ses.c revision 1.45 1 /* $NetBSD: ses.c,v 1.45 2013/04/07 18:50:33 wiz Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.45 2013/04/07 18:50:33 wiz Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init)(ses_softc_t *, int);
75 int (*init_enc)(ses_softc_t *);
76 int (*get_encstat)(ses_softc_t *, int);
77 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138
139 const struct cdevsw ses_cdevsw = {
140 sesopen, sesclose, noread, nowrite, sesioctl,
141 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
142 };
143
144 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
145 static void ses_log(struct ses_softc *, const char *, ...)
146 __attribute__((__format__(__printf__, 2, 3)));
147
148 /*
149 * General NetBSD kernel stuff.
150 */
151
152 struct ses_softc {
153 device_t sc_dev;
154 struct scsipi_periph *sc_periph;
155 enctyp ses_type; /* type of enclosure */
156 encvec ses_vec; /* vector to handlers */
157 void * ses_private; /* per-type private data */
158 encobj * ses_objmap; /* objects */
159 u_int32_t ses_nobjects; /* number of objects */
160 ses_encstat ses_encstat; /* overall status */
161 u_int8_t ses_flags;
162 };
163 #define SES_FLAG_INVALID 0x01
164 #define SES_FLAG_OPEN 0x02
165 #define SES_FLAG_INITIALIZED 0x04
166
167 #define SESUNIT(x) (minor((x)))
168
169 static int ses_match(device_t, cfdata_t, void *);
170 static void ses_attach(device_t, device_t, void *);
171 static int ses_detach(device_t, int);
172 static enctyp ses_device_type(struct scsipibus_attach_args *);
173
174 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
175 ses_match, ses_attach, ses_detach, NULL);
176
177 extern struct cfdriver ses_cd;
178
179 static const struct scsipi_periphsw ses_switch = {
180 NULL,
181 NULL,
182 NULL,
183 NULL
184 };
185
186 static int
187 ses_match(device_t parent, cfdata_t match, void *aux)
188 {
189 struct scsipibus_attach_args *sa = aux;
190
191 switch (ses_device_type(sa)) {
192 case SES_SES:
193 case SES_SES_SCSI2:
194 case SES_SEN:
195 case SES_SAFT:
196 case SES_SES_PASSTHROUGH:
197 /*
198 * For these devices, it's a perfect match.
199 */
200 return (24);
201 default:
202 return (0);
203 }
204 }
205
206
207 /*
208 * Complete the attachment.
209 *
210 * We have to repeat the rerun of INQUIRY data as above because
211 * it's not until the return from the match routine that we have
212 * the softc available to set stuff in.
213 */
214 static void
215 ses_attach(device_t parent, device_t self, void *aux)
216 {
217 const char *tname;
218 struct ses_softc *softc = device_private(self);
219 struct scsipibus_attach_args *sa = aux;
220 struct scsipi_periph *periph = sa->sa_periph;
221
222 softc->sc_dev = self;
223 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
224 softc->sc_periph = periph;
225 periph->periph_dev = self;
226 periph->periph_switch = &ses_switch;
227 periph->periph_openings = 1;
228
229 softc->ses_type = ses_device_type(sa);
230 switch (softc->ses_type) {
231 case SES_SES:
232 case SES_SES_SCSI2:
233 case SES_SES_PASSTHROUGH:
234 softc->ses_vec.softc_init = ses_softc_init;
235 softc->ses_vec.init_enc = ses_init_enc;
236 softc->ses_vec.get_encstat = ses_get_encstat;
237 softc->ses_vec.set_encstat = ses_set_encstat;
238 softc->ses_vec.get_objstat = ses_get_objstat;
239 softc->ses_vec.set_objstat = ses_set_objstat;
240 break;
241 case SES_SAFT:
242 softc->ses_vec.softc_init = safte_softc_init;
243 softc->ses_vec.init_enc = safte_init_enc;
244 softc->ses_vec.get_encstat = safte_get_encstat;
245 softc->ses_vec.set_encstat = safte_set_encstat;
246 softc->ses_vec.get_objstat = safte_get_objstat;
247 softc->ses_vec.set_objstat = safte_set_objstat;
248 break;
249 case SES_SEN:
250 break;
251 case SES_NONE:
252 default:
253 break;
254 }
255
256 switch (softc->ses_type) {
257 default:
258 case SES_NONE:
259 tname = "No SES device";
260 break;
261 case SES_SES_SCSI2:
262 tname = "SCSI-2 SES Device";
263 break;
264 case SES_SES:
265 tname = "SCSI-3 SES Device";
266 break;
267 case SES_SES_PASSTHROUGH:
268 tname = "SES Passthrough Device";
269 break;
270 case SES_SEN:
271 tname = "UNISYS SEN Device (NOT HANDLED YET)";
272 break;
273 case SES_SAFT:
274 tname = "SAF-TE Compliant Device";
275 break;
276 }
277 printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
278 }
279
280 static enctyp
281 ses_device_type(struct scsipibus_attach_args *sa)
282 {
283 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284
285 if (inqp == NULL)
286 return (SES_NONE);
287
288 return (ses_type(inqp));
289 }
290
291 static int
292 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
293 {
294 struct ses_softc *softc;
295 int error, unit;
296
297 unit = SESUNIT(dev);
298 softc = device_lookup_private(&ses_cd, unit);
299 if (softc == NULL)
300 return (ENXIO);
301
302 if (softc->ses_flags & SES_FLAG_INVALID) {
303 error = ENXIO;
304 goto out;
305 }
306 if (softc->ses_flags & SES_FLAG_OPEN) {
307 error = EBUSY;
308 goto out;
309 }
310 if (softc->ses_vec.softc_init == NULL) {
311 error = ENXIO;
312 goto out;
313 }
314 error = scsipi_adapter_addref(
315 softc->sc_periph->periph_channel->chan_adapter);
316 if (error != 0)
317 goto out;
318
319
320 softc->ses_flags |= SES_FLAG_OPEN;
321 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
322 error = (*softc->ses_vec.softc_init)(softc, 1);
323 if (error)
324 softc->ses_flags &= ~SES_FLAG_OPEN;
325 else
326 softc->ses_flags |= SES_FLAG_INITIALIZED;
327 }
328
329 out:
330 return (error);
331 }
332
333 static int
334 sesclose(dev_t dev, int flags, int fmt,
335 struct lwp *l)
336 {
337 struct ses_softc *softc;
338 int unit;
339
340 unit = SESUNIT(dev);
341 softc = device_lookup_private(&ses_cd, unit);
342 if (softc == NULL)
343 return (ENXIO);
344
345 scsipi_wait_drain(softc->sc_periph);
346 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
347 softc->ses_flags &= ~SES_FLAG_OPEN;
348 return (0);
349 }
350
351 static int
352 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
353 {
354 ses_encstat tmp;
355 ses_objstat objs;
356 ses_object obj, *uobj;
357 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
358 void *addr;
359 int error, i;
360
361
362 if (arg_addr)
363 addr = *((void **) arg_addr);
364 else
365 addr = NULL;
366
367 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
368
369 /*
370 * Now check to see whether we're initialized or not.
371 */
372 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
373 return (ENODEV);
374 }
375
376 error = 0;
377
378 /*
379 * If this command can change the device's state,
380 * we must have the device open for writing.
381 */
382 switch (cmd) {
383 case SESIOC_GETNOBJ:
384 case SESIOC_GETOBJMAP:
385 case SESIOC_GETENCSTAT:
386 case SESIOC_GETOBJSTAT:
387 break;
388 default:
389 if ((flag & FWRITE) == 0) {
390 return (EBADF);
391 }
392 }
393
394 switch (cmd) {
395 case SESIOC_GETNOBJ:
396 if (addr == NULL)
397 return EINVAL;
398 error = copyout(&ssc->ses_nobjects, addr,
399 sizeof (ssc->ses_nobjects));
400 break;
401
402 case SESIOC_GETOBJMAP:
403 if (addr == NULL)
404 return EINVAL;
405 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
406 obj.obj_id = i;
407 obj.subencid = ssc->ses_objmap[i].subenclosure;
408 obj.object_type = ssc->ses_objmap[i].enctype;
409 error = copyout(&obj, uobj, sizeof (ses_object));
410 if (error) {
411 break;
412 }
413 }
414 break;
415
416 case SESIOC_GETENCSTAT:
417 if (addr == NULL)
418 return EINVAL;
419 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
420 if (error)
421 break;
422 tmp = ssc->ses_encstat & ~ENCI_SVALID;
423 error = copyout(&tmp, addr, sizeof (ses_encstat));
424 ssc->ses_encstat = tmp;
425 break;
426
427 case SESIOC_SETENCSTAT:
428 if (addr == NULL)
429 return EINVAL;
430 error = copyin(addr, &tmp, sizeof (ses_encstat));
431 if (error)
432 break;
433 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
434 break;
435
436 case SESIOC_GETOBJSTAT:
437 if (addr == NULL)
438 return EINVAL;
439 error = copyin(addr, &objs, sizeof (ses_objstat));
440 if (error)
441 break;
442 if (objs.obj_id >= ssc->ses_nobjects) {
443 error = EINVAL;
444 break;
445 }
446 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
447 if (error)
448 break;
449 error = copyout(&objs, addr, sizeof (ses_objstat));
450 /*
451 * Always (for now) invalidate entry.
452 */
453 ssc->ses_objmap[objs.obj_id].svalid = 0;
454 break;
455
456 case SESIOC_SETOBJSTAT:
457 if (addr == NULL)
458 return EINVAL;
459 error = copyin(addr, &objs, sizeof (ses_objstat));
460 if (error)
461 break;
462
463 if (objs.obj_id >= ssc->ses_nobjects) {
464 error = EINVAL;
465 break;
466 }
467 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
468
469 /*
470 * Always (for now) invalidate entry.
471 */
472 ssc->ses_objmap[objs.obj_id].svalid = 0;
473 break;
474
475 case SESIOC_INIT:
476
477 error = (*ssc->ses_vec.init_enc)(ssc);
478 break;
479
480 default:
481 error = scsipi_do_ioctl(ssc->sc_periph,
482 dev, cmd, arg_addr, flag, l);
483 break;
484 }
485 return (error);
486 }
487
488 static int
489 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
490 {
491 struct scsipi_generic sgen;
492 int dl, flg, error;
493
494 if (dptr) {
495 if ((dl = *dlenp) < 0) {
496 dl = -dl;
497 flg = XS_CTL_DATA_OUT;
498 } else {
499 flg = XS_CTL_DATA_IN;
500 }
501 } else {
502 dl = 0;
503 flg = 0;
504 }
505
506 if (cdbl > sizeof (struct scsipi_generic)) {
507 cdbl = sizeof (struct scsipi_generic);
508 }
509 memcpy(&sgen, cdb, cdbl);
510 #ifndef SCSIDEBUG
511 flg |= XS_CTL_SILENT;
512 #endif
513 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
514 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
515
516 if (error == 0 && dptr)
517 *dlenp = 0;
518
519 return (error);
520 }
521
522 static void
523 ses_log(struct ses_softc *ssc, const char *fmt, ...)
524 {
525 va_list ap;
526
527 printf("%s: ", device_xname(ssc->sc_dev));
528 va_start(ap, fmt);
529 vprintf(fmt, ap);
530 va_end(ap);
531 }
532
533 /*
534 * The code after this point runs on many platforms,
535 * so forgive the slightly awkward and nonconforming
536 * appearance.
537 */
538
539 /*
540 * Is this a device that supports enclosure services?
541 *
542 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
543 * an SES device. If it happens to be an old UNISYS SEN device, we can
544 * handle that too.
545 */
546
547 #define SAFTE_START 44
548 #define SAFTE_END 50
549 #define SAFTE_LEN SAFTE_END-SAFTE_START
550
551 static enctyp
552 ses_type(struct scsipi_inquiry_data *inqp)
553 {
554 size_t given_len = inqp->additional_length + 4;
555
556 if (given_len < 8+SEN_ID_LEN)
557 return (SES_NONE);
558
559 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
560 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
561 return (SES_SEN);
562 } else if ((inqp->version & SID_ANSII) > 2) {
563 return (SES_SES);
564 } else {
565 return (SES_SES_SCSI2);
566 }
567 return (SES_NONE);
568 }
569
570 #ifdef SES_ENABLE_PASSTHROUGH
571 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
572 /*
573 * PassThrough Device.
574 */
575 return (SES_SES_PASSTHROUGH);
576 }
577 #endif
578
579 /*
580 * The comparison is short for a reason-
581 * some vendors were chopping it short.
582 */
583
584 if (given_len < SAFTE_END - 2) {
585 return (SES_NONE);
586 }
587
588 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
589 SAFTE_LEN - 2) == 0) {
590 return (SES_SAFT);
591 }
592
593 return (SES_NONE);
594 }
595
596 /*
597 * SES Native Type Device Support
598 */
599
600 /*
601 * SES Diagnostic Page Codes
602 */
603
604 typedef enum {
605 SesConfigPage = 0x1,
606 SesControlPage,
607 #define SesStatusPage SesControlPage
608 SesHelpTxt,
609 SesStringOut,
610 #define SesStringIn SesStringOut
611 SesThresholdOut,
612 #define SesThresholdIn SesThresholdOut
613 SesArrayControl,
614 #define SesArrayStatus SesArrayControl
615 SesElementDescriptor,
616 SesShortStatus
617 } SesDiagPageCodes;
618
619 /*
620 * minimal amounts
621 */
622
623 /*
624 * Minimum amount of data, starting from byte 0, to have
625 * the config header.
626 */
627 #define SES_CFGHDR_MINLEN 12
628
629 /*
630 * Minimum amount of data, starting from byte 0, to have
631 * the config header and one enclosure header.
632 */
633 #define SES_ENCHDR_MINLEN 48
634
635 /*
636 * Take this value, subtract it from VEnclen and you know
637 * the length of the vendor unique bytes.
638 */
639 #define SES_ENCHDR_VMIN 36
640
641 /*
642 * SES Data Structures
643 */
644
645 typedef struct {
646 uint32_t GenCode; /* Generation Code */
647 uint8_t Nsubenc; /* Number of Subenclosures */
648 } SesCfgHdr;
649
650 typedef struct {
651 uint8_t Subencid; /* SubEnclosure Identifier */
652 uint8_t Ntypes; /* # of supported types */
653 uint8_t VEnclen; /* Enclosure Descriptor Length */
654 } SesEncHdr;
655
656 typedef struct {
657 uint8_t encWWN[8]; /* XXX- Not Right Yet */
658 uint8_t encVid[8];
659 uint8_t encPid[16];
660 uint8_t encRev[4];
661 uint8_t encVen[1];
662 } SesEncDesc;
663
664 typedef struct {
665 uint8_t enc_type; /* type of element */
666 uint8_t enc_maxelt; /* maximum supported */
667 uint8_t enc_subenc; /* in SubEnc # N */
668 uint8_t enc_tlen; /* Type Descriptor Text Length */
669 } SesThdr;
670
671 typedef struct {
672 uint8_t comstatus;
673 uint8_t comstat[3];
674 } SesComStat;
675
676 struct typidx {
677 int ses_tidx;
678 int ses_oidx;
679 };
680
681 struct sscfg {
682 uint8_t ses_ntypes; /* total number of types supported */
683
684 /*
685 * We need to keep a type index as well as an
686 * object index for each object in an enclosure.
687 */
688 struct typidx *ses_typidx;
689
690 /*
691 * We also need to keep track of the number of elements
692 * per type of element. This is needed later so that we
693 * can find precisely in the returned status data the
694 * status for the Nth element of the Kth type.
695 */
696 uint8_t * ses_eltmap;
697 };
698
699
700 /*
701 * (de)canonicalization defines
702 */
703 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
704 #define sbit(x, bit) (((uint32_t)(x)) << bit)
705 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
706
707 #define sset16(outp, idx, sval) \
708 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
709 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
710
711
712 #define sset24(outp, idx, sval) \
713 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
714 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
715 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716
717
718 #define sset32(outp, idx, sval) \
719 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
720 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
721 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
722 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
723
724 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
725 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
726 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
727 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
728
729 #define sget16(inp, idx, lval) \
730 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
731 (((uint8_t *)(inp))[idx+1]), idx += 2
732
733 #define gget16(inp, idx, lval) \
734 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
735 (((uint8_t *)(inp))[idx+1])
736
737 #define sget24(inp, idx, lval) \
738 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
739 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
740 (((uint8_t *)(inp))[idx+2]), idx += 3
741
742 #define gget24(inp, idx, lval) \
743 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
744 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
745 (((uint8_t *)(inp))[idx+2])
746
747 #define sget32(inp, idx, lval) \
748 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
749 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
750 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
751 (((uint8_t *)(inp))[idx+3]), idx += 4
752
753 #define gget32(inp, idx, lval) \
754 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
755 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
756 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
757 (((uint8_t *)(inp))[idx+3])
758
759 #define SCSZ 0x2000
760 #define CFLEN (256 + SES_ENCHDR_MINLEN)
761
762 /*
763 * Routines specific && private to SES only
764 */
765
766 static int ses_getconfig(ses_softc_t *);
767 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
768 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
769 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
770 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
771 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
772 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
773 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
774
775 static int
776 ses_softc_init(ses_softc_t *ssc, int doinit)
777 {
778 if (doinit == 0) {
779 struct sscfg *cc;
780 if (ssc->ses_nobjects) {
781 SES_FREE(ssc->ses_objmap,
782 ssc->ses_nobjects * sizeof (encobj));
783 ssc->ses_objmap = NULL;
784 }
785 if ((cc = ssc->ses_private) != NULL) {
786 if (cc->ses_eltmap && cc->ses_ntypes) {
787 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
788 cc->ses_eltmap = NULL;
789 cc->ses_ntypes = 0;
790 }
791 if (cc->ses_typidx && ssc->ses_nobjects) {
792 SES_FREE(cc->ses_typidx,
793 ssc->ses_nobjects * sizeof (struct typidx));
794 cc->ses_typidx = NULL;
795 }
796 SES_FREE(cc, sizeof (struct sscfg));
797 ssc->ses_private = NULL;
798 }
799 ssc->ses_nobjects = 0;
800 return (0);
801 }
802 if (ssc->ses_private == NULL) {
803 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
804 }
805 if (ssc->ses_private == NULL) {
806 return (ENOMEM);
807 }
808 ssc->ses_nobjects = 0;
809 ssc->ses_encstat = 0;
810 return (ses_getconfig(ssc));
811 }
812
813 static int
814 ses_detach(device_t self, int flags)
815 {
816 struct ses_softc *ssc = device_private(self);
817 struct sscfg *cc = ssc->ses_private;
818
819 if (ssc->ses_objmap) {
820 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
821 }
822 if (cc != NULL) {
823 if (cc->ses_typidx) {
824 SES_FREE(cc->ses_typidx,
825 (nobj * sizeof (struct typidx)));
826 }
827 if (cc->ses_eltmap) {
828 SES_FREE(cc->ses_eltmap, ntype);
829 }
830 SES_FREE(cc, sizeof (struct sscfg));
831 }
832
833 return 0;
834 }
835
836 static int
837 ses_init_enc(ses_softc_t *ssc)
838 {
839 return (0);
840 }
841
842 static int
843 ses_get_encstat(ses_softc_t *ssc, int slpflag)
844 {
845 SesComStat ComStat;
846 int status;
847
848 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
849 return (status);
850 }
851 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
852 return (0);
853 }
854
855 static int
856 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
857 {
858 SesComStat ComStat;
859 int status;
860
861 ComStat.comstatus = encstat & 0xf;
862 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
863 return (status);
864 }
865 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
866 return (0);
867 }
868
869 static int
870 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
871 {
872 int i = (int)obp->obj_id;
873
874 if (ssc->ses_objmap[i].svalid == 0) {
875 SesComStat ComStat;
876 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
877 if (err)
878 return (err);
879 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
880 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
881 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
882 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
883 ssc->ses_objmap[i].svalid = 1;
884 }
885 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
886 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
887 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
888 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
889 return (0);
890 }
891
892 static int
893 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
894 {
895 SesComStat ComStat;
896 int err;
897 /*
898 * If this is clear, we don't do diddly.
899 */
900 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
901 return (0);
902 }
903 ComStat.comstatus = obp->cstat[0];
904 ComStat.comstat[0] = obp->cstat[1];
905 ComStat.comstat[1] = obp->cstat[2];
906 ComStat.comstat[2] = obp->cstat[3];
907 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
908 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
909 return (err);
910 }
911
912 static int
913 ses_getconfig(ses_softc_t *ssc)
914 {
915 struct sscfg *cc;
916 SesCfgHdr cf;
917 SesEncHdr hd;
918 SesEncDesc *cdp;
919 SesThdr thdr;
920 int err, amt, i, nobj, ntype, maxima;
921 char storage[CFLEN], *sdata;
922 static char cdb[6] = {
923 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
924 };
925
926 cc = ssc->ses_private;
927 if (cc == NULL) {
928 return (ENXIO);
929 }
930
931 sdata = SES_MALLOC(SCSZ);
932 if (sdata == NULL)
933 return (ENOMEM);
934
935 amt = SCSZ;
936 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
937 if (err) {
938 SES_FREE(sdata, SCSZ);
939 return (err);
940 }
941 amt = SCSZ - amt;
942
943 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
944 SES_LOG(ssc, "Unable to parse SES Config Header\n");
945 SES_FREE(sdata, SCSZ);
946 return (EIO);
947 }
948 if (amt < SES_ENCHDR_MINLEN) {
949 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
950 SES_FREE(sdata, SCSZ);
951 return (EIO);
952 }
953
954 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
955
956 /*
957 * Now waltz through all the subenclosures toting up the
958 * number of types available in each. For this, we only
959 * really need the enclosure header. However, we get the
960 * enclosure descriptor for debug purposes, as well
961 * as self-consistency checking purposes.
962 */
963
964 maxima = cf.Nsubenc + 1;
965 cdp = (SesEncDesc *) storage;
966 for (ntype = i = 0; i < maxima; i++) {
967 MEMZERO((void *)cdp, sizeof (*cdp));
968 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
969 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
970 SES_FREE(sdata, SCSZ);
971 return (EIO);
972 }
973 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
974 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
975
976 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
977 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
978 SES_FREE(sdata, SCSZ);
979 return (EIO);
980 }
981 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
982 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
983 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
984 cdp->encWWN[6], cdp->encWWN[7]);
985 ntype += hd.Ntypes;
986 }
987
988 /*
989 * Now waltz through all the types that are available, getting
990 * the type header so we can start adding up the number of
991 * objects available.
992 */
993 for (nobj = i = 0; i < ntype; i++) {
994 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
995 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
996 SES_FREE(sdata, SCSZ);
997 return (EIO);
998 }
999 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1000 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1001 thdr.enc_subenc, thdr.enc_tlen);
1002 nobj += thdr.enc_maxelt;
1003 }
1004
1005
1006 /*
1007 * Now allocate the object array and type map.
1008 */
1009
1010 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1011 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1012 cc->ses_eltmap = SES_MALLOC(ntype);
1013
1014 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1015 cc->ses_eltmap == NULL) {
1016 if (ssc->ses_objmap) {
1017 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1018 ssc->ses_objmap = NULL;
1019 }
1020 if (cc->ses_typidx) {
1021 SES_FREE(cc->ses_typidx,
1022 (nobj * sizeof (struct typidx)));
1023 cc->ses_typidx = NULL;
1024 }
1025 if (cc->ses_eltmap) {
1026 SES_FREE(cc->ses_eltmap, ntype);
1027 cc->ses_eltmap = NULL;
1028 }
1029 SES_FREE(sdata, SCSZ);
1030 return (ENOMEM);
1031 }
1032 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1033 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1034 MEMZERO(cc->ses_eltmap, ntype);
1035 cc->ses_ntypes = (uint8_t) ntype;
1036 ssc->ses_nobjects = nobj;
1037
1038 /*
1039 * Now waltz through the # of types again to fill in the types
1040 * (and subenclosure ids) of the allocated objects.
1041 */
1042 nobj = 0;
1043 for (i = 0; i < ntype; i++) {
1044 int j;
1045 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1046 continue;
1047 }
1048 cc->ses_eltmap[i] = thdr.enc_maxelt;
1049 for (j = 0; j < thdr.enc_maxelt; j++) {
1050 cc->ses_typidx[nobj].ses_tidx = i;
1051 cc->ses_typidx[nobj].ses_oidx = j;
1052 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1053 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1054 }
1055 }
1056 SES_FREE(sdata, SCSZ);
1057 return (0);
1058 }
1059
1060 static int
1061 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1062 int in)
1063 {
1064 struct sscfg *cc;
1065 int err, amt, bufsiz, tidx, oidx;
1066 char cdb[6], *sdata;
1067
1068 cc = ssc->ses_private;
1069 if (cc == NULL) {
1070 return (ENXIO);
1071 }
1072
1073 /*
1074 * If we're just getting overall enclosure status,
1075 * we only need 2 bytes of data storage.
1076 *
1077 * If we're getting anything else, we know how much
1078 * storage we need by noting that starting at offset
1079 * 8 in returned data, all object status bytes are 4
1080 * bytes long, and are stored in chunks of types(M)
1081 * and nth+1 instances of type M.
1082 */
1083 if (objid == -1) {
1084 bufsiz = 2;
1085 } else {
1086 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1087 }
1088 sdata = SES_MALLOC(bufsiz);
1089 if (sdata == NULL)
1090 return (ENOMEM);
1091
1092 cdb[0] = RECEIVE_DIAGNOSTIC;
1093 cdb[1] = 1;
1094 cdb[2] = SesStatusPage;
1095 cdb[3] = bufsiz >> 8;
1096 cdb[4] = bufsiz & 0xff;
1097 cdb[5] = 0;
1098 amt = bufsiz;
1099 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1100 if (err) {
1101 SES_FREE(sdata, bufsiz);
1102 return (err);
1103 }
1104 amt = bufsiz - amt;
1105
1106 if (objid == -1) {
1107 tidx = -1;
1108 oidx = -1;
1109 } else {
1110 tidx = cc->ses_typidx[objid].ses_tidx;
1111 oidx = cc->ses_typidx[objid].ses_oidx;
1112 }
1113 if (in) {
1114 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1115 err = ENODEV;
1116 }
1117 } else {
1118 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1119 err = ENODEV;
1120 } else {
1121 cdb[0] = SEND_DIAGNOSTIC;
1122 cdb[1] = 0x10;
1123 cdb[2] = 0;
1124 cdb[3] = bufsiz >> 8;
1125 cdb[4] = bufsiz & 0xff;
1126 cdb[5] = 0;
1127 amt = -bufsiz;
1128 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1129 }
1130 }
1131 SES_FREE(sdata, bufsiz);
1132 return (0);
1133 }
1134
1135
1136 /*
1137 * Routines to parse returned SES data structures.
1138 * Architecture and compiler independent.
1139 */
1140
1141 static int
1142 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1143 {
1144 if (buflen < SES_CFGHDR_MINLEN) {
1145 return (-1);
1146 }
1147 gget8(buffer, 1, cfp->Nsubenc);
1148 gget32(buffer, 4, cfp->GenCode);
1149 return (0);
1150 }
1151
1152 static int
1153 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1154 {
1155 int s, off = 8;
1156 for (s = 0; s < SubEncId; s++) {
1157 if (off + 3 > amt)
1158 return (-1);
1159 off += buffer[off+3] + 4;
1160 }
1161 if (off + 3 > amt) {
1162 return (-1);
1163 }
1164 gget8(buffer, off+1, chp->Subencid);
1165 gget8(buffer, off+2, chp->Ntypes);
1166 gget8(buffer, off+3, chp->VEnclen);
1167 return (0);
1168 }
1169
1170 static int
1171 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1172 {
1173 int s, e, enclen, off = 8;
1174 for (s = 0; s < SubEncId; s++) {
1175 if (off + 3 > amt)
1176 return (-1);
1177 off += buffer[off+3] + 4;
1178 }
1179 if (off + 3 > amt) {
1180 return (-1);
1181 }
1182 gget8(buffer, off+3, enclen);
1183 off += 4;
1184 if (off >= amt)
1185 return (-1);
1186
1187 e = off + enclen;
1188 if (e > amt) {
1189 e = amt;
1190 }
1191 MEMCPY(cdp, &buffer[off], e - off);
1192 return (0);
1193 }
1194
1195 static int
1196 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1197 {
1198 int s, off = 8;
1199
1200 if (amt < SES_CFGHDR_MINLEN) {
1201 return (-1);
1202 }
1203 for (s = 0; s < buffer[1]; s++) {
1204 if (off + 3 > amt)
1205 return (-1);
1206 off += buffer[off+3] + 4;
1207 }
1208 if (off + 3 > amt) {
1209 return (-1);
1210 }
1211 off += buffer[off+3] + 4 + (nth * 4);
1212 if (amt < (off + 4))
1213 return (-1);
1214
1215 gget8(buffer, off++, thp->enc_type);
1216 gget8(buffer, off++, thp->enc_maxelt);
1217 gget8(buffer, off++, thp->enc_subenc);
1218 gget8(buffer, off, thp->enc_tlen);
1219 return (0);
1220 }
1221
1222 /*
1223 * This function needs a little explanation.
1224 *
1225 * The arguments are:
1226 *
1227 *
1228 * char *b, int amt
1229 *
1230 * These describes the raw input SES status data and length.
1231 *
1232 * uint8_t *ep
1233 *
1234 * This is a map of the number of types for each element type
1235 * in the enclosure.
1236 *
1237 * int elt
1238 *
1239 * This is the element type being sought. If elt is -1,
1240 * then overall enclosure status is being sought.
1241 *
1242 * int elm
1243 *
1244 * This is the ordinal Mth element of type elt being sought.
1245 *
1246 * SesComStat *sp
1247 *
1248 * This is the output area to store the status for
1249 * the Mth element of type Elt.
1250 */
1251
1252 static int
1253 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1254 {
1255 int idx, i;
1256
1257 /*
1258 * If it's overall enclosure status being sought, get that.
1259 * We need at least 2 bytes of status data to get that.
1260 */
1261 if (elt == -1) {
1262 if (amt < 2)
1263 return (-1);
1264 gget8(b, 1, sp->comstatus);
1265 sp->comstat[0] = 0;
1266 sp->comstat[1] = 0;
1267 sp->comstat[2] = 0;
1268 return (0);
1269 }
1270
1271 /*
1272 * Check to make sure that the Mth element is legal for type Elt.
1273 */
1274
1275 if (elm >= ep[elt])
1276 return (-1);
1277
1278 /*
1279 * Starting at offset 8, start skipping over the storage
1280 * for the element types we're not interested in.
1281 */
1282 for (idx = 8, i = 0; i < elt; i++) {
1283 idx += ((ep[i] + 1) * 4);
1284 }
1285
1286 /*
1287 * Skip over Overall status for this element type.
1288 */
1289 idx += 4;
1290
1291 /*
1292 * And skip to the index for the Mth element that we're going for.
1293 */
1294 idx += (4 * elm);
1295
1296 /*
1297 * Make sure we haven't overflowed the buffer.
1298 */
1299 if (idx+4 > amt)
1300 return (-1);
1301
1302 /*
1303 * Retrieve the status.
1304 */
1305 gget8(b, idx++, sp->comstatus);
1306 gget8(b, idx++, sp->comstat[0]);
1307 gget8(b, idx++, sp->comstat[1]);
1308 gget8(b, idx++, sp->comstat[2]);
1309 #if 0
1310 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1311 #endif
1312 return (0);
1313 }
1314
1315 /*
1316 * This is the mirror function to ses_decode, but we set the 'select'
1317 * bit for the object which we're interested in. All other objects,
1318 * after a status fetch, should have that bit off. Hmm. It'd be easy
1319 * enough to ensure this, so we will.
1320 */
1321
1322 static int
1323 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1324 {
1325 int idx, i;
1326
1327 /*
1328 * If it's overall enclosure status being sought, get that.
1329 * We need at least 2 bytes of status data to get that.
1330 */
1331 if (elt == -1) {
1332 if (amt < 2)
1333 return (-1);
1334 i = 0;
1335 sset8(b, i, 0);
1336 sset8(b, i, sp->comstatus & 0xf);
1337 #if 0
1338 PRINTF("set EncStat %x\n", sp->comstatus);
1339 #endif
1340 return (0);
1341 }
1342
1343 /*
1344 * Check to make sure that the Mth element is legal for type Elt.
1345 */
1346
1347 if (elm >= ep[elt])
1348 return (-1);
1349
1350 /*
1351 * Starting at offset 8, start skipping over the storage
1352 * for the element types we're not interested in.
1353 */
1354 for (idx = 8, i = 0; i < elt; i++) {
1355 idx += ((ep[i] + 1) * 4);
1356 }
1357
1358 /*
1359 * Skip over Overall status for this element type.
1360 */
1361 idx += 4;
1362
1363 /*
1364 * And skip to the index for the Mth element that we're going for.
1365 */
1366 idx += (4 * elm);
1367
1368 /*
1369 * Make sure we haven't overflowed the buffer.
1370 */
1371 if (idx+4 > amt)
1372 return (-1);
1373
1374 /*
1375 * Set the status.
1376 */
1377 sset8(b, idx, sp->comstatus);
1378 sset8(b, idx, sp->comstat[0]);
1379 sset8(b, idx, sp->comstat[1]);
1380 sset8(b, idx, sp->comstat[2]);
1381 idx -= 4;
1382
1383 #if 0
1384 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1385 elt, elm, idx, sp->comstatus, sp->comstat[0],
1386 sp->comstat[1], sp->comstat[2]);
1387 #endif
1388
1389 /*
1390 * Now make sure all other 'Select' bits are off.
1391 */
1392 for (i = 8; i < amt; i += 4) {
1393 if (i != idx)
1394 b[i] &= ~0x80;
1395 }
1396 /*
1397 * And make sure the INVOP bit is clear.
1398 */
1399 b[2] &= ~0x10;
1400
1401 return (0);
1402 }
1403
1404 /*
1405 * SAF-TE Type Device Emulation
1406 */
1407
1408 static int safte_getconfig(ses_softc_t *);
1409 static int safte_rdstat(ses_softc_t *, int);
1410 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1411 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1412 static void wrslot_stat(ses_softc_t *, int);
1413 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1414
1415 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1416 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1417 /*
1418 * SAF-TE specific defines- Mandatory ones only...
1419 */
1420
1421 /*
1422 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1423 */
1424 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1425 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1426 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1427
1428 /*
1429 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1430 */
1431 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1432 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1433 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1434 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1435 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1436
1437
1438 #define SAFT_SCRATCH 64
1439 #define NPSEUDO_THERM 16
1440 #define NPSEUDO_ALARM 1
1441 struct scfg {
1442 /*
1443 * Cached Configuration
1444 */
1445 uint8_t Nfans; /* Number of Fans */
1446 uint8_t Npwr; /* Number of Power Supplies */
1447 uint8_t Nslots; /* Number of Device Slots */
1448 uint8_t DoorLock; /* Door Lock Installed */
1449 uint8_t Ntherm; /* Number of Temperature Sensors */
1450 uint8_t Nspkrs; /* Number of Speakers */
1451 uint8_t Nalarm; /* Number of Alarms (at least one) */
1452 /*
1453 * Cached Flag Bytes for Global Status
1454 */
1455 uint8_t flag1;
1456 uint8_t flag2;
1457 /*
1458 * What object index ID is where various slots start.
1459 */
1460 uint8_t pwroff;
1461 uint8_t slotoff;
1462 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1463 };
1464
1465 #define SAFT_FLG1_ALARM 0x1
1466 #define SAFT_FLG1_GLOBFAIL 0x2
1467 #define SAFT_FLG1_GLOBWARN 0x4
1468 #define SAFT_FLG1_ENCPWROFF 0x8
1469 #define SAFT_FLG1_ENCFANFAIL 0x10
1470 #define SAFT_FLG1_ENCPWRFAIL 0x20
1471 #define SAFT_FLG1_ENCDRVFAIL 0x40
1472 #define SAFT_FLG1_ENCDRVWARN 0x80
1473
1474 #define SAFT_FLG2_LOCKDOOR 0x4
1475 #define SAFT_PRIVATE sizeof (struct scfg)
1476
1477 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1478 #define SAFT_BAIL(r, x, k, l) \
1479 if (r >= x) { \
1480 SES_LOG(ssc, safte_2little, x, __LINE__);\
1481 SES_FREE(k, l); \
1482 return (EIO); \
1483 }
1484
1485
1486 static int
1487 safte_softc_init(ses_softc_t *ssc, int doinit)
1488 {
1489 int err, i, r;
1490 struct scfg *cc;
1491
1492 if (doinit == 0) {
1493 if (ssc->ses_nobjects) {
1494 if (ssc->ses_objmap) {
1495 SES_FREE(ssc->ses_objmap,
1496 ssc->ses_nobjects * sizeof (encobj));
1497 ssc->ses_objmap = NULL;
1498 }
1499 ssc->ses_nobjects = 0;
1500 }
1501 if (ssc->ses_private) {
1502 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1503 ssc->ses_private = NULL;
1504 }
1505 return (0);
1506 }
1507
1508 if (ssc->ses_private == NULL) {
1509 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1510 if (ssc->ses_private == NULL) {
1511 return (ENOMEM);
1512 }
1513 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1514 }
1515
1516 ssc->ses_nobjects = 0;
1517 ssc->ses_encstat = 0;
1518
1519 if ((err = safte_getconfig(ssc)) != 0) {
1520 return (err);
1521 }
1522
1523 /*
1524 * The number of objects here, as well as that reported by the
1525 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1526 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1527 */
1528 cc = ssc->ses_private;
1529 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1530 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1531 ssc->ses_objmap = (encobj *)
1532 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1533 if (ssc->ses_objmap == NULL) {
1534 return (ENOMEM);
1535 }
1536 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1537
1538 r = 0;
1539 /*
1540 * Note that this is all arranged for the convenience
1541 * in later fetches of status.
1542 */
1543 for (i = 0; i < cc->Nfans; i++)
1544 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1545 cc->pwroff = (uint8_t) r;
1546 for (i = 0; i < cc->Npwr; i++)
1547 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1548 for (i = 0; i < cc->DoorLock; i++)
1549 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1550 for (i = 0; i < cc->Nspkrs; i++)
1551 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1552 for (i = 0; i < cc->Ntherm; i++)
1553 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1554 for (i = 0; i < NPSEUDO_THERM; i++)
1555 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1556 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1557 cc->slotoff = (uint8_t) r;
1558 for (i = 0; i < cc->Nslots; i++)
1559 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1560 return (0);
1561 }
1562
1563 static int
1564 safte_init_enc(ses_softc_t *ssc)
1565 {
1566 int err, amt;
1567 char *sdata;
1568 static char cdb0[6] = { SEND_DIAGNOSTIC };
1569 static char cdb[10] =
1570 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1571
1572 sdata = SES_MALLOC(SAFT_SCRATCH);
1573 if (sdata == NULL)
1574 return (ENOMEM);
1575
1576 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1577 if (err) {
1578 SES_FREE(sdata, SAFT_SCRATCH);
1579 return (err);
1580 }
1581 sdata[0] = SAFTE_WT_GLOBAL;
1582 MEMZERO(&sdata[1], 15);
1583 amt = -SAFT_SCRATCH;
1584 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1585 SES_FREE(sdata, SAFT_SCRATCH);
1586 return (err);
1587 }
1588
1589 static int
1590 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1591 {
1592 return (safte_rdstat(ssc, slpflg));
1593 }
1594
1595 static int
1596 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1597 {
1598 struct scfg *cc = ssc->ses_private;
1599 if (cc == NULL)
1600 return (0);
1601 /*
1602 * Since SAF-TE devices aren't necessarily sticky in terms
1603 * of state, make our soft copy of enclosure status 'sticky'-
1604 * that is, things set in enclosure status stay set (as implied
1605 * by conditions set in reading object status) until cleared.
1606 */
1607 ssc->ses_encstat &= ~ALL_ENC_STAT;
1608 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1609 ssc->ses_encstat |= ENCI_SVALID;
1610 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1611 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1612 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1613 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1614 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1615 }
1616 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1617 }
1618
1619 static int
1620 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1621 {
1622 int i = (int)obp->obj_id;
1623
1624 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1625 (ssc->ses_objmap[i].svalid) == 0) {
1626 int err = safte_rdstat(ssc, slpflg);
1627 if (err)
1628 return (err);
1629 }
1630 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1631 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1632 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1633 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1634 return (0);
1635 }
1636
1637
1638 static int
1639 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1640 {
1641 int idx, err;
1642 encobj *ep;
1643 struct scfg *cc;
1644
1645
1646 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1647 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1648 obp->cstat[3]);
1649
1650 /*
1651 * If this is clear, we don't do diddly.
1652 */
1653 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1654 return (0);
1655 }
1656
1657 err = 0;
1658 /*
1659 * Check to see if the common bits are set and do them first.
1660 */
1661 if (obp->cstat[0] & ~SESCTL_CSEL) {
1662 err = set_objstat_sel(ssc, obp, slp);
1663 if (err)
1664 return (err);
1665 }
1666
1667 cc = ssc->ses_private;
1668 if (cc == NULL)
1669 return (0);
1670
1671 idx = (int)obp->obj_id;
1672 ep = &ssc->ses_objmap[idx];
1673
1674 switch (ep->enctype) {
1675 case SESTYP_DEVICE:
1676 {
1677 uint8_t slotop = 0;
1678 /*
1679 * XXX: I should probably cache the previous state
1680 * XXX: of SESCTL_DEVOFF so that when it goes from
1681 * XXX: true to false I can then set PREPARE FOR OPERATION
1682 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1683 */
1684 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1685 slotop |= 0x2;
1686 }
1687 if (obp->cstat[2] & SESCTL_RQSID) {
1688 slotop |= 0x4;
1689 }
1690 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1691 slotop, slp);
1692 if (err)
1693 return (err);
1694 if (obp->cstat[3] & SESCTL_RQSFLT) {
1695 ep->priv |= 0x2;
1696 } else {
1697 ep->priv &= ~0x2;
1698 }
1699 if (ep->priv & 0xc6) {
1700 ep->priv &= ~0x1;
1701 } else {
1702 ep->priv |= 0x1; /* no errors */
1703 }
1704 wrslot_stat(ssc, slp);
1705 break;
1706 }
1707 case SESTYP_POWER:
1708 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1709 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1710 } else {
1711 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1712 }
1713 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1714 cc->flag2, 0, slp);
1715 if (err)
1716 return (err);
1717 if (obp->cstat[3] & SESCTL_RQSTON) {
1718 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1719 idx - cc->pwroff, 0, 0, slp);
1720 } else {
1721 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1722 idx - cc->pwroff, 0, 1, slp);
1723 }
1724 break;
1725 case SESTYP_FAN:
1726 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1727 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1728 } else {
1729 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1730 }
1731 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1732 cc->flag2, 0, slp);
1733 if (err)
1734 return (err);
1735 if (obp->cstat[3] & SESCTL_RQSTON) {
1736 uint8_t fsp;
1737 if ((obp->cstat[3] & 0x7) == 7) {
1738 fsp = 4;
1739 } else if ((obp->cstat[3] & 0x7) == 6) {
1740 fsp = 3;
1741 } else if ((obp->cstat[3] & 0x7) == 4) {
1742 fsp = 2;
1743 } else {
1744 fsp = 1;
1745 }
1746 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1747 } else {
1748 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1749 }
1750 break;
1751 case SESTYP_DOORLOCK:
1752 if (obp->cstat[3] & 0x1) {
1753 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1754 } else {
1755 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1756 }
1757 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1758 cc->flag2, 0, slp);
1759 break;
1760 case SESTYP_ALARM:
1761 /*
1762 * On all nonzero but the 'muted' bit, we turn on the alarm,
1763 */
1764 obp->cstat[3] &= ~0xa;
1765 if (obp->cstat[3] & 0x40) {
1766 cc->flag2 &= ~SAFT_FLG1_ALARM;
1767 } else if (obp->cstat[3] != 0) {
1768 cc->flag2 |= SAFT_FLG1_ALARM;
1769 } else {
1770 cc->flag2 &= ~SAFT_FLG1_ALARM;
1771 }
1772 ep->priv = obp->cstat[3];
1773 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1774 cc->flag2, 0, slp);
1775 break;
1776 default:
1777 break;
1778 }
1779 ep->svalid = 0;
1780 return (0);
1781 }
1782
1783 static int
1784 safte_getconfig(ses_softc_t *ssc)
1785 {
1786 struct scfg *cfg;
1787 int err, amt;
1788 char *sdata;
1789 static char cdb[10] =
1790 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1791
1792 cfg = ssc->ses_private;
1793 if (cfg == NULL)
1794 return (ENXIO);
1795
1796 sdata = SES_MALLOC(SAFT_SCRATCH);
1797 if (sdata == NULL)
1798 return (ENOMEM);
1799
1800 amt = SAFT_SCRATCH;
1801 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1802 if (err) {
1803 SES_FREE(sdata, SAFT_SCRATCH);
1804 return (err);
1805 }
1806 amt = SAFT_SCRATCH - amt;
1807 if (amt < 6) {
1808 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1809 SES_FREE(sdata, SAFT_SCRATCH);
1810 return (EIO);
1811 }
1812 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1813 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1814 cfg->Nfans = sdata[0];
1815 cfg->Npwr = sdata[1];
1816 cfg->Nslots = sdata[2];
1817 cfg->DoorLock = sdata[3];
1818 cfg->Ntherm = sdata[4];
1819 cfg->Nspkrs = sdata[5];
1820 cfg->Nalarm = NPSEUDO_ALARM;
1821 SES_FREE(sdata, SAFT_SCRATCH);
1822 return (0);
1823 }
1824
1825 static int
1826 safte_rdstat(ses_softc_t *ssc, int slpflg)
1827 {
1828 int err, oid, r, i, hiwater, nitems, amt;
1829 uint16_t tempflags;
1830 size_t buflen;
1831 uint8_t status, oencstat;
1832 char *sdata, cdb[10];
1833 struct scfg *cc = ssc->ses_private;
1834
1835
1836 /*
1837 * The number of objects overstates things a bit,
1838 * both for the bogus 'thermometer' entries and
1839 * the drive status (which isn't read at the same
1840 * time as the enclosure status), but that's okay.
1841 */
1842 buflen = 4 * cc->Nslots;
1843 if (ssc->ses_nobjects > buflen)
1844 buflen = ssc->ses_nobjects;
1845 sdata = SES_MALLOC(buflen);
1846 if (sdata == NULL)
1847 return (ENOMEM);
1848
1849 cdb[0] = READ_BUFFER;
1850 cdb[1] = 1;
1851 cdb[2] = SAFTE_RD_RDESTS;
1852 cdb[3] = 0;
1853 cdb[4] = 0;
1854 cdb[5] = 0;
1855 cdb[6] = 0;
1856 cdb[7] = (buflen >> 8) & 0xff;
1857 cdb[8] = buflen & 0xff;
1858 cdb[9] = 0;
1859 amt = buflen;
1860 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1861 if (err) {
1862 SES_FREE(sdata, buflen);
1863 return (err);
1864 }
1865 hiwater = buflen - amt;
1866
1867
1868 /*
1869 * invalidate all status bits.
1870 */
1871 for (i = 0; i < ssc->ses_nobjects; i++)
1872 ssc->ses_objmap[i].svalid = 0;
1873 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1874 ssc->ses_encstat = 0;
1875
1876
1877 /*
1878 * Now parse returned buffer.
1879 * If we didn't get enough data back,
1880 * that's considered a fatal error.
1881 */
1882 oid = r = 0;
1883
1884 for (nitems = i = 0; i < cc->Nfans; i++) {
1885 SAFT_BAIL(r, hiwater, sdata, buflen);
1886 /*
1887 * 0 = Fan Operational
1888 * 1 = Fan is malfunctioning
1889 * 2 = Fan is not present
1890 * 0x80 = Unknown or Not Reportable Status
1891 */
1892 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1893 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1894 switch ((int)(uint8_t)sdata[r]) {
1895 case 0:
1896 nitems++;
1897 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1898 /*
1899 * We could get fancier and cache
1900 * fan speeds that we have set, but
1901 * that isn't done now.
1902 */
1903 ssc->ses_objmap[oid].encstat[3] = 7;
1904 break;
1905
1906 case 1:
1907 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1908 /*
1909 * FAIL and FAN STOPPED synthesized
1910 */
1911 ssc->ses_objmap[oid].encstat[3] = 0x40;
1912 /*
1913 * Enclosure marked with CRITICAL error
1914 * if only one fan or no thermometers,
1915 * else the NONCRITICAL error is set.
1916 */
1917 if (cc->Nfans == 1 || cc->Ntherm == 0)
1918 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1919 else
1920 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1921 break;
1922 case 2:
1923 ssc->ses_objmap[oid].encstat[0] =
1924 SES_OBJSTAT_NOTINSTALLED;
1925 ssc->ses_objmap[oid].encstat[3] = 0;
1926 /*
1927 * Enclosure marked with CRITICAL error
1928 * if only one fan or no thermometers,
1929 * else the NONCRITICAL error is set.
1930 */
1931 if (cc->Nfans == 1)
1932 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1933 else
1934 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1935 break;
1936 case 0x80:
1937 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1938 ssc->ses_objmap[oid].encstat[3] = 0;
1939 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1940 break;
1941 default:
1942 ssc->ses_objmap[oid].encstat[0] =
1943 SES_OBJSTAT_UNSUPPORTED;
1944 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1945 sdata[r] & 0xff);
1946 break;
1947 }
1948 ssc->ses_objmap[oid++].svalid = 1;
1949 r++;
1950 }
1951
1952 /*
1953 * No matter how you cut it, no cooling elements when there
1954 * should be some there is critical.
1955 */
1956 if (cc->Nfans && nitems == 0) {
1957 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1958 }
1959
1960
1961 for (i = 0; i < cc->Npwr; i++) {
1962 SAFT_BAIL(r, hiwater, sdata, buflen);
1963 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1964 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1965 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1966 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1967 switch ((uint8_t)sdata[r]) {
1968 case 0x00: /* pws operational and on */
1969 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1970 break;
1971 case 0x01: /* pws operational and off */
1972 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1973 ssc->ses_objmap[oid].encstat[3] = 0x10;
1974 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1975 break;
1976 case 0x10: /* pws is malfunctioning and commanded on */
1977 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1978 ssc->ses_objmap[oid].encstat[3] = 0x61;
1979 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1980 break;
1981
1982 case 0x11: /* pws is malfunctioning and commanded off */
1983 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1984 ssc->ses_objmap[oid].encstat[3] = 0x51;
1985 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1986 break;
1987 case 0x20: /* pws is not present */
1988 ssc->ses_objmap[oid].encstat[0] =
1989 SES_OBJSTAT_NOTINSTALLED;
1990 ssc->ses_objmap[oid].encstat[3] = 0;
1991 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1992 break;
1993 case 0x21: /* pws is present */
1994 /*
1995 * This is for enclosures that cannot tell whether the
1996 * device is on or malfunctioning, but know that it is
1997 * present. Just fall through.
1998 */
1999 /* FALLTHROUGH */
2000 case 0x80: /* Unknown or Not Reportable Status */
2001 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2002 ssc->ses_objmap[oid].encstat[3] = 0;
2003 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2004 break;
2005 default:
2006 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2007 i, sdata[r] & 0xff);
2008 break;
2009 }
2010 ssc->ses_objmap[oid++].svalid = 1;
2011 r++;
2012 }
2013
2014 /*
2015 * Skip over Slot SCSI IDs
2016 */
2017 r += cc->Nslots;
2018
2019 /*
2020 * We always have doorlock status, no matter what,
2021 * but we only save the status if we have one.
2022 */
2023 SAFT_BAIL(r, hiwater, sdata, buflen);
2024 if (cc->DoorLock) {
2025 /*
2026 * 0 = Door Locked
2027 * 1 = Door Unlocked, or no Lock Installed
2028 * 0x80 = Unknown or Not Reportable Status
2029 */
2030 ssc->ses_objmap[oid].encstat[1] = 0;
2031 ssc->ses_objmap[oid].encstat[2] = 0;
2032 switch ((uint8_t)sdata[r]) {
2033 case 0:
2034 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2035 ssc->ses_objmap[oid].encstat[3] = 0;
2036 break;
2037 case 1:
2038 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2039 ssc->ses_objmap[oid].encstat[3] = 1;
2040 break;
2041 case 0x80:
2042 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2043 ssc->ses_objmap[oid].encstat[3] = 0;
2044 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2045 break;
2046 default:
2047 ssc->ses_objmap[oid].encstat[0] =
2048 SES_OBJSTAT_UNSUPPORTED;
2049 SES_LOG(ssc, "unknown lock status 0x%x\n",
2050 sdata[r] & 0xff);
2051 break;
2052 }
2053 ssc->ses_objmap[oid++].svalid = 1;
2054 }
2055 r++;
2056
2057 /*
2058 * We always have speaker status, no matter what,
2059 * but we only save the status if we have one.
2060 */
2061 SAFT_BAIL(r, hiwater, sdata, buflen);
2062 if (cc->Nspkrs) {
2063 ssc->ses_objmap[oid].encstat[1] = 0;
2064 ssc->ses_objmap[oid].encstat[2] = 0;
2065 if (sdata[r] == 1) {
2066 /*
2067 * We need to cache tone urgency indicators.
2068 * Someday.
2069 */
2070 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2071 ssc->ses_objmap[oid].encstat[3] = 0x8;
2072 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2073 } else if (sdata[r] == 0) {
2074 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2075 ssc->ses_objmap[oid].encstat[3] = 0;
2076 } else {
2077 ssc->ses_objmap[oid].encstat[0] =
2078 SES_OBJSTAT_UNSUPPORTED;
2079 ssc->ses_objmap[oid].encstat[3] = 0;
2080 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2081 sdata[r] & 0xff);
2082 }
2083 ssc->ses_objmap[oid++].svalid = 1;
2084 }
2085 r++;
2086
2087 for (i = 0; i < cc->Ntherm; i++) {
2088 SAFT_BAIL(r, hiwater, sdata, buflen);
2089 /*
2090 * Status is a range from -10 to 245 deg Celsius,
2091 * which we need to normalize to -20 to -245 according
2092 * to the latest SCSI spec, which makes little
2093 * sense since this would overflow an 8bit value.
2094 * Well, still, the base normalization is -20,
2095 * not -10, so we have to adjust.
2096 *
2097 * So what's over and under temperature?
2098 * Hmm- we'll state that 'normal' operating
2099 * is 10 to 40 deg Celsius.
2100 */
2101
2102 /*
2103 * Actually.... All of the units that people out in the world
2104 * seem to have do not come even close to setting a value that
2105 * complies with this spec.
2106 *
2107 * The closest explanation I could find was in an
2108 * LSI-Logic manual, which seemed to indicate that
2109 * this value would be set by whatever the I2C code
2110 * would interpolate from the output of an LM75
2111 * temperature sensor.
2112 *
2113 * This means that it is impossible to use the actual
2114 * numeric value to predict anything. But we don't want
2115 * to lose the value. So, we'll propagate the *uncorrected*
2116 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2117 * temperature flags for warnings.
2118 */
2119 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2120 ssc->ses_objmap[oid].encstat[1] = 0;
2121 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2122 ssc->ses_objmap[oid].encstat[3] = 0;
2123 ssc->ses_objmap[oid++].svalid = 1;
2124 r++;
2125 }
2126
2127 /*
2128 * Now, for "pseudo" thermometers, we have two bytes
2129 * of information in enclosure status- 16 bits. Actually,
2130 * the MSB is a single TEMP ALERT flag indicating whether
2131 * any other bits are set, but, thanks to fuzzy thinking,
2132 * in the SAF-TE spec, this can also be set even if no
2133 * other bits are set, thus making this really another
2134 * binary temperature sensor.
2135 */
2136
2137 SAFT_BAIL(r, hiwater, sdata, buflen);
2138 tempflags = sdata[r++];
2139 SAFT_BAIL(r, hiwater, sdata, buflen);
2140 tempflags |= (tempflags << 8) | sdata[r++];
2141
2142 for (i = 0; i < NPSEUDO_THERM; i++) {
2143 ssc->ses_objmap[oid].encstat[1] = 0;
2144 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2145 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2146 ssc->ses_objmap[4].encstat[2] = 0xff;
2147 /*
2148 * Set 'over temperature' failure.
2149 */
2150 ssc->ses_objmap[oid].encstat[3] = 8;
2151 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2152 } else {
2153 /*
2154 * We used to say 'not available' and synthesize a
2155 * nominal 30 deg (C)- that was wrong. Actually,
2156 * Just say 'OK', and use the reserved value of
2157 * zero.
2158 */
2159 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2160 ssc->ses_objmap[oid].encstat[2] = 0;
2161 ssc->ses_objmap[oid].encstat[3] = 0;
2162 }
2163 ssc->ses_objmap[oid++].svalid = 1;
2164 }
2165
2166 /*
2167 * Get alarm status.
2168 */
2169 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2170 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2171 ssc->ses_objmap[oid++].svalid = 1;
2172
2173 /*
2174 * Now get drive slot status
2175 */
2176 cdb[2] = SAFTE_RD_RDDSTS;
2177 amt = buflen;
2178 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2179 if (err) {
2180 SES_FREE(sdata, buflen);
2181 return (err);
2182 }
2183 hiwater = buflen - amt;
2184 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2185 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2186 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2187 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2188 ssc->ses_objmap[oid].encstat[2] = 0;
2189 ssc->ses_objmap[oid].encstat[3] = 0;
2190 status = sdata[r+3];
2191 if ((status & 0x1) == 0) { /* no device */
2192 ssc->ses_objmap[oid].encstat[0] =
2193 SES_OBJSTAT_NOTINSTALLED;
2194 } else {
2195 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2196 }
2197 if (status & 0x2) {
2198 ssc->ses_objmap[oid].encstat[2] = 0x8;
2199 }
2200 if ((status & 0x4) == 0) {
2201 ssc->ses_objmap[oid].encstat[3] = 0x10;
2202 }
2203 ssc->ses_objmap[oid++].svalid = 1;
2204 }
2205 /* see comment below about sticky enclosure status */
2206 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2207 SES_FREE(sdata, buflen);
2208 return (0);
2209 }
2210
2211 static int
2212 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2213 {
2214 int idx;
2215 encobj *ep;
2216 struct scfg *cc = ssc->ses_private;
2217
2218 if (cc == NULL)
2219 return (0);
2220
2221 idx = (int)obp->obj_id;
2222 ep = &ssc->ses_objmap[idx];
2223
2224 switch (ep->enctype) {
2225 case SESTYP_DEVICE:
2226 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2227 ep->priv |= 0x40;
2228 }
2229 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2230 if (obp->cstat[0] & SESCTL_DISABLE) {
2231 ep->priv |= 0x80;
2232 /*
2233 * Hmm. Try to set the 'No Drive' flag.
2234 * Maybe that will count as a 'disable'.
2235 */
2236 }
2237 if (ep->priv & 0xc6) {
2238 ep->priv &= ~0x1;
2239 } else {
2240 ep->priv |= 0x1; /* no errors */
2241 }
2242 wrslot_stat(ssc, slp);
2243 break;
2244 case SESTYP_POWER:
2245 /*
2246 * Okay- the only one that makes sense here is to
2247 * do the 'disable' for a power supply.
2248 */
2249 if (obp->cstat[0] & SESCTL_DISABLE) {
2250 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2251 idx - cc->pwroff, 0, 0, slp);
2252 }
2253 break;
2254 case SESTYP_FAN:
2255 /*
2256 * Okay- the only one that makes sense here is to
2257 * set fan speed to zero on disable.
2258 */
2259 if (obp->cstat[0] & SESCTL_DISABLE) {
2260 /* remember- fans are the first items, so idx works */
2261 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2262 }
2263 break;
2264 case SESTYP_DOORLOCK:
2265 /*
2266 * Well, we can 'disable' the lock.
2267 */
2268 if (obp->cstat[0] & SESCTL_DISABLE) {
2269 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2270 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2271 cc->flag2, 0, slp);
2272 }
2273 break;
2274 case SESTYP_ALARM:
2275 /*
2276 * Well, we can 'disable' the alarm.
2277 */
2278 if (obp->cstat[0] & SESCTL_DISABLE) {
2279 cc->flag2 &= ~SAFT_FLG1_ALARM;
2280 ep->priv |= 0x40; /* Muted */
2281 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2282 cc->flag2, 0, slp);
2283 }
2284 break;
2285 default:
2286 break;
2287 }
2288 ep->svalid = 0;
2289 return (0);
2290 }
2291
2292 /*
2293 * This function handles all of the 16 byte WRITE BUFFER commands.
2294 */
2295 static int
2296 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2297 uint8_t b3, int slp)
2298 {
2299 int err, amt;
2300 char *sdata;
2301 struct scfg *cc = ssc->ses_private;
2302 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2303
2304 if (cc == NULL)
2305 return (0);
2306
2307 sdata = SES_MALLOC(16);
2308 if (sdata == NULL)
2309 return (ENOMEM);
2310
2311 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2312
2313 sdata[0] = op;
2314 sdata[1] = b1;
2315 sdata[2] = b2;
2316 sdata[3] = b3;
2317 MEMZERO(&sdata[4], 12);
2318 amt = -16;
2319 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2320 SES_FREE(sdata, 16);
2321 return (err);
2322 }
2323
2324 /*
2325 * This function updates the status byte for the device slot described.
2326 *
2327 * Since this is an optional SAF-TE command, there's no point in
2328 * returning an error.
2329 */
2330 static void
2331 wrslot_stat(ses_softc_t *ssc, int slp)
2332 {
2333 int i, amt;
2334 encobj *ep;
2335 char cdb[10], *sdata;
2336 struct scfg *cc = ssc->ses_private;
2337
2338 if (cc == NULL)
2339 return;
2340
2341 SES_VLOG(ssc, "saf_wrslot\n");
2342 cdb[0] = WRITE_BUFFER;
2343 cdb[1] = 1;
2344 cdb[2] = 0;
2345 cdb[3] = 0;
2346 cdb[4] = 0;
2347 cdb[5] = 0;
2348 cdb[6] = 0;
2349 cdb[7] = 0;
2350 cdb[8] = cc->Nslots * 3 + 1;
2351 cdb[9] = 0;
2352
2353 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2354 if (sdata == NULL)
2355 return;
2356 MEMZERO(sdata, cc->Nslots * 3 + 1);
2357
2358 sdata[0] = SAFTE_WT_DSTAT;
2359 for (i = 0; i < cc->Nslots; i++) {
2360 ep = &ssc->ses_objmap[cc->slotoff + i];
2361 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2362 sdata[1 + (3 * i)] = ep->priv & 0xff;
2363 }
2364 amt = -(cc->Nslots * 3 + 1);
2365 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2366 SES_FREE(sdata, cc->Nslots * 3 + 1);
2367 }
2368
2369 /*
2370 * This function issues the "PERFORM SLOT OPERATION" command.
2371 */
2372 static int
2373 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2374 {
2375 int err, amt;
2376 char *sdata;
2377 struct scfg *cc = ssc->ses_private;
2378 static char cdb[10] =
2379 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2380
2381 if (cc == NULL)
2382 return (0);
2383
2384 sdata = SES_MALLOC(SAFT_SCRATCH);
2385 if (sdata == NULL)
2386 return (ENOMEM);
2387 MEMZERO(sdata, SAFT_SCRATCH);
2388
2389 sdata[0] = SAFTE_WT_SLTOP;
2390 sdata[1] = slot;
2391 sdata[2] = opflag;
2392 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2393 amt = -SAFT_SCRATCH;
2394 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2395 SES_FREE(sdata, SAFT_SCRATCH);
2396 return (err);
2397 }
2398