ses.c revision 1.4 1 /* $NetBSD: ses.c,v 1.4 2000/02/20 21:30:44 mjacob Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57
58 /*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61 typedef enum {
62 SES_NONE,
63 SES_SES_SCSI2,
64 SES_SES,
65 SES_SES_PASSTHROUGH,
66 SES_SEN,
67 SES_SAFT
68 } enctyp;
69
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 int (*softc_init) __P((ses_softc_t *, int));
74 int (*init_enc) __P((ses_softc_t *));
75 int (*get_encstat) __P((ses_softc_t *, int));
76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80
81 #define ENCI_SVALID 0x80
82
83 typedef struct {
84 uint32_t
85 enctype : 8, /* enclosure type */
86 subenclosure : 8, /* subenclosure id */
87 svalid : 1, /* enclosure information valid */
88 priv : 15; /* private data, per object */
89 uint8_t encstat[4]; /* state && stats */
90 } encobj;
91
92 #define SEN_ID "UNISYS SUN_SEN"
93 #define SEN_ID_LEN 24
94
95 static enctyp ses_type __P((void *, int));
96
97
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112
113 /*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117 #define STRNCMP strncmp
118 #define PRINTF printf
119 #define SES_LOG ses_log
120 #if defined(DEBUG) || defined(SCSIDEBUG)
121 #define SES_VLOG ses_log
122 #else
123 #define SES_VLOG if (0) ses_log
124 #endif
125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
127 #define MEMZERO bzero
128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
129 #define RECEIVE_DIAGNOSTIC 0x1c
130 #define SEND_DIAGNOSTIC 0x1d
131 #define WRITE_BUFFER 0x3b
132 #define READ_BUFFER 0x3c
133
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...));
140
141 /*
142 * General NetBSD kernel stuff.
143 */
144
145 struct ses_softc {
146 struct device sc_device;
147 struct scsipi_link *sc_link;
148 enctyp ses_type; /* type of enclosure */
149 encvec ses_vec; /* vector to handlers */
150 void * ses_private; /* per-type private data */
151 encobj * ses_objmap; /* objects */
152 u_int32_t ses_nobjects; /* number of objects */
153 ses_encstat ses_encstat; /* overall status */
154 u_int8_t ses_flags;
155 };
156 #define SES_FLAG_INVALID 0x01
157 #define SES_FLAG_OPEN 0x02
158 #define SES_FLAG_INITIALIZED 0x04
159
160 #define SESUNIT(x) (minor((x)))
161
162 static int ses_match __P((struct device *, struct cfdata *, void *));
163 static void ses_attach __P((struct device *, struct device *, void *));
164 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
165
166 struct cfattach ses_ca = {
167 sizeof (struct ses_softc), ses_match, ses_attach
168 };
169 extern struct cfdriver ses_cd;
170
171 struct scsipi_device ses_switch = {
172 NULL,
173 NULL,
174 NULL,
175 NULL
176 };
177
178
179 int
180 ses_match(parent, match, aux)
181 struct device *parent;
182 struct cfdata *match;
183 void *aux;
184 {
185 struct scsipibus_attach_args *sa = aux;
186
187 switch (ses_device_type(sa)) {
188 case SES_SES:
189 case SES_SES_SCSI2:
190 case SES_SEN:
191 case SES_SAFT:
192 case SES_SES_PASSTHROUGH:
193 /*
194 * For these devices, it's a perfect match.
195 */
196 return (24);
197 default:
198 return (0);
199 }
200 }
201
202
203 /*
204 * Complete the attachment.
205 *
206 * We have to repeat the rerun of INQUIRY data as above because
207 * it's not until the return from the match routine that we have
208 * the softc available to set stuff in.
209 */
210 void
211 ses_attach(parent, self, aux)
212 struct device *parent;
213 struct device *self;
214 void *aux;
215 {
216 char *tname;
217 struct ses_softc *softc = (void *)self;
218 struct scsipibus_attach_args *sa = aux;
219 struct scsipi_link *sc_link = sa->sa_sc_link;
220
221 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
222 softc->sc_link = sa->sa_sc_link;
223 sc_link->device = &ses_switch;
224 sc_link->device_softc = softc;
225 sc_link->openings = 1;
226
227 softc->ses_type = ses_device_type(sa);
228 switch (softc->ses_type) {
229 case SES_SES:
230 case SES_SES_SCSI2:
231 case SES_SES_PASSTHROUGH:
232 softc->ses_vec.softc_init = ses_softc_init;
233 softc->ses_vec.init_enc = ses_init_enc;
234 softc->ses_vec.get_encstat = ses_get_encstat;
235 softc->ses_vec.set_encstat = ses_set_encstat;
236 softc->ses_vec.get_objstat = ses_get_objstat;
237 softc->ses_vec.set_objstat = ses_set_objstat;
238 break;
239 case SES_SAFT:
240 softc->ses_vec.softc_init = safte_softc_init;
241 softc->ses_vec.init_enc = safte_init_enc;
242 softc->ses_vec.get_encstat = safte_get_encstat;
243 softc->ses_vec.set_encstat = safte_set_encstat;
244 softc->ses_vec.get_objstat = safte_get_objstat;
245 softc->ses_vec.set_objstat = safte_set_objstat;
246 break;
247 case SES_SEN:
248 break;
249 case SES_NONE:
250 default:
251 break;
252 }
253
254 switch (softc->ses_type) {
255 default:
256 case SES_NONE:
257 tname = "No SES device";
258 break;
259 case SES_SES_SCSI2:
260 tname = "SCSI-2 SES Device";
261 break;
262 case SES_SES:
263 tname = "SCSI-3 SES Device";
264 break;
265 case SES_SES_PASSTHROUGH:
266 tname = "SES Passthrough Device";
267 break;
268 case SES_SEN:
269 tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 break;
271 case SES_SAFT:
272 tname = "SAF-TE Compliant Device";
273 break;
274 }
275 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277
278
279 #define NETBSD_SAFTE_END 50
280
281 static enctyp
282 ses_device_type(sa)
283 struct scsipibus_attach_args *sa;
284 {
285 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
286 int length;
287
288 if (inqp == NULL)
289 return (SES_NONE);
290
291 /*
292 * If we can get longer data to check for the
293 * presence of a SAF-TE device, try and do so.
294 *
295 * Because we do deferred target attach in NetBSD,
296 * we don't have to run this as a polled command.
297 */
298
299 if (inqp->additional_length >= NETBSD_SAFTE_END-4) {
300 size_t amt = inqp->additional_length + 4;
301 struct scsipi_generic cmd;
302 static u_char more[64];
303
304 bzero(&cmd, sizeof(cmd));
305 cmd.opcode = INQUIRY;
306 cmd.bytes[3] = amt;
307 if (scsipi_command(sa->sa_sc_link, &cmd, 6, more, amt,
308 SCSIPIRETRIES, 10000, NULL,
309 XS_CTL_DATA_IN | XS_CTL_DISCOVERY) == 0) {
310 length = amt;
311 inqp = (struct scsipi_inquiry_data *) more;
312 }
313 } else {
314 length = sizeof (struct scsipi_inquiry_data);
315 }
316 return (ses_type(inqp, length));
317 }
318
319 int
320 sesopen(dev, flags, fmt, p)
321 dev_t dev;
322 int flags;
323 int fmt;
324 struct proc *p;
325 {
326 struct ses_softc *softc;
327 int error, unit;
328
329 unit = SESUNIT(dev);
330 if (unit >= ses_cd.cd_ndevs)
331 return (ENXIO);
332 softc = ses_cd.cd_devs[unit];
333 if (softc == NULL)
334 return (ENXIO);
335
336 if (softc->ses_flags & SES_FLAG_INVALID) {
337 error = ENXIO;
338 goto out;
339 }
340 if (softc->ses_flags & SES_FLAG_OPEN) {
341 error = EBUSY;
342 goto out;
343 }
344 if (softc->ses_vec.softc_init == NULL) {
345 error = ENXIO;
346 goto out;
347 }
348 error = scsipi_adapter_addref(softc->sc_link);
349 if (error != 0)
350 goto out;
351
352
353 softc->ses_flags |= SES_FLAG_OPEN;
354 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
355 error = (*softc->ses_vec.softc_init)(softc, 1);
356 if (error)
357 softc->ses_flags &= ~SES_FLAG_OPEN;
358 else
359 softc->ses_flags |= SES_FLAG_INITIALIZED;
360 }
361
362 out:
363 return (error);
364 }
365
366 int
367 sesclose(dev, flags, fmt, p)
368 dev_t dev;
369 int flags;
370 int fmt;
371 struct proc *p;
372 {
373 struct ses_softc *softc;
374 int unit;
375
376 unit = SESUNIT(dev);
377 if (unit >= ses_cd.cd_ndevs)
378 return (ENXIO);
379 softc = ses_cd.cd_devs[unit];
380 if (softc == NULL)
381 return (ENXIO);
382
383 scsipi_wait_drain(softc->sc_link);
384 scsipi_adapter_delref(softc->sc_link);
385 softc->ses_flags &= ~SES_FLAG_OPEN;
386 return (0);
387 }
388
389 int
390 sesioctl(dev, cmd, arg_addr, flag, p)
391 dev_t dev;
392 u_long cmd;
393 caddr_t arg_addr;
394 int flag;
395 struct proc *p;
396 {
397 ses_encstat tmp;
398 ses_objstat objs;
399 ses_object obj, *uobj;
400 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
401 void *addr;
402 int error, i;
403
404
405 if (arg_addr)
406 addr = *((caddr_t *) arg_addr);
407 else
408 addr = NULL;
409
410 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
411
412 /*
413 * Now check to see whether we're initialized or not.
414 */
415 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
416 return (ENODEV);
417 }
418
419 error = 0;
420
421 /*
422 * If this command can change the device's state,
423 * we must have the device open for writing.
424 */
425 switch (cmd) {
426 case SESIOC_GETNOBJ:
427 case SESIOC_GETOBJMAP:
428 case SESIOC_GETENCSTAT:
429 case SESIOC_GETOBJSTAT:
430 break;
431 default:
432 if ((flag & FWRITE) == 0) {
433 return (EBADF);
434 }
435 }
436
437 switch (cmd) {
438 case SESIOC_GETNOBJ:
439 error = copyout(&ssc->ses_nobjects, addr,
440 sizeof (ssc->ses_nobjects));
441 break;
442
443 case SESIOC_GETOBJMAP:
444 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
445 obj.obj_id = i;
446 obj.subencid = ssc->ses_objmap[i].subenclosure;
447 obj.object_type = ssc->ses_objmap[i].enctype;
448 error = copyout(&obj, uobj, sizeof (ses_object));
449 if (error) {
450 break;
451 }
452 }
453 break;
454
455 case SESIOC_GETENCSTAT:
456 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
457 if (error)
458 break;
459 tmp = ssc->ses_encstat & ~ENCI_SVALID;
460 error = copyout(&tmp, addr, sizeof (ses_encstat));
461 ssc->ses_encstat = tmp;
462 break;
463
464 case SESIOC_SETENCSTAT:
465 error = copyin(addr, &tmp, sizeof (ses_encstat));
466 if (error)
467 break;
468 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
469 break;
470
471 case SESIOC_GETOBJSTAT:
472 error = copyin(addr, &objs, sizeof (ses_objstat));
473 if (error)
474 break;
475 if (objs.obj_id >= ssc->ses_nobjects) {
476 error = EINVAL;
477 break;
478 }
479 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
480 if (error)
481 break;
482 error = copyout(&objs, addr, sizeof (ses_objstat));
483 /*
484 * Always (for now) invalidate entry.
485 */
486 ssc->ses_objmap[objs.obj_id].svalid = 0;
487 break;
488
489 case SESIOC_SETOBJSTAT:
490 error = copyin(addr, &objs, sizeof (ses_objstat));
491 if (error)
492 break;
493
494 if (objs.obj_id >= ssc->ses_nobjects) {
495 error = EINVAL;
496 break;
497 }
498 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
499
500 /*
501 * Always (for now) invalidate entry.
502 */
503 ssc->ses_objmap[objs.obj_id].svalid = 0;
504 break;
505
506 case SESIOC_INIT:
507
508 error = (*ssc->ses_vec.init_enc)(ssc);
509 break;
510
511 default:
512 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
513 break;
514 }
515 return (error);
516 }
517
518 static int
519 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
520 {
521 struct scsipi_generic sgen;
522 int dl, flg, error;
523
524 if (dptr) {
525 if ((dl = *dlenp) < 0) {
526 dl = -dl;
527 flg = XS_CTL_DATA_OUT;
528 } else {
529 flg = XS_CTL_DATA_IN;
530 }
531 } else {
532 dl = 0;
533 flg = 0;
534 }
535
536 if (cdbl > sizeof (struct scsipi_generic)) {
537 cdbl = sizeof (struct scsipi_generic);
538 }
539 bcopy(cdb, &sgen, cdbl);
540 #ifndef SCSIDEBUG
541 flg |= XS_CTL_SILENT;
542 #endif
543 error = scsipi_command(ssc->sc_link, &sgen, cdbl,
544 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
545
546 if (error == 0 && dptr)
547 *dlenp = 0;
548
549 return (error);
550 }
551
552 #ifdef __STDC__
553 static void
554 ses_log(struct ses_softc *ssc, const char *fmt, ...)
555 {
556 va_list ap;
557
558 printf("%s: ", ssc->sc_device.dv_xname);
559 va_start(ap, fmt);
560 vprintf(fmt, ap);
561 va_end(ap);
562 }
563 #else
564 static void
565 ses_log(ssc, fmt, va_alist)
566 struct ses_softc *ssc;
567 char *fmt;
568 va_dcl
569 {
570 va_list ap;
571
572 printf("%s: ", ssc->sc_device.dv_xname);
573 va_start(ap, fmt);
574 vprintf(fmt, ap);
575 va_end(ap);
576 }
577 #endif
578
579 /*
580 * The code after this point runs on many platforms,
581 * so forgive the slightly awkward and nonconforming
582 * appearance.
583 */
584
585 /*
586 * Is this a device that supports enclosure services?
587 *
588 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
589 * an SES device. If it happens to be an old UNISYS SEN device, we can
590 * handle that too.
591 */
592
593 #define SAFTE_START 44
594 #define SAFTE_END 50
595 #define SAFTE_LEN SAFTE_END-SAFTE_START
596
597 static enctyp
598 ses_type(void *buf, int buflen)
599 {
600 unsigned char *iqd = buf;
601
602 if (buflen < 8+SEN_ID_LEN)
603 return (SES_NONE);
604
605 if ((iqd[0] & 0x1f) == T_ENCLOSURE) {
606 if (STRNCMP(&iqd[8], SEN_ID, SEN_ID_LEN) == 0) {
607 return (SES_SEN);
608 } else if ((iqd[2] & 0x7) > 2) {
609 return (SES_SES);
610 } else {
611 return (SES_SES_SCSI2);
612 }
613 return (SES_NONE);
614 }
615
616 #ifdef SES_ENABLE_PASSTHROUGH
617 if ((iqd[6] & 0x40) && (iqd[2] & 0x7) >= 2) {
618 /*
619 * PassThrough Device.
620 */
621 return (SES_SES_PASSTHROUGH);
622 }
623 #endif
624
625 /*
626 * The comparison is short for a reason-
627 * some vendors were chopping it short.
628 */
629
630 if (buflen < SAFTE_END - 2) {
631 return (SES_NONE);
632 }
633
634 if (STRNCMP((char *)&iqd[SAFTE_START], "SAF-TE", SAFTE_LEN - 2) == 0) {
635 return (SES_SAFT);
636 }
637 return (SES_NONE);
638 }
639
640 /*
641 * SES Native Type Device Support
642 */
643
644 /*
645 * SES Diagnostic Page Codes
646 */
647
648 typedef enum {
649 SesConfigPage = 0x1,
650 SesControlPage,
651 #define SesStatusPage SesControlPage
652 SesHelpTxt,
653 SesStringOut,
654 #define SesStringIn SesStringOut
655 SesThresholdOut,
656 #define SesThresholdIn SesThresholdOut
657 SesArrayControl,
658 #define SesArrayStatus SesArrayControl
659 SesElementDescriptor,
660 SesShortStatus
661 } SesDiagPageCodes;
662
663 /*
664 * minimal amounts
665 */
666
667 /*
668 * Minimum amount of data, starting from byte 0, to have
669 * the config header.
670 */
671 #define SES_CFGHDR_MINLEN 12
672
673 /*
674 * Minimum amount of data, starting from byte 0, to have
675 * the config header and one enclosure header.
676 */
677 #define SES_ENCHDR_MINLEN 48
678
679 /*
680 * Take this value, subtract it from VEnclen and you know
681 * the length of the vendor unique bytes.
682 */
683 #define SES_ENCHDR_VMIN 36
684
685 /*
686 * SES Data Structures
687 */
688
689 typedef struct {
690 uint32_t GenCode; /* Generation Code */
691 uint8_t Nsubenc; /* Number of Subenclosures */
692 } SesCfgHdr;
693
694 typedef struct {
695 uint8_t Subencid; /* SubEnclosure Identifier */
696 uint8_t Ntypes; /* # of supported types */
697 uint8_t VEnclen; /* Enclosure Descriptor Length */
698 } SesEncHdr;
699
700 typedef struct {
701 uint8_t encWWN[8]; /* XXX- Not Right Yet */
702 uint8_t encVid[8];
703 uint8_t encPid[16];
704 uint8_t encRev[4];
705 uint8_t encVen[1];
706 } SesEncDesc;
707
708 typedef struct {
709 uint8_t enc_type; /* type of element */
710 uint8_t enc_maxelt; /* maximum supported */
711 uint8_t enc_subenc; /* in SubEnc # N */
712 uint8_t enc_tlen; /* Type Descriptor Text Length */
713 } SesThdr;
714
715 typedef struct {
716 uint8_t comstatus;
717 uint8_t comstat[3];
718 } SesComStat;
719
720 struct typidx {
721 int ses_tidx;
722 int ses_oidx;
723 };
724
725 struct sscfg {
726 uint8_t ses_ntypes; /* total number of types supported */
727
728 /*
729 * We need to keep a type index as well as an
730 * object index for each object in an enclosure.
731 */
732 struct typidx *ses_typidx;
733
734 /*
735 * We also need to keep track of the number of elements
736 * per type of element. This is needed later so that we
737 * can find precisely in the returned status data the
738 * status for the Nth element of the Kth type.
739 */
740 uint8_t * ses_eltmap;
741 };
742
743
744 /*
745 * (de)canonicalization defines
746 */
747 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
748 #define sbit(x, bit) (((uint32_t)(x)) << bit)
749 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
750
751 #define sset16(outp, idx, sval) \
752 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
753 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
754
755
756 #define sset24(outp, idx, sval) \
757 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
758 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
759 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
760
761
762 #define sset32(outp, idx, sval) \
763 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
764 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
765 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
766 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
767
768 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
769 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
770 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
771 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
772
773 #define sget16(inp, idx, lval) \
774 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
775 (((uint8_t *)(inp))[idx+1]), idx += 2
776
777 #define gget16(inp, idx, lval) \
778 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
779 (((uint8_t *)(inp))[idx+1])
780
781 #define sget24(inp, idx, lval) \
782 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
783 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
784 (((uint8_t *)(inp))[idx+2]), idx += 3
785
786 #define gget24(inp, idx, lval) \
787 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
788 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
789 (((uint8_t *)(inp))[idx+2])
790
791 #define sget32(inp, idx, lval) \
792 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
793 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
794 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
795 (((uint8_t *)(inp))[idx+3]), idx += 4
796
797 #define gget32(inp, idx, lval) \
798 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
799 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
800 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
801 (((uint8_t *)(inp))[idx+3])
802
803 #define SCSZ 0x2000
804 #define CFLEN (256 + SES_ENCHDR_MINLEN)
805
806 /*
807 * Routines specific && private to SES only
808 */
809
810 static int ses_getconfig(ses_softc_t *);
811 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
812 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
813 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
814 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
815 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
816 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
817 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
818
819 static int
820 ses_softc_init(ses_softc_t *ssc, int doinit)
821 {
822 if (doinit == 0) {
823 struct sscfg *cc;
824 if (ssc->ses_nobjects) {
825 SES_FREE(ssc->ses_objmap,
826 ssc->ses_nobjects * sizeof (encobj));
827 ssc->ses_objmap = NULL;
828 }
829 if ((cc = ssc->ses_private) != NULL) {
830 if (cc->ses_eltmap && cc->ses_ntypes) {
831 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
832 cc->ses_eltmap = NULL;
833 cc->ses_ntypes = 0;
834 }
835 if (cc->ses_typidx && ssc->ses_nobjects) {
836 SES_FREE(cc->ses_typidx,
837 ssc->ses_nobjects * sizeof (struct typidx));
838 cc->ses_typidx = NULL;
839 }
840 SES_FREE(cc, sizeof (struct sscfg));
841 ssc->ses_private = NULL;
842 }
843 ssc->ses_nobjects = 0;
844 return (0);
845 }
846 if (ssc->ses_private == NULL) {
847 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
848 }
849 if (ssc->ses_private == NULL) {
850 return (ENOMEM);
851 }
852 ssc->ses_nobjects = 0;
853 ssc->ses_encstat = 0;
854 return (ses_getconfig(ssc));
855 }
856
857 static int
858 ses_init_enc(ses_softc_t *ssc)
859 {
860 return (0);
861 }
862
863 static int
864 ses_get_encstat(ses_softc_t *ssc, int slpflag)
865 {
866 SesComStat ComStat;
867 int status;
868
869 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
870 return (status);
871 }
872 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
873 return (0);
874 }
875
876 static int
877 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
878 {
879 SesComStat ComStat;
880 int status;
881
882 ComStat.comstatus = encstat & 0xf;
883 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
884 return (status);
885 }
886 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
887 return (0);
888 }
889
890 static int
891 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
892 {
893 int i = (int)obp->obj_id;
894
895 if (ssc->ses_objmap[i].svalid == 0) {
896 SesComStat ComStat;
897 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
898 if (err)
899 return (err);
900 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
901 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
902 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
903 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
904 ssc->ses_objmap[i].svalid = 1;
905 }
906 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
907 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
908 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
909 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
910 return (0);
911 }
912
913 static int
914 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
915 {
916 SesComStat ComStat;
917 int err;
918 /*
919 * If this is clear, we don't do diddly.
920 */
921 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
922 return (0);
923 }
924 ComStat.comstatus = obp->cstat[0];
925 ComStat.comstat[0] = obp->cstat[1];
926 ComStat.comstat[1] = obp->cstat[2];
927 ComStat.comstat[2] = obp->cstat[3];
928 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
929 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
930 return (err);
931 }
932
933 static int
934 ses_getconfig(ses_softc_t *ssc)
935 {
936 struct sscfg *cc;
937 SesCfgHdr cf;
938 SesEncHdr hd;
939 SesEncDesc *cdp;
940 SesThdr thdr;
941 int err, amt, i, nobj, ntype, maxima;
942 char storage[CFLEN], *sdata;
943 static char cdb[6] = {
944 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
945 };
946
947 cc = ssc->ses_private;
948 if (cc == NULL) {
949 return (ENXIO);
950 }
951
952 sdata = SES_MALLOC(SCSZ);
953 if (sdata == NULL)
954 return (ENOMEM);
955
956 amt = SCSZ;
957 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
958 if (err) {
959 SES_FREE(sdata, SCSZ);
960 return (err);
961 }
962 amt = SCSZ - amt;
963
964 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
965 SES_LOG(ssc, "Unable to parse SES Config Header\n");
966 SES_FREE(sdata, SCSZ);
967 return (EIO);
968 }
969 if (amt < SES_ENCHDR_MINLEN) {
970 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
971 SES_FREE(sdata, SCSZ);
972 return (EIO);
973 }
974
975 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
976
977 /*
978 * Now waltz through all the subenclosures toting up the
979 * number of types available in each. For this, we only
980 * really need the enclosure header. However, we get the
981 * enclosure descriptor for debug purposes, as well
982 * as self-consistency checking purposes.
983 */
984
985 maxima = cf.Nsubenc + 1;
986 cdp = (SesEncDesc *) storage;
987 for (ntype = i = 0; i < maxima; i++) {
988 MEMZERO((caddr_t)cdp, sizeof (*cdp));
989 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
990 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
991 SES_FREE(sdata, SCSZ);
992 return (EIO);
993 }
994 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
995 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
996
997 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
998 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
999 SES_FREE(sdata, SCSZ);
1000 return (EIO);
1001 }
1002 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
1003 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
1004 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
1005 cdp->encWWN[6], cdp->encWWN[7]);
1006 ntype += hd.Ntypes;
1007 }
1008
1009 /*
1010 * Now waltz through all the types that are available, getting
1011 * the type header so we can start adding up the number of
1012 * objects available.
1013 */
1014 for (nobj = i = 0; i < ntype; i++) {
1015 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1016 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1017 SES_FREE(sdata, SCSZ);
1018 return (EIO);
1019 }
1020 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1021 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1022 thdr.enc_subenc, thdr.enc_tlen);
1023 nobj += thdr.enc_maxelt;
1024 }
1025
1026
1027 /*
1028 * Now allocate the object array and type map.
1029 */
1030
1031 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1032 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1033 cc->ses_eltmap = SES_MALLOC(ntype);
1034
1035 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1036 cc->ses_eltmap == NULL) {
1037 if (ssc->ses_objmap) {
1038 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1039 ssc->ses_objmap = NULL;
1040 }
1041 if (cc->ses_typidx) {
1042 SES_FREE(cc->ses_typidx,
1043 (nobj * sizeof (struct typidx)));
1044 cc->ses_typidx = NULL;
1045 }
1046 if (cc->ses_eltmap) {
1047 SES_FREE(cc->ses_eltmap, ntype);
1048 cc->ses_eltmap = NULL;
1049 }
1050 SES_FREE(sdata, SCSZ);
1051 return (ENOMEM);
1052 }
1053 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1054 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1055 MEMZERO(cc->ses_eltmap, ntype);
1056 cc->ses_ntypes = (uint8_t) ntype;
1057 ssc->ses_nobjects = nobj;
1058
1059 /*
1060 * Now waltz through the # of types again to fill in the types
1061 * (and subenclosure ids) of the allocated objects.
1062 */
1063 nobj = 0;
1064 for (i = 0; i < ntype; i++) {
1065 int j;
1066 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1067 continue;
1068 }
1069 cc->ses_eltmap[i] = thdr.enc_maxelt;
1070 for (j = 0; j < thdr.enc_maxelt; j++) {
1071 cc->ses_typidx[nobj].ses_tidx = i;
1072 cc->ses_typidx[nobj].ses_oidx = j;
1073 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1074 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1075 }
1076 }
1077 SES_FREE(sdata, SCSZ);
1078 return (0);
1079 }
1080
1081 static int
1082 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1083 {
1084 struct sscfg *cc;
1085 int err, amt, bufsiz, tidx, oidx;
1086 char cdb[6], *sdata;
1087
1088 cc = ssc->ses_private;
1089 if (cc == NULL) {
1090 return (ENXIO);
1091 }
1092
1093 /*
1094 * If we're just getting overall enclosure status,
1095 * we only need 2 bytes of data storage.
1096 *
1097 * If we're getting anything else, we know how much
1098 * storage we need by noting that starting at offset
1099 * 8 in returned data, all object status bytes are 4
1100 * bytes long, and are stored in chunks of types(M)
1101 * and nth+1 instances of type M.
1102 */
1103 if (objid == -1) {
1104 bufsiz = 2;
1105 } else {
1106 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1107 }
1108 sdata = SES_MALLOC(bufsiz);
1109 if (sdata == NULL)
1110 return (ENOMEM);
1111
1112 cdb[0] = RECEIVE_DIAGNOSTIC;
1113 cdb[1] = 1;
1114 cdb[2] = SesStatusPage;
1115 cdb[3] = bufsiz >> 8;
1116 cdb[4] = bufsiz & 0xff;
1117 cdb[5] = 0;
1118 amt = bufsiz;
1119 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1120 if (err) {
1121 SES_FREE(sdata, bufsiz);
1122 return (err);
1123 }
1124 amt = bufsiz - amt;
1125
1126 if (objid == -1) {
1127 tidx = -1;
1128 oidx = -1;
1129 } else {
1130 tidx = cc->ses_typidx[objid].ses_tidx;
1131 oidx = cc->ses_typidx[objid].ses_oidx;
1132 }
1133 if (in) {
1134 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1135 err = ENODEV;
1136 }
1137 } else {
1138 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1139 err = ENODEV;
1140 } else {
1141 cdb[0] = SEND_DIAGNOSTIC;
1142 cdb[1] = 0x10;
1143 cdb[2] = 0;
1144 cdb[3] = bufsiz >> 8;
1145 cdb[4] = bufsiz & 0xff;
1146 cdb[5] = 0;
1147 amt = -bufsiz;
1148 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1149 }
1150 }
1151 SES_FREE(sdata, bufsiz);
1152 return (0);
1153 }
1154
1155
1156 /*
1157 * Routines to parse returned SES data structures.
1158 * Architecture and compiler independent.
1159 */
1160
1161 static int
1162 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1163 {
1164 if (buflen < SES_CFGHDR_MINLEN) {
1165 return (-1);
1166 }
1167 gget8(buffer, 1, cfp->Nsubenc);
1168 gget32(buffer, 4, cfp->GenCode);
1169 return (0);
1170 }
1171
1172 static int
1173 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1174 {
1175 int s, off = 8;
1176 for (s = 0; s < SubEncId; s++) {
1177 if (off + 3 > amt)
1178 return (-1);
1179 off += buffer[off+3] + 4;
1180 }
1181 if (off + 3 > amt) {
1182 return (-1);
1183 }
1184 gget8(buffer, off+1, chp->Subencid);
1185 gget8(buffer, off+2, chp->Ntypes);
1186 gget8(buffer, off+3, chp->VEnclen);
1187 return (0);
1188 }
1189
1190 static int
1191 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1192 {
1193 int s, e, enclen, off = 8;
1194 for (s = 0; s < SubEncId; s++) {
1195 if (off + 3 > amt)
1196 return (-1);
1197 off += buffer[off+3] + 4;
1198 }
1199 if (off + 3 > amt) {
1200 return (-1);
1201 }
1202 gget8(buffer, off+3, enclen);
1203 off += 4;
1204 if (off >= amt)
1205 return (-1);
1206
1207 e = off + enclen;
1208 if (e > amt) {
1209 e = amt;
1210 }
1211 MEMCPY(cdp, &buffer[off], e - off);
1212 return (0);
1213 }
1214
1215 static int
1216 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1217 {
1218 int s, off = 8;
1219
1220 if (amt < SES_CFGHDR_MINLEN) {
1221 return (-1);
1222 }
1223 for (s = 0; s < buffer[1]; s++) {
1224 if (off + 3 > amt)
1225 return (-1);
1226 off += buffer[off+3] + 4;
1227 }
1228 if (off + 3 > amt) {
1229 return (-1);
1230 }
1231 off += buffer[off+3] + 4 + (nth * 4);
1232 if (amt < (off + 4))
1233 return (-1);
1234
1235 gget8(buffer, off++, thp->enc_type);
1236 gget8(buffer, off++, thp->enc_maxelt);
1237 gget8(buffer, off++, thp->enc_subenc);
1238 gget8(buffer, off, thp->enc_tlen);
1239 return (0);
1240 }
1241
1242 /*
1243 * This function needs a little explanation.
1244 *
1245 * The arguments are:
1246 *
1247 *
1248 * char *b, int amt
1249 *
1250 * These describes the raw input SES status data and length.
1251 *
1252 * uint8_t *ep
1253 *
1254 * This is a map of the number of types for each element type
1255 * in the enclosure.
1256 *
1257 * int elt
1258 *
1259 * This is the element type being sought. If elt is -1,
1260 * then overall enclosure status is being sought.
1261 *
1262 * int elm
1263 *
1264 * This is the ordinal Mth element of type elt being sought.
1265 *
1266 * SesComStat *sp
1267 *
1268 * This is the output area to store the status for
1269 * the Mth element of type Elt.
1270 */
1271
1272 static int
1273 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1274 {
1275 int idx, i;
1276
1277 /*
1278 * If it's overall enclosure status being sought, get that.
1279 * We need at least 2 bytes of status data to get that.
1280 */
1281 if (elt == -1) {
1282 if (amt < 2)
1283 return (-1);
1284 gget8(b, 1, sp->comstatus);
1285 sp->comstat[0] = 0;
1286 sp->comstat[1] = 0;
1287 sp->comstat[2] = 0;
1288 return (0);
1289 }
1290
1291 /*
1292 * Check to make sure that the Mth element is legal for type Elt.
1293 */
1294
1295 if (elm >= ep[elt])
1296 return (-1);
1297
1298 /*
1299 * Starting at offset 8, start skipping over the storage
1300 * for the element types we're not interested in.
1301 */
1302 for (idx = 8, i = 0; i < elt; i++) {
1303 idx += ((ep[i] + 1) * 4);
1304 }
1305
1306 /*
1307 * Skip over Overall status for this element type.
1308 */
1309 idx += 4;
1310
1311 /*
1312 * And skip to the index for the Mth element that we're going for.
1313 */
1314 idx += (4 * elm);
1315
1316 /*
1317 * Make sure we haven't overflowed the buffer.
1318 */
1319 if (idx+4 > amt)
1320 return (-1);
1321
1322 /*
1323 * Retrieve the status.
1324 */
1325 gget8(b, idx++, sp->comstatus);
1326 gget8(b, idx++, sp->comstat[0]);
1327 gget8(b, idx++, sp->comstat[1]);
1328 gget8(b, idx++, sp->comstat[2]);
1329 #if 0
1330 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1331 #endif
1332 return (0);
1333 }
1334
1335 /*
1336 * This is the mirror function to ses_decode, but we set the 'select'
1337 * bit for the object which we're interested in. All other objects,
1338 * after a status fetch, should have that bit off. Hmm. It'd be easy
1339 * enough to ensure this, so we will.
1340 */
1341
1342 static int
1343 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1344 {
1345 int idx, i;
1346
1347 /*
1348 * If it's overall enclosure status being sought, get that.
1349 * We need at least 2 bytes of status data to get that.
1350 */
1351 if (elt == -1) {
1352 if (amt < 2)
1353 return (-1);
1354 i = 0;
1355 sset8(b, i, 0);
1356 sset8(b, i, sp->comstatus & 0xf);
1357 #if 0
1358 PRINTF("set EncStat %x\n", sp->comstatus);
1359 #endif
1360 return (0);
1361 }
1362
1363 /*
1364 * Check to make sure that the Mth element is legal for type Elt.
1365 */
1366
1367 if (elm >= ep[elt])
1368 return (-1);
1369
1370 /*
1371 * Starting at offset 8, start skipping over the storage
1372 * for the element types we're not interested in.
1373 */
1374 for (idx = 8, i = 0; i < elt; i++) {
1375 idx += ((ep[i] + 1) * 4);
1376 }
1377
1378 /*
1379 * Skip over Overall status for this element type.
1380 */
1381 idx += 4;
1382
1383 /*
1384 * And skip to the index for the Mth element that we're going for.
1385 */
1386 idx += (4 * elm);
1387
1388 /*
1389 * Make sure we haven't overflowed the buffer.
1390 */
1391 if (idx+4 > amt)
1392 return (-1);
1393
1394 /*
1395 * Set the status.
1396 */
1397 sset8(b, idx, sp->comstatus);
1398 sset8(b, idx, sp->comstat[0]);
1399 sset8(b, idx, sp->comstat[1]);
1400 sset8(b, idx, sp->comstat[2]);
1401 idx -= 4;
1402
1403 #if 0
1404 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1405 elt, elm, idx, sp->comstatus, sp->comstat[0],
1406 sp->comstat[1], sp->comstat[2]);
1407 #endif
1408
1409 /*
1410 * Now make sure all other 'Select' bits are off.
1411 */
1412 for (i = 8; i < amt; i += 4) {
1413 if (i != idx)
1414 b[i] &= ~0x80;
1415 }
1416 /*
1417 * And make sure the INVOP bit is clear.
1418 */
1419 b[2] &= ~0x10;
1420
1421 return (0);
1422 }
1423
1424 /*
1425 * SAF-TE Type Device Emulation
1426 */
1427
1428 static int safte_getconfig(ses_softc_t *);
1429 static int safte_rdstat(ses_softc_t *, int);;
1430 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1431 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1432 static void wrslot_stat(ses_softc_t *, int);
1433 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1434
1435 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1436 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1437 /*
1438 * SAF-TE specific defines- Mandatory ones only...
1439 */
1440
1441 /*
1442 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1443 */
1444 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1445 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1446 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1447
1448 /*
1449 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1450 */
1451 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1452 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1453 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1454 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1455 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1456
1457
1458 #define SAFT_SCRATCH 64
1459 #define NPSEUDO_THERM 16
1460 #define NPSEUDO_ALARM 1
1461 struct scfg {
1462 /*
1463 * Cached Configuration
1464 */
1465 uint8_t Nfans; /* Number of Fans */
1466 uint8_t Npwr; /* Number of Power Supplies */
1467 uint8_t Nslots; /* Number of Device Slots */
1468 uint8_t DoorLock; /* Door Lock Installed */
1469 uint8_t Ntherm; /* Number of Temperature Sensors */
1470 uint8_t Nspkrs; /* Number of Speakers */
1471 uint8_t Nalarm; /* Number of Alarms (at least one) */
1472 /*
1473 * Cached Flag Bytes for Global Status
1474 */
1475 uint8_t flag1;
1476 uint8_t flag2;
1477 /*
1478 * What object index ID is where various slots start.
1479 */
1480 uint8_t pwroff;
1481 uint8_t slotoff;
1482 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1483 };
1484
1485 #define SAFT_FLG1_ALARM 0x1
1486 #define SAFT_FLG1_GLOBFAIL 0x2
1487 #define SAFT_FLG1_GLOBWARN 0x4
1488 #define SAFT_FLG1_ENCPWROFF 0x8
1489 #define SAFT_FLG1_ENCFANFAIL 0x10
1490 #define SAFT_FLG1_ENCPWRFAIL 0x20
1491 #define SAFT_FLG1_ENCDRVFAIL 0x40
1492 #define SAFT_FLG1_ENCDRVWARN 0x80
1493
1494 #define SAFT_FLG2_LOCKDOOR 0x4
1495 #define SAFT_PRIVATE sizeof (struct scfg)
1496
1497 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1498 #define SAFT_BAIL(r, x, k, l) \
1499 if (r >= x) { \
1500 SES_LOG(ssc, safte_2little, x, __LINE__);\
1501 SES_FREE(k, l); \
1502 return (EIO); \
1503 }
1504
1505
1506 int
1507 safte_softc_init(ses_softc_t *ssc, int doinit)
1508 {
1509 int err, i, r;
1510 struct scfg *cc;
1511
1512 if (doinit == 0) {
1513 if (ssc->ses_nobjects) {
1514 if (ssc->ses_objmap) {
1515 SES_FREE(ssc->ses_objmap,
1516 ssc->ses_nobjects * sizeof (encobj));
1517 ssc->ses_objmap = NULL;
1518 }
1519 ssc->ses_nobjects = 0;
1520 }
1521 if (ssc->ses_private) {
1522 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1523 ssc->ses_private = NULL;
1524 }
1525 return (0);
1526 }
1527
1528 if (ssc->ses_private == NULL) {
1529 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1530 if (ssc->ses_private == NULL) {
1531 return (ENOMEM);
1532 }
1533 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1534 }
1535
1536 ssc->ses_nobjects = 0;
1537 ssc->ses_encstat = 0;
1538
1539 if ((err = safte_getconfig(ssc)) != 0) {
1540 return (err);
1541 }
1542
1543 /*
1544 * The number of objects here, as well as that reported by the
1545 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1546 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1547 */
1548 cc = ssc->ses_private;
1549 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1550 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1551 ssc->ses_objmap = (encobj *)
1552 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1553 if (ssc->ses_objmap == NULL) {
1554 return (ENOMEM);
1555 }
1556 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1557
1558 r = 0;
1559 /*
1560 * Note that this is all arranged for the convenience
1561 * in later fetches of status.
1562 */
1563 for (i = 0; i < cc->Nfans; i++)
1564 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1565 cc->pwroff = (uint8_t) r;
1566 for (i = 0; i < cc->Npwr; i++)
1567 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1568 for (i = 0; i < cc->DoorLock; i++)
1569 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1570 for (i = 0; i < cc->Nspkrs; i++)
1571 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1572 for (i = 0; i < cc->Ntherm; i++)
1573 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1574 for (i = 0; i < NPSEUDO_THERM; i++)
1575 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1576 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1577 cc->slotoff = (uint8_t) r;
1578 for (i = 0; i < cc->Nslots; i++)
1579 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1580 return (0);
1581 }
1582
1583 int
1584 safte_init_enc(ses_softc_t *ssc)
1585 {
1586 int err, amt;
1587 char *sdata;
1588 static char cdb0[6] = { SEND_DIAGNOSTIC };
1589 static char cdb[10] =
1590 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1591
1592 sdata = SES_MALLOC(SAFT_SCRATCH);
1593 if (sdata == NULL)
1594 return (ENOMEM);
1595
1596 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1597 if (err) {
1598 SES_FREE(sdata, SAFT_SCRATCH);
1599 return (err);
1600 }
1601 sdata[0] = SAFTE_WT_GLOBAL;
1602 MEMZERO(&sdata[1], 15);
1603 amt = -SAFT_SCRATCH;
1604 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1605 SES_FREE(sdata, SAFT_SCRATCH);
1606 return (err);
1607 }
1608
1609 int
1610 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1611 {
1612 return (safte_rdstat(ssc, slpflg));
1613 }
1614
1615 int
1616 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1617 {
1618 struct scfg *cc = ssc->ses_private;
1619 if (cc == NULL)
1620 return (0);
1621 /*
1622 * Since SAF-TE devices aren't necessarily sticky in terms
1623 * of state, make our soft copy of enclosure status 'sticky'-
1624 * that is, things set in enclosure status stay set (as implied
1625 * by conditions set in reading object status) until cleared.
1626 */
1627 ssc->ses_encstat &= ~ALL_ENC_STAT;
1628 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1629 ssc->ses_encstat |= ENCI_SVALID;
1630 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1631 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1632 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1633 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1634 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1635 }
1636 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1637 }
1638
1639 int
1640 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1641 {
1642 int i = (int)obp->obj_id;
1643
1644 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1645 (ssc->ses_objmap[i].svalid) == 0) {
1646 int err = safte_rdstat(ssc, slpflg);
1647 if (err)
1648 return (err);
1649 }
1650 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1651 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1652 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1653 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1654 return (0);
1655 }
1656
1657
1658 int
1659 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1660 {
1661 int idx, err;
1662 encobj *ep;
1663 struct scfg *cc;
1664
1665
1666 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1667 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1668 obp->cstat[3]);
1669
1670 /*
1671 * If this is clear, we don't do diddly.
1672 */
1673 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1674 return (0);
1675 }
1676
1677 err = 0;
1678 /*
1679 * Check to see if the common bits are set and do them first.
1680 */
1681 if (obp->cstat[0] & ~SESCTL_CSEL) {
1682 err = set_objstat_sel(ssc, obp, slp);
1683 if (err)
1684 return (err);
1685 }
1686
1687 cc = ssc->ses_private;
1688 if (cc == NULL)
1689 return (0);
1690
1691 idx = (int)obp->obj_id;
1692 ep = &ssc->ses_objmap[idx];
1693
1694 switch (ep->enctype) {
1695 case SESTYP_DEVICE:
1696 {
1697 uint8_t slotop = 0;
1698 /*
1699 * XXX: I should probably cache the previous state
1700 * XXX: of SESCTL_DEVOFF so that when it goes from
1701 * XXX: true to false I can then set PREPARE FOR OPERATION
1702 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1703 */
1704 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1705 slotop |= 0x2;
1706 }
1707 if (obp->cstat[2] & SESCTL_RQSID) {
1708 slotop |= 0x4;
1709 }
1710 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1711 slotop, slp);
1712 if (err)
1713 return (err);
1714 if (obp->cstat[3] & SESCTL_RQSFLT) {
1715 ep->priv |= 0x2;
1716 } else {
1717 ep->priv &= ~0x2;
1718 }
1719 if (ep->priv & 0xc6) {
1720 ep->priv &= ~0x1;
1721 } else {
1722 ep->priv |= 0x1; /* no errors */
1723 }
1724 wrslot_stat(ssc, slp);
1725 break;
1726 }
1727 case SESTYP_POWER:
1728 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1729 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1730 } else {
1731 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1732 }
1733 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1734 cc->flag2, 0, slp);
1735 if (err)
1736 return (err);
1737 if (obp->cstat[3] & SESCTL_RQSTON) {
1738 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1739 idx - cc->pwroff, 0, 0, slp);
1740 } else {
1741 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1742 idx - cc->pwroff, 0, 1, slp);
1743 }
1744 break;
1745 case SESTYP_FAN:
1746 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1747 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1748 } else {
1749 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1750 }
1751 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1752 cc->flag2, 0, slp);
1753 if (err)
1754 return (err);
1755 if (obp->cstat[3] & SESCTL_RQSTON) {
1756 uint8_t fsp;
1757 if ((obp->cstat[3] & 0x7) == 7) {
1758 fsp = 4;
1759 } else if ((obp->cstat[3] & 0x7) == 6) {
1760 fsp = 3;
1761 } else if ((obp->cstat[3] & 0x7) == 4) {
1762 fsp = 2;
1763 } else {
1764 fsp = 1;
1765 }
1766 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1767 } else {
1768 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1769 }
1770 break;
1771 case SESTYP_DOORLOCK:
1772 if (obp->cstat[3] & 0x1) {
1773 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1774 } else {
1775 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1776 }
1777 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1778 cc->flag2, 0, slp);
1779 break;
1780 case SESTYP_ALARM:
1781 /*
1782 * On all nonzero but the 'muted' bit, we turn on the alarm,
1783 */
1784 obp->cstat[3] &= ~0xa;
1785 if (obp->cstat[3] & 0x40) {
1786 cc->flag2 &= ~SAFT_FLG1_ALARM;
1787 } else if (obp->cstat[3] != 0) {
1788 cc->flag2 |= SAFT_FLG1_ALARM;
1789 } else {
1790 cc->flag2 &= ~SAFT_FLG1_ALARM;
1791 }
1792 ep->priv = obp->cstat[3];
1793 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1794 cc->flag2, 0, slp);
1795 break;
1796 default:
1797 break;
1798 }
1799 ep->svalid = 0;
1800 return (0);
1801 }
1802
1803 static int
1804 safte_getconfig(ses_softc_t *ssc)
1805 {
1806 struct scfg *cfg;
1807 int err, amt;
1808 char *sdata;
1809 static char cdb[10] =
1810 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1811
1812 cfg = ssc->ses_private;
1813 if (cfg == NULL)
1814 return (ENXIO);
1815
1816 sdata = SES_MALLOC(SAFT_SCRATCH);
1817 if (sdata == NULL)
1818 return (ENOMEM);
1819
1820 amt = SAFT_SCRATCH;
1821 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1822 if (err) {
1823 SES_FREE(sdata, SAFT_SCRATCH);
1824 return (err);
1825 }
1826 amt = SAFT_SCRATCH - amt;
1827 if (amt < 6) {
1828 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1829 SES_FREE(sdata, SAFT_SCRATCH);
1830 return (EIO);
1831 }
1832 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1833 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1834 cfg->Nfans = sdata[0];
1835 cfg->Npwr = sdata[1];
1836 cfg->Nslots = sdata[2];
1837 cfg->DoorLock = sdata[3];
1838 cfg->Ntherm = sdata[4];
1839 cfg->Nspkrs = sdata[5];
1840 cfg->Nalarm = NPSEUDO_ALARM;
1841 SES_FREE(sdata, SAFT_SCRATCH);
1842 return (0);
1843 }
1844
1845 static int
1846 safte_rdstat(ses_softc_t *ssc, int slpflg)
1847 {
1848 int err, oid, r, i, hiwater, nitems, amt;
1849 uint16_t tempflags;
1850 size_t buflen;
1851 uint8_t status, oencstat;
1852 char *sdata, cdb[10];
1853 struct scfg *cc = ssc->ses_private;
1854
1855
1856 /*
1857 * The number of objects overstates things a bit,
1858 * both for the bogus 'thermometer' entries and
1859 * the drive status (which isn't read at the same
1860 * time as the enclosure status), but that's okay.
1861 */
1862 buflen = 4 * cc->Nslots;
1863 if (ssc->ses_nobjects > buflen)
1864 buflen = ssc->ses_nobjects;
1865 sdata = SES_MALLOC(buflen);
1866 if (sdata == NULL)
1867 return (ENOMEM);
1868
1869 cdb[0] = READ_BUFFER;
1870 cdb[1] = 1;
1871 cdb[2] = SAFTE_RD_RDESTS;
1872 cdb[3] = 0;
1873 cdb[4] = 0;
1874 cdb[5] = 0;
1875 cdb[6] = 0;
1876 cdb[7] = (buflen >> 8) & 0xff;
1877 cdb[8] = buflen & 0xff;
1878 cdb[9] = 0;
1879 amt = buflen;
1880 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1881 if (err) {
1882 SES_FREE(sdata, buflen);
1883 return (err);
1884 }
1885 hiwater = buflen - amt;
1886
1887
1888 /*
1889 * invalidate all status bits.
1890 */
1891 for (i = 0; i < ssc->ses_nobjects; i++)
1892 ssc->ses_objmap[i].svalid = 0;
1893 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1894 ssc->ses_encstat = 0;
1895
1896
1897 /*
1898 * Now parse returned buffer.
1899 * If we didn't get enough data back,
1900 * that's considered a fatal error.
1901 */
1902 oid = r = 0;
1903
1904 for (nitems = i = 0; i < cc->Nfans; i++) {
1905 SAFT_BAIL(r, hiwater, sdata, buflen);
1906 /*
1907 * 0 = Fan Operational
1908 * 1 = Fan is malfunctioning
1909 * 2 = Fan is not present
1910 * 0x80 = Unknown or Not Reportable Status
1911 */
1912 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1913 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1914 switch ((int)(uint8_t)sdata[r]) {
1915 case 0:
1916 nitems++;
1917 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1918 /*
1919 * We could get fancier and cache
1920 * fan speeds that we have set, but
1921 * that isn't done now.
1922 */
1923 ssc->ses_objmap[oid].encstat[3] = 7;
1924 break;
1925
1926 case 1:
1927 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1928 /*
1929 * FAIL and FAN STOPPED synthesized
1930 */
1931 ssc->ses_objmap[oid].encstat[3] = 0x40;
1932 /*
1933 * Enclosure marked with CRITICAL error
1934 * if only one fan or no thermometers,
1935 * else the NONCRITICAL error is set.
1936 */
1937 if (cc->Nfans == 1 || cc->Ntherm == 0)
1938 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1939 else
1940 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1941 break;
1942 case 2:
1943 ssc->ses_objmap[oid].encstat[0] =
1944 SES_OBJSTAT_NOTINSTALLED;
1945 ssc->ses_objmap[oid].encstat[3] = 0;
1946 /*
1947 * Enclosure marked with CRITICAL error
1948 * if only one fan or no thermometers,
1949 * else the NONCRITICAL error is set.
1950 */
1951 if (cc->Nfans == 1)
1952 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1953 else
1954 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1955 break;
1956 case 0x80:
1957 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1958 ssc->ses_objmap[oid].encstat[3] = 0;
1959 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1960 break;
1961 default:
1962 ssc->ses_objmap[oid].encstat[0] =
1963 SES_OBJSTAT_UNSUPPORTED;
1964 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1965 sdata[r] & 0xff);
1966 break;
1967 }
1968 ssc->ses_objmap[oid++].svalid = 1;
1969 r++;
1970 }
1971
1972 /*
1973 * No matter how you cut it, no cooling elements when there
1974 * should be some there is critical.
1975 */
1976 if (cc->Nfans && nitems == 0) {
1977 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1978 }
1979
1980
1981 for (i = 0; i < cc->Npwr; i++) {
1982 SAFT_BAIL(r, hiwater, sdata, buflen);
1983 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1984 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1985 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1986 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1987 switch ((uint8_t)sdata[r]) {
1988 case 0x00: /* pws operational and on */
1989 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1990 break;
1991 case 0x01: /* pws operational and off */
1992 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1993 ssc->ses_objmap[oid].encstat[3] = 0x10;
1994 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1995 break;
1996 case 0x10: /* pws is malfunctioning and commanded on */
1997 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1998 ssc->ses_objmap[oid].encstat[3] = 0x61;
1999 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2000 break;
2001
2002 case 0x11: /* pws is malfunctioning and commanded off */
2003 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2004 ssc->ses_objmap[oid].encstat[3] = 0x51;
2005 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2006 break;
2007 case 0x20: /* pws is not present */
2008 ssc->ses_objmap[oid].encstat[0] =
2009 SES_OBJSTAT_NOTINSTALLED;
2010 ssc->ses_objmap[oid].encstat[3] = 0;
2011 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2012 break;
2013 case 0x21: /* pws is present */
2014 /*
2015 * This is for enclosures that cannot tell whether the
2016 * device is on or malfunctioning, but know that it is
2017 * present. Just fall through.
2018 */
2019 /* FALLTHROUGH */
2020 case 0x80: /* Unknown or Not Reportable Status */
2021 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2022 ssc->ses_objmap[oid].encstat[3] = 0;
2023 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2024 break;
2025 default:
2026 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2027 i, sdata[r] & 0xff);
2028 break;
2029 }
2030 ssc->ses_objmap[oid++].svalid = 1;
2031 r++;
2032 }
2033
2034 /*
2035 * Skip over Slot SCSI IDs
2036 */
2037 r += cc->Nslots;
2038
2039 /*
2040 * We always have doorlock status, no matter what,
2041 * but we only save the status if we have one.
2042 */
2043 SAFT_BAIL(r, hiwater, sdata, buflen);
2044 if (cc->DoorLock) {
2045 /*
2046 * 0 = Door Locked
2047 * 1 = Door Unlocked, or no Lock Installed
2048 * 0x80 = Unknown or Not Reportable Status
2049 */
2050 ssc->ses_objmap[oid].encstat[1] = 0;
2051 ssc->ses_objmap[oid].encstat[2] = 0;
2052 switch ((uint8_t)sdata[r]) {
2053 case 0:
2054 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2055 ssc->ses_objmap[oid].encstat[3] = 0;
2056 break;
2057 case 1:
2058 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2059 ssc->ses_objmap[oid].encstat[3] = 1;
2060 break;
2061 case 0x80:
2062 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2063 ssc->ses_objmap[oid].encstat[3] = 0;
2064 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2065 break;
2066 default:
2067 ssc->ses_objmap[oid].encstat[0] =
2068 SES_OBJSTAT_UNSUPPORTED;
2069 SES_LOG(ssc, "unknown lock status 0x%x\n",
2070 sdata[r] & 0xff);
2071 break;
2072 }
2073 ssc->ses_objmap[oid++].svalid = 1;
2074 }
2075 r++;
2076
2077 /*
2078 * We always have speaker status, no matter what,
2079 * but we only save the status if we have one.
2080 */
2081 SAFT_BAIL(r, hiwater, sdata, buflen);
2082 if (cc->Nspkrs) {
2083 ssc->ses_objmap[oid].encstat[1] = 0;
2084 ssc->ses_objmap[oid].encstat[2] = 0;
2085 if (sdata[r] == 1) {
2086 /*
2087 * We need to cache tone urgency indicators.
2088 * Someday.
2089 */
2090 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2091 ssc->ses_objmap[oid].encstat[3] = 0x8;
2092 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2093 } else if (sdata[r] == 0) {
2094 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2095 ssc->ses_objmap[oid].encstat[3] = 0;
2096 } else {
2097 ssc->ses_objmap[oid].encstat[0] =
2098 SES_OBJSTAT_UNSUPPORTED;
2099 ssc->ses_objmap[oid].encstat[3] = 0;
2100 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2101 sdata[r] & 0xff);
2102 }
2103 ssc->ses_objmap[oid++].svalid = 1;
2104 }
2105 r++;
2106
2107 for (i = 0; i < cc->Ntherm; i++) {
2108 SAFT_BAIL(r, hiwater, sdata, buflen);
2109 /*
2110 * Status is a range from -10 to 245 deg Celsius,
2111 * which we need to normalize to -20 to -245 according
2112 * to the latest SCSI spec, which makes little
2113 * sense since this would overflow an 8bit value.
2114 * Well, still, the base normalization is -20,
2115 * not -10, so we have to adjust.
2116 *
2117 * So what's over and under temperature?
2118 * Hmm- we'll state that 'normal' operating
2119 * is 10 to 40 deg Celsius.
2120 */
2121 ssc->ses_objmap[oid].encstat[1] = 0;
2122 ssc->ses_objmap[oid].encstat[2] =
2123 ((unsigned int) sdata[r]) - 10;
2124 if (sdata[r] < 20) {
2125 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2126 /*
2127 * Set 'under temperature' failure.
2128 */
2129 ssc->ses_objmap[oid].encstat[3] = 2;
2130 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2131 } else if (sdata[r] > 30) {
2132 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2133 /*
2134 * Set 'over temperature' failure.
2135 */
2136 ssc->ses_objmap[oid].encstat[3] = 8;
2137 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2138 } else {
2139 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2140 }
2141 ssc->ses_objmap[oid++].svalid = 1;
2142 r++;
2143 }
2144
2145 /*
2146 * Now, for "pseudo" thermometers, we have two bytes
2147 * of information in enclosure status- 16 bits. Actually,
2148 * the MSB is a single TEMP ALERT flag indicating whether
2149 * any other bits are set, but, thanks to fuzzy thinking,
2150 * in the SAF-TE spec, this can also be set even if no
2151 * other bits are set, thus making this really another
2152 * binary temperature sensor.
2153 */
2154
2155 SAFT_BAIL(r, hiwater, sdata, buflen);
2156 tempflags = sdata[r++];
2157 SAFT_BAIL(r, hiwater, sdata, buflen);
2158 tempflags |= (tempflags << 8) | sdata[r++];
2159
2160 for (i = 0; i < NPSEUDO_THERM; i++) {
2161 ssc->ses_objmap[oid].encstat[1] = 0;
2162 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2163 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2164 ssc->ses_objmap[4].encstat[2] = 0xff;
2165 /*
2166 * Set 'over temperature' failure.
2167 */
2168 ssc->ses_objmap[oid].encstat[3] = 8;
2169 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2170 } else {
2171 /*
2172 * We used to say 'not available' and synthesize a
2173 * nominal 30 deg (C)- that was wrong. Actually,
2174 * Just say 'OK', and use the reserved value of
2175 * zero.
2176 */
2177 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2178 ssc->ses_objmap[oid].encstat[2] = 0;
2179 ssc->ses_objmap[oid].encstat[3] = 0;
2180 }
2181 ssc->ses_objmap[oid++].svalid = 1;
2182 }
2183
2184 /*
2185 * Get alarm status.
2186 */
2187 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2188 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2189 ssc->ses_objmap[oid++].svalid = 1;
2190
2191 /*
2192 * Now get drive slot status
2193 */
2194 cdb[2] = SAFTE_RD_RDDSTS;
2195 amt = buflen;
2196 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2197 if (err) {
2198 SES_FREE(sdata, buflen);
2199 return (err);
2200 }
2201 hiwater = buflen - amt;
2202 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2203 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2204 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2205 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2206 ssc->ses_objmap[oid].encstat[2] = 0;
2207 ssc->ses_objmap[oid].encstat[3] = 0;
2208 status = sdata[r+3];
2209 if ((status & 0x1) == 0) { /* no device */
2210 ssc->ses_objmap[oid].encstat[0] =
2211 SES_OBJSTAT_NOTINSTALLED;
2212 } else {
2213 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2214 }
2215 if (status & 0x2) {
2216 ssc->ses_objmap[oid].encstat[2] = 0x8;
2217 }
2218 if ((status & 0x4) == 0) {
2219 ssc->ses_objmap[oid].encstat[3] = 0x10;
2220 }
2221 ssc->ses_objmap[oid++].svalid = 1;
2222 }
2223 /* see comment below about sticky enclosure status */
2224 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2225 SES_FREE(sdata, buflen);
2226 return (0);
2227 }
2228
2229 static int
2230 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2231 {
2232 int idx;
2233 encobj *ep;
2234 struct scfg *cc = ssc->ses_private;
2235
2236 if (cc == NULL)
2237 return (0);
2238
2239 idx = (int)obp->obj_id;
2240 ep = &ssc->ses_objmap[idx];
2241
2242 switch (ep->enctype) {
2243 case SESTYP_DEVICE:
2244 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2245 ep->priv |= 0x40;
2246 }
2247 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2248 if (obp->cstat[0] & SESCTL_DISABLE) {
2249 ep->priv |= 0x80;
2250 /*
2251 * Hmm. Try to set the 'No Drive' flag.
2252 * Maybe that will count as a 'disable'.
2253 */
2254 }
2255 if (ep->priv & 0xc6) {
2256 ep->priv &= ~0x1;
2257 } else {
2258 ep->priv |= 0x1; /* no errors */
2259 }
2260 wrslot_stat(ssc, slp);
2261 break;
2262 case SESTYP_POWER:
2263 /*
2264 * Okay- the only one that makes sense here is to
2265 * do the 'disable' for a power supply.
2266 */
2267 if (obp->cstat[0] & SESCTL_DISABLE) {
2268 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2269 idx - cc->pwroff, 0, 0, slp);
2270 }
2271 break;
2272 case SESTYP_FAN:
2273 /*
2274 * Okay- the only one that makes sense here is to
2275 * set fan speed to zero on disable.
2276 */
2277 if (obp->cstat[0] & SESCTL_DISABLE) {
2278 /* remember- fans are the first items, so idx works */
2279 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2280 }
2281 break;
2282 case SESTYP_DOORLOCK:
2283 /*
2284 * Well, we can 'disable' the lock.
2285 */
2286 if (obp->cstat[0] & SESCTL_DISABLE) {
2287 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2288 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2289 cc->flag2, 0, slp);
2290 }
2291 break;
2292 case SESTYP_ALARM:
2293 /*
2294 * Well, we can 'disable' the alarm.
2295 */
2296 if (obp->cstat[0] & SESCTL_DISABLE) {
2297 cc->flag2 &= ~SAFT_FLG1_ALARM;
2298 ep->priv |= 0x40; /* Muted */
2299 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2300 cc->flag2, 0, slp);
2301 }
2302 break;
2303 default:
2304 break;
2305 }
2306 ep->svalid = 0;
2307 return (0);
2308 }
2309
2310 /*
2311 * This function handles all of the 16 byte WRITE BUFFER commands.
2312 */
2313 static int
2314 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2315 uint8_t b3, int slp)
2316 {
2317 int err, amt;
2318 char *sdata;
2319 struct scfg *cc = ssc->ses_private;
2320 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2321
2322 if (cc == NULL)
2323 return (0);
2324
2325 sdata = SES_MALLOC(16);
2326 if (sdata == NULL)
2327 return (ENOMEM);
2328
2329 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2330
2331 sdata[0] = op;
2332 sdata[1] = b1;
2333 sdata[2] = b2;
2334 sdata[3] = b3;
2335 MEMZERO(&sdata[4], 12);
2336 amt = -16;
2337 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2338 SES_FREE(sdata, 16);
2339 return (err);
2340 }
2341
2342 /*
2343 * This function updates the status byte for the device slot described.
2344 *
2345 * Since this is an optional SAF-TE command, there's no point in
2346 * returning an error.
2347 */
2348 static void
2349 wrslot_stat(ses_softc_t *ssc, int slp)
2350 {
2351 int i, amt;
2352 encobj *ep;
2353 char cdb[10], *sdata;
2354 struct scfg *cc = ssc->ses_private;
2355
2356 if (cc == NULL)
2357 return;
2358
2359 SES_VLOG(ssc, "saf_wrslot\n");
2360 cdb[0] = WRITE_BUFFER;
2361 cdb[1] = 1;
2362 cdb[2] = 0;
2363 cdb[3] = 0;
2364 cdb[4] = 0;
2365 cdb[5] = 0;
2366 cdb[6] = 0;
2367 cdb[7] = 0;
2368 cdb[8] = cc->Nslots * 3 + 1;
2369 cdb[9] = 0;
2370
2371 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2372 if (sdata == NULL)
2373 return;
2374 MEMZERO(sdata, cc->Nslots * 3 + 1);
2375
2376 sdata[0] = SAFTE_WT_DSTAT;
2377 for (i = 0; i < cc->Nslots; i++) {
2378 ep = &ssc->ses_objmap[cc->slotoff + i];
2379 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2380 sdata[1 + (3 * i)] = ep->priv & 0xff;
2381 }
2382 amt = -(cc->Nslots * 3 + 1);
2383 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2384 SES_FREE(sdata, cc->Nslots * 3 + 1);
2385 }
2386
2387 /*
2388 * This function issues the "PERFORM SLOT OPERATION" command.
2389 */
2390 static int
2391 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2392 {
2393 int err, amt;
2394 char *sdata;
2395 struct scfg *cc = ssc->ses_private;
2396 static char cdb[10] =
2397 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2398
2399 if (cc == NULL)
2400 return (0);
2401
2402 sdata = SES_MALLOC(SAFT_SCRATCH);
2403 if (sdata == NULL)
2404 return (ENOMEM);
2405 MEMZERO(sdata, SAFT_SCRATCH);
2406
2407 sdata[0] = SAFTE_WT_SLTOP;
2408 sdata[1] = slot;
2409 sdata[2] = opflag;
2410 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2411 amt = -SAFT_SCRATCH;
2412 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2413 SES_FREE(sdata, SAFT_SCRATCH);
2414 return (err);
2415 }
2416