ses.c revision 1.38.36.3 1 /* $NetBSD: ses.c,v 1.38.36.3 2008/06/29 09:33:10 mjf Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.38.36.3 2008/06/29 09:33:10 mjf Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50 #include <machine/stdarg.h>
51
52 #include <dev/scsipi/scsipi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_all.h>
55 #include <dev/scsipi/scsi_disk.h>
56 #include <dev/scsipi/scsipiconf.h>
57 #include <dev/scsipi/scsipi_base.h>
58 #include <dev/scsipi/ses.h>
59
60 /*
61 * Platform Independent Driver Internal Definitions for SES devices.
62 */
63 typedef enum {
64 SES_NONE,
65 SES_SES_SCSI2,
66 SES_SES,
67 SES_SES_PASSTHROUGH,
68 SES_SEN,
69 SES_SAFT
70 } enctyp;
71
72 struct ses_softc;
73 typedef struct ses_softc ses_softc_t;
74 typedef struct {
75 int (*softc_init)(ses_softc_t *, int);
76 int (*init_enc)(ses_softc_t *);
77 int (*get_encstat)(ses_softc_t *, int);
78 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81 } encvec;
82
83 #define ENCI_SVALID 0x80
84
85 typedef struct {
86 uint32_t
87 enctype : 8, /* enclosure type */
88 subenclosure : 8, /* subenclosure id */
89 svalid : 1, /* enclosure information valid */
90 priv : 15; /* private data, per object */
91 uint8_t encstat[4]; /* state && stats */
92 } encobj;
93
94 #define SEN_ID "UNISYS SUN_SEN"
95 #define SEN_ID_LEN 24
96
97 static enctyp ses_type(struct scsipi_inquiry_data *);
98
99
100 /* Forward reference to Enclosure Functions */
101 static int ses_softc_init(ses_softc_t *, int);
102 static int ses_init_enc(ses_softc_t *);
103 static int ses_get_encstat(ses_softc_t *, int);
104 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107
108 static int safte_softc_init(ses_softc_t *, int);
109 static int safte_init_enc(ses_softc_t *);
110 static int safte_get_encstat(ses_softc_t *, int);
111 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114
115 /*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119 #define STRNCMP strncmp
120 #define PRINTF printf
121 #define SES_LOG ses_log
122 #if defined(DEBUG) || defined(SCSIDEBUG)
123 #define SES_VLOG ses_log
124 #else
125 #define SES_VLOG if (0) ses_log
126 #endif
127 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
128 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
129 #define MEMZERO(dest, amt) memset(dest, 0, amt)
130 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
131 #define RECEIVE_DIAGNOSTIC 0x1c
132 #define SEND_DIAGNOSTIC 0x1d
133 #define WRITE_BUFFER 0x3b
134 #define READ_BUFFER 0x3c
135
136 static dev_type_open(sesopen);
137 static dev_type_close(sesclose);
138 static dev_type_ioctl(sesioctl);
139
140 const struct cdevsw ses_cdevsw = {
141 sesopen, sesclose, noread, nowrite, sesioctl,
142 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
143 };
144
145 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146 static void ses_log(struct ses_softc *, const char *, ...)
147 __attribute__((__format__(__printf__, 2, 3)));
148
149 /*
150 * General NetBSD kernel stuff.
151 */
152
153 struct ses_softc {
154 struct device sc_device;
155 struct scsipi_periph *sc_periph;
156 enctyp ses_type; /* type of enclosure */
157 encvec ses_vec; /* vector to handlers */
158 void * ses_private; /* per-type private data */
159 encobj * ses_objmap; /* objects */
160 u_int32_t ses_nobjects; /* number of objects */
161 ses_encstat ses_encstat; /* overall status */
162 u_int8_t ses_flags;
163 };
164 #define SES_FLAG_INVALID 0x01
165 #define SES_FLAG_OPEN 0x02
166 #define SES_FLAG_INITIALIZED 0x04
167
168 #define SESUNIT(x) (minor((x)))
169
170 static int ses_match(struct device *, struct cfdata *, void *);
171 static void ses_attach(struct device *, struct device *, void *);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173
174 CFATTACH_DECL(ses, sizeof (struct ses_softc),
175 ses_match, ses_attach, NULL, NULL);
176
177 extern struct cfdriver ses_cd;
178
179 static const struct scsipi_periphsw ses_switch = {
180 NULL,
181 NULL,
182 NULL,
183 NULL
184 };
185
186 static int
187 ses_match(struct device *parent, struct cfdata *match,
188 void *aux)
189 {
190 struct scsipibus_attach_args *sa = aux;
191
192 switch (ses_device_type(sa)) {
193 case SES_SES:
194 case SES_SES_SCSI2:
195 case SES_SEN:
196 case SES_SAFT:
197 case SES_SES_PASSTHROUGH:
198 /*
199 * For these devices, it's a perfect match.
200 */
201 return (24);
202 default:
203 return (0);
204 }
205 }
206
207
208 /*
209 * Complete the attachment.
210 *
211 * We have to repeat the rerun of INQUIRY data as above because
212 * it's not until the return from the match routine that we have
213 * the softc available to set stuff in.
214 */
215 static void
216 ses_attach(struct device *parent, struct device *self, void *aux)
217 {
218 const char *tname;
219 struct ses_softc *softc = device_private(self);
220 struct scsipibus_attach_args *sa = aux;
221 struct scsipi_periph *periph = sa->sa_periph;
222 int maj;
223
224 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
225 softc->sc_periph = periph;
226 periph->periph_dev = &softc->sc_device;
227 periph->periph_switch = &ses_switch;
228 periph->periph_openings = 1;
229
230 softc->ses_type = ses_device_type(sa);
231 switch (softc->ses_type) {
232 case SES_SES:
233 case SES_SES_SCSI2:
234 case SES_SES_PASSTHROUGH:
235 softc->ses_vec.softc_init = ses_softc_init;
236 softc->ses_vec.init_enc = ses_init_enc;
237 softc->ses_vec.get_encstat = ses_get_encstat;
238 softc->ses_vec.set_encstat = ses_set_encstat;
239 softc->ses_vec.get_objstat = ses_get_objstat;
240 softc->ses_vec.set_objstat = ses_set_objstat;
241 break;
242 case SES_SAFT:
243 softc->ses_vec.softc_init = safte_softc_init;
244 softc->ses_vec.init_enc = safte_init_enc;
245 softc->ses_vec.get_encstat = safte_get_encstat;
246 softc->ses_vec.set_encstat = safte_set_encstat;
247 softc->ses_vec.get_objstat = safte_get_objstat;
248 softc->ses_vec.set_objstat = safte_set_objstat;
249 break;
250 case SES_SEN:
251 break;
252 case SES_NONE:
253 default:
254 break;
255 }
256
257 switch (softc->ses_type) {
258 default:
259 case SES_NONE:
260 tname = "No SES device";
261 break;
262 case SES_SES_SCSI2:
263 tname = "SCSI-2 SES Device";
264 break;
265 case SES_SES:
266 tname = "SCSI-3 SES Device";
267 break;
268 case SES_SES_PASSTHROUGH:
269 tname = "SES Passthrough Device";
270 break;
271 case SES_SEN:
272 tname = "UNISYS SEN Device (NOT HANDLED YET)";
273 break;
274 case SES_SAFT:
275 tname = "SAF-TE Compliant Device";
276 break;
277 }
278 printf("\n%s: %s\n", device_xname(&softc->sc_device), tname);
279
280 maj = cdevsw_lookup_major(&ses_cdevsw);
281 device_register_name(makedev(maj, device_unit(self)), self, true,
282 DEV_OTHER, device_xname(self));
283 }
284
285
286 static enctyp
287 ses_device_type(struct scsipibus_attach_args *sa)
288 {
289 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
290
291 if (inqp == NULL)
292 return (SES_NONE);
293
294 return (ses_type(inqp));
295 }
296
297 static int
298 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
299 {
300 struct ses_softc *softc;
301 int error, unit;
302
303 unit = SESUNIT(dev);
304 softc = device_lookup_private(&ses_cd, unit);
305 if (softc == NULL)
306 return (ENXIO);
307
308 if (softc->ses_flags & SES_FLAG_INVALID) {
309 error = ENXIO;
310 goto out;
311 }
312 if (softc->ses_flags & SES_FLAG_OPEN) {
313 error = EBUSY;
314 goto out;
315 }
316 if (softc->ses_vec.softc_init == NULL) {
317 error = ENXIO;
318 goto out;
319 }
320 error = scsipi_adapter_addref(
321 softc->sc_periph->periph_channel->chan_adapter);
322 if (error != 0)
323 goto out;
324
325
326 softc->ses_flags |= SES_FLAG_OPEN;
327 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
328 error = (*softc->ses_vec.softc_init)(softc, 1);
329 if (error)
330 softc->ses_flags &= ~SES_FLAG_OPEN;
331 else
332 softc->ses_flags |= SES_FLAG_INITIALIZED;
333 }
334
335 out:
336 return (error);
337 }
338
339 static int
340 sesclose(dev_t dev, int flags, int fmt,
341 struct lwp *l)
342 {
343 struct ses_softc *softc;
344 int unit;
345
346 unit = SESUNIT(dev);
347 softc = device_lookup_private(&ses_cd, unit);
348 if (softc == NULL)
349 return (ENXIO);
350
351 scsipi_wait_drain(softc->sc_periph);
352 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
353 softc->ses_flags &= ~SES_FLAG_OPEN;
354 return (0);
355 }
356
357 static int
358 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
359 {
360 ses_encstat tmp;
361 ses_objstat objs;
362 ses_object obj, *uobj;
363 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
364 void *addr;
365 int error, i;
366
367
368 if (arg_addr)
369 addr = *((void **) arg_addr);
370 else
371 addr = NULL;
372
373 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
374
375 /*
376 * Now check to see whether we're initialized or not.
377 */
378 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
379 return (ENODEV);
380 }
381
382 error = 0;
383
384 /*
385 * If this command can change the device's state,
386 * we must have the device open for writing.
387 */
388 switch (cmd) {
389 case SESIOC_GETNOBJ:
390 case SESIOC_GETOBJMAP:
391 case SESIOC_GETENCSTAT:
392 case SESIOC_GETOBJSTAT:
393 break;
394 default:
395 if ((flag & FWRITE) == 0) {
396 return (EBADF);
397 }
398 }
399
400 switch (cmd) {
401 case SESIOC_GETNOBJ:
402 if (addr == NULL)
403 return EINVAL;
404 error = copyout(&ssc->ses_nobjects, addr,
405 sizeof (ssc->ses_nobjects));
406 break;
407
408 case SESIOC_GETOBJMAP:
409 if (addr == NULL)
410 return EINVAL;
411 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
412 obj.obj_id = i;
413 obj.subencid = ssc->ses_objmap[i].subenclosure;
414 obj.object_type = ssc->ses_objmap[i].enctype;
415 error = copyout(&obj, uobj, sizeof (ses_object));
416 if (error) {
417 break;
418 }
419 }
420 break;
421
422 case SESIOC_GETENCSTAT:
423 if (addr == NULL)
424 return EINVAL;
425 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
426 if (error)
427 break;
428 tmp = ssc->ses_encstat & ~ENCI_SVALID;
429 error = copyout(&tmp, addr, sizeof (ses_encstat));
430 ssc->ses_encstat = tmp;
431 break;
432
433 case SESIOC_SETENCSTAT:
434 if (addr == NULL)
435 return EINVAL;
436 error = copyin(addr, &tmp, sizeof (ses_encstat));
437 if (error)
438 break;
439 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
440 break;
441
442 case SESIOC_GETOBJSTAT:
443 if (addr == NULL)
444 return EINVAL;
445 error = copyin(addr, &objs, sizeof (ses_objstat));
446 if (error)
447 break;
448 if (objs.obj_id >= ssc->ses_nobjects) {
449 error = EINVAL;
450 break;
451 }
452 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
453 if (error)
454 break;
455 error = copyout(&objs, addr, sizeof (ses_objstat));
456 /*
457 * Always (for now) invalidate entry.
458 */
459 ssc->ses_objmap[objs.obj_id].svalid = 0;
460 break;
461
462 case SESIOC_SETOBJSTAT:
463 if (addr == NULL)
464 return EINVAL;
465 error = copyin(addr, &objs, sizeof (ses_objstat));
466 if (error)
467 break;
468
469 if (objs.obj_id >= ssc->ses_nobjects) {
470 error = EINVAL;
471 break;
472 }
473 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
474
475 /*
476 * Always (for now) invalidate entry.
477 */
478 ssc->ses_objmap[objs.obj_id].svalid = 0;
479 break;
480
481 case SESIOC_INIT:
482
483 error = (*ssc->ses_vec.init_enc)(ssc);
484 break;
485
486 default:
487 error = scsipi_do_ioctl(ssc->sc_periph,
488 dev, cmd, arg_addr, flag, l);
489 break;
490 }
491 return (error);
492 }
493
494 static int
495 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
496 {
497 struct scsipi_generic sgen;
498 int dl, flg, error;
499
500 if (dptr) {
501 if ((dl = *dlenp) < 0) {
502 dl = -dl;
503 flg = XS_CTL_DATA_OUT;
504 } else {
505 flg = XS_CTL_DATA_IN;
506 }
507 } else {
508 dl = 0;
509 flg = 0;
510 }
511
512 if (cdbl > sizeof (struct scsipi_generic)) {
513 cdbl = sizeof (struct scsipi_generic);
514 }
515 memcpy(&sgen, cdb, cdbl);
516 #ifndef SCSIDEBUG
517 flg |= XS_CTL_SILENT;
518 #endif
519 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
520 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
521
522 if (error == 0 && dptr)
523 *dlenp = 0;
524
525 return (error);
526 }
527
528 static void
529 ses_log(struct ses_softc *ssc, const char *fmt, ...)
530 {
531 va_list ap;
532
533 printf("%s: ", device_xname(&ssc->sc_device));
534 va_start(ap, fmt);
535 vprintf(fmt, ap);
536 va_end(ap);
537 }
538
539 /*
540 * The code after this point runs on many platforms,
541 * so forgive the slightly awkward and nonconforming
542 * appearance.
543 */
544
545 /*
546 * Is this a device that supports enclosure services?
547 *
548 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
549 * an SES device. If it happens to be an old UNISYS SEN device, we can
550 * handle that too.
551 */
552
553 #define SAFTE_START 44
554 #define SAFTE_END 50
555 #define SAFTE_LEN SAFTE_END-SAFTE_START
556
557 static enctyp
558 ses_type(struct scsipi_inquiry_data *inqp)
559 {
560 size_t given_len = inqp->additional_length + 4;
561
562 if (given_len < 8+SEN_ID_LEN)
563 return (SES_NONE);
564
565 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
566 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
567 return (SES_SEN);
568 } else if ((inqp->version & SID_ANSII) > 2) {
569 return (SES_SES);
570 } else {
571 return (SES_SES_SCSI2);
572 }
573 return (SES_NONE);
574 }
575
576 #ifdef SES_ENABLE_PASSTHROUGH
577 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
578 /*
579 * PassThrough Device.
580 */
581 return (SES_SES_PASSTHROUGH);
582 }
583 #endif
584
585 /*
586 * The comparison is short for a reason-
587 * some vendors were chopping it short.
588 */
589
590 if (given_len < SAFTE_END - 2) {
591 return (SES_NONE);
592 }
593
594 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
595 SAFTE_LEN - 2) == 0) {
596 return (SES_SAFT);
597 }
598
599 return (SES_NONE);
600 }
601
602 /*
603 * SES Native Type Device Support
604 */
605
606 /*
607 * SES Diagnostic Page Codes
608 */
609
610 typedef enum {
611 SesConfigPage = 0x1,
612 SesControlPage,
613 #define SesStatusPage SesControlPage
614 SesHelpTxt,
615 SesStringOut,
616 #define SesStringIn SesStringOut
617 SesThresholdOut,
618 #define SesThresholdIn SesThresholdOut
619 SesArrayControl,
620 #define SesArrayStatus SesArrayControl
621 SesElementDescriptor,
622 SesShortStatus
623 } SesDiagPageCodes;
624
625 /*
626 * minimal amounts
627 */
628
629 /*
630 * Minimum amount of data, starting from byte 0, to have
631 * the config header.
632 */
633 #define SES_CFGHDR_MINLEN 12
634
635 /*
636 * Minimum amount of data, starting from byte 0, to have
637 * the config header and one enclosure header.
638 */
639 #define SES_ENCHDR_MINLEN 48
640
641 /*
642 * Take this value, subtract it from VEnclen and you know
643 * the length of the vendor unique bytes.
644 */
645 #define SES_ENCHDR_VMIN 36
646
647 /*
648 * SES Data Structures
649 */
650
651 typedef struct {
652 uint32_t GenCode; /* Generation Code */
653 uint8_t Nsubenc; /* Number of Subenclosures */
654 } SesCfgHdr;
655
656 typedef struct {
657 uint8_t Subencid; /* SubEnclosure Identifier */
658 uint8_t Ntypes; /* # of supported types */
659 uint8_t VEnclen; /* Enclosure Descriptor Length */
660 } SesEncHdr;
661
662 typedef struct {
663 uint8_t encWWN[8]; /* XXX- Not Right Yet */
664 uint8_t encVid[8];
665 uint8_t encPid[16];
666 uint8_t encRev[4];
667 uint8_t encVen[1];
668 } SesEncDesc;
669
670 typedef struct {
671 uint8_t enc_type; /* type of element */
672 uint8_t enc_maxelt; /* maximum supported */
673 uint8_t enc_subenc; /* in SubEnc # N */
674 uint8_t enc_tlen; /* Type Descriptor Text Length */
675 } SesThdr;
676
677 typedef struct {
678 uint8_t comstatus;
679 uint8_t comstat[3];
680 } SesComStat;
681
682 struct typidx {
683 int ses_tidx;
684 int ses_oidx;
685 };
686
687 struct sscfg {
688 uint8_t ses_ntypes; /* total number of types supported */
689
690 /*
691 * We need to keep a type index as well as an
692 * object index for each object in an enclosure.
693 */
694 struct typidx *ses_typidx;
695
696 /*
697 * We also need to keep track of the number of elements
698 * per type of element. This is needed later so that we
699 * can find precisely in the returned status data the
700 * status for the Nth element of the Kth type.
701 */
702 uint8_t * ses_eltmap;
703 };
704
705
706 /*
707 * (de)canonicalization defines
708 */
709 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
710 #define sbit(x, bit) (((uint32_t)(x)) << bit)
711 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
712
713 #define sset16(outp, idx, sval) \
714 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
715 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716
717
718 #define sset24(outp, idx, sval) \
719 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
720 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
721 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
722
723
724 #define sset32(outp, idx, sval) \
725 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
726 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
727 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729
730 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
731 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
732 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
733 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
734
735 #define sget16(inp, idx, lval) \
736 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
737 (((uint8_t *)(inp))[idx+1]), idx += 2
738
739 #define gget16(inp, idx, lval) \
740 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
741 (((uint8_t *)(inp))[idx+1])
742
743 #define sget24(inp, idx, lval) \
744 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
745 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
746 (((uint8_t *)(inp))[idx+2]), idx += 3
747
748 #define gget24(inp, idx, lval) \
749 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
750 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
751 (((uint8_t *)(inp))[idx+2])
752
753 #define sget32(inp, idx, lval) \
754 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
755 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
756 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
757 (((uint8_t *)(inp))[idx+3]), idx += 4
758
759 #define gget32(inp, idx, lval) \
760 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
761 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
762 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
763 (((uint8_t *)(inp))[idx+3])
764
765 #define SCSZ 0x2000
766 #define CFLEN (256 + SES_ENCHDR_MINLEN)
767
768 /*
769 * Routines specific && private to SES only
770 */
771
772 static int ses_getconfig(ses_softc_t *);
773 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
774 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
775 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
776 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
777 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
778 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
779 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
780
781 static int
782 ses_softc_init(ses_softc_t *ssc, int doinit)
783 {
784 if (doinit == 0) {
785 struct sscfg *cc;
786 if (ssc->ses_nobjects) {
787 SES_FREE(ssc->ses_objmap,
788 ssc->ses_nobjects * sizeof (encobj));
789 ssc->ses_objmap = NULL;
790 }
791 if ((cc = ssc->ses_private) != NULL) {
792 if (cc->ses_eltmap && cc->ses_ntypes) {
793 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
794 cc->ses_eltmap = NULL;
795 cc->ses_ntypes = 0;
796 }
797 if (cc->ses_typidx && ssc->ses_nobjects) {
798 SES_FREE(cc->ses_typidx,
799 ssc->ses_nobjects * sizeof (struct typidx));
800 cc->ses_typidx = NULL;
801 }
802 SES_FREE(cc, sizeof (struct sscfg));
803 ssc->ses_private = NULL;
804 }
805 ssc->ses_nobjects = 0;
806 return (0);
807 }
808 if (ssc->ses_private == NULL) {
809 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
810 }
811 if (ssc->ses_private == NULL) {
812 return (ENOMEM);
813 }
814 ssc->ses_nobjects = 0;
815 ssc->ses_encstat = 0;
816 return (ses_getconfig(ssc));
817 }
818
819 static int
820 ses_init_enc(ses_softc_t *ssc)
821 {
822 return (0);
823 }
824
825 static int
826 ses_get_encstat(ses_softc_t *ssc, int slpflag)
827 {
828 SesComStat ComStat;
829 int status;
830
831 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
832 return (status);
833 }
834 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
835 return (0);
836 }
837
838 static int
839 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
840 {
841 SesComStat ComStat;
842 int status;
843
844 ComStat.comstatus = encstat & 0xf;
845 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
846 return (status);
847 }
848 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
849 return (0);
850 }
851
852 static int
853 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
854 {
855 int i = (int)obp->obj_id;
856
857 if (ssc->ses_objmap[i].svalid == 0) {
858 SesComStat ComStat;
859 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
860 if (err)
861 return (err);
862 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
863 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
864 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
865 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
866 ssc->ses_objmap[i].svalid = 1;
867 }
868 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
869 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
870 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
871 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
872 return (0);
873 }
874
875 static int
876 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
877 {
878 SesComStat ComStat;
879 int err;
880 /*
881 * If this is clear, we don't do diddly.
882 */
883 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
884 return (0);
885 }
886 ComStat.comstatus = obp->cstat[0];
887 ComStat.comstat[0] = obp->cstat[1];
888 ComStat.comstat[1] = obp->cstat[2];
889 ComStat.comstat[2] = obp->cstat[3];
890 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
891 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
892 return (err);
893 }
894
895 static int
896 ses_getconfig(ses_softc_t *ssc)
897 {
898 struct sscfg *cc;
899 SesCfgHdr cf;
900 SesEncHdr hd;
901 SesEncDesc *cdp;
902 SesThdr thdr;
903 int err, amt, i, nobj, ntype, maxima;
904 char storage[CFLEN], *sdata;
905 static char cdb[6] = {
906 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
907 };
908
909 cc = ssc->ses_private;
910 if (cc == NULL) {
911 return (ENXIO);
912 }
913
914 sdata = SES_MALLOC(SCSZ);
915 if (sdata == NULL)
916 return (ENOMEM);
917
918 amt = SCSZ;
919 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
920 if (err) {
921 SES_FREE(sdata, SCSZ);
922 return (err);
923 }
924 amt = SCSZ - amt;
925
926 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
927 SES_LOG(ssc, "Unable to parse SES Config Header\n");
928 SES_FREE(sdata, SCSZ);
929 return (EIO);
930 }
931 if (amt < SES_ENCHDR_MINLEN) {
932 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
933 SES_FREE(sdata, SCSZ);
934 return (EIO);
935 }
936
937 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
938
939 /*
940 * Now waltz through all the subenclosures toting up the
941 * number of types available in each. For this, we only
942 * really need the enclosure header. However, we get the
943 * enclosure descriptor for debug purposes, as well
944 * as self-consistency checking purposes.
945 */
946
947 maxima = cf.Nsubenc + 1;
948 cdp = (SesEncDesc *) storage;
949 for (ntype = i = 0; i < maxima; i++) {
950 MEMZERO((void *)cdp, sizeof (*cdp));
951 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
952 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
953 SES_FREE(sdata, SCSZ);
954 return (EIO);
955 }
956 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
957 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
958
959 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
960 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
961 SES_FREE(sdata, SCSZ);
962 return (EIO);
963 }
964 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
965 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
966 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
967 cdp->encWWN[6], cdp->encWWN[7]);
968 ntype += hd.Ntypes;
969 }
970
971 /*
972 * Now waltz through all the types that are available, getting
973 * the type header so we can start adding up the number of
974 * objects available.
975 */
976 for (nobj = i = 0; i < ntype; i++) {
977 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
978 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
979 SES_FREE(sdata, SCSZ);
980 return (EIO);
981 }
982 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
983 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
984 thdr.enc_subenc, thdr.enc_tlen);
985 nobj += thdr.enc_maxelt;
986 }
987
988
989 /*
990 * Now allocate the object array and type map.
991 */
992
993 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
994 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
995 cc->ses_eltmap = SES_MALLOC(ntype);
996
997 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
998 cc->ses_eltmap == NULL) {
999 if (ssc->ses_objmap) {
1000 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1001 ssc->ses_objmap = NULL;
1002 }
1003 if (cc->ses_typidx) {
1004 SES_FREE(cc->ses_typidx,
1005 (nobj * sizeof (struct typidx)));
1006 cc->ses_typidx = NULL;
1007 }
1008 if (cc->ses_eltmap) {
1009 SES_FREE(cc->ses_eltmap, ntype);
1010 cc->ses_eltmap = NULL;
1011 }
1012 SES_FREE(sdata, SCSZ);
1013 return (ENOMEM);
1014 }
1015 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1016 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1017 MEMZERO(cc->ses_eltmap, ntype);
1018 cc->ses_ntypes = (uint8_t) ntype;
1019 ssc->ses_nobjects = nobj;
1020
1021 /*
1022 * Now waltz through the # of types again to fill in the types
1023 * (and subenclosure ids) of the allocated objects.
1024 */
1025 nobj = 0;
1026 for (i = 0; i < ntype; i++) {
1027 int j;
1028 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1029 continue;
1030 }
1031 cc->ses_eltmap[i] = thdr.enc_maxelt;
1032 for (j = 0; j < thdr.enc_maxelt; j++) {
1033 cc->ses_typidx[nobj].ses_tidx = i;
1034 cc->ses_typidx[nobj].ses_oidx = j;
1035 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1036 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1037 }
1038 }
1039 SES_FREE(sdata, SCSZ);
1040 return (0);
1041 }
1042
1043 static int
1044 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1045 int in)
1046 {
1047 struct sscfg *cc;
1048 int err, amt, bufsiz, tidx, oidx;
1049 char cdb[6], *sdata;
1050
1051 cc = ssc->ses_private;
1052 if (cc == NULL) {
1053 return (ENXIO);
1054 }
1055
1056 /*
1057 * If we're just getting overall enclosure status,
1058 * we only need 2 bytes of data storage.
1059 *
1060 * If we're getting anything else, we know how much
1061 * storage we need by noting that starting at offset
1062 * 8 in returned data, all object status bytes are 4
1063 * bytes long, and are stored in chunks of types(M)
1064 * and nth+1 instances of type M.
1065 */
1066 if (objid == -1) {
1067 bufsiz = 2;
1068 } else {
1069 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1070 }
1071 sdata = SES_MALLOC(bufsiz);
1072 if (sdata == NULL)
1073 return (ENOMEM);
1074
1075 cdb[0] = RECEIVE_DIAGNOSTIC;
1076 cdb[1] = 1;
1077 cdb[2] = SesStatusPage;
1078 cdb[3] = bufsiz >> 8;
1079 cdb[4] = bufsiz & 0xff;
1080 cdb[5] = 0;
1081 amt = bufsiz;
1082 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1083 if (err) {
1084 SES_FREE(sdata, bufsiz);
1085 return (err);
1086 }
1087 amt = bufsiz - amt;
1088
1089 if (objid == -1) {
1090 tidx = -1;
1091 oidx = -1;
1092 } else {
1093 tidx = cc->ses_typidx[objid].ses_tidx;
1094 oidx = cc->ses_typidx[objid].ses_oidx;
1095 }
1096 if (in) {
1097 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1098 err = ENODEV;
1099 }
1100 } else {
1101 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1102 err = ENODEV;
1103 } else {
1104 cdb[0] = SEND_DIAGNOSTIC;
1105 cdb[1] = 0x10;
1106 cdb[2] = 0;
1107 cdb[3] = bufsiz >> 8;
1108 cdb[4] = bufsiz & 0xff;
1109 cdb[5] = 0;
1110 amt = -bufsiz;
1111 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1112 }
1113 }
1114 SES_FREE(sdata, bufsiz);
1115 return (0);
1116 }
1117
1118
1119 /*
1120 * Routines to parse returned SES data structures.
1121 * Architecture and compiler independent.
1122 */
1123
1124 static int
1125 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1126 {
1127 if (buflen < SES_CFGHDR_MINLEN) {
1128 return (-1);
1129 }
1130 gget8(buffer, 1, cfp->Nsubenc);
1131 gget32(buffer, 4, cfp->GenCode);
1132 return (0);
1133 }
1134
1135 static int
1136 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1137 {
1138 int s, off = 8;
1139 for (s = 0; s < SubEncId; s++) {
1140 if (off + 3 > amt)
1141 return (-1);
1142 off += buffer[off+3] + 4;
1143 }
1144 if (off + 3 > amt) {
1145 return (-1);
1146 }
1147 gget8(buffer, off+1, chp->Subencid);
1148 gget8(buffer, off+2, chp->Ntypes);
1149 gget8(buffer, off+3, chp->VEnclen);
1150 return (0);
1151 }
1152
1153 static int
1154 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1155 {
1156 int s, e, enclen, off = 8;
1157 for (s = 0; s < SubEncId; s++) {
1158 if (off + 3 > amt)
1159 return (-1);
1160 off += buffer[off+3] + 4;
1161 }
1162 if (off + 3 > amt) {
1163 return (-1);
1164 }
1165 gget8(buffer, off+3, enclen);
1166 off += 4;
1167 if (off >= amt)
1168 return (-1);
1169
1170 e = off + enclen;
1171 if (e > amt) {
1172 e = amt;
1173 }
1174 MEMCPY(cdp, &buffer[off], e - off);
1175 return (0);
1176 }
1177
1178 static int
1179 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1180 {
1181 int s, off = 8;
1182
1183 if (amt < SES_CFGHDR_MINLEN) {
1184 return (-1);
1185 }
1186 for (s = 0; s < buffer[1]; s++) {
1187 if (off + 3 > amt)
1188 return (-1);
1189 off += buffer[off+3] + 4;
1190 }
1191 if (off + 3 > amt) {
1192 return (-1);
1193 }
1194 off += buffer[off+3] + 4 + (nth * 4);
1195 if (amt < (off + 4))
1196 return (-1);
1197
1198 gget8(buffer, off++, thp->enc_type);
1199 gget8(buffer, off++, thp->enc_maxelt);
1200 gget8(buffer, off++, thp->enc_subenc);
1201 gget8(buffer, off, thp->enc_tlen);
1202 return (0);
1203 }
1204
1205 /*
1206 * This function needs a little explanation.
1207 *
1208 * The arguments are:
1209 *
1210 *
1211 * char *b, int amt
1212 *
1213 * These describes the raw input SES status data and length.
1214 *
1215 * uint8_t *ep
1216 *
1217 * This is a map of the number of types for each element type
1218 * in the enclosure.
1219 *
1220 * int elt
1221 *
1222 * This is the element type being sought. If elt is -1,
1223 * then overall enclosure status is being sought.
1224 *
1225 * int elm
1226 *
1227 * This is the ordinal Mth element of type elt being sought.
1228 *
1229 * SesComStat *sp
1230 *
1231 * This is the output area to store the status for
1232 * the Mth element of type Elt.
1233 */
1234
1235 static int
1236 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1237 {
1238 int idx, i;
1239
1240 /*
1241 * If it's overall enclosure status being sought, get that.
1242 * We need at least 2 bytes of status data to get that.
1243 */
1244 if (elt == -1) {
1245 if (amt < 2)
1246 return (-1);
1247 gget8(b, 1, sp->comstatus);
1248 sp->comstat[0] = 0;
1249 sp->comstat[1] = 0;
1250 sp->comstat[2] = 0;
1251 return (0);
1252 }
1253
1254 /*
1255 * Check to make sure that the Mth element is legal for type Elt.
1256 */
1257
1258 if (elm >= ep[elt])
1259 return (-1);
1260
1261 /*
1262 * Starting at offset 8, start skipping over the storage
1263 * for the element types we're not interested in.
1264 */
1265 for (idx = 8, i = 0; i < elt; i++) {
1266 idx += ((ep[i] + 1) * 4);
1267 }
1268
1269 /*
1270 * Skip over Overall status for this element type.
1271 */
1272 idx += 4;
1273
1274 /*
1275 * And skip to the index for the Mth element that we're going for.
1276 */
1277 idx += (4 * elm);
1278
1279 /*
1280 * Make sure we haven't overflowed the buffer.
1281 */
1282 if (idx+4 > amt)
1283 return (-1);
1284
1285 /*
1286 * Retrieve the status.
1287 */
1288 gget8(b, idx++, sp->comstatus);
1289 gget8(b, idx++, sp->comstat[0]);
1290 gget8(b, idx++, sp->comstat[1]);
1291 gget8(b, idx++, sp->comstat[2]);
1292 #if 0
1293 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1294 #endif
1295 return (0);
1296 }
1297
1298 /*
1299 * This is the mirror function to ses_decode, but we set the 'select'
1300 * bit for the object which we're interested in. All other objects,
1301 * after a status fetch, should have that bit off. Hmm. It'd be easy
1302 * enough to ensure this, so we will.
1303 */
1304
1305 static int
1306 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1307 {
1308 int idx, i;
1309
1310 /*
1311 * If it's overall enclosure status being sought, get that.
1312 * We need at least 2 bytes of status data to get that.
1313 */
1314 if (elt == -1) {
1315 if (amt < 2)
1316 return (-1);
1317 i = 0;
1318 sset8(b, i, 0);
1319 sset8(b, i, sp->comstatus & 0xf);
1320 #if 0
1321 PRINTF("set EncStat %x\n", sp->comstatus);
1322 #endif
1323 return (0);
1324 }
1325
1326 /*
1327 * Check to make sure that the Mth element is legal for type Elt.
1328 */
1329
1330 if (elm >= ep[elt])
1331 return (-1);
1332
1333 /*
1334 * Starting at offset 8, start skipping over the storage
1335 * for the element types we're not interested in.
1336 */
1337 for (idx = 8, i = 0; i < elt; i++) {
1338 idx += ((ep[i] + 1) * 4);
1339 }
1340
1341 /*
1342 * Skip over Overall status for this element type.
1343 */
1344 idx += 4;
1345
1346 /*
1347 * And skip to the index for the Mth element that we're going for.
1348 */
1349 idx += (4 * elm);
1350
1351 /*
1352 * Make sure we haven't overflowed the buffer.
1353 */
1354 if (idx+4 > amt)
1355 return (-1);
1356
1357 /*
1358 * Set the status.
1359 */
1360 sset8(b, idx, sp->comstatus);
1361 sset8(b, idx, sp->comstat[0]);
1362 sset8(b, idx, sp->comstat[1]);
1363 sset8(b, idx, sp->comstat[2]);
1364 idx -= 4;
1365
1366 #if 0
1367 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1368 elt, elm, idx, sp->comstatus, sp->comstat[0],
1369 sp->comstat[1], sp->comstat[2]);
1370 #endif
1371
1372 /*
1373 * Now make sure all other 'Select' bits are off.
1374 */
1375 for (i = 8; i < amt; i += 4) {
1376 if (i != idx)
1377 b[i] &= ~0x80;
1378 }
1379 /*
1380 * And make sure the INVOP bit is clear.
1381 */
1382 b[2] &= ~0x10;
1383
1384 return (0);
1385 }
1386
1387 /*
1388 * SAF-TE Type Device Emulation
1389 */
1390
1391 static int safte_getconfig(ses_softc_t *);
1392 static int safte_rdstat(ses_softc_t *, int);
1393 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1394 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1395 static void wrslot_stat(ses_softc_t *, int);
1396 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1397
1398 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1399 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1400 /*
1401 * SAF-TE specific defines- Mandatory ones only...
1402 */
1403
1404 /*
1405 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1406 */
1407 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1408 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1409 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1410
1411 /*
1412 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1413 */
1414 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1415 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1416 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1417 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1418 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1419
1420
1421 #define SAFT_SCRATCH 64
1422 #define NPSEUDO_THERM 16
1423 #define NPSEUDO_ALARM 1
1424 struct scfg {
1425 /*
1426 * Cached Configuration
1427 */
1428 uint8_t Nfans; /* Number of Fans */
1429 uint8_t Npwr; /* Number of Power Supplies */
1430 uint8_t Nslots; /* Number of Device Slots */
1431 uint8_t DoorLock; /* Door Lock Installed */
1432 uint8_t Ntherm; /* Number of Temperature Sensors */
1433 uint8_t Nspkrs; /* Number of Speakers */
1434 uint8_t Nalarm; /* Number of Alarms (at least one) */
1435 /*
1436 * Cached Flag Bytes for Global Status
1437 */
1438 uint8_t flag1;
1439 uint8_t flag2;
1440 /*
1441 * What object index ID is where various slots start.
1442 */
1443 uint8_t pwroff;
1444 uint8_t slotoff;
1445 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1446 };
1447
1448 #define SAFT_FLG1_ALARM 0x1
1449 #define SAFT_FLG1_GLOBFAIL 0x2
1450 #define SAFT_FLG1_GLOBWARN 0x4
1451 #define SAFT_FLG1_ENCPWROFF 0x8
1452 #define SAFT_FLG1_ENCFANFAIL 0x10
1453 #define SAFT_FLG1_ENCPWRFAIL 0x20
1454 #define SAFT_FLG1_ENCDRVFAIL 0x40
1455 #define SAFT_FLG1_ENCDRVWARN 0x80
1456
1457 #define SAFT_FLG2_LOCKDOOR 0x4
1458 #define SAFT_PRIVATE sizeof (struct scfg)
1459
1460 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1461 #define SAFT_BAIL(r, x, k, l) \
1462 if (r >= x) { \
1463 SES_LOG(ssc, safte_2little, x, __LINE__);\
1464 SES_FREE(k, l); \
1465 return (EIO); \
1466 }
1467
1468
1469 static int
1470 safte_softc_init(ses_softc_t *ssc, int doinit)
1471 {
1472 int err, i, r;
1473 struct scfg *cc;
1474
1475 if (doinit == 0) {
1476 if (ssc->ses_nobjects) {
1477 if (ssc->ses_objmap) {
1478 SES_FREE(ssc->ses_objmap,
1479 ssc->ses_nobjects * sizeof (encobj));
1480 ssc->ses_objmap = NULL;
1481 }
1482 ssc->ses_nobjects = 0;
1483 }
1484 if (ssc->ses_private) {
1485 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1486 ssc->ses_private = NULL;
1487 }
1488 return (0);
1489 }
1490
1491 if (ssc->ses_private == NULL) {
1492 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1493 if (ssc->ses_private == NULL) {
1494 return (ENOMEM);
1495 }
1496 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1497 }
1498
1499 ssc->ses_nobjects = 0;
1500 ssc->ses_encstat = 0;
1501
1502 if ((err = safte_getconfig(ssc)) != 0) {
1503 return (err);
1504 }
1505
1506 /*
1507 * The number of objects here, as well as that reported by the
1508 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1509 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1510 */
1511 cc = ssc->ses_private;
1512 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1513 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1514 ssc->ses_objmap = (encobj *)
1515 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1516 if (ssc->ses_objmap == NULL) {
1517 return (ENOMEM);
1518 }
1519 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1520
1521 r = 0;
1522 /*
1523 * Note that this is all arranged for the convenience
1524 * in later fetches of status.
1525 */
1526 for (i = 0; i < cc->Nfans; i++)
1527 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1528 cc->pwroff = (uint8_t) r;
1529 for (i = 0; i < cc->Npwr; i++)
1530 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1531 for (i = 0; i < cc->DoorLock; i++)
1532 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1533 for (i = 0; i < cc->Nspkrs; i++)
1534 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1535 for (i = 0; i < cc->Ntherm; i++)
1536 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1537 for (i = 0; i < NPSEUDO_THERM; i++)
1538 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1539 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1540 cc->slotoff = (uint8_t) r;
1541 for (i = 0; i < cc->Nslots; i++)
1542 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1543 return (0);
1544 }
1545
1546 static int
1547 safte_init_enc(ses_softc_t *ssc)
1548 {
1549 int err, amt;
1550 char *sdata;
1551 static char cdb0[6] = { SEND_DIAGNOSTIC };
1552 static char cdb[10] =
1553 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1554
1555 sdata = SES_MALLOC(SAFT_SCRATCH);
1556 if (sdata == NULL)
1557 return (ENOMEM);
1558
1559 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1560 if (err) {
1561 SES_FREE(sdata, SAFT_SCRATCH);
1562 return (err);
1563 }
1564 sdata[0] = SAFTE_WT_GLOBAL;
1565 MEMZERO(&sdata[1], 15);
1566 amt = -SAFT_SCRATCH;
1567 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1568 SES_FREE(sdata, SAFT_SCRATCH);
1569 return (err);
1570 }
1571
1572 static int
1573 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1574 {
1575 return (safte_rdstat(ssc, slpflg));
1576 }
1577
1578 static int
1579 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1580 {
1581 struct scfg *cc = ssc->ses_private;
1582 if (cc == NULL)
1583 return (0);
1584 /*
1585 * Since SAF-TE devices aren't necessarily sticky in terms
1586 * of state, make our soft copy of enclosure status 'sticky'-
1587 * that is, things set in enclosure status stay set (as implied
1588 * by conditions set in reading object status) until cleared.
1589 */
1590 ssc->ses_encstat &= ~ALL_ENC_STAT;
1591 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1592 ssc->ses_encstat |= ENCI_SVALID;
1593 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1594 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1595 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1596 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1597 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1598 }
1599 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1600 }
1601
1602 static int
1603 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1604 {
1605 int i = (int)obp->obj_id;
1606
1607 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1608 (ssc->ses_objmap[i].svalid) == 0) {
1609 int err = safte_rdstat(ssc, slpflg);
1610 if (err)
1611 return (err);
1612 }
1613 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1614 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1615 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1616 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1617 return (0);
1618 }
1619
1620
1621 static int
1622 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1623 {
1624 int idx, err;
1625 encobj *ep;
1626 struct scfg *cc;
1627
1628
1629 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1630 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1631 obp->cstat[3]);
1632
1633 /*
1634 * If this is clear, we don't do diddly.
1635 */
1636 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1637 return (0);
1638 }
1639
1640 err = 0;
1641 /*
1642 * Check to see if the common bits are set and do them first.
1643 */
1644 if (obp->cstat[0] & ~SESCTL_CSEL) {
1645 err = set_objstat_sel(ssc, obp, slp);
1646 if (err)
1647 return (err);
1648 }
1649
1650 cc = ssc->ses_private;
1651 if (cc == NULL)
1652 return (0);
1653
1654 idx = (int)obp->obj_id;
1655 ep = &ssc->ses_objmap[idx];
1656
1657 switch (ep->enctype) {
1658 case SESTYP_DEVICE:
1659 {
1660 uint8_t slotop = 0;
1661 /*
1662 * XXX: I should probably cache the previous state
1663 * XXX: of SESCTL_DEVOFF so that when it goes from
1664 * XXX: true to false I can then set PREPARE FOR OPERATION
1665 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1666 */
1667 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1668 slotop |= 0x2;
1669 }
1670 if (obp->cstat[2] & SESCTL_RQSID) {
1671 slotop |= 0x4;
1672 }
1673 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1674 slotop, slp);
1675 if (err)
1676 return (err);
1677 if (obp->cstat[3] & SESCTL_RQSFLT) {
1678 ep->priv |= 0x2;
1679 } else {
1680 ep->priv &= ~0x2;
1681 }
1682 if (ep->priv & 0xc6) {
1683 ep->priv &= ~0x1;
1684 } else {
1685 ep->priv |= 0x1; /* no errors */
1686 }
1687 wrslot_stat(ssc, slp);
1688 break;
1689 }
1690 case SESTYP_POWER:
1691 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1692 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1693 } else {
1694 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1695 }
1696 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1697 cc->flag2, 0, slp);
1698 if (err)
1699 return (err);
1700 if (obp->cstat[3] & SESCTL_RQSTON) {
1701 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1702 idx - cc->pwroff, 0, 0, slp);
1703 } else {
1704 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1705 idx - cc->pwroff, 0, 1, slp);
1706 }
1707 break;
1708 case SESTYP_FAN:
1709 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1710 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1711 } else {
1712 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1713 }
1714 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1715 cc->flag2, 0, slp);
1716 if (err)
1717 return (err);
1718 if (obp->cstat[3] & SESCTL_RQSTON) {
1719 uint8_t fsp;
1720 if ((obp->cstat[3] & 0x7) == 7) {
1721 fsp = 4;
1722 } else if ((obp->cstat[3] & 0x7) == 6) {
1723 fsp = 3;
1724 } else if ((obp->cstat[3] & 0x7) == 4) {
1725 fsp = 2;
1726 } else {
1727 fsp = 1;
1728 }
1729 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1730 } else {
1731 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1732 }
1733 break;
1734 case SESTYP_DOORLOCK:
1735 if (obp->cstat[3] & 0x1) {
1736 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1737 } else {
1738 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1739 }
1740 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1741 cc->flag2, 0, slp);
1742 break;
1743 case SESTYP_ALARM:
1744 /*
1745 * On all nonzero but the 'muted' bit, we turn on the alarm,
1746 */
1747 obp->cstat[3] &= ~0xa;
1748 if (obp->cstat[3] & 0x40) {
1749 cc->flag2 &= ~SAFT_FLG1_ALARM;
1750 } else if (obp->cstat[3] != 0) {
1751 cc->flag2 |= SAFT_FLG1_ALARM;
1752 } else {
1753 cc->flag2 &= ~SAFT_FLG1_ALARM;
1754 }
1755 ep->priv = obp->cstat[3];
1756 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1757 cc->flag2, 0, slp);
1758 break;
1759 default:
1760 break;
1761 }
1762 ep->svalid = 0;
1763 return (0);
1764 }
1765
1766 static int
1767 safte_getconfig(ses_softc_t *ssc)
1768 {
1769 struct scfg *cfg;
1770 int err, amt;
1771 char *sdata;
1772 static char cdb[10] =
1773 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1774
1775 cfg = ssc->ses_private;
1776 if (cfg == NULL)
1777 return (ENXIO);
1778
1779 sdata = SES_MALLOC(SAFT_SCRATCH);
1780 if (sdata == NULL)
1781 return (ENOMEM);
1782
1783 amt = SAFT_SCRATCH;
1784 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1785 if (err) {
1786 SES_FREE(sdata, SAFT_SCRATCH);
1787 return (err);
1788 }
1789 amt = SAFT_SCRATCH - amt;
1790 if (amt < 6) {
1791 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1792 SES_FREE(sdata, SAFT_SCRATCH);
1793 return (EIO);
1794 }
1795 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1796 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1797 cfg->Nfans = sdata[0];
1798 cfg->Npwr = sdata[1];
1799 cfg->Nslots = sdata[2];
1800 cfg->DoorLock = sdata[3];
1801 cfg->Ntherm = sdata[4];
1802 cfg->Nspkrs = sdata[5];
1803 cfg->Nalarm = NPSEUDO_ALARM;
1804 SES_FREE(sdata, SAFT_SCRATCH);
1805 return (0);
1806 }
1807
1808 static int
1809 safte_rdstat(ses_softc_t *ssc, int slpflg)
1810 {
1811 int err, oid, r, i, hiwater, nitems, amt;
1812 uint16_t tempflags;
1813 size_t buflen;
1814 uint8_t status, oencstat;
1815 char *sdata, cdb[10];
1816 struct scfg *cc = ssc->ses_private;
1817
1818
1819 /*
1820 * The number of objects overstates things a bit,
1821 * both for the bogus 'thermometer' entries and
1822 * the drive status (which isn't read at the same
1823 * time as the enclosure status), but that's okay.
1824 */
1825 buflen = 4 * cc->Nslots;
1826 if (ssc->ses_nobjects > buflen)
1827 buflen = ssc->ses_nobjects;
1828 sdata = SES_MALLOC(buflen);
1829 if (sdata == NULL)
1830 return (ENOMEM);
1831
1832 cdb[0] = READ_BUFFER;
1833 cdb[1] = 1;
1834 cdb[2] = SAFTE_RD_RDESTS;
1835 cdb[3] = 0;
1836 cdb[4] = 0;
1837 cdb[5] = 0;
1838 cdb[6] = 0;
1839 cdb[7] = (buflen >> 8) & 0xff;
1840 cdb[8] = buflen & 0xff;
1841 cdb[9] = 0;
1842 amt = buflen;
1843 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1844 if (err) {
1845 SES_FREE(sdata, buflen);
1846 return (err);
1847 }
1848 hiwater = buflen - amt;
1849
1850
1851 /*
1852 * invalidate all status bits.
1853 */
1854 for (i = 0; i < ssc->ses_nobjects; i++)
1855 ssc->ses_objmap[i].svalid = 0;
1856 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1857 ssc->ses_encstat = 0;
1858
1859
1860 /*
1861 * Now parse returned buffer.
1862 * If we didn't get enough data back,
1863 * that's considered a fatal error.
1864 */
1865 oid = r = 0;
1866
1867 for (nitems = i = 0; i < cc->Nfans; i++) {
1868 SAFT_BAIL(r, hiwater, sdata, buflen);
1869 /*
1870 * 0 = Fan Operational
1871 * 1 = Fan is malfunctioning
1872 * 2 = Fan is not present
1873 * 0x80 = Unknown or Not Reportable Status
1874 */
1875 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1876 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1877 switch ((int)(uint8_t)sdata[r]) {
1878 case 0:
1879 nitems++;
1880 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1881 /*
1882 * We could get fancier and cache
1883 * fan speeds that we have set, but
1884 * that isn't done now.
1885 */
1886 ssc->ses_objmap[oid].encstat[3] = 7;
1887 break;
1888
1889 case 1:
1890 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1891 /*
1892 * FAIL and FAN STOPPED synthesized
1893 */
1894 ssc->ses_objmap[oid].encstat[3] = 0x40;
1895 /*
1896 * Enclosure marked with CRITICAL error
1897 * if only one fan or no thermometers,
1898 * else the NONCRITICAL error is set.
1899 */
1900 if (cc->Nfans == 1 || cc->Ntherm == 0)
1901 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1902 else
1903 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1904 break;
1905 case 2:
1906 ssc->ses_objmap[oid].encstat[0] =
1907 SES_OBJSTAT_NOTINSTALLED;
1908 ssc->ses_objmap[oid].encstat[3] = 0;
1909 /*
1910 * Enclosure marked with CRITICAL error
1911 * if only one fan or no thermometers,
1912 * else the NONCRITICAL error is set.
1913 */
1914 if (cc->Nfans == 1)
1915 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1916 else
1917 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1918 break;
1919 case 0x80:
1920 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1921 ssc->ses_objmap[oid].encstat[3] = 0;
1922 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1923 break;
1924 default:
1925 ssc->ses_objmap[oid].encstat[0] =
1926 SES_OBJSTAT_UNSUPPORTED;
1927 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1928 sdata[r] & 0xff);
1929 break;
1930 }
1931 ssc->ses_objmap[oid++].svalid = 1;
1932 r++;
1933 }
1934
1935 /*
1936 * No matter how you cut it, no cooling elements when there
1937 * should be some there is critical.
1938 */
1939 if (cc->Nfans && nitems == 0) {
1940 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1941 }
1942
1943
1944 for (i = 0; i < cc->Npwr; i++) {
1945 SAFT_BAIL(r, hiwater, sdata, buflen);
1946 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1947 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1948 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1949 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1950 switch ((uint8_t)sdata[r]) {
1951 case 0x00: /* pws operational and on */
1952 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1953 break;
1954 case 0x01: /* pws operational and off */
1955 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1956 ssc->ses_objmap[oid].encstat[3] = 0x10;
1957 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1958 break;
1959 case 0x10: /* pws is malfunctioning and commanded on */
1960 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1961 ssc->ses_objmap[oid].encstat[3] = 0x61;
1962 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1963 break;
1964
1965 case 0x11: /* pws is malfunctioning and commanded off */
1966 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1967 ssc->ses_objmap[oid].encstat[3] = 0x51;
1968 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1969 break;
1970 case 0x20: /* pws is not present */
1971 ssc->ses_objmap[oid].encstat[0] =
1972 SES_OBJSTAT_NOTINSTALLED;
1973 ssc->ses_objmap[oid].encstat[3] = 0;
1974 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1975 break;
1976 case 0x21: /* pws is present */
1977 /*
1978 * This is for enclosures that cannot tell whether the
1979 * device is on or malfunctioning, but know that it is
1980 * present. Just fall through.
1981 */
1982 /* FALLTHROUGH */
1983 case 0x80: /* Unknown or Not Reportable Status */
1984 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1985 ssc->ses_objmap[oid].encstat[3] = 0;
1986 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1987 break;
1988 default:
1989 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1990 i, sdata[r] & 0xff);
1991 break;
1992 }
1993 ssc->ses_objmap[oid++].svalid = 1;
1994 r++;
1995 }
1996
1997 /*
1998 * Skip over Slot SCSI IDs
1999 */
2000 r += cc->Nslots;
2001
2002 /*
2003 * We always have doorlock status, no matter what,
2004 * but we only save the status if we have one.
2005 */
2006 SAFT_BAIL(r, hiwater, sdata, buflen);
2007 if (cc->DoorLock) {
2008 /*
2009 * 0 = Door Locked
2010 * 1 = Door Unlocked, or no Lock Installed
2011 * 0x80 = Unknown or Not Reportable Status
2012 */
2013 ssc->ses_objmap[oid].encstat[1] = 0;
2014 ssc->ses_objmap[oid].encstat[2] = 0;
2015 switch ((uint8_t)sdata[r]) {
2016 case 0:
2017 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2018 ssc->ses_objmap[oid].encstat[3] = 0;
2019 break;
2020 case 1:
2021 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2022 ssc->ses_objmap[oid].encstat[3] = 1;
2023 break;
2024 case 0x80:
2025 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2026 ssc->ses_objmap[oid].encstat[3] = 0;
2027 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2028 break;
2029 default:
2030 ssc->ses_objmap[oid].encstat[0] =
2031 SES_OBJSTAT_UNSUPPORTED;
2032 SES_LOG(ssc, "unknown lock status 0x%x\n",
2033 sdata[r] & 0xff);
2034 break;
2035 }
2036 ssc->ses_objmap[oid++].svalid = 1;
2037 }
2038 r++;
2039
2040 /*
2041 * We always have speaker status, no matter what,
2042 * but we only save the status if we have one.
2043 */
2044 SAFT_BAIL(r, hiwater, sdata, buflen);
2045 if (cc->Nspkrs) {
2046 ssc->ses_objmap[oid].encstat[1] = 0;
2047 ssc->ses_objmap[oid].encstat[2] = 0;
2048 if (sdata[r] == 1) {
2049 /*
2050 * We need to cache tone urgency indicators.
2051 * Someday.
2052 */
2053 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2054 ssc->ses_objmap[oid].encstat[3] = 0x8;
2055 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2056 } else if (sdata[r] == 0) {
2057 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2058 ssc->ses_objmap[oid].encstat[3] = 0;
2059 } else {
2060 ssc->ses_objmap[oid].encstat[0] =
2061 SES_OBJSTAT_UNSUPPORTED;
2062 ssc->ses_objmap[oid].encstat[3] = 0;
2063 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2064 sdata[r] & 0xff);
2065 }
2066 ssc->ses_objmap[oid++].svalid = 1;
2067 }
2068 r++;
2069
2070 for (i = 0; i < cc->Ntherm; i++) {
2071 SAFT_BAIL(r, hiwater, sdata, buflen);
2072 /*
2073 * Status is a range from -10 to 245 deg Celsius,
2074 * which we need to normalize to -20 to -245 according
2075 * to the latest SCSI spec, which makes little
2076 * sense since this would overflow an 8bit value.
2077 * Well, still, the base normalization is -20,
2078 * not -10, so we have to adjust.
2079 *
2080 * So what's over and under temperature?
2081 * Hmm- we'll state that 'normal' operating
2082 * is 10 to 40 deg Celsius.
2083 */
2084
2085 /*
2086 * Actually.... All of the units that people out in the world
2087 * seem to have do not come even close to setting a value that
2088 * complies with this spec.
2089 *
2090 * The closest explanation I could find was in an
2091 * LSI-Logic manual, which seemed to indicate that
2092 * this value would be set by whatever the I2C code
2093 * would interpolate from the output of an LM75
2094 * temperature sensor.
2095 *
2096 * This means that it is impossible to use the actual
2097 * numeric value to predict anything. But we don't want
2098 * to lose the value. So, we'll propagate the *uncorrected*
2099 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2100 * temperature flags for warnings.
2101 */
2102 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2103 ssc->ses_objmap[oid].encstat[1] = 0;
2104 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2105 ssc->ses_objmap[oid].encstat[3] = 0;
2106 ssc->ses_objmap[oid++].svalid = 1;
2107 r++;
2108 }
2109
2110 /*
2111 * Now, for "pseudo" thermometers, we have two bytes
2112 * of information in enclosure status- 16 bits. Actually,
2113 * the MSB is a single TEMP ALERT flag indicating whether
2114 * any other bits are set, but, thanks to fuzzy thinking,
2115 * in the SAF-TE spec, this can also be set even if no
2116 * other bits are set, thus making this really another
2117 * binary temperature sensor.
2118 */
2119
2120 SAFT_BAIL(r, hiwater, sdata, buflen);
2121 tempflags = sdata[r++];
2122 SAFT_BAIL(r, hiwater, sdata, buflen);
2123 tempflags |= (tempflags << 8) | sdata[r++];
2124
2125 for (i = 0; i < NPSEUDO_THERM; i++) {
2126 ssc->ses_objmap[oid].encstat[1] = 0;
2127 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2128 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2129 ssc->ses_objmap[4].encstat[2] = 0xff;
2130 /*
2131 * Set 'over temperature' failure.
2132 */
2133 ssc->ses_objmap[oid].encstat[3] = 8;
2134 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2135 } else {
2136 /*
2137 * We used to say 'not available' and synthesize a
2138 * nominal 30 deg (C)- that was wrong. Actually,
2139 * Just say 'OK', and use the reserved value of
2140 * zero.
2141 */
2142 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2143 ssc->ses_objmap[oid].encstat[2] = 0;
2144 ssc->ses_objmap[oid].encstat[3] = 0;
2145 }
2146 ssc->ses_objmap[oid++].svalid = 1;
2147 }
2148
2149 /*
2150 * Get alarm status.
2151 */
2152 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2153 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2154 ssc->ses_objmap[oid++].svalid = 1;
2155
2156 /*
2157 * Now get drive slot status
2158 */
2159 cdb[2] = SAFTE_RD_RDDSTS;
2160 amt = buflen;
2161 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2162 if (err) {
2163 SES_FREE(sdata, buflen);
2164 return (err);
2165 }
2166 hiwater = buflen - amt;
2167 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2168 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2169 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2170 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2171 ssc->ses_objmap[oid].encstat[2] = 0;
2172 ssc->ses_objmap[oid].encstat[3] = 0;
2173 status = sdata[r+3];
2174 if ((status & 0x1) == 0) { /* no device */
2175 ssc->ses_objmap[oid].encstat[0] =
2176 SES_OBJSTAT_NOTINSTALLED;
2177 } else {
2178 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2179 }
2180 if (status & 0x2) {
2181 ssc->ses_objmap[oid].encstat[2] = 0x8;
2182 }
2183 if ((status & 0x4) == 0) {
2184 ssc->ses_objmap[oid].encstat[3] = 0x10;
2185 }
2186 ssc->ses_objmap[oid++].svalid = 1;
2187 }
2188 /* see comment below about sticky enclosure status */
2189 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2190 SES_FREE(sdata, buflen);
2191 return (0);
2192 }
2193
2194 static int
2195 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2196 {
2197 int idx;
2198 encobj *ep;
2199 struct scfg *cc = ssc->ses_private;
2200
2201 if (cc == NULL)
2202 return (0);
2203
2204 idx = (int)obp->obj_id;
2205 ep = &ssc->ses_objmap[idx];
2206
2207 switch (ep->enctype) {
2208 case SESTYP_DEVICE:
2209 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2210 ep->priv |= 0x40;
2211 }
2212 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2213 if (obp->cstat[0] & SESCTL_DISABLE) {
2214 ep->priv |= 0x80;
2215 /*
2216 * Hmm. Try to set the 'No Drive' flag.
2217 * Maybe that will count as a 'disable'.
2218 */
2219 }
2220 if (ep->priv & 0xc6) {
2221 ep->priv &= ~0x1;
2222 } else {
2223 ep->priv |= 0x1; /* no errors */
2224 }
2225 wrslot_stat(ssc, slp);
2226 break;
2227 case SESTYP_POWER:
2228 /*
2229 * Okay- the only one that makes sense here is to
2230 * do the 'disable' for a power supply.
2231 */
2232 if (obp->cstat[0] & SESCTL_DISABLE) {
2233 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2234 idx - cc->pwroff, 0, 0, slp);
2235 }
2236 break;
2237 case SESTYP_FAN:
2238 /*
2239 * Okay- the only one that makes sense here is to
2240 * set fan speed to zero on disable.
2241 */
2242 if (obp->cstat[0] & SESCTL_DISABLE) {
2243 /* remember- fans are the first items, so idx works */
2244 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2245 }
2246 break;
2247 case SESTYP_DOORLOCK:
2248 /*
2249 * Well, we can 'disable' the lock.
2250 */
2251 if (obp->cstat[0] & SESCTL_DISABLE) {
2252 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2253 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2254 cc->flag2, 0, slp);
2255 }
2256 break;
2257 case SESTYP_ALARM:
2258 /*
2259 * Well, we can 'disable' the alarm.
2260 */
2261 if (obp->cstat[0] & SESCTL_DISABLE) {
2262 cc->flag2 &= ~SAFT_FLG1_ALARM;
2263 ep->priv |= 0x40; /* Muted */
2264 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2265 cc->flag2, 0, slp);
2266 }
2267 break;
2268 default:
2269 break;
2270 }
2271 ep->svalid = 0;
2272 return (0);
2273 }
2274
2275 /*
2276 * This function handles all of the 16 byte WRITE BUFFER commands.
2277 */
2278 static int
2279 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2280 uint8_t b3, int slp)
2281 {
2282 int err, amt;
2283 char *sdata;
2284 struct scfg *cc = ssc->ses_private;
2285 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2286
2287 if (cc == NULL)
2288 return (0);
2289
2290 sdata = SES_MALLOC(16);
2291 if (sdata == NULL)
2292 return (ENOMEM);
2293
2294 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2295
2296 sdata[0] = op;
2297 sdata[1] = b1;
2298 sdata[2] = b2;
2299 sdata[3] = b3;
2300 MEMZERO(&sdata[4], 12);
2301 amt = -16;
2302 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2303 SES_FREE(sdata, 16);
2304 return (err);
2305 }
2306
2307 /*
2308 * This function updates the status byte for the device slot described.
2309 *
2310 * Since this is an optional SAF-TE command, there's no point in
2311 * returning an error.
2312 */
2313 static void
2314 wrslot_stat(ses_softc_t *ssc, int slp)
2315 {
2316 int i, amt;
2317 encobj *ep;
2318 char cdb[10], *sdata;
2319 struct scfg *cc = ssc->ses_private;
2320
2321 if (cc == NULL)
2322 return;
2323
2324 SES_VLOG(ssc, "saf_wrslot\n");
2325 cdb[0] = WRITE_BUFFER;
2326 cdb[1] = 1;
2327 cdb[2] = 0;
2328 cdb[3] = 0;
2329 cdb[4] = 0;
2330 cdb[5] = 0;
2331 cdb[6] = 0;
2332 cdb[7] = 0;
2333 cdb[8] = cc->Nslots * 3 + 1;
2334 cdb[9] = 0;
2335
2336 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2337 if (sdata == NULL)
2338 return;
2339 MEMZERO(sdata, cc->Nslots * 3 + 1);
2340
2341 sdata[0] = SAFTE_WT_DSTAT;
2342 for (i = 0; i < cc->Nslots; i++) {
2343 ep = &ssc->ses_objmap[cc->slotoff + i];
2344 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2345 sdata[1 + (3 * i)] = ep->priv & 0xff;
2346 }
2347 amt = -(cc->Nslots * 3 + 1);
2348 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2349 SES_FREE(sdata, cc->Nslots * 3 + 1);
2350 }
2351
2352 /*
2353 * This function issues the "PERFORM SLOT OPERATION" command.
2354 */
2355 static int
2356 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2357 {
2358 int err, amt;
2359 char *sdata;
2360 struct scfg *cc = ssc->ses_private;
2361 static char cdb[10] =
2362 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2363
2364 if (cc == NULL)
2365 return (0);
2366
2367 sdata = SES_MALLOC(SAFT_SCRATCH);
2368 if (sdata == NULL)
2369 return (ENOMEM);
2370 MEMZERO(sdata, SAFT_SCRATCH);
2371
2372 sdata[0] = SAFTE_WT_SLTOP;
2373 sdata[1] = slot;
2374 sdata[2] = opflag;
2375 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2376 amt = -SAFT_SCRATCH;
2377 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2378 SES_FREE(sdata, SAFT_SCRATCH);
2379 return (err);
2380 }
2381