = i;
417 obj.subencid = ssc->ses_objmap[i].subenclosure;
418 obj.object_type = ssc->ses_objmap[i].enctype;
419 error = copyout(&obj, uobj, sizeof (ses_object));
420 if (error) {
421 break;
422 }
423 }
424 break;
425
426 case SESIOC_GETENCSTAT:
427 if (addr == NULL)
428 return EINVAL;
429 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 if (error)
431 break;
432 tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 error = copyout(&tmp, addr, sizeof (ses_encstat));
434 ssc->ses_encstat = tmp;
435 break;
436
437 case SESIOC_SETENCSTAT:
438 if (addr == NULL)
439 return EINVAL;
440 error = copyin(addr, &tmp, sizeof (ses_encstat));
441 if (error)
442 break;
443 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
444 break;
445
446 case SESIOC_GETOBJSTAT:
447 if (addr == NULL)
448 return EINVAL;
449 error = copyin(addr, &objs, sizeof (ses_objstat));
450 if (error)
451 break;
452 if (objs.obj_id >= ssc->ses_nobjects) {
453 error = EINVAL;
454 break;
455 }
456 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
457 if (error)
458 break;
459 error = copyout(&objs, addr, sizeof (ses_objstat));
460 /*
461 * Always (for now) invalidate entry.
462 */
463 ssc->ses_objmap[objs.obj_id].svalid = 0;
464 break;
465
466 case SESIOC_SETOBJSTAT:
467 if (addr == NULL)
468 return EINVAL;
469 error = copyin(addr, &objs, sizeof (ses_objstat));
470 if (error)
471 break;
472
473 if (objs.obj_id >= ssc->ses_nobjects) {
474 error = EINVAL;
475 break;
476 }
477 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
478
479 /*
480 * Always (for now) invalidate entry.
481 */
482 ssc->ses_objmap[objs.obj_id].svalid = 0;
483 break;
484
485 case SESIOC_INIT:
486
487 error = (*ssc->ses_vec.init_enc)(ssc);
488 break;
489
490 default:
491 error = scsipi_do_ioctl(ssc->sc_periph,
492 dev, cmd, arg_addr, flag, l);
493 break;
494 }
495 return (error);
496 }
497
498 static int
499 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
500 {
501 struct scsipi_generic sgen;
502 int dl, flg, error;
503
504 if (dptr) {
505 if ((dl = *dlenp) < 0) {
506 dl = -dl;
507 flg = XS_CTL_DATA_OUT;
508 } else {
509 flg = XS_CTL_DATA_IN;
510 }
511 } else {
512 dl = 0;
513 flg = 0;
514 }
515
516 if (cdbl > sizeof (struct scsipi_generic)) {
517 cdbl = sizeof (struct scsipi_generic);
518 }
519 memcpy(&sgen, cdb, cdbl);
520 #ifndef SCSIDEBUG
521 flg |= XS_CTL_SILENT;
522 #endif
523 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
524 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
525
526 if (error == 0 && dptr)
527 *dlenp = 0;
528
529 return (error);
530 }
531
532 static void
533 ses_log(struct ses_softc *ssc, const char *fmt, ...)
534 {
535 va_list ap;
536
537 printf("%s: ", device_xname(&ssc->sc_device));
538 va_start(ap, fmt);
539 vprintf(fmt, ap);
540 va_end(ap);
541 }
542
543 /*
544 * The code after this point runs on many platforms,
545 * so forgive the slightly awkward and nonconforming
546 * appearance.
547 */
548
549 /*
550 * Is this a device that supports enclosure services?
551 *
552 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
553 * an SES device. If it happens to be an old UNISYS SEN device, we can
554 * handle that too.
555 */
556
557 #define SAFTE_START 44
558 #define SAFTE_END 50
559 #define SAFTE_LEN SAFTE_END-SAFTE_START
560
561 static enctyp
562 ses_type(struct scsipi_inquiry_data *inqp)
563 {
564 size_t given_len = inqp->additional_length + 4;
565
566 if (given_len < 8+SEN_ID_LEN)
567 return (SES_NONE);
568
569 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
570 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
571 return (SES_SEN);
572 } else if ((inqp->version & SID_ANSII) > 2) {
573 return (SES_SES);
574 } else {
575 return (SES_SES_SCSI2);
576 }
577 return (SES_NONE);
578 }
579
580 #ifdef SES_ENABLE_PASSTHROUGH
581 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
582 /*
583 * PassThrough Device.
584 */
585 return (SES_SES_PASSTHROUGH);
586 }
587 #endif
588
589 /*
590 * The comparison is short for a reason-
591 * some vendors were chopping it short.
592 */
593
594 if (given_len < SAFTE_END - 2) {
595 return (SES_NONE);
596 }
597
598 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
599 SAFTE_LEN - 2) == 0) {
600 return (SES_SAFT);
601 }
602
603 return (SES_NONE);
604 }
605
606 /*
607 * SES Native Type Device Support
608 */
609
610 /*
611 * SES Diagnostic Page Codes
612 */
613
614 typedef enum {
615 SesConfigPage = 0x1,
616 SesControlPage,
617 #define SesStatusPage SesControlPage
618 SesHelpTxt,
619 SesStringOut,
620 #define SesStringIn SesStringOut
621 SesThresholdOut,
622 #define SesThresholdIn SesThresholdOut
623 SesArrayControl,
624 #define SesArrayStatus SesArrayControl
625 SesElementDescriptor,
626 SesShortStatus
627 } SesDiagPageCodes;
628
629 /*
630 * minimal amounts
631 */
632
633 /*
634 * Minimum amount of data, starting from byte 0, to have
635 * the config header.
636 */
637 #define SES_CFGHDR_MINLEN 12
638
639 /*
640 * Minimum amount of data, starting from byte 0, to have
641 * the config header and one enclosure header.
642 */
643 #define SES_ENCHDR_MINLEN 48
644
645 /*
646 * Take this value, subtract it from VEnclen and you know
647 * the length of the vendor unique bytes.
648 */
649 #define SES_ENCHDR_VMIN 36
650
651 /*
652 * SES Data Structures
653 */
654
655 typedef struct {
656 uint32_t GenCode; /* Generation Code */
657 uint8_t Nsubenc; /* Number of Subenclosures */
658 } SesCfgHdr;
659
660 typedef struct {
661 uint8_t Subencid; /* SubEnclosure Identifier */
662 uint8_t Ntypes; /* # of supported types */
663 uint8_t VEnclen; /* Enclosure Descriptor Length */
664 } SesEncHdr;
665
666 typedef struct {
667 uint8_t encWWN[8]; /* XXX- Not Right Yet */
668 uint8_t encVid[8];
669 uint8_t encPid[16];
670 uint8_t encRev[4];
671 uint8_t encVen[1];
672 } SesEncDesc;
673
674 typedef struct {
675 uint8_t enc_type; /* type of element */
676 uint8_t enc_maxelt; /* maximum supported */
677 uint8_t enc_subenc; /* in SubEnc # N */
678 uint8_t enc_tlen; /* Type Descriptor Text Length */
679 } SesThdr;
680
681 typedef struct {
682 uint8_t comstatus;
683 uint8_t comstat[3];
684 } SesComStat;
685
686 struct typidx {
687 int ses_tidx;
688 int ses_oidx;
689 };
690
691 struct sscfg {
692 uint8_t ses_ntypes; /* total number of types supported */
693
694 /*
695 * We need to keep a type index as well as an
696 * object index for each object in an enclosure.
697 */
698 struct typidx *ses_typidx;
699
700 /*
701 * We also need to keep track of the number of elements
702 * per type of element. This is needed later so that we
703 * can find precisely in the returned status data the
704 * status for the Nth element of the Kth type.
705 */
706 uint8_t * ses_eltmap;
707 };
708
709
710 /*
711 * (de)canonicalization defines
712 */
713 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
714 #define sbit(x, bit) (((uint32_t)(x)) << bit)
715 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716
717 #define sset16(outp, idx, sval) \
718 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
719 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
720
721
722 #define sset24(outp, idx, sval) \
723 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
724 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
725 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726
727
728 #define sset32(outp, idx, sval) \
729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
730 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
733
734 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
735 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
736 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
737 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
738
739 #define sget16(inp, idx, lval) \
740 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
741 (((uint8_t *)(inp))[idx+1]), idx += 2
742
743 #define gget16(inp, idx, lval) \
744 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
745 (((uint8_t *)(inp))[idx+1])
746
747 #define sget24(inp, idx, lval) \
748 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
749 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
750 (((uint8_t *)(inp))[idx+2]), idx += 3
751
752 #define gget24(inp, idx, lval) \
753 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
754 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
755 (((uint8_t *)(inp))[idx+2])
756
757 #define sget32(inp, idx, lval) \
758 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
759 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
760 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
761 (((uint8_t *)(inp))[idx+3]), idx += 4
762
763 #define gget32(inp, idx, lval) \
764 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
765 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
766 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
767 (((uint8_t *)(inp))[idx+3])
768
769 #define SCSZ 0x2000
770 #define CFLEN (256 + SES_ENCHDR_MINLEN)
771
772 /*
773 * Routines specific && private to SES only
774 */
775
776 static int ses_getconfig(ses_softc_t *);
777 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
778 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
779 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
780 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
781 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
782 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
783 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
784
785 static int
786 ses_softc_init(ses_softc_t *ssc, int doinit)
787 {
788 if (doinit == 0) {
789 struct sscfg *cc;
790 if (ssc->ses_nobjects) {
791 SES_FREE(ssc->ses_objmap,
792 ssc->ses_nobjects * sizeof (encobj));
793 ssc->ses_objmap = NULL;
794 }
795 if ((cc = ssc->ses_private) != NULL) {
796 if (cc->ses_eltmap && cc->ses_ntypes) {
797 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
798 cc->ses_eltmap = NULL;
799 cc->ses_ntypes = 0;
800 }
801 if (cc->ses_typidx && ssc->ses_nobjects) {
802 SES_FREE(cc->ses_typidx,
803 ssc->ses_nobjects * sizeof (struct typidx));
804 cc->ses_typidx = NULL;
805 }
806 SES_FREE(cc, sizeof (struct sscfg));
807 ssc->ses_private = NULL;
808 }
809 ssc->ses_nobjects = 0;
810 return (0);
811 }
812 if (ssc->ses_private == NULL) {
813 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
814 }
815 if (ssc->ses_private == NULL) {
816 return (ENOMEM);
817 }
818 ssc->ses_nobjects = 0;
819 ssc->ses_encstat = 0;
820 return (ses_getconfig(ssc));
821 }
822
823 static int
824 ses_init_enc(ses_softc_t *ssc)
825 {
826 return (0);
827 }
828
829 static int
830 ses_get_encstat(ses_softc_t *ssc, int slpflag)
831 {
832 SesComStat ComStat;
833 int status;
834
835 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
836 return (status);
837 }
838 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
839 return (0);
840 }
841
842 static int
843 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
844 {
845 SesComStat ComStat;
846 int status;
847
848 ComStat.comstatus = encstat & 0xf;
849 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
850 return (status);
851 }
852 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
853 return (0);
854 }
855
856 static int
857 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
858 {
859 int i = (int)obp->obj_id;
860
861 if (ssc->ses_objmap[i].svalid == 0) {
862 SesComStat ComStat;
863 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
864 if (err)
865 return (err);
866 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
867 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
868 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
869 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
870 ssc->ses_objmap[i].svalid = 1;
871 }
872 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
873 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
874 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
875 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
876 return (0);
877 }
878
879 static int
880 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
881 {
882 SesComStat ComStat;
883 int err;
884 /*
885 * If this is clear, we don't do diddly.
886 */
887 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
888 return (0);
889 }
890 ComStat.comstatus = obp->cstat[0];
891 ComStat.comstat[0] = obp->cstat[1];
892 ComStat.comstat[1] = obp->cstat[2];
893 ComStat.comstat[2] = obp->cstat[3];
894 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
895 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
896 return (err);
897 }
898
899 static int
900 ses_getconfig(ses_softc_t *ssc)
901 {
902 struct sscfg *cc;
903 SesCfgHdr cf;
904 SesEncHdr hd;
905 SesEncDesc *cdp;
906 SesThdr thdr;
907 int err, amt, i, nobj, ntype, maxima;
908 char storage[CFLEN], *sdata;
909 static char cdb[6] = {
910 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
911 };
912
913 cc = ssc->ses_private;
914 if (cc == NULL) {
915 return (ENXIO);
916 }
917
918 sdata = SES_MALLOC(SCSZ);
919 if (sdata == NULL)
920 return (ENOMEM);
921
922 amt = SCSZ;
923 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
924 if (err) {
925 SES_FREE(sdata, SCSZ);
926 return (err);
927 }
928 amt = SCSZ - amt;
929
930 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
931 SES_LOG(ssc, "Unable to parse SES Config Header\n");
932 SES_FREE(sdata, SCSZ);
933 return (EIO);
934 }
935 if (amt < SES_ENCHDR_MINLEN) {
936 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
937 SES_FREE(sdata, SCSZ);
938 return (EIO);
939 }
940
941 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
942
943 /*
944 * Now waltz through all the subenclosures toting up the
945 * number of types available in each. For this, we only
946 * really need the enclosure header. However, we get the
947 * enclosure descriptor for debug purposes, as well
948 * as self-consistency checking purposes.
949 */
950
951 maxima = cf.Nsubenc + 1;
952 cdp = (SesEncDesc *) storage;
953 for (ntype = i = 0; i < maxima; i++) {
954 MEMZERO((void *)cdp, sizeof (*cdp));
955 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
956 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
957 SES_FREE(sdata, SCSZ);
958 return (EIO);
959 }
960 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
961 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
962
963 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
964 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
965 SES_FREE(sdata, SCSZ);
966 return (EIO);
967 }
968 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
969 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
970 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
971 cdp->encWWN[6], cdp->encWWN[7]);
972 ntype += hd.Ntypes;
973 }
974
975 /*
976 * Now waltz through all the types that are available, getting
977 * the type header so we can start adding up the number of
978 * objects available.
979 */
980 for (nobj = i = 0; i < ntype; i++) {
981 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
982 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
983 SES_FREE(sdata, SCSZ);
984 return (EIO);
985 }
986 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
987 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
988 thdr.enc_subenc, thdr.enc_tlen);
989 nobj += thdr.enc_maxelt;
990 }
991
992
993 /*
994 * Now allocate the object array and type map.
995 */
996
997 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
998 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
999 cc->ses_eltmap = SES_MALLOC(ntype);
1000
1001 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1002 cc->ses_eltmap == NULL) {
1003 if (ssc->ses_objmap) {
1004 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1005 ssc->ses_objmap = NULL;
1006 }
1007 if (cc->ses_typidx) {
1008 SES_FREE(cc->ses_typidx,
1009 (nobj * sizeof (struct typidx)));
1010 cc->ses_typidx = NULL;
1011 }
1012 if (cc->ses_eltmap) {
1013 SES_FREE(cc->ses_eltmap, ntype);
1014 cc->ses_eltmap = NULL;
1015 }
1016 SES_FREE(sdata, SCSZ);
1017 return (ENOMEM);
1018 }
1019 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1020 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1021 MEMZERO(cc->ses_eltmap, ntype);
1022 cc->ses_ntypes = (uint8_t) ntype;
1023 ssc->ses_nobjects = nobj;
1024
1025 /*
1026 * Now waltz through the # of types again to fill in the types
1027 * (and subenclosure ids) of the allocated objects.
1028 */
1029 nobj = 0;
1030 for (i = 0; i < ntype; i++) {
1031 int j;
1032 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1033 continue;
1034 }
1035 cc->ses_eltmap[i] = thdr.enc_maxelt;
1036 for (j = 0; j < thdr.enc_maxelt; j++) {
1037 cc->ses_typidx[nobj].ses_tidx = i;
1038 cc->ses_typidx[nobj].ses_oidx = j;
1039 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1040 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1041 }
1042 }
1043 SES_FREE(sdata, SCSZ);
1044 return (0);
1045 }
1046
1047 static int
1048 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1049 int in)
1050 {
1051 struct sscfg *cc;
1052 int err, amt, bufsiz, tidx, oidx;
1053 char cdb[6], *sdata;
1054
1055 cc = ssc->ses_private;
1056 if (cc == NULL) {
1057 return (ENXIO);
1058 }
1059
1060 /*
1061 * If we're just getting overall enclosure status,
1062 * we only need 2 bytes of data storage.
1063 *
1064 * If we're getting anything else, we know how much
1065 * storage we need by noting that starting at offset
1066 * 8 in returned data, all object status bytes are 4
1067 * bytes long, and are stored in chunks of types(M)
1068 * and nth+1 instances of type M.
1069 */
1070 if (objid == -1) {
1071 bufsiz = 2;
1072 } else {
1073 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1074 }
1075 sdata = SES_MALLOC(bufsiz);
1076 if (sdata == NULL)
1077 return (ENOMEM);
1078
1079 cdb[0] = RECEIVE_DIAGNOSTIC;
1080 cdb[1] = 1;
1081 cdb[2] = SesStatusPage;
1082 cdb[3] = bufsiz >> 8;
1083 cdb[4] = bufsiz & 0xff;
1084 cdb[5] = 0;
1085 amt = bufsiz;
1086 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1087 if (err) {
1088 SES_FREE(sdata, bufsiz);
1089 return (err);
1090 }
1091 amt = bufsiz - amt;
1092
1093 if (objid == -1) {
1094 tidx = -1;
1095 oidx = -1;
1096 } else {
1097 tidx = cc->ses_typidx[objid].ses_tidx;
1098 oidx = cc->ses_typidx[objid].ses_oidx;
1099 }
1100 if (in) {
1101 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1102 err = ENODEV;
1103 }
1104 } else {
1105 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1106 err = ENODEV;
1107 } else {
1108 cdb[0] = SEND_DIAGNOSTIC;
1109 cdb[1] = 0x10;
1110 cdb[2] = 0;
1111 cdb[3] = bufsiz >> 8;
1112 cdb[4] = bufsiz & 0xff;
1113 cdb[5] = 0;
1114 amt = -bufsiz;
1115 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1116 }
1117 }
1118 SES_FREE(sdata, bufsiz);
1119 return (0);
1120 }
1121
1122
1123 /*
1124 * Routines to parse returned SES data structures.
1125 * Architecture and compiler independent.
1126 */
1127
1128 static int
1129 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1130 {
1131 if (buflen < SES_CFGHDR_MINLEN) {
1132 return (-1);
1133 }
1134 gget8(buffer, 1, cfp->Nsubenc);
1135 gget32(buffer, 4, cfp->GenCode);
1136 return (0);
1137 }
1138
1139 static int
1140 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1141 {
1142 int s, off = 8;
1143 for (s = 0; s < SubEncId; s++) {
1144 if (off + 3 > amt)
1145 return (-1);
1146 off += buffer[off+3] + 4;
1147 }
1148 if (off + 3 > amt) {
1149 return (-1);
1150 }
1151 gget8(buffer, off+1, chp->Subencid);
1152 gget8(buffer, off+2, chp->Ntypes);
1153 gget8(buffer, off+3, chp->VEnclen);
1154 return (0);
1155 }
1156
1157 static int
1158 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1159 {
1160 int s, e, enclen, off = 8;
1161 for (s = 0; s < SubEncId; s++) {
1162 if (off + 3 > amt)
1163 return (-1);
1164 off += buffer[off+3] + 4;
1165 }
1166 if (off + 3 > amt) {
1167 return (-1);
1168 }
1169 gget8(buffer, off+3, enclen);
1170 off += 4;
1171 if (off >= amt)
1172 return (-1);
1173
1174 e = off + enclen;
1175 if (e > amt) {
1176 e = amt;
1177 }
1178 MEMCPY(cdp, &buffer[off], e - off);
1179 return (0);
1180 }
1181
1182 static int
1183 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1184 {
1185 int s, off = 8;
1186
1187 if (amt < SES_CFGHDR_MINLEN) {
1188 return (-1);
1189 }
1190 for (s = 0; s < buffer[1]; s++) {
1191 if (off + 3 > amt)
1192 return (-1);
1193 off += buffer[off+3] + 4;
1194 }
1195 if (off + 3 > amt) {
1196 return (-1);
1197 }
1198 off += buffer[off+3] + 4 + (nth * 4);
1199 if (amt < (off + 4))
1200 return (-1);
1201
1202 gget8(buffer, off++, thp->enc_type);
1203 gget8(buffer, off++, thp->enc_maxelt);
1204 gget8(buffer, off++, thp->enc_subenc);
1205 gget8(buffer, off, thp->enc_tlen);
1206 return (0);
1207 }
1208
1209 /*
1210 * This function needs a little explanation.
1211 *
1212 * The arguments are:
1213 *
1214 *
1215 * char *b, int amt
1216 *
1217 * These describes the raw input SES status data and length.
1218 *
1219 * uint8_t *ep
1220 *
1221 * This is a map of the number of types for each element type
1222 * in the enclosure.
1223 *
1224 * int elt
1225 *
1226 * This is the element type being sought. If elt is -1,
1227 * then overall enclosure status is being sought.
1228 *
1229 * int elm
1230 *
1231 * This is the ordinal Mth element of type elt being sought.
1232 *
1233 * SesComStat *sp
1234 *
1235 * This is the output area to store the status for
1236 * the Mth element of type Elt.
1237 */
1238
1239 static int
1240 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1241 {
1242 int idx, i;
1243
1244 /*
1245 * If it's overall enclosure status being sought, get that.
1246 * We need at least 2 bytes of status data to get that.
1247 */
1248 if (elt == -1) {
1249 if (amt < 2)
1250 return (-1);
1251 gget8(b, 1, sp->comstatus);
1252 sp->comstat[0] = 0;
1253 sp->comstat[1] = 0;
1254 sp->comstat[2] = 0;
1255 return (0);
1256 }
1257
1258 /*
1259 * Check to make sure that the Mth element is legal for type Elt.
1260 */
1261
1262 if (elm >= ep[elt])
1263 return (-1);
1264
1265 /*
1266 * Starting at offset 8, start skipping over the storage
1267 * for the element types we're not interested in.
1268 */
1269 for (idx = 8, i = 0; i < elt; i++) {
1270 idx += ((ep[i] + 1) * 4);
1271 }
1272
1273 /*
1274 * Skip over Overall status for this element type.
1275 */
1276 idx += 4;
1277
1278 /*
1279 * And skip to the index for the Mth element that we're going for.
1280 */
1281 idx += (4 * elm);
1282
1283 /*
1284 * Make sure we haven't overflowed the buffer.
1285 */
1286 if (idx+4 > amt)
1287 return (-1);
1288
1289 /*
1290 * Retrieve the status.
1291 */
1292 gget8(b, idx++, sp->comstatus);
1293 gget8(b, idx++, sp->comstat[0]);
1294 gget8(b, idx++, sp->comstat[1]);
1295 gget8(b, idx++, sp->comstat[2]);
1296 #if 0
1297 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1298 #endif
1299 return (0);
1300 }
1301
1302 /*
1303 * This is the mirror function to ses_decode, but we set the 'select'
1304 * bit for the object which we're interested in. All other objects,
1305 * after a status fetch, should have that bit off. Hmm. It'd be easy
1306 * enough to ensure this, so we will.
1307 */
1308
1309 static int
1310 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1311 {
1312 int idx, i;
1313
1314 /*
1315 * If it's overall enclosure status being sought, get that.
1316 * We need at least 2 bytes of status data to get that.
1317 */
1318 if (elt == -1) {
1319 if (amt < 2)
1320 return (-1);
1321 i = 0;
1322 sset8(b, i, 0);
1323 sset8(b, i, sp->comstatus & 0xf);
1324 #if 0
1325 PRINTF("set EncStat %x\n", sp->comstatus);
1326 #endif
1327 return (0);
1328 }
1329
1330 /*
1331 * Check to make sure that the Mth element is legal for type Elt.
1332 */
1333
1334 if (elm >= ep[elt])
1335 return (-1);
1336
1337 /*
1338 * Starting at offset 8, start skipping over the storage
1339 * for the element types we're not interested in.
1340 */
1341 for (idx = 8, i = 0; i < elt; i++) {
1342 idx += ((ep[i] + 1) * 4);
1343 }
1344
1345 /*
1346 * Skip over Overall status for this element type.
1347 */
1348 idx += 4;
1349
1350 /*
1351 * And skip to the index for the Mth element that we're going for.
1352 */
1353 idx += (4 * elm);
1354
1355 /*
1356 * Make sure we haven't overflowed the buffer.
1357 */
1358 if (idx+4 > amt)
1359 return (-1);
1360
1361 /*
1362 * Set the status.
1363 */
1364 sset8(b, idx, sp->comstatus);
1365 sset8(b, idx, sp->comstat[0]);
1366 sset8(b, idx, sp->comstat[1]);
1367 sset8(b, idx, sp->comstat[2]);
1368 idx -= 4;
1369
1370 #if 0
1371 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1372 elt, elm, idx, sp->comstatus, sp->comstat[0],
1373 sp->comstat[1], sp->comstat[2]);
1374 #endif
1375
1376 /*
1377 * Now make sure all other 'Select' bits are off.
1378 */
1379 for (i = 8; i < amt; i += 4) {
1380 if (i != idx)
1381 b[i] &= ~0x80;
1382 }
1383 /*
1384 * And make sure the INVOP bit is clear.
1385 */
1386 b[2] &= ~0x10;
1387
1388 return (0);
1389 }
1390
1391 /*
1392 * SAF-TE Type Device Emulation
1393 */
1394
1395 static int safte_getconfig(ses_softc_t *);
1396 static int safte_rdstat(ses_softc_t *, int);
1397 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1398 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1399 static void wrslot_stat(ses_softc_t *, int);
1400 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1401
1402 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1403 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1404 /*
1405 * SAF-TE specific defines- Mandatory ones only...
1406 */
1407
1408 /*
1409 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1410 */
1411 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1412 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1413 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1414
1415 /*
1416 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1417 */
1418 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1419 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1420 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1421 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1422 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1423
1424
1425 #define SAFT_SCRATCH 64
1426 #define NPSEUDO_THERM 16
1427 #define NPSEUDO_ALARM 1
1428 struct scfg {
1429 /*
1430 * Cached Configuration
1431 */
1432 uint8_t Nfans; /* Number of Fans */
1433 uint8_t Npwr; /* Number of Power Supplies */
1434 uint8_t Nslots; /* Number of Device Slots */
1435 uint8_t DoorLock; /* Door Lock Installed */
1436 uint8_t Ntherm; /* Number of Temperature Sensors */
1437 uint8_t Nspkrs; /* Number of Speakers */
1438 uint8_t Nalarm; /* Number of Alarms (at least one) */
1439 /*
1440 * Cached Flag Bytes for Global Status
1441 */
1442 uint8_t flag1;
1443 uint8_t flag2;
1444 /*
1445 * What object index ID is where various slots start.
1446 */
1447 uint8_t pwroff;
1448 uint8_t slotoff;
1449 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1450 };
1451
1452 #define SAFT_FLG1_ALARM 0x1
1453 #define SAFT_FLG1_GLOBFAIL 0x2
1454 #define SAFT_FLG1_GLOBWARN 0x4
1455 #define SAFT_FLG1_ENCPWROFF 0x8
1456 #define SAFT_FLG1_ENCFANFAIL 0x10
1457 #define SAFT_FLG1_ENCPWRFAIL 0x20
1458 #define SAFT_FLG1_ENCDRVFAIL 0x40
1459 #define SAFT_FLG1_ENCDRVWARN 0x80
1460
1461 #define SAFT_FLG2_LOCKDOOR 0x4
1462 #define SAFT_PRIVATE sizeof (struct scfg)
1463
1464 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1465 #define SAFT_BAIL(r, x, k, l) \
1466 if (r >= x) { \
1467 SES_LOG(ssc, safte_2little, x, __LINE__);\
1468 SES_FREE(k, l); \
1469 return (EIO); \
1470 }
1471
1472
1473 static int
1474 safte_softc_init(ses_softc_t *ssc, int doinit)
1475 {
1476 int err, i, r;
1477 struct scfg *cc;
1478
1479 if (doinit == 0) {
1480 if (ssc->ses_nobjects) {
1481 if (ssc->ses_objmap) {
1482 SES_FREE(ssc->ses_objmap,
1483 ssc->ses_nobjects * sizeof (encobj));
1484 ssc->ses_objmap = NULL;
1485 }
1486 ssc->ses_nobjects = 0;
1487 }
1488 if (ssc->ses_private) {
1489 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1490 ssc->ses_private = NULL;
1491 }
1492 return (0);
1493 }
1494
1495 if (ssc->ses_private == NULL) {
1496 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1497 if (ssc->ses_private == NULL) {
1498 return (ENOMEM);
1499 }
1500 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1501 }
1502
1503 ssc->ses_nobjects = 0;
1504 ssc->ses_encstat = 0;
1505
1506 if ((err = safte_getconfig(ssc)) != 0) {
1507 return (err);
1508 }
1509
1510 /*
1511 * The number of objects here, as well as that reported by the
1512 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1513 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1514 */
1515 cc = ssc->ses_private;
1516 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1517 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1518 ssc->ses_objmap = (encobj *)
1519 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1520 if (ssc->ses_objmap == NULL) {
1521 return (ENOMEM);
1522 }
1523 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1524
1525 r = 0;
1526 /*
1527 * Note that this is all arranged for the convenience
1528 * in later fetches of status.
1529 */
1530 for (i = 0; i < cc->Nfans; i++)
1531 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1532 cc->pwroff = (uint8_t) r;
1533 for (i = 0; i < cc->Npwr; i++)
1534 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1535 for (i = 0; i < cc->DoorLock; i++)
1536 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1537 for (i = 0; i < cc->Nspkrs; i++)
1538 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1539 for (i = 0; i < cc->Ntherm; i++)
1540 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1541 for (i = 0; i < NPSEUDO_THERM; i++)
1542 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1543 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1544 cc->slotoff = (uint8_t) r;
1545 for (i = 0; i < cc->Nslots; i++)
1546 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1547 return (0);
1548 }
1549
1550 static int
1551 safte_init_enc(ses_softc_t *ssc)
1552 {
1553 int err, amt;
1554 char *sdata;
1555 static char cdb0[6] = { SEND_DIAGNOSTIC };
1556 static char cdb[10] =
1557 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1558
1559 sdata = SES_MALLOC(SAFT_SCRATCH);
1560 if (sdata == NULL)
1561 return (ENOMEM);
1562
1563 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1564 if (err) {
1565 SES_FREE(sdata, SAFT_SCRATCH);
1566 return (err);
1567 }
1568 sdata[0] = SAFTE_WT_GLOBAL;
1569 MEMZERO(&sdata[1], 15);
1570 amt = -SAFT_SCRATCH;
1571 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1572 SES_FREE(sdata, SAFT_SCRATCH);
1573 return (err);
1574 }
1575
1576 static int
1577 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1578 {
1579 return (safte_rdstat(ssc, slpflg));
1580 }
1581
1582 static int
1583 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1584 {
1585 struct scfg *cc = ssc->ses_private;
1586 if (cc == NULL)
1587 return (0);
1588 /*
1589 * Since SAF-TE devices aren't necessarily sticky in terms
1590 * of state, make our soft copy of enclosure status 'sticky'-
1591 * that is, things set in enclosure status stay set (as implied
1592 * by conditions set in reading object status) until cleared.
1593 */
1594 ssc->ses_encstat &= ~ALL_ENC_STAT;
1595 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1596 ssc->ses_encstat |= ENCI_SVALID;
1597 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1598 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1599 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1600 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1601 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1602 }
1603 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1604 }
1605
1606 static int
1607 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1608 {
1609 int i = (int)obp->obj_id;
1610
1611 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1612 (ssc->ses_objmap[i].svalid) == 0) {
1613 int err = safte_rdstat(ssc, slpflg);
1614 if (err)
1615 return (err);
1616 }
1617 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1618 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1619 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1620 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1621 return (0);
1622 }
1623
1624
1625 static int
1626 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1627 {
1628 int idx, err;
1629 encobj *ep;
1630 struct scfg *cc;
1631
1632
1633 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1634 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1635 obp->cstat[3]);
1636
1637 /*
1638 * If this is clear, we don't do diddly.
1639 */
1640 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1641 return (0);
1642 }
1643
1644 err = 0;
1645 /*
1646 * Check to see if the common bits are set and do them first.
1647 */
1648 if (obp->cstat[0] & ~SESCTL_CSEL) {
1649 err = set_objstat_sel(ssc, obp, slp);
1650 if (err)
1651 return (err);
1652 }
1653
1654 cc = ssc->ses_private;
1655 if (cc == NULL)
1656 return (0);
1657
1658 idx = (int)obp->obj_id;
1659 ep = &ssc->ses_objmap[idx];
1660
1661 switch (ep->enctype) {
1662 case SESTYP_DEVICE:
1663 {
1664 uint8_t slotop = 0;
1665 /*
1666 * XXX: I should probably cache the previous state
1667 * XXX: of SESCTL_DEVOFF so that when it goes from
1668 * XXX: true to false I can then set PREPARE FOR OPERATION
1669 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1670 */
1671 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1672 slotop |= 0x2;
1673 }
1674 if (obp->cstat[2] & SESCTL_RQSID) {
1675 slotop |= 0x4;
1676 }
1677 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1678 slotop, slp);
1679 if (err)
1680 return (err);
1681 if (obp->cstat[3] & SESCTL_RQSFLT) {
1682 ep->priv |= 0x2;
1683 } else {
1684 ep->priv &= ~0x2;
1685 }
1686 if (ep->priv & 0xc6) {
1687 ep->priv &= ~0x1;
1688 } else {
1689 ep->priv |= 0x1; /* no errors */
1690 }
1691 wrslot_stat(ssc, slp);
1692 break;
1693 }
1694 case SESTYP_POWER:
1695 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1696 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1697 } else {
1698 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1699 }
1700 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1701 cc->flag2, 0, slp);
1702 if (err)
1703 return (err);
1704 if (obp->cstat[3] & SESCTL_RQSTON) {
1705 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1706 idx - cc->pwroff, 0, 0, slp);
1707 } else {
1708 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1709 idx - cc->pwroff, 0, 1, slp);
1710 }
1711 break;
1712 case SESTYP_FAN:
1713 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1714 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1715 } else {
1716 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1717 }
1718 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1719 cc->flag2, 0, slp);
1720 if (err)
1721 return (err);
1722 if (obp->cstat[3] & SESCTL_RQSTON) {
1723 uint8_t fsp;
1724 if ((obp->cstat[3] & 0x7) == 7) {
1725 fsp = 4;
1726 } else if ((obp->cstat[3] & 0x7) == 6) {
1727 fsp = 3;
1728 } else if ((obp->cstat[3] & 0x7) == 4) {
1729 fsp = 2;
1730 } else {
1731 fsp = 1;
1732 }
1733 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1734 } else {
1735 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1736 }
1737 break;
1738 case SESTYP_DOORLOCK:
1739 if (obp->cstat[3] & 0x1) {
1740 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1741 } else {
1742 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1743 }
1744 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1745 cc->flag2, 0, slp);
1746 break;
1747 case SESTYP_ALARM:
1748 /*
1749 * On all nonzero but the 'muted' bit, we turn on the alarm,
1750 */
1751 obp->cstat[3] &= ~0xa;
1752 if (obp->cstat[3] & 0x40) {
1753 cc->flag2 &= ~SAFT_FLG1_ALARM;
1754 } else if (obp->cstat[3] != 0) {
1755 cc->flag2 |= SAFT_FLG1_ALARM;
1756 } else {
1757 cc->flag2 &= ~SAFT_FLG1_ALARM;
1758 }
1759 ep->priv = obp->cstat[3];
1760 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1761 cc->flag2, 0, slp);
1762 break;
1763 default:
1764 break;
1765 }
1766 ep->svalid = 0;
1767 return (0);
1768 }
1769
1770 static int
1771 safte_getconfig(ses_softc_t *ssc)
1772 {
1773 struct scfg *cfg;
1774 int err, amt;
1775 char *sdata;
1776 static char cdb[10] =
1777 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1778
1779 cfg = ssc->ses_private;
1780 if (cfg == NULL)
1781 return (ENXIO);
1782
1783 sdata = SES_MALLOC(SAFT_SCRATCH);
1784 if (sdata == NULL)
1785 return (ENOMEM);
1786
1787 amt = SAFT_SCRATCH;
1788 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1789 if (err) {
1790 SES_FREE(sdata, SAFT_SCRATCH);
1791 return (err);
1792 }
1793 amt = SAFT_SCRATCH - amt;
1794 if (amt < 6) {
1795 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1796 SES_FREE(sdata, SAFT_SCRATCH);
1797 return (EIO);
1798 }
1799 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1800 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1801 cfg->Nfans = sdata[0];
1802 cfg->Npwr = sdata[1];
1803 cfg->Nslots = sdata[2];
1804 cfg->DoorLock = sdata[3];
1805 cfg->Ntherm = sdata[4];
1806 cfg->Nspkrs = sdata[5];
1807 cfg->Nalarm = NPSEUDO_ALARM;
1808 SES_FREE(sdata, SAFT_SCRATCH);
1809 return (0);
1810 }
1811
1812 static int
1813 safte_rdstat(ses_softc_t *ssc, int slpflg)
1814 {
1815 int err, oid, r, i, hiwater, nitems, amt;
1816 uint16_t tempflags;
1817 size_t buflen;
1818 uint8_t status, oencstat;
1819 char *sdata, cdb[10];
1820 struct scfg *cc = ssc->ses_private;
1821
1822
1823 /*
1824 * The number of objects overstates things a bit,
1825 * both for the bogus 'thermometer' entries and
1826 * the drive status (which isn't read at the same
1827 * time as the enclosure status), but that's okay.
1828 */
1829 buflen = 4 * cc->Nslots;
1830 if (ssc->ses_nobjects > buflen)
1831 buflen = ssc->ses_nobjects;
1832 sdata = SES_MALLOC(buflen);
1833 if (sdata == NULL)
1834 return (ENOMEM);
1835
1836 cdb[0] = READ_BUFFER;
1837 cdb[1] = 1;
1838 cdb[2] = SAFTE_RD_RDESTS;
1839 cdb[3] = 0;
1840 cdb[4] = 0;
1841 cdb[5] = 0;
1842 cdb[6] = 0;
1843 cdb[7] = (buflen >> 8) & 0xff;
1844 cdb[8] = buflen & 0xff;
1845 cdb[9] = 0;
1846 amt = buflen;
1847 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1848 if (err) {
1849 SES_FREE(sdata, buflen);
1850 return (err);
1851 }
1852 hiwater = buflen - amt;
1853
1854
1855 /*
1856 * invalidate all status bits.
1857 */
1858 for (i = 0; i < ssc->ses_nobjects; i++)
1859 ssc->ses_objmap[i].svalid = 0;
1860 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1861 ssc->ses_encstat = 0;
1862
1863
1864 /*
1865 * Now parse returned buffer.
1866 * If we didn't get enough data back,
1867 * that's considered a fatal error.
1868 */
1869 oid = r = 0;
1870
1871 for (nitems = i = 0; i < cc->Nfans; i++) {
1872 SAFT_BAIL(r, hiwater, sdata, buflen);
1873 /*
1874 * 0 = Fan Operational
1875 * 1 = Fan is malfunctioning
1876 * 2 = Fan is not present
1877 * 0x80 = Unknown or Not Reportable Status
1878 */
1879 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1880 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1881 switch ((int)(uint8_t)sdata[r]) {
1882 case 0:
1883 nitems++;
1884 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1885 /*
1886 * We could get fancier and cache
1887 * fan speeds that we have set, but
1888 * that isn't done now.
1889 */
1890 ssc->ses_objmap[oid].encstat[3] = 7;
1891 break;
1892
1893 case 1:
1894 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1895 /*
1896 * FAIL and FAN STOPPED synthesized
1897 */
1898 ssc->ses_objmap[oid].encstat[3] = 0x40;
1899 /*
1900 * Enclosure marked with CRITICAL error
1901 * if only one fan or no thermometers,
1902 * else the NONCRITICAL error is set.
1903 */
1904 if (cc->Nfans == 1 || cc->Ntherm == 0)
1905 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1906 else
1907 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1908 break;
1909 case 2:
1910 ssc->ses_objmap[oid].encstat[0] =
1911 SES_OBJSTAT_NOTINSTALLED;
1912 ssc->ses_objmap[oid].encstat[3] = 0;
1913 /*
1914 * Enclosure marked with CRITICAL error
1915 * if only one fan or no thermometers,
1916 * else the NONCRITICAL error is set.
1917 */
1918 if (cc->Nfans == 1)
1919 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1920 else
1921 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1922 break;
1923 case 0x80:
1924 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1925 ssc->ses_objmap[oid].encstat[3] = 0;
1926 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1927 break;
1928 default:
1929 ssc->ses_objmap[oid].encstat[0] =
1930 SES_OBJSTAT_UNSUPPORTED;
1931 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1932 sdata[r] & 0xff);
1933 break;
1934 }
1935 ssc->ses_objmap[oid++].svalid = 1;
1936 r++;
1937 }
1938
1939 /*
1940 * No matter how you cut it, no cooling elements when there
1941 * should be some there is critical.
1942 */
1943 if (cc->Nfans && nitems == 0) {
1944 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1945 }
1946
1947
1948 for (i = 0; i < cc->Npwr; i++) {
1949 SAFT_BAIL(r, hiwater, sdata, buflen);
1950 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1951 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1952 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1953 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1954 switch ((uint8_t)sdata[r]) {
1955 case 0x00: /* pws operational and on */
1956 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1957 break;
1958 case 0x01: /* pws operational and off */
1959 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1960 ssc->ses_objmap[oid].encstat[3] = 0x10;
1961 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1962 break;
1963 case 0x10: /* pws is malfunctioning and commanded on */
1964 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1965 ssc->ses_objmap[oid].encstat[3] = 0x61;
1966 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1967 break;
1968
1969 case 0x11: /* pws is malfunctioning and commanded off */
1970 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1971 ssc->ses_objmap[oid].encstat[3] = 0x51;
1972 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1973 break;
1974 case 0x20: /* pws is not present */
1975 ssc->ses_objmap[oid].encstat[0] =
1976 SES_OBJSTAT_NOTINSTALLED;
1977 ssc->ses_objmap[oid].encstat[3] = 0;
1978 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1979 break;
1980 case 0x21: /* pws is present */
1981 /*
1982 * This is for enclosures that cannot tell whether the
1983 * device is on or malfunctioning, but know that it is
1984 * present. Just fall through.
1985 */
1986 /* FALLTHROUGH */
1987 case 0x80: /* Unknown or Not Reportable Status */
1988 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1989 ssc->ses_objmap[oid].encstat[3] = 0;
1990 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1991 break;
1992 default:
1993 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1994 i, sdata[r] & 0xff);
1995 break;
1996 }
1997 ssc->ses_objmap[oid++].svalid = 1;
1998 r++;
1999 }
2000
2001 /*
2002 * Skip over Slot SCSI IDs
2003 */
2004 r += cc->Nslots;
2005
2006 /*
2007 * We always have doorlock status, no matter what,
2008 * but we only save the status if we have one.
2009 */
2010 SAFT_BAIL(r, hiwater, sdata, buflen);
2011 if (cc->DoorLock) {
2012 /*
2013 * 0 = Door Locked
2014 * 1 = Door Unlocked, or no Lock Installed
2015 * 0x80 = Unknown or Not Reportable Status
2016 */
2017 ssc->ses_objmap[oid].encstat[1] = 0;
2018 ssc->ses_objmap[oid].encstat[2] = 0;
2019 switch ((uint8_t)sdata[r]) {
2020 case 0:
2021 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2022 ssc->ses_objmap[oid].encstat[3] = 0;
2023 break;
2024 case 1:
2025 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2026 ssc->ses_objmap[oid].encstat[3] = 1;
2027 break;
2028 case 0x80:
2029 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2030 ssc->ses_objmap[oid].encstat[3] = 0;
2031 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2032 break;
2033 default:
2034 ssc->ses_objmap[oid].encstat[0] =
2035 SES_OBJSTAT_UNSUPPORTED;
2036 SES_LOG(ssc, "unknown lock status 0x%x\n",
2037 sdata[r] & 0xff);
2038 break;
2039 }
2040 ssc->ses_objmap[oid++].svalid = 1;
2041 }
2042 r++;
2043
2044 /*
2045 * We always have speaker status, no matter what,
2046 * but we only save the status if we have one.
2047 */
2048 SAFT_BAIL(r, hiwater, sdata, buflen);
2049 if (cc->Nspkrs) {
2050 ssc->ses_objmap[oid].encstat[1] = 0;
2051 ssc->ses_objmap[oid].encstat[2] = 0;
2052 if (sdata[r] == 1) {
2053 /*
2054 * We need to cache tone urgency indicators.
2055 * Someday.
2056 */
2057 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2058 ssc->ses_objmap[oid].encstat[3] = 0x8;
2059 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2060 } else if (sdata[r] == 0) {
2061 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2062 ssc->ses_objmap[oid].encstat[3] = 0;
2063 } else {
2064 ssc->ses_objmap[oid].encstat[0] =
2065 SES_OBJSTAT_UNSUPPORTED;
2066 ssc->ses_objmap[oid].encstat[3] = 0;
2067 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2068 sdata[r] & 0xff);
2069 }
2070 ssc->ses_objmap[oid++].svalid = 1;
2071 }
2072 r++;
2073
2074 for (i = 0; i < cc->Ntherm; i++) {
2075 SAFT_BAIL(r, hiwater, sdata, buflen);
2076 /*
2077 * Status is a range from -10 to 245 deg Celsius,
2078 * which we need to normalize to -20 to -245 according
2079 * to the latest SCSI spec, which makes little
2080 * sense since this would overflow an 8bit value.
2081 * Well, still, the base normalization is -20,
2082 * not -10, so we have to adjust.
2083 *
2084 * So what's over and under temperature?
2085 * Hmm- we'll state that 'normal' operating
2086 * is 10 to 40 deg Celsius.
2087 */
2088
2089 /*
2090 * Actually.... All of the units that people out in the world
2091 * seem to have do not come even close to setting a value that
2092 * complies with this spec.
2093 *
2094 * The closest explanation I could find was in an
2095 * LSI-Logic manual, which seemed to indicate that
2096 * this value would be set by whatever the I2C code
2097 * would interpolate from the output of an LM75
2098 * temperature sensor.
2099 *
2100 * This means that it is impossible to use the actual
2101 * numeric value to predict anything. But we don't want
2102 * to lose the value. So, we'll propagate the *uncorrected*
2103 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2104 * temperature flags for warnings.
2105 */
2106 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2107 ssc->ses_objmap[oid].encstat[1] = 0;
2108 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2109 ssc->ses_objmap[oid].encstat[3] = 0;
2110 ssc->ses_objmap[oid++].svalid = 1;
2111 r++;
2112 }
2113
2114 /*
2115 * Now, for "pseudo" thermometers, we have two bytes
2116 * of information in enclosure status- 16 bits. Actually,
2117 * the MSB is a single TEMP ALERT flag indicating whether
2118 * any other bits are set, but, thanks to fuzzy thinking,
2119 * in the SAF-TE spec, this can also be set even if no
2120 * other bits are set, thus making this really another
2121 * binary temperature sensor.
2122 */
2123
2124 SAFT_BAIL(r, hiwater, sdata, buflen);
2125 tempflags = sdata[r++];
2126 SAFT_BAIL(r, hiwater, sdata, buflen);
2127 tempflags |= (tempflags << 8) | sdata[r++];
2128
2129 for (i = 0; i < NPSEUDO_THERM; i++) {
2130 ssc->ses_objmap[oid].encstat[1] = 0;
2131 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2132 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2133 ssc->ses_objmap[4].encstat[2] = 0xff;
2134 /*
2135 * Set 'over temperature' failure.
2136 */
2137 ssc->ses_objmap[oid].encstat[3] = 8;
2138 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2139 } else {
2140 /*
2141 * We used to say 'not available' and synthesize a
2142 * nominal 30 deg (C)- that was wrong. Actually,
2143 * Just say 'OK', and use the reserved value of
2144 * zero.
2145 */
2146 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2147 ssc->ses_objmap[oid].encstat[2] = 0;
2148 ssc->ses_objmap[oid].encstat[3] = 0;
2149 }
2150 ssc->ses_objmap[oid++].svalid = 1;
2151 }
2152
2153 /*
2154 * Get alarm status.
2155 */
2156 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2157 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2158 ssc->ses_objmap[oid++].svalid = 1;
2159
2160 /*
2161 * Now get drive slot status
2162 */
2163 cdb[2] = SAFTE_RD_RDDSTS;
2164 amt = buflen;
2165 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2166 if (err) {
2167 SES_FREE(sdata, buflen);
2168 return (err);
2169 }
2170 hiwater = buflen - amt;
2171 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2172 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2173 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2174 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2175 ssc->ses_objmap[oid].encstat[2] = 0;
2176 ssc->ses_objmap[oid].encstat[3] = 0;
2177 status = sdata[r+3];
2178 if ((status & 0x1) == 0) { /* no device */
2179 ssc->ses_objmap[oid].encstat[0] =
2180 SES_OBJSTAT_NOTINSTALLED;
2181 } else {
2182 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2183 }
2184 if (status & 0x2) {
2185 ssc->ses_objmap[oid].encstat[2] = 0x8;
2186 }
2187 if ((status & 0x4) == 0) {
2188 ssc->ses_objmap[oid].encstat[3] = 0x10;
2189 }
2190 ssc->ses_objmap[oid++].svalid = 1;
2191 }
2192 /* see comment below about sticky enclosure status */
2193 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2194 SES_FREE(sdata, buflen);
2195 return (0);
2196 }
2197
2198 static int
2199 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2200 {
2201 int idx;
2202 encobj *ep;
2203 struct scfg *cc = ssc->ses_private;
2204
2205 if (cc == NULL)
2206 return (0);
2207
2208 idx = (int)obp->obj_id;
2209 ep = &ssc->ses_objmap[idx];
2210
2211 switch (ep->enctype) {
2212 case SESTYP_DEVICE:
2213 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2214 ep->priv |= 0x40;
2215 }
2216 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2217 if (obp->cstat[0] & SESCTL_DISABLE) {
2218 ep->priv |= 0x80;
2219 /*
2220 * Hmm. Try to set the 'No Drive' flag.
2221 * Maybe that will count as a 'disable'.
2222 */
2223 }
2224 if (ep->priv & 0xc6) {
2225 ep->priv &= ~0x1;
2226 } else {
2227 ep->priv |= 0x1; /* no errors */
2228 }
2229 wrslot_stat(ssc, slp);
2230 break;
2231 case SESTYP_POWER:
2232 /*
2233 * Okay- the only one that makes sense here is to
2234 * do the 'disable' for a power supply.
2235 */
2236 if (obp->cstat[0] & SESCTL_DISABLE) {
2237 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2238 idx - cc->pwroff, 0, 0, slp);
2239 }
2240 break;
2241 case SESTYP_FAN:
2242 /*
2243 * Okay- the only one that makes sense here is to
2244 * set fan speed to zero on disable.
2245 */
2246 if (obp->cstat[0] & SESCTL_DISABLE) {
2247 /* remember- fans are the first items, so idx works */
2248 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2249 }
2250 break;
2251 case SESTYP_DOORLOCK:
2252 /*
2253 * Well, we can 'disable' the lock.
2254 */
2255 if (obp->cstat[0] & SESCTL_DISABLE) {
2256 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2257 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2258 cc->flag2, 0, slp);
2259 }
2260 break;
2261 case SESTYP_ALARM:
2262 /*
2263 * Well, we can 'disable' the alarm.
2264 */
2265 if (obp->cstat[0] & SESCTL_DISABLE) {
2266 cc->flag2 &= ~SAFT_FLG1_ALARM;
2267 ep->priv |= 0x40; /* Muted */
2268 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2269 cc->flag2, 0, slp);
2270 }
2271 break;
2272 default:
2273 break;
2274 }
2275 ep->svalid = 0;
2276 return (0);
2277 }
2278
2279 /*
2280 * This function handles all of the 16 byte WRITE BUFFER commands.
2281 */
2282 static int
2283 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2284 uint8_t b3, int slp)
2285 {
2286 int err, amt;
2287 char *sdata;
2288 struct scfg *cc = ssc->ses_private;
2289 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2290
2291 if (cc == NULL)
2292 return (0);
2293
2294 sdata = SES_MALLOC(16);
2295 if (sdata == NULL)
2296 return (ENOMEM);
2297
2298 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2299
2300 sdata[0] = op;
2301 sdata[1] = b1;
2302 sdata[2] = b2;
2303 sdata[3] = b3;
2304 MEMZERO(&sdata[4], 12);
2305 amt = -16;
2306 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2307 SES_FREE(sdata, 16);
2308 return (err);
2309 }
2310
2311 /*
2312 * This function updates the status byte for the device slot described.
2313 *
2314 * Since this is an optional SAF-TE command, there's no point in
2315 * returning an error.
2316 */
2317 static void
2318 wrslot_stat(ses_softc_t *ssc, int slp)
2319 {
2320 int i, amt;
2321 encobj *ep;
2322 char cdb[10], *sdata;
2323 struct scfg *cc = ssc->ses_private;
2324
2325 if (cc == NULL)
2326 return;
2327
2328 SES_VLOG(ssc, "saf_wrslot\n");
2329 cdb[0] = WRITE_BUFFER;
2330 cdb[1] = 1;
2331 cdb[2] = 0;
2332 cdb[3] = 0;
2333 cdb[4] = 0;
2334 cdb[5] = 0;
2335 cdb[6] = 0;
2336 cdb[7] = 0;
2337 cdb[8] = cc->Nslots * 3 + 1;
2338 cdb[9] = 0;
2339
2340 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2341 if (sdata == NULL)
2342 return;
2343 MEMZERO(sdata, cc->Nslots * 3 + 1);
2344
2345 sdata[0] = SAFTE_WT_DSTAT;
2346 for (i = 0; i < cc->Nslots; i++) {
2347 ep = &ssc->ses_objmap[cc->slotoff + i];
2348 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2349 sdata[1 + (3 * i)] = ep->priv & 0xff;
2350 }
2351 amt = -(cc->Nslots * 3 + 1);
2352 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2353 SES_FREE(sdata, cc->Nslots * 3 + 1);
2354 }
2355
2356 /*
2357 * This function issues the "PERFORM SLOT OPERATION" command.
2358 */
2359 static int
2360 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2361 {
2362 int err, amt;
2363 char *sdata;
2364 struct scfg *cc = ssc->ses_private;
2365 static char cdb[10] =
2366 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2367
2368 if (cc == NULL)
2369 return (0);
2370
2371 sdata = SES_MALLOC(SAFT_SCRATCH);
2372 if (sdata == NULL)
2373 return (ENOMEM);
2374 MEMZERO(sdata, SAFT_SCRATCH);
2375
2376 sdata[0] = SAFTE_WT_SLTOP;
2377 sdata[1] = slot;
2378 sdata[2] = opflag;
2379 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2380 amt = -SAFT_SCRATCH;
2381 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2382 SES_FREE(sdata, SAFT_SCRATCH);
2383 return (err);
2384 }
2385