ses.c revision 1.43.2.1 1 /* $NetBSD: ses.c,v 1.43.2.1 2012/10/30 17:22:01 yamt Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.43.2.1 2012/10/30 17:22:01 yamt Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init)(ses_softc_t *, int);
75 int (*init_enc)(ses_softc_t *);
76 int (*get_encstat)(ses_softc_t *, int);
77 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138
139 const struct cdevsw ses_cdevsw = {
140 sesopen, sesclose, noread, nowrite, sesioctl,
141 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
142 };
143
144 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
145 static void ses_log(struct ses_softc *, const char *, ...)
146 __attribute__((__format__(__printf__, 2, 3)));
147
148 /*
149 * General NetBSD kernel stuff.
150 */
151
152 struct ses_softc {
153 device_t sc_dev;
154 struct scsipi_periph *sc_periph;
155 enctyp ses_type; /* type of enclosure */
156 encvec ses_vec; /* vector to handlers */
157 void * ses_private; /* per-type private data */
158 encobj * ses_objmap; /* objects */
159 u_int32_t ses_nobjects; /* number of objects */
160 ses_encstat ses_encstat; /* overall status */
161 u_int8_t ses_flags;
162 };
163 #define SES_FLAG_INVALID 0x01
164 #define SES_FLAG_OPEN 0x02
165 #define SES_FLAG_INITIALIZED 0x04
166
167 #define SESUNIT(x) (minor((x)))
168
169 static int ses_match(device_t, cfdata_t, void *);
170 static void ses_attach(device_t, device_t, void *);
171 static enctyp ses_device_type(struct scsipibus_attach_args *);
172
173 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
174 ses_match, ses_attach, NULL, NULL);
175
176 extern struct cfdriver ses_cd;
177
178 static const struct scsipi_periphsw ses_switch = {
179 NULL,
180 NULL,
181 NULL,
182 NULL
183 };
184
185 static int
186 ses_match(device_t parent, cfdata_t match, void *aux)
187 {
188 struct scsipibus_attach_args *sa = aux;
189
190 switch (ses_device_type(sa)) {
191 case SES_SES:
192 case SES_SES_SCSI2:
193 case SES_SEN:
194 case SES_SAFT:
195 case SES_SES_PASSTHROUGH:
196 /*
197 * For these devices, it's a perfect match.
198 */
199 return (24);
200 default:
201 return (0);
202 }
203 }
204
205
206 /*
207 * Complete the attachment.
208 *
209 * We have to repeat the rerun of INQUIRY data as above because
210 * it's not until the return from the match routine that we have
211 * the softc available to set stuff in.
212 */
213 static void
214 ses_attach(device_t parent, device_t self, void *aux)
215 {
216 const char *tname;
217 struct ses_softc *softc = device_private(self);
218 struct scsipibus_attach_args *sa = aux;
219 struct scsipi_periph *periph = sa->sa_periph;
220
221 softc->sc_dev = self;
222 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 softc->sc_periph = periph;
224 periph->periph_dev = self;
225 periph->periph_switch = &ses_switch;
226 periph->periph_openings = 1;
227
228 softc->ses_type = ses_device_type(sa);
229 switch (softc->ses_type) {
230 case SES_SES:
231 case SES_SES_SCSI2:
232 case SES_SES_PASSTHROUGH:
233 softc->ses_vec.softc_init = ses_softc_init;
234 softc->ses_vec.init_enc = ses_init_enc;
235 softc->ses_vec.get_encstat = ses_get_encstat;
236 softc->ses_vec.set_encstat = ses_set_encstat;
237 softc->ses_vec.get_objstat = ses_get_objstat;
238 softc->ses_vec.set_objstat = ses_set_objstat;
239 break;
240 case SES_SAFT:
241 softc->ses_vec.softc_init = safte_softc_init;
242 softc->ses_vec.init_enc = safte_init_enc;
243 softc->ses_vec.get_encstat = safte_get_encstat;
244 softc->ses_vec.set_encstat = safte_set_encstat;
245 softc->ses_vec.get_objstat = safte_get_objstat;
246 softc->ses_vec.set_objstat = safte_set_objstat;
247 break;
248 case SES_SEN:
249 break;
250 case SES_NONE:
251 default:
252 break;
253 }
254
255 switch (softc->ses_type) {
256 default:
257 case SES_NONE:
258 tname = "No SES device";
259 break;
260 case SES_SES_SCSI2:
261 tname = "SCSI-2 SES Device";
262 break;
263 case SES_SES:
264 tname = "SCSI-3 SES Device";
265 break;
266 case SES_SES_PASSTHROUGH:
267 tname = "SES Passthrough Device";
268 break;
269 case SES_SEN:
270 tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 break;
272 case SES_SAFT:
273 tname = "SAF-TE Compliant Device";
274 break;
275 }
276 printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
277 }
278
279
280 static enctyp
281 ses_device_type(struct scsipibus_attach_args *sa)
282 {
283 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284
285 if (inqp == NULL)
286 return (SES_NONE);
287
288 return (ses_type(inqp));
289 }
290
291 static int
292 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
293 {
294 struct ses_softc *softc;
295 int error, unit;
296
297 unit = SESUNIT(dev);
298 softc = device_lookup_private(&ses_cd, unit);
299 if (softc == NULL)
300 return (ENXIO);
301
302 if (softc->ses_flags & SES_FLAG_INVALID) {
303 error = ENXIO;
304 goto out;
305 }
306 if (softc->ses_flags & SES_FLAG_OPEN) {
307 error = EBUSY;
308 goto out;
309 }
310 if (softc->ses_vec.softc_init == NULL) {
311 error = ENXIO;
312 goto out;
313 }
314 error = scsipi_adapter_addref(
315 softc->sc_periph->periph_channel->chan_adapter);
316 if (error != 0)
317 goto out;
318
319
320 softc->ses_flags |= SES_FLAG_OPEN;
321 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
322 error = (*softc->ses_vec.softc_init)(softc, 1);
323 if (error)
324 softc->ses_flags &= ~SES_FLAG_OPEN;
325 else
326 softc->ses_flags |= SES_FLAG_INITIALIZED;
327 }
328
329 out:
330 return (error);
331 }
332
333 static int
334 sesclose(dev_t dev, int flags, int fmt,
335 struct lwp *l)
336 {
337 struct ses_softc *softc;
338 int unit;
339
340 unit = SESUNIT(dev);
341 softc = device_lookup_private(&ses_cd, unit);
342 if (softc == NULL)
343 return (ENXIO);
344
345 scsipi_wait_drain(softc->sc_periph);
346 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
347 softc->ses_flags &= ~SES_FLAG_OPEN;
348 return (0);
349 }
350
351 static int
352 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
353 {
354 ses_encstat tmp;
355 ses_objstat objs;
356 ses_object obj, *uobj;
357 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
358 void *addr;
359 int error, i;
360
361
362 if (arg_addr)
363 addr = *((void **) arg_addr);
364 else
365 addr = NULL;
366
367 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
368
369 /*
370 * Now check to see whether we're initialized or not.
371 */
372 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
373 return (ENODEV);
374 }
375
376 error = 0;
377
378 /*
379 * If this command can change the device's state,
380 * we must have the device open for writing.
381 */
382 switch (cmd) {
383 case SESIOC_GETNOBJ:
384 case SESIOC_GETOBJMAP:
385 case SESIOC_GETENCSTAT:
386 case SESIOC_GETOBJSTAT:
387 break;
388 default:
389 if ((flag & FWRITE) == 0) {
390 return (EBADF);
391 }
392 }
393
394 switch (cmd) {
395 case SESIOC_GETNOBJ:
396 if (addr == NULL)
397 return EINVAL;
398 error = copyout(&ssc->ses_nobjects, addr,
399 sizeof (ssc->ses_nobjects));
400 break;
401
402 case SESIOC_GETOBJMAP:
403 if (addr == NULL)
404 return EINVAL;
405 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
406 obj.obj_id = i;
407 obj.subencid = ssc->ses_objmap[i].subenclosure;
408 obj.object_type = ssc->ses_objmap[i].enctype;
409 error = copyout(&obj, uobj, sizeof (ses_object));
410 if (error) {
411 break;
412 }
413 }
414 break;
415
416 case SESIOC_GETENCSTAT:
417 if (addr == NULL)
418 return EINVAL;
419 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
420 if (error)
421 break;
422 tmp = ssc->ses_encstat & ~ENCI_SVALID;
423 error = copyout(&tmp, addr, sizeof (ses_encstat));
424 ssc->ses_encstat = tmp;
425 break;
426
427 case SESIOC_SETENCSTAT:
428 if (addr == NULL)
429 return EINVAL;
430 error = copyin(addr, &tmp, sizeof (ses_encstat));
431 if (error)
432 break;
433 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
434 break;
435
436 case SESIOC_GETOBJSTAT:
437 if (addr == NULL)
438 return EINVAL;
439 error = copyin(addr, &objs, sizeof (ses_objstat));
440 if (error)
441 break;
442 if (objs.obj_id >= ssc->ses_nobjects) {
443 error = EINVAL;
444 break;
445 }
446 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
447 if (error)
448 break;
449 error = copyout(&objs, addr, sizeof (ses_objstat));
450 /*
451 * Always (for now) invalidate entry.
452 */
453 ssc->ses_objmap[objs.obj_id].svalid = 0;
454 break;
455
456 case SESIOC_SETOBJSTAT:
457 if (addr == NULL)
458 return EINVAL;
459 error = copyin(addr, &objs, sizeof (ses_objstat));
460 if (error)
461 break;
462
463 if (objs.obj_id >= ssc->ses_nobjects) {
464 error = EINVAL;
465 break;
466 }
467 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
468
469 /*
470 * Always (for now) invalidate entry.
471 */
472 ssc->ses_objmap[objs.obj_id].svalid = 0;
473 break;
474
475 case SESIOC_INIT:
476
477 error = (*ssc->ses_vec.init_enc)(ssc);
478 break;
479
480 default:
481 error = scsipi_do_ioctl(ssc->sc_periph,
482 dev, cmd, arg_addr, flag, l);
483 break;
484 }
485 return (error);
486 }
487
488 static int
489 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
490 {
491 struct scsipi_generic sgen;
492 int dl, flg, error;
493
494 if (dptr) {
495 if ((dl = *dlenp) < 0) {
496 dl = -dl;
497 flg = XS_CTL_DATA_OUT;
498 } else {
499 flg = XS_CTL_DATA_IN;
500 }
501 } else {
502 dl = 0;
503 flg = 0;
504 }
505
506 if (cdbl > sizeof (struct scsipi_generic)) {
507 cdbl = sizeof (struct scsipi_generic);
508 }
509 memcpy(&sgen, cdb, cdbl);
510 #ifndef SCSIDEBUG
511 flg |= XS_CTL_SILENT;
512 #endif
513 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
514 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
515
516 if (error == 0 && dptr)
517 *dlenp = 0;
518
519 return (error);
520 }
521
522 static void
523 ses_log(struct ses_softc *ssc, const char *fmt, ...)
524 {
525 va_list ap;
526
527 printf("%s: ", device_xname(ssc->sc_dev));
528 va_start(ap, fmt);
529 vprintf(fmt, ap);
530 va_end(ap);
531 }
532
533 /*
534 * The code after this point runs on many platforms,
535 * so forgive the slightly awkward and nonconforming
536 * appearance.
537 */
538
539 /*
540 * Is this a device that supports enclosure services?
541 *
542 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
543 * an SES device. If it happens to be an old UNISYS SEN device, we can
544 * handle that too.
545 */
546
547 #define SAFTE_START 44
548 #define SAFTE_END 50
549 #define SAFTE_LEN SAFTE_END-SAFTE_START
550
551 static enctyp
552 ses_type(struct scsipi_inquiry_data *inqp)
553 {
554 size_t given_len = inqp->additional_length + 4;
555
556 if (given_len < 8+SEN_ID_LEN)
557 return (SES_NONE);
558
559 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
560 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
561 return (SES_SEN);
562 } else if ((inqp->version & SID_ANSII) > 2) {
563 return (SES_SES);
564 } else {
565 return (SES_SES_SCSI2);
566 }
567 return (SES_NONE);
568 }
569
570 #ifdef SES_ENABLE_PASSTHROUGH
571 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
572 /*
573 * PassThrough Device.
574 */
575 return (SES_SES_PASSTHROUGH);
576 }
577 #endif
578
579 /*
580 * The comparison is short for a reason-
581 * some vendors were chopping it short.
582 */
583
584 if (given_len < SAFTE_END - 2) {
585 return (SES_NONE);
586 }
587
588 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
589 SAFTE_LEN - 2) == 0) {
590 return (SES_SAFT);
591 }
592
593 return (SES_NONE);
594 }
595
596 /*
597 * SES Native Type Device Support
598 */
599
600 /*
601 * SES Diagnostic Page Codes
602 */
603
604 typedef enum {
605 SesConfigPage = 0x1,
606 SesControlPage,
607 #define SesStatusPage SesControlPage
608 SesHelpTxt,
609 SesStringOut,
610 #define SesStringIn SesStringOut
611 SesThresholdOut,
612 #define SesThresholdIn SesThresholdOut
613 SesArrayControl,
614 #define SesArrayStatus SesArrayControl
615 SesElementDescriptor,
616 SesShortStatus
617 } SesDiagPageCodes;
618
619 /*
620 * minimal amounts
621 */
622
623 /*
624 * Minimum amount of data, starting from byte 0, to have
625 * the config header.
626 */
627 #define SES_CFGHDR_MINLEN 12
628
629 /*
630 * Minimum amount of data, starting from byte 0, to have
631 * the config header and one enclosure header.
632 */
633 #define SES_ENCHDR_MINLEN 48
634
635 /*
636 * Take this value, subtract it from VEnclen and you know
637 * the length of the vendor unique bytes.
638 */
639 #define SES_ENCHDR_VMIN 36
640
641 /*
642 * SES Data Structures
643 */
644
645 typedef struct {
646 uint32_t GenCode; /* Generation Code */
647 uint8_t Nsubenc; /* Number of Subenclosures */
648 } SesCfgHdr;
649
650 typedef struct {
651 uint8_t Subencid; /* SubEnclosure Identifier */
652 uint8_t Ntypes; /* # of supported types */
653 uint8_t VEnclen; /* Enclosure Descriptor Length */
654 } SesEncHdr;
655
656 typedef struct {
657 uint8_t encWWN[8]; /* XXX- Not Right Yet */
658 uint8_t encVid[8];
659 uint8_t encPid[16];
660 uint8_t encRev[4];
661 uint8_t encVen[1];
662 } SesEncDesc;
663
664 typedef struct {
665 uint8_t enc_type; /* type of element */
666 uint8_t enc_maxelt; /* maximum supported */
667 uint8_t enc_subenc; /* in SubEnc # N */
668 uint8_t enc_tlen; /* Type Descriptor Text Length */
669 } SesThdr;
670
671 typedef struct {
672 uint8_t comstatus;
673 uint8_t comstat[3];
674 } SesComStat;
675
676 struct typidx {
677 int ses_tidx;
678 int ses_oidx;
679 };
680
681 struct sscfg {
682 uint8_t ses_ntypes; /* total number of types supported */
683
684 /*
685 * We need to keep a type index as well as an
686 * object index for each object in an enclosure.
687 */
688 struct typidx *ses_typidx;
689
690 /*
691 * We also need to keep track of the number of elements
692 * per type of element. This is needed later so that we
693 * can find precisely in the returned status data the
694 * status for the Nth element of the Kth type.
695 */
696 uint8_t * ses_eltmap;
697 };
698
699
700 /*
701 * (de)canonicalization defines
702 */
703 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
704 #define sbit(x, bit) (((uint32_t)(x)) << bit)
705 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
706
707 #define sset16(outp, idx, sval) \
708 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
709 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
710
711
712 #define sset24(outp, idx, sval) \
713 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
714 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
715 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716
717
718 #define sset32(outp, idx, sval) \
719 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
720 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
721 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
722 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
723
724 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
725 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
726 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
727 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
728
729 #define sget16(inp, idx, lval) \
730 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
731 (((uint8_t *)(inp))[idx+1]), idx += 2
732
733 #define gget16(inp, idx, lval) \
734 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
735 (((uint8_t *)(inp))[idx+1])
736
737 #define sget24(inp, idx, lval) \
738 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
739 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
740 (((uint8_t *)(inp))[idx+2]), idx += 3
741
742 #define gget24(inp, idx, lval) \
743 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
744 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
745 (((uint8_t *)(inp))[idx+2])
746
747 #define sget32(inp, idx, lval) \
748 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
749 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
750 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
751 (((uint8_t *)(inp))[idx+3]), idx += 4
752
753 #define gget32(inp, idx, lval) \
754 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
755 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
756 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
757 (((uint8_t *)(inp))[idx+3])
758
759 #define SCSZ 0x2000
760 #define CFLEN (256 + SES_ENCHDR_MINLEN)
761
762 /*
763 * Routines specific && private to SES only
764 */
765
766 static int ses_getconfig(ses_softc_t *);
767 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
768 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
769 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
770 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
771 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
772 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
773 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
774
775 static int
776 ses_softc_init(ses_softc_t *ssc, int doinit)
777 {
778 if (doinit == 0) {
779 struct sscfg *cc;
780 if (ssc->ses_nobjects) {
781 SES_FREE(ssc->ses_objmap,
782 ssc->ses_nobjects * sizeof (encobj));
783 ssc->ses_objmap = NULL;
784 }
785 if ((cc = ssc->ses_private) != NULL) {
786 if (cc->ses_eltmap && cc->ses_ntypes) {
787 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
788 cc->ses_eltmap = NULL;
789 cc->ses_ntypes = 0;
790 }
791 if (cc->ses_typidx && ssc->ses_nobjects) {
792 SES_FREE(cc->ses_typidx,
793 ssc->ses_nobjects * sizeof (struct typidx));
794 cc->ses_typidx = NULL;
795 }
796 SES_FREE(cc, sizeof (struct sscfg));
797 ssc->ses_private = NULL;
798 }
799 ssc->ses_nobjects = 0;
800 return (0);
801 }
802 if (ssc->ses_private == NULL) {
803 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
804 }
805 if (ssc->ses_private == NULL) {
806 return (ENOMEM);
807 }
808 ssc->ses_nobjects = 0;
809 ssc->ses_encstat = 0;
810 return (ses_getconfig(ssc));
811 }
812
813 static int
814 ses_init_enc(ses_softc_t *ssc)
815 {
816 return (0);
817 }
818
819 static int
820 ses_get_encstat(ses_softc_t *ssc, int slpflag)
821 {
822 SesComStat ComStat;
823 int status;
824
825 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
826 return (status);
827 }
828 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
829 return (0);
830 }
831
832 static int
833 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
834 {
835 SesComStat ComStat;
836 int status;
837
838 ComStat.comstatus = encstat & 0xf;
839 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
840 return (status);
841 }
842 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
843 return (0);
844 }
845
846 static int
847 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
848 {
849 int i = (int)obp->obj_id;
850
851 if (ssc->ses_objmap[i].svalid == 0) {
852 SesComStat ComStat;
853 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
854 if (err)
855 return (err);
856 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
857 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
858 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
859 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
860 ssc->ses_objmap[i].svalid = 1;
861 }
862 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
863 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
864 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
865 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
866 return (0);
867 }
868
869 static int
870 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
871 {
872 SesComStat ComStat;
873 int err;
874 /*
875 * If this is clear, we don't do diddly.
876 */
877 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
878 return (0);
879 }
880 ComStat.comstatus = obp->cstat[0];
881 ComStat.comstat[0] = obp->cstat[1];
882 ComStat.comstat[1] = obp->cstat[2];
883 ComStat.comstat[2] = obp->cstat[3];
884 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
885 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
886 return (err);
887 }
888
889 static int
890 ses_getconfig(ses_softc_t *ssc)
891 {
892 struct sscfg *cc;
893 SesCfgHdr cf;
894 SesEncHdr hd;
895 SesEncDesc *cdp;
896 SesThdr thdr;
897 int err, amt, i, nobj, ntype, maxima;
898 char storage[CFLEN], *sdata;
899 static char cdb[6] = {
900 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
901 };
902
903 cc = ssc->ses_private;
904 if (cc == NULL) {
905 return (ENXIO);
906 }
907
908 sdata = SES_MALLOC(SCSZ);
909 if (sdata == NULL)
910 return (ENOMEM);
911
912 amt = SCSZ;
913 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
914 if (err) {
915 SES_FREE(sdata, SCSZ);
916 return (err);
917 }
918 amt = SCSZ - amt;
919
920 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
921 SES_LOG(ssc, "Unable to parse SES Config Header\n");
922 SES_FREE(sdata, SCSZ);
923 return (EIO);
924 }
925 if (amt < SES_ENCHDR_MINLEN) {
926 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
927 SES_FREE(sdata, SCSZ);
928 return (EIO);
929 }
930
931 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
932
933 /*
934 * Now waltz through all the subenclosures toting up the
935 * number of types available in each. For this, we only
936 * really need the enclosure header. However, we get the
937 * enclosure descriptor for debug purposes, as well
938 * as self-consistency checking purposes.
939 */
940
941 maxima = cf.Nsubenc + 1;
942 cdp = (SesEncDesc *) storage;
943 for (ntype = i = 0; i < maxima; i++) {
944 MEMZERO((void *)cdp, sizeof (*cdp));
945 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
946 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
947 SES_FREE(sdata, SCSZ);
948 return (EIO);
949 }
950 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
951 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
952
953 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
954 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
955 SES_FREE(sdata, SCSZ);
956 return (EIO);
957 }
958 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
959 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
960 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
961 cdp->encWWN[6], cdp->encWWN[7]);
962 ntype += hd.Ntypes;
963 }
964
965 /*
966 * Now waltz through all the types that are available, getting
967 * the type header so we can start adding up the number of
968 * objects available.
969 */
970 for (nobj = i = 0; i < ntype; i++) {
971 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
972 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
973 SES_FREE(sdata, SCSZ);
974 return (EIO);
975 }
976 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
977 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
978 thdr.enc_subenc, thdr.enc_tlen);
979 nobj += thdr.enc_maxelt;
980 }
981
982
983 /*
984 * Now allocate the object array and type map.
985 */
986
987 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
988 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
989 cc->ses_eltmap = SES_MALLOC(ntype);
990
991 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
992 cc->ses_eltmap == NULL) {
993 if (ssc->ses_objmap) {
994 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
995 ssc->ses_objmap = NULL;
996 }
997 if (cc->ses_typidx) {
998 SES_FREE(cc->ses_typidx,
999 (nobj * sizeof (struct typidx)));
1000 cc->ses_typidx = NULL;
1001 }
1002 if (cc->ses_eltmap) {
1003 SES_FREE(cc->ses_eltmap, ntype);
1004 cc->ses_eltmap = NULL;
1005 }
1006 SES_FREE(sdata, SCSZ);
1007 return (ENOMEM);
1008 }
1009 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1010 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1011 MEMZERO(cc->ses_eltmap, ntype);
1012 cc->ses_ntypes = (uint8_t) ntype;
1013 ssc->ses_nobjects = nobj;
1014
1015 /*
1016 * Now waltz through the # of types again to fill in the types
1017 * (and subenclosure ids) of the allocated objects.
1018 */
1019 nobj = 0;
1020 for (i = 0; i < ntype; i++) {
1021 int j;
1022 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1023 continue;
1024 }
1025 cc->ses_eltmap[i] = thdr.enc_maxelt;
1026 for (j = 0; j < thdr.enc_maxelt; j++) {
1027 cc->ses_typidx[nobj].ses_tidx = i;
1028 cc->ses_typidx[nobj].ses_oidx = j;
1029 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1030 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1031 }
1032 }
1033 SES_FREE(sdata, SCSZ);
1034 return (0);
1035 }
1036
1037 static int
1038 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1039 int in)
1040 {
1041 struct sscfg *cc;
1042 int err, amt, bufsiz, tidx, oidx;
1043 char cdb[6], *sdata;
1044
1045 cc = ssc->ses_private;
1046 if (cc == NULL) {
1047 return (ENXIO);
1048 }
1049
1050 /*
1051 * If we're just getting overall enclosure status,
1052 * we only need 2 bytes of data storage.
1053 *
1054 * If we're getting anything else, we know how much
1055 * storage we need by noting that starting at offset
1056 * 8 in returned data, all object status bytes are 4
1057 * bytes long, and are stored in chunks of types(M)
1058 * and nth+1 instances of type M.
1059 */
1060 if (objid == -1) {
1061 bufsiz = 2;
1062 } else {
1063 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1064 }
1065 sdata = SES_MALLOC(bufsiz);
1066 if (sdata == NULL)
1067 return (ENOMEM);
1068
1069 cdb[0] = RECEIVE_DIAGNOSTIC;
1070 cdb[1] = 1;
1071 cdb[2] = SesStatusPage;
1072 cdb[3] = bufsiz >> 8;
1073 cdb[4] = bufsiz & 0xff;
1074 cdb[5] = 0;
1075 amt = bufsiz;
1076 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1077 if (err) {
1078 SES_FREE(sdata, bufsiz);
1079 return (err);
1080 }
1081 amt = bufsiz - amt;
1082
1083 if (objid == -1) {
1084 tidx = -1;
1085 oidx = -1;
1086 } else {
1087 tidx = cc->ses_typidx[objid].ses_tidx;
1088 oidx = cc->ses_typidx[objid].ses_oidx;
1089 }
1090 if (in) {
1091 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1092 err = ENODEV;
1093 }
1094 } else {
1095 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1096 err = ENODEV;
1097 } else {
1098 cdb[0] = SEND_DIAGNOSTIC;
1099 cdb[1] = 0x10;
1100 cdb[2] = 0;
1101 cdb[3] = bufsiz >> 8;
1102 cdb[4] = bufsiz & 0xff;
1103 cdb[5] = 0;
1104 amt = -bufsiz;
1105 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1106 }
1107 }
1108 SES_FREE(sdata, bufsiz);
1109 return (0);
1110 }
1111
1112
1113 /*
1114 * Routines to parse returned SES data structures.
1115 * Architecture and compiler independent.
1116 */
1117
1118 static int
1119 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1120 {
1121 if (buflen < SES_CFGHDR_MINLEN) {
1122 return (-1);
1123 }
1124 gget8(buffer, 1, cfp->Nsubenc);
1125 gget32(buffer, 4, cfp->GenCode);
1126 return (0);
1127 }
1128
1129 static int
1130 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1131 {
1132 int s, off = 8;
1133 for (s = 0; s < SubEncId; s++) {
1134 if (off + 3 > amt)
1135 return (-1);
1136 off += buffer[off+3] + 4;
1137 }
1138 if (off + 3 > amt) {
1139 return (-1);
1140 }
1141 gget8(buffer, off+1, chp->Subencid);
1142 gget8(buffer, off+2, chp->Ntypes);
1143 gget8(buffer, off+3, chp->VEnclen);
1144 return (0);
1145 }
1146
1147 static int
1148 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1149 {
1150 int s, e, enclen, off = 8;
1151 for (s = 0; s < SubEncId; s++) {
1152 if (off + 3 > amt)
1153 return (-1);
1154 off += buffer[off+3] + 4;
1155 }
1156 if (off + 3 > amt) {
1157 return (-1);
1158 }
1159 gget8(buffer, off+3, enclen);
1160 off += 4;
1161 if (off >= amt)
1162 return (-1);
1163
1164 e = off + enclen;
1165 if (e > amt) {
1166 e = amt;
1167 }
1168 MEMCPY(cdp, &buffer[off], e - off);
1169 return (0);
1170 }
1171
1172 static int
1173 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1174 {
1175 int s, off = 8;
1176
1177 if (amt < SES_CFGHDR_MINLEN) {
1178 return (-1);
1179 }
1180 for (s = 0; s < buffer[1]; s++) {
1181 if (off + 3 > amt)
1182 return (-1);
1183 off += buffer[off+3] + 4;
1184 }
1185 if (off + 3 > amt) {
1186 return (-1);
1187 }
1188 off += buffer[off+3] + 4 + (nth * 4);
1189 if (amt < (off + 4))
1190 return (-1);
1191
1192 gget8(buffer, off++, thp->enc_type);
1193 gget8(buffer, off++, thp->enc_maxelt);
1194 gget8(buffer, off++, thp->enc_subenc);
1195 gget8(buffer, off, thp->enc_tlen);
1196 return (0);
1197 }
1198
1199 /*
1200 * This function needs a little explanation.
1201 *
1202 * The arguments are:
1203 *
1204 *
1205 * char *b, int amt
1206 *
1207 * These describes the raw input SES status data and length.
1208 *
1209 * uint8_t *ep
1210 *
1211 * This is a map of the number of types for each element type
1212 * in the enclosure.
1213 *
1214 * int elt
1215 *
1216 * This is the element type being sought. If elt is -1,
1217 * then overall enclosure status is being sought.
1218 *
1219 * int elm
1220 *
1221 * This is the ordinal Mth element of type elt being sought.
1222 *
1223 * SesComStat *sp
1224 *
1225 * This is the output area to store the status for
1226 * the Mth element of type Elt.
1227 */
1228
1229 static int
1230 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1231 {
1232 int idx, i;
1233
1234 /*
1235 * If it's overall enclosure status being sought, get that.
1236 * We need at least 2 bytes of status data to get that.
1237 */
1238 if (elt == -1) {
1239 if (amt < 2)
1240 return (-1);
1241 gget8(b, 1, sp->comstatus);
1242 sp->comstat[0] = 0;
1243 sp->comstat[1] = 0;
1244 sp->comstat[2] = 0;
1245 return (0);
1246 }
1247
1248 /*
1249 * Check to make sure that the Mth element is legal for type Elt.
1250 */
1251
1252 if (elm >= ep[elt])
1253 return (-1);
1254
1255 /*
1256 * Starting at offset 8, start skipping over the storage
1257 * for the element types we're not interested in.
1258 */
1259 for (idx = 8, i = 0; i < elt; i++) {
1260 idx += ((ep[i] + 1) * 4);
1261 }
1262
1263 /*
1264 * Skip over Overall status for this element type.
1265 */
1266 idx += 4;
1267
1268 /*
1269 * And skip to the index for the Mth element that we're going for.
1270 */
1271 idx += (4 * elm);
1272
1273 /*
1274 * Make sure we haven't overflowed the buffer.
1275 */
1276 if (idx+4 > amt)
1277 return (-1);
1278
1279 /*
1280 * Retrieve the status.
1281 */
1282 gget8(b, idx++, sp->comstatus);
1283 gget8(b, idx++, sp->comstat[0]);
1284 gget8(b, idx++, sp->comstat[1]);
1285 gget8(b, idx++, sp->comstat[2]);
1286 #if 0
1287 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1288 #endif
1289 return (0);
1290 }
1291
1292 /*
1293 * This is the mirror function to ses_decode, but we set the 'select'
1294 * bit for the object which we're interested in. All other objects,
1295 * after a status fetch, should have that bit off. Hmm. It'd be easy
1296 * enough to ensure this, so we will.
1297 */
1298
1299 static int
1300 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1301 {
1302 int idx, i;
1303
1304 /*
1305 * If it's overall enclosure status being sought, get that.
1306 * We need at least 2 bytes of status data to get that.
1307 */
1308 if (elt == -1) {
1309 if (amt < 2)
1310 return (-1);
1311 i = 0;
1312 sset8(b, i, 0);
1313 sset8(b, i, sp->comstatus & 0xf);
1314 #if 0
1315 PRINTF("set EncStat %x\n", sp->comstatus);
1316 #endif
1317 return (0);
1318 }
1319
1320 /*
1321 * Check to make sure that the Mth element is legal for type Elt.
1322 */
1323
1324 if (elm >= ep[elt])
1325 return (-1);
1326
1327 /*
1328 * Starting at offset 8, start skipping over the storage
1329 * for the element types we're not interested in.
1330 */
1331 for (idx = 8, i = 0; i < elt; i++) {
1332 idx += ((ep[i] + 1) * 4);
1333 }
1334
1335 /*
1336 * Skip over Overall status for this element type.
1337 */
1338 idx += 4;
1339
1340 /*
1341 * And skip to the index for the Mth element that we're going for.
1342 */
1343 idx += (4 * elm);
1344
1345 /*
1346 * Make sure we haven't overflowed the buffer.
1347 */
1348 if (idx+4 > amt)
1349 return (-1);
1350
1351 /*
1352 * Set the status.
1353 */
1354 sset8(b, idx, sp->comstatus);
1355 sset8(b, idx, sp->comstat[0]);
1356 sset8(b, idx, sp->comstat[1]);
1357 sset8(b, idx, sp->comstat[2]);
1358 idx -= 4;
1359
1360 #if 0
1361 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1362 elt, elm, idx, sp->comstatus, sp->comstat[0],
1363 sp->comstat[1], sp->comstat[2]);
1364 #endif
1365
1366 /*
1367 * Now make sure all other 'Select' bits are off.
1368 */
1369 for (i = 8; i < amt; i += 4) {
1370 if (i != idx)
1371 b[i] &= ~0x80;
1372 }
1373 /*
1374 * And make sure the INVOP bit is clear.
1375 */
1376 b[2] &= ~0x10;
1377
1378 return (0);
1379 }
1380
1381 /*
1382 * SAF-TE Type Device Emulation
1383 */
1384
1385 static int safte_getconfig(ses_softc_t *);
1386 static int safte_rdstat(ses_softc_t *, int);
1387 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1388 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1389 static void wrslot_stat(ses_softc_t *, int);
1390 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1391
1392 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1393 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1394 /*
1395 * SAF-TE specific defines- Mandatory ones only...
1396 */
1397
1398 /*
1399 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1400 */
1401 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1402 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1403 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1404
1405 /*
1406 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1407 */
1408 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1409 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1410 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1411 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1412 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1413
1414
1415 #define SAFT_SCRATCH 64
1416 #define NPSEUDO_THERM 16
1417 #define NPSEUDO_ALARM 1
1418 struct scfg {
1419 /*
1420 * Cached Configuration
1421 */
1422 uint8_t Nfans; /* Number of Fans */
1423 uint8_t Npwr; /* Number of Power Supplies */
1424 uint8_t Nslots; /* Number of Device Slots */
1425 uint8_t DoorLock; /* Door Lock Installed */
1426 uint8_t Ntherm; /* Number of Temperature Sensors */
1427 uint8_t Nspkrs; /* Number of Speakers */
1428 uint8_t Nalarm; /* Number of Alarms (at least one) */
1429 /*
1430 * Cached Flag Bytes for Global Status
1431 */
1432 uint8_t flag1;
1433 uint8_t flag2;
1434 /*
1435 * What object index ID is where various slots start.
1436 */
1437 uint8_t pwroff;
1438 uint8_t slotoff;
1439 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1440 };
1441
1442 #define SAFT_FLG1_ALARM 0x1
1443 #define SAFT_FLG1_GLOBFAIL 0x2
1444 #define SAFT_FLG1_GLOBWARN 0x4
1445 #define SAFT_FLG1_ENCPWROFF 0x8
1446 #define SAFT_FLG1_ENCFANFAIL 0x10
1447 #define SAFT_FLG1_ENCPWRFAIL 0x20
1448 #define SAFT_FLG1_ENCDRVFAIL 0x40
1449 #define SAFT_FLG1_ENCDRVWARN 0x80
1450
1451 #define SAFT_FLG2_LOCKDOOR 0x4
1452 #define SAFT_PRIVATE sizeof (struct scfg)
1453
1454 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1455 #define SAFT_BAIL(r, x, k, l) \
1456 if (r >= x) { \
1457 SES_LOG(ssc, safte_2little, x, __LINE__);\
1458 SES_FREE(k, l); \
1459 return (EIO); \
1460 }
1461
1462
1463 static int
1464 safte_softc_init(ses_softc_t *ssc, int doinit)
1465 {
1466 int err, i, r;
1467 struct scfg *cc;
1468
1469 if (doinit == 0) {
1470 if (ssc->ses_nobjects) {
1471 if (ssc->ses_objmap) {
1472 SES_FREE(ssc->ses_objmap,
1473 ssc->ses_nobjects * sizeof (encobj));
1474 ssc->ses_objmap = NULL;
1475 }
1476 ssc->ses_nobjects = 0;
1477 }
1478 if (ssc->ses_private) {
1479 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1480 ssc->ses_private = NULL;
1481 }
1482 return (0);
1483 }
1484
1485 if (ssc->ses_private == NULL) {
1486 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1487 if (ssc->ses_private == NULL) {
1488 return (ENOMEM);
1489 }
1490 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1491 }
1492
1493 ssc->ses_nobjects = 0;
1494 ssc->ses_encstat = 0;
1495
1496 if ((err = safte_getconfig(ssc)) != 0) {
1497 return (err);
1498 }
1499
1500 /*
1501 * The number of objects here, as well as that reported by the
1502 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1503 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1504 */
1505 cc = ssc->ses_private;
1506 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1507 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1508 ssc->ses_objmap = (encobj *)
1509 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1510 if (ssc->ses_objmap == NULL) {
1511 return (ENOMEM);
1512 }
1513 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1514
1515 r = 0;
1516 /*
1517 * Note that this is all arranged for the convenience
1518 * in later fetches of status.
1519 */
1520 for (i = 0; i < cc->Nfans; i++)
1521 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1522 cc->pwroff = (uint8_t) r;
1523 for (i = 0; i < cc->Npwr; i++)
1524 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1525 for (i = 0; i < cc->DoorLock; i++)
1526 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1527 for (i = 0; i < cc->Nspkrs; i++)
1528 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1529 for (i = 0; i < cc->Ntherm; i++)
1530 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1531 for (i = 0; i < NPSEUDO_THERM; i++)
1532 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1533 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1534 cc->slotoff = (uint8_t) r;
1535 for (i = 0; i < cc->Nslots; i++)
1536 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1537 return (0);
1538 }
1539
1540 static int
1541 safte_init_enc(ses_softc_t *ssc)
1542 {
1543 int err, amt;
1544 char *sdata;
1545 static char cdb0[6] = { SEND_DIAGNOSTIC };
1546 static char cdb[10] =
1547 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1548
1549 sdata = SES_MALLOC(SAFT_SCRATCH);
1550 if (sdata == NULL)
1551 return (ENOMEM);
1552
1553 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1554 if (err) {
1555 SES_FREE(sdata, SAFT_SCRATCH);
1556 return (err);
1557 }
1558 sdata[0] = SAFTE_WT_GLOBAL;
1559 MEMZERO(&sdata[1], 15);
1560 amt = -SAFT_SCRATCH;
1561 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1562 SES_FREE(sdata, SAFT_SCRATCH);
1563 return (err);
1564 }
1565
1566 static int
1567 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1568 {
1569 return (safte_rdstat(ssc, slpflg));
1570 }
1571
1572 static int
1573 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1574 {
1575 struct scfg *cc = ssc->ses_private;
1576 if (cc == NULL)
1577 return (0);
1578 /*
1579 * Since SAF-TE devices aren't necessarily sticky in terms
1580 * of state, make our soft copy of enclosure status 'sticky'-
1581 * that is, things set in enclosure status stay set (as implied
1582 * by conditions set in reading object status) until cleared.
1583 */
1584 ssc->ses_encstat &= ~ALL_ENC_STAT;
1585 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1586 ssc->ses_encstat |= ENCI_SVALID;
1587 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1588 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1589 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1590 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1591 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1592 }
1593 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1594 }
1595
1596 static int
1597 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1598 {
1599 int i = (int)obp->obj_id;
1600
1601 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1602 (ssc->ses_objmap[i].svalid) == 0) {
1603 int err = safte_rdstat(ssc, slpflg);
1604 if (err)
1605 return (err);
1606 }
1607 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1608 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1609 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1610 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1611 return (0);
1612 }
1613
1614
1615 static int
1616 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1617 {
1618 int idx, err;
1619 encobj *ep;
1620 struct scfg *cc;
1621
1622
1623 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1624 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1625 obp->cstat[3]);
1626
1627 /*
1628 * If this is clear, we don't do diddly.
1629 */
1630 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1631 return (0);
1632 }
1633
1634 err = 0;
1635 /*
1636 * Check to see if the common bits are set and do them first.
1637 */
1638 if (obp->cstat[0] & ~SESCTL_CSEL) {
1639 err = set_objstat_sel(ssc, obp, slp);
1640 if (err)
1641 return (err);
1642 }
1643
1644 cc = ssc->ses_private;
1645 if (cc == NULL)
1646 return (0);
1647
1648 idx = (int)obp->obj_id;
1649 ep = &ssc->ses_objmap[idx];
1650
1651 switch (ep->enctype) {
1652 case SESTYP_DEVICE:
1653 {
1654 uint8_t slotop = 0;
1655 /*
1656 * XXX: I should probably cache the previous state
1657 * XXX: of SESCTL_DEVOFF so that when it goes from
1658 * XXX: true to false I can then set PREPARE FOR OPERATION
1659 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1660 */
1661 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1662 slotop |= 0x2;
1663 }
1664 if (obp->cstat[2] & SESCTL_RQSID) {
1665 slotop |= 0x4;
1666 }
1667 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1668 slotop, slp);
1669 if (err)
1670 return (err);
1671 if (obp->cstat[3] & SESCTL_RQSFLT) {
1672 ep->priv |= 0x2;
1673 } else {
1674 ep->priv &= ~0x2;
1675 }
1676 if (ep->priv & 0xc6) {
1677 ep->priv &= ~0x1;
1678 } else {
1679 ep->priv |= 0x1; /* no errors */
1680 }
1681 wrslot_stat(ssc, slp);
1682 break;
1683 }
1684 case SESTYP_POWER:
1685 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1686 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1687 } else {
1688 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1689 }
1690 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1691 cc->flag2, 0, slp);
1692 if (err)
1693 return (err);
1694 if (obp->cstat[3] & SESCTL_RQSTON) {
1695 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1696 idx - cc->pwroff, 0, 0, slp);
1697 } else {
1698 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1699 idx - cc->pwroff, 0, 1, slp);
1700 }
1701 break;
1702 case SESTYP_FAN:
1703 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1704 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1705 } else {
1706 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1707 }
1708 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1709 cc->flag2, 0, slp);
1710 if (err)
1711 return (err);
1712 if (obp->cstat[3] & SESCTL_RQSTON) {
1713 uint8_t fsp;
1714 if ((obp->cstat[3] & 0x7) == 7) {
1715 fsp = 4;
1716 } else if ((obp->cstat[3] & 0x7) == 6) {
1717 fsp = 3;
1718 } else if ((obp->cstat[3] & 0x7) == 4) {
1719 fsp = 2;
1720 } else {
1721 fsp = 1;
1722 }
1723 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1724 } else {
1725 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1726 }
1727 break;
1728 case SESTYP_DOORLOCK:
1729 if (obp->cstat[3] & 0x1) {
1730 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1731 } else {
1732 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1733 }
1734 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1735 cc->flag2, 0, slp);
1736 break;
1737 case SESTYP_ALARM:
1738 /*
1739 * On all nonzero but the 'muted' bit, we turn on the alarm,
1740 */
1741 obp->cstat[3] &= ~0xa;
1742 if (obp->cstat[3] & 0x40) {
1743 cc->flag2 &= ~SAFT_FLG1_ALARM;
1744 } else if (obp->cstat[3] != 0) {
1745 cc->flag2 |= SAFT_FLG1_ALARM;
1746 } else {
1747 cc->flag2 &= ~SAFT_FLG1_ALARM;
1748 }
1749 ep->priv = obp->cstat[3];
1750 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1751 cc->flag2, 0, slp);
1752 break;
1753 default:
1754 break;
1755 }
1756 ep->svalid = 0;
1757 return (0);
1758 }
1759
1760 static int
1761 safte_getconfig(ses_softc_t *ssc)
1762 {
1763 struct scfg *cfg;
1764 int err, amt;
1765 char *sdata;
1766 static char cdb[10] =
1767 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1768
1769 cfg = ssc->ses_private;
1770 if (cfg == NULL)
1771 return (ENXIO);
1772
1773 sdata = SES_MALLOC(SAFT_SCRATCH);
1774 if (sdata == NULL)
1775 return (ENOMEM);
1776
1777 amt = SAFT_SCRATCH;
1778 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1779 if (err) {
1780 SES_FREE(sdata, SAFT_SCRATCH);
1781 return (err);
1782 }
1783 amt = SAFT_SCRATCH - amt;
1784 if (amt < 6) {
1785 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1786 SES_FREE(sdata, SAFT_SCRATCH);
1787 return (EIO);
1788 }
1789 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1790 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1791 cfg->Nfans = sdata[0];
1792 cfg->Npwr = sdata[1];
1793 cfg->Nslots = sdata[2];
1794 cfg->DoorLock = sdata[3];
1795 cfg->Ntherm = sdata[4];
1796 cfg->Nspkrs = sdata[5];
1797 cfg->Nalarm = NPSEUDO_ALARM;
1798 SES_FREE(sdata, SAFT_SCRATCH);
1799 return (0);
1800 }
1801
1802 static int
1803 safte_rdstat(ses_softc_t *ssc, int slpflg)
1804 {
1805 int err, oid, r, i, hiwater, nitems, amt;
1806 uint16_t tempflags;
1807 size_t buflen;
1808 uint8_t status, oencstat;
1809 char *sdata, cdb[10];
1810 struct scfg *cc = ssc->ses_private;
1811
1812
1813 /*
1814 * The number of objects overstates things a bit,
1815 * both for the bogus 'thermometer' entries and
1816 * the drive status (which isn't read at the same
1817 * time as the enclosure status), but that's okay.
1818 */
1819 buflen = 4 * cc->Nslots;
1820 if (ssc->ses_nobjects > buflen)
1821 buflen = ssc->ses_nobjects;
1822 sdata = SES_MALLOC(buflen);
1823 if (sdata == NULL)
1824 return (ENOMEM);
1825
1826 cdb[0] = READ_BUFFER;
1827 cdb[1] = 1;
1828 cdb[2] = SAFTE_RD_RDESTS;
1829 cdb[3] = 0;
1830 cdb[4] = 0;
1831 cdb[5] = 0;
1832 cdb[6] = 0;
1833 cdb[7] = (buflen >> 8) & 0xff;
1834 cdb[8] = buflen & 0xff;
1835 cdb[9] = 0;
1836 amt = buflen;
1837 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1838 if (err) {
1839 SES_FREE(sdata, buflen);
1840 return (err);
1841 }
1842 hiwater = buflen - amt;
1843
1844
1845 /*
1846 * invalidate all status bits.
1847 */
1848 for (i = 0; i < ssc->ses_nobjects; i++)
1849 ssc->ses_objmap[i].svalid = 0;
1850 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1851 ssc->ses_encstat = 0;
1852
1853
1854 /*
1855 * Now parse returned buffer.
1856 * If we didn't get enough data back,
1857 * that's considered a fatal error.
1858 */
1859 oid = r = 0;
1860
1861 for (nitems = i = 0; i < cc->Nfans; i++) {
1862 SAFT_BAIL(r, hiwater, sdata, buflen);
1863 /*
1864 * 0 = Fan Operational
1865 * 1 = Fan is malfunctioning
1866 * 2 = Fan is not present
1867 * 0x80 = Unknown or Not Reportable Status
1868 */
1869 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1870 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1871 switch ((int)(uint8_t)sdata[r]) {
1872 case 0:
1873 nitems++;
1874 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1875 /*
1876 * We could get fancier and cache
1877 * fan speeds that we have set, but
1878 * that isn't done now.
1879 */
1880 ssc->ses_objmap[oid].encstat[3] = 7;
1881 break;
1882
1883 case 1:
1884 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1885 /*
1886 * FAIL and FAN STOPPED synthesized
1887 */
1888 ssc->ses_objmap[oid].encstat[3] = 0x40;
1889 /*
1890 * Enclosure marked with CRITICAL error
1891 * if only one fan or no thermometers,
1892 * else the NONCRITICAL error is set.
1893 */
1894 if (cc->Nfans == 1 || cc->Ntherm == 0)
1895 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1896 else
1897 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1898 break;
1899 case 2:
1900 ssc->ses_objmap[oid].encstat[0] =
1901 SES_OBJSTAT_NOTINSTALLED;
1902 ssc->ses_objmap[oid].encstat[3] = 0;
1903 /*
1904 * Enclosure marked with CRITICAL error
1905 * if only one fan or no thermometers,
1906 * else the NONCRITICAL error is set.
1907 */
1908 if (cc->Nfans == 1)
1909 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1910 else
1911 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1912 break;
1913 case 0x80:
1914 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1915 ssc->ses_objmap[oid].encstat[3] = 0;
1916 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1917 break;
1918 default:
1919 ssc->ses_objmap[oid].encstat[0] =
1920 SES_OBJSTAT_UNSUPPORTED;
1921 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1922 sdata[r] & 0xff);
1923 break;
1924 }
1925 ssc->ses_objmap[oid++].svalid = 1;
1926 r++;
1927 }
1928
1929 /*
1930 * No matter how you cut it, no cooling elements when there
1931 * should be some there is critical.
1932 */
1933 if (cc->Nfans && nitems == 0) {
1934 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1935 }
1936
1937
1938 for (i = 0; i < cc->Npwr; i++) {
1939 SAFT_BAIL(r, hiwater, sdata, buflen);
1940 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1941 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1942 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1943 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1944 switch ((uint8_t)sdata[r]) {
1945 case 0x00: /* pws operational and on */
1946 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1947 break;
1948 case 0x01: /* pws operational and off */
1949 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1950 ssc->ses_objmap[oid].encstat[3] = 0x10;
1951 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1952 break;
1953 case 0x10: /* pws is malfunctioning and commanded on */
1954 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1955 ssc->ses_objmap[oid].encstat[3] = 0x61;
1956 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1957 break;
1958
1959 case 0x11: /* pws is malfunctioning and commanded off */
1960 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1961 ssc->ses_objmap[oid].encstat[3] = 0x51;
1962 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1963 break;
1964 case 0x20: /* pws is not present */
1965 ssc->ses_objmap[oid].encstat[0] =
1966 SES_OBJSTAT_NOTINSTALLED;
1967 ssc->ses_objmap[oid].encstat[3] = 0;
1968 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1969 break;
1970 case 0x21: /* pws is present */
1971 /*
1972 * This is for enclosures that cannot tell whether the
1973 * device is on or malfunctioning, but know that it is
1974 * present. Just fall through.
1975 */
1976 /* FALLTHROUGH */
1977 case 0x80: /* Unknown or Not Reportable Status */
1978 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1979 ssc->ses_objmap[oid].encstat[3] = 0;
1980 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1981 break;
1982 default:
1983 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1984 i, sdata[r] & 0xff);
1985 break;
1986 }
1987 ssc->ses_objmap[oid++].svalid = 1;
1988 r++;
1989 }
1990
1991 /*
1992 * Skip over Slot SCSI IDs
1993 */
1994 r += cc->Nslots;
1995
1996 /*
1997 * We always have doorlock status, no matter what,
1998 * but we only save the status if we have one.
1999 */
2000 SAFT_BAIL(r, hiwater, sdata, buflen);
2001 if (cc->DoorLock) {
2002 /*
2003 * 0 = Door Locked
2004 * 1 = Door Unlocked, or no Lock Installed
2005 * 0x80 = Unknown or Not Reportable Status
2006 */
2007 ssc->ses_objmap[oid].encstat[1] = 0;
2008 ssc->ses_objmap[oid].encstat[2] = 0;
2009 switch ((uint8_t)sdata[r]) {
2010 case 0:
2011 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2012 ssc->ses_objmap[oid].encstat[3] = 0;
2013 break;
2014 case 1:
2015 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2016 ssc->ses_objmap[oid].encstat[3] = 1;
2017 break;
2018 case 0x80:
2019 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2020 ssc->ses_objmap[oid].encstat[3] = 0;
2021 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2022 break;
2023 default:
2024 ssc->ses_objmap[oid].encstat[0] =
2025 SES_OBJSTAT_UNSUPPORTED;
2026 SES_LOG(ssc, "unknown lock status 0x%x\n",
2027 sdata[r] & 0xff);
2028 break;
2029 }
2030 ssc->ses_objmap[oid++].svalid = 1;
2031 }
2032 r++;
2033
2034 /*
2035 * We always have speaker status, no matter what,
2036 * but we only save the status if we have one.
2037 */
2038 SAFT_BAIL(r, hiwater, sdata, buflen);
2039 if (cc->Nspkrs) {
2040 ssc->ses_objmap[oid].encstat[1] = 0;
2041 ssc->ses_objmap[oid].encstat[2] = 0;
2042 if (sdata[r] == 1) {
2043 /*
2044 * We need to cache tone urgency indicators.
2045 * Someday.
2046 */
2047 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2048 ssc->ses_objmap[oid].encstat[3] = 0x8;
2049 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2050 } else if (sdata[r] == 0) {
2051 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2052 ssc->ses_objmap[oid].encstat[3] = 0;
2053 } else {
2054 ssc->ses_objmap[oid].encstat[0] =
2055 SES_OBJSTAT_UNSUPPORTED;
2056 ssc->ses_objmap[oid].encstat[3] = 0;
2057 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2058 sdata[r] & 0xff);
2059 }
2060 ssc->ses_objmap[oid++].svalid = 1;
2061 }
2062 r++;
2063
2064 for (i = 0; i < cc->Ntherm; i++) {
2065 SAFT_BAIL(r, hiwater, sdata, buflen);
2066 /*
2067 * Status is a range from -10 to 245 deg Celsius,
2068 * which we need to normalize to -20 to -245 according
2069 * to the latest SCSI spec, which makes little
2070 * sense since this would overflow an 8bit value.
2071 * Well, still, the base normalization is -20,
2072 * not -10, so we have to adjust.
2073 *
2074 * So what's over and under temperature?
2075 * Hmm- we'll state that 'normal' operating
2076 * is 10 to 40 deg Celsius.
2077 */
2078
2079 /*
2080 * Actually.... All of the units that people out in the world
2081 * seem to have do not come even close to setting a value that
2082 * complies with this spec.
2083 *
2084 * The closest explanation I could find was in an
2085 * LSI-Logic manual, which seemed to indicate that
2086 * this value would be set by whatever the I2C code
2087 * would interpolate from the output of an LM75
2088 * temperature sensor.
2089 *
2090 * This means that it is impossible to use the actual
2091 * numeric value to predict anything. But we don't want
2092 * to lose the value. So, we'll propagate the *uncorrected*
2093 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2094 * temperature flags for warnings.
2095 */
2096 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2097 ssc->ses_objmap[oid].encstat[1] = 0;
2098 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2099 ssc->ses_objmap[oid].encstat[3] = 0;
2100 ssc->ses_objmap[oid++].svalid = 1;
2101 r++;
2102 }
2103
2104 /*
2105 * Now, for "pseudo" thermometers, we have two bytes
2106 * of information in enclosure status- 16 bits. Actually,
2107 * the MSB is a single TEMP ALERT flag indicating whether
2108 * any other bits are set, but, thanks to fuzzy thinking,
2109 * in the SAF-TE spec, this can also be set even if no
2110 * other bits are set, thus making this really another
2111 * binary temperature sensor.
2112 */
2113
2114 SAFT_BAIL(r, hiwater, sdata, buflen);
2115 tempflags = sdata[r++];
2116 SAFT_BAIL(r, hiwater, sdata, buflen);
2117 tempflags |= (tempflags << 8) | sdata[r++];
2118
2119 for (i = 0; i < NPSEUDO_THERM; i++) {
2120 ssc->ses_objmap[oid].encstat[1] = 0;
2121 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2122 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2123 ssc->ses_objmap[4].encstat[2] = 0xff;
2124 /*
2125 * Set 'over temperature' failure.
2126 */
2127 ssc->ses_objmap[oid].encstat[3] = 8;
2128 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2129 } else {
2130 /*
2131 * We used to say 'not available' and synthesize a
2132 * nominal 30 deg (C)- that was wrong. Actually,
2133 * Just say 'OK', and use the reserved value of
2134 * zero.
2135 */
2136 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2137 ssc->ses_objmap[oid].encstat[2] = 0;
2138 ssc->ses_objmap[oid].encstat[3] = 0;
2139 }
2140 ssc->ses_objmap[oid++].svalid = 1;
2141 }
2142
2143 /*
2144 * Get alarm status.
2145 */
2146 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2147 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2148 ssc->ses_objmap[oid++].svalid = 1;
2149
2150 /*
2151 * Now get drive slot status
2152 */
2153 cdb[2] = SAFTE_RD_RDDSTS;
2154 amt = buflen;
2155 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2156 if (err) {
2157 SES_FREE(sdata, buflen);
2158 return (err);
2159 }
2160 hiwater = buflen - amt;
2161 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2162 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2163 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2164 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2165 ssc->ses_objmap[oid].encstat[2] = 0;
2166 ssc->ses_objmap[oid].encstat[3] = 0;
2167 status = sdata[r+3];
2168 if ((status & 0x1) == 0) { /* no device */
2169 ssc->ses_objmap[oid].encstat[0] =
2170 SES_OBJSTAT_NOTINSTALLED;
2171 } else {
2172 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2173 }
2174 if (status & 0x2) {
2175 ssc->ses_objmap[oid].encstat[2] = 0x8;
2176 }
2177 if ((status & 0x4) == 0) {
2178 ssc->ses_objmap[oid].encstat[3] = 0x10;
2179 }
2180 ssc->ses_objmap[oid++].svalid = 1;
2181 }
2182 /* see comment below about sticky enclosure status */
2183 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2184 SES_FREE(sdata, buflen);
2185 return (0);
2186 }
2187
2188 static int
2189 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2190 {
2191 int idx;
2192 encobj *ep;
2193 struct scfg *cc = ssc->ses_private;
2194
2195 if (cc == NULL)
2196 return (0);
2197
2198 idx = (int)obp->obj_id;
2199 ep = &ssc->ses_objmap[idx];
2200
2201 switch (ep->enctype) {
2202 case SESTYP_DEVICE:
2203 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2204 ep->priv |= 0x40;
2205 }
2206 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2207 if (obp->cstat[0] & SESCTL_DISABLE) {
2208 ep->priv |= 0x80;
2209 /*
2210 * Hmm. Try to set the 'No Drive' flag.
2211 * Maybe that will count as a 'disable'.
2212 */
2213 }
2214 if (ep->priv & 0xc6) {
2215 ep->priv &= ~0x1;
2216 } else {
2217 ep->priv |= 0x1; /* no errors */
2218 }
2219 wrslot_stat(ssc, slp);
2220 break;
2221 case SESTYP_POWER:
2222 /*
2223 * Okay- the only one that makes sense here is to
2224 * do the 'disable' for a power supply.
2225 */
2226 if (obp->cstat[0] & SESCTL_DISABLE) {
2227 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2228 idx - cc->pwroff, 0, 0, slp);
2229 }
2230 break;
2231 case SESTYP_FAN:
2232 /*
2233 * Okay- the only one that makes sense here is to
2234 * set fan speed to zero on disable.
2235 */
2236 if (obp->cstat[0] & SESCTL_DISABLE) {
2237 /* remember- fans are the first items, so idx works */
2238 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2239 }
2240 break;
2241 case SESTYP_DOORLOCK:
2242 /*
2243 * Well, we can 'disable' the lock.
2244 */
2245 if (obp->cstat[0] & SESCTL_DISABLE) {
2246 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2247 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2248 cc->flag2, 0, slp);
2249 }
2250 break;
2251 case SESTYP_ALARM:
2252 /*
2253 * Well, we can 'disable' the alarm.
2254 */
2255 if (obp->cstat[0] & SESCTL_DISABLE) {
2256 cc->flag2 &= ~SAFT_FLG1_ALARM;
2257 ep->priv |= 0x40; /* Muted */
2258 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2259 cc->flag2, 0, slp);
2260 }
2261 break;
2262 default:
2263 break;
2264 }
2265 ep->svalid = 0;
2266 return (0);
2267 }
2268
2269 /*
2270 * This function handles all of the 16 byte WRITE BUFFER commands.
2271 */
2272 static int
2273 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2274 uint8_t b3, int slp)
2275 {
2276 int err, amt;
2277 char *sdata;
2278 struct scfg *cc = ssc->ses_private;
2279 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2280
2281 if (cc == NULL)
2282 return (0);
2283
2284 sdata = SES_MALLOC(16);
2285 if (sdata == NULL)
2286 return (ENOMEM);
2287
2288 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2289
2290 sdata[0] = op;
2291 sdata[1] = b1;
2292 sdata[2] = b2;
2293 sdata[3] = b3;
2294 MEMZERO(&sdata[4], 12);
2295 amt = -16;
2296 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2297 SES_FREE(sdata, 16);
2298 return (err);
2299 }
2300
2301 /*
2302 * This function updates the status byte for the device slot described.
2303 *
2304 * Since this is an optional SAF-TE command, there's no point in
2305 * returning an error.
2306 */
2307 static void
2308 wrslot_stat(ses_softc_t *ssc, int slp)
2309 {
2310 int i, amt;
2311 encobj *ep;
2312 char cdb[10], *sdata;
2313 struct scfg *cc = ssc->ses_private;
2314
2315 if (cc == NULL)
2316 return;
2317
2318 SES_VLOG(ssc, "saf_wrslot\n");
2319 cdb[0] = WRITE_BUFFER;
2320 cdb[1] = 1;
2321 cdb[2] = 0;
2322 cdb[3] = 0;
2323 cdb[4] = 0;
2324 cdb[5] = 0;
2325 cdb[6] = 0;
2326 cdb[7] = 0;
2327 cdb[8] = cc->Nslots * 3 + 1;
2328 cdb[9] = 0;
2329
2330 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2331 if (sdata == NULL)
2332 return;
2333 MEMZERO(sdata, cc->Nslots * 3 + 1);
2334
2335 sdata[0] = SAFTE_WT_DSTAT;
2336 for (i = 0; i < cc->Nslots; i++) {
2337 ep = &ssc->ses_objmap[cc->slotoff + i];
2338 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2339 sdata[1 + (3 * i)] = ep->priv & 0xff;
2340 }
2341 amt = -(cc->Nslots * 3 + 1);
2342 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2343 SES_FREE(sdata, cc->Nslots * 3 + 1);
2344 }
2345
2346 /*
2347 * This function issues the "PERFORM SLOT OPERATION" command.
2348 */
2349 static int
2350 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2351 {
2352 int err, amt;
2353 char *sdata;
2354 struct scfg *cc = ssc->ses_private;
2355 static char cdb[10] =
2356 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2357
2358 if (cc == NULL)
2359 return (0);
2360
2361 sdata = SES_MALLOC(SAFT_SCRATCH);
2362 if (sdata == NULL)
2363 return (ENOMEM);
2364 MEMZERO(sdata, SAFT_SCRATCH);
2365
2366 sdata[0] = SAFTE_WT_SLTOP;
2367 sdata[1] = slot;
2368 sdata[2] = opflag;
2369 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2370 amt = -SAFT_SCRATCH;
2371 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2372 SES_FREE(sdata, SAFT_SCRATCH);
2373 return (err);
2374 }
2375