ses.c revision 1.45.4.1 1 /* $NetBSD: ses.c,v 1.45.4.1 2014/05/18 17:45:46 rmind Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.45.4.1 2014/05/18 17:45:46 rmind Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init)(ses_softc_t *, int);
75 int (*init_enc)(ses_softc_t *);
76 int (*get_encstat)(ses_softc_t *, int);
77 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138
139 const struct cdevsw ses_cdevsw = {
140 .d_open = sesopen,
141 .d_close = sesclose,
142 .d_read = noread,
143 .d_write = nowrite,
144 .d_ioctl = sesioctl,
145 .d_stop = nostop,
146 .d_tty = notty,
147 .d_poll = nopoll,
148 .d_mmap = nommap,
149 .d_kqfilter = nokqfilter,
150 .d_flag = D_OTHER
151 };
152
153 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
154 static void ses_log(struct ses_softc *, const char *, ...)
155 __attribute__((__format__(__printf__, 2, 3)));
156
157 /*
158 * General NetBSD kernel stuff.
159 */
160
161 struct ses_softc {
162 device_t sc_dev;
163 struct scsipi_periph *sc_periph;
164 enctyp ses_type; /* type of enclosure */
165 encvec ses_vec; /* vector to handlers */
166 void * ses_private; /* per-type private data */
167 encobj * ses_objmap; /* objects */
168 u_int32_t ses_nobjects; /* number of objects */
169 ses_encstat ses_encstat; /* overall status */
170 u_int8_t ses_flags;
171 };
172 #define SES_FLAG_INVALID 0x01
173 #define SES_FLAG_OPEN 0x02
174 #define SES_FLAG_INITIALIZED 0x04
175
176 #define SESUNIT(x) (minor((x)))
177
178 static int ses_match(device_t, cfdata_t, void *);
179 static void ses_attach(device_t, device_t, void *);
180 static int ses_detach(device_t, int);
181 static enctyp ses_device_type(struct scsipibus_attach_args *);
182
183 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
184 ses_match, ses_attach, ses_detach, NULL);
185
186 extern struct cfdriver ses_cd;
187
188 static const struct scsipi_periphsw ses_switch = {
189 NULL,
190 NULL,
191 NULL,
192 NULL
193 };
194
195 static int
196 ses_match(device_t parent, cfdata_t match, void *aux)
197 {
198 struct scsipibus_attach_args *sa = aux;
199
200 switch (ses_device_type(sa)) {
201 case SES_SES:
202 case SES_SES_SCSI2:
203 case SES_SEN:
204 case SES_SAFT:
205 case SES_SES_PASSTHROUGH:
206 /*
207 * For these devices, it's a perfect match.
208 */
209 return (24);
210 default:
211 return (0);
212 }
213 }
214
215
216 /*
217 * Complete the attachment.
218 *
219 * We have to repeat the rerun of INQUIRY data as above because
220 * it's not until the return from the match routine that we have
221 * the softc available to set stuff in.
222 */
223 static void
224 ses_attach(device_t parent, device_t self, void *aux)
225 {
226 const char *tname;
227 struct ses_softc *softc = device_private(self);
228 struct scsipibus_attach_args *sa = aux;
229 struct scsipi_periph *periph = sa->sa_periph;
230
231 softc->sc_dev = self;
232 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
233 softc->sc_periph = periph;
234 periph->periph_dev = self;
235 periph->periph_switch = &ses_switch;
236 periph->periph_openings = 1;
237
238 softc->ses_type = ses_device_type(sa);
239 switch (softc->ses_type) {
240 case SES_SES:
241 case SES_SES_SCSI2:
242 case SES_SES_PASSTHROUGH:
243 softc->ses_vec.softc_init = ses_softc_init;
244 softc->ses_vec.init_enc = ses_init_enc;
245 softc->ses_vec.get_encstat = ses_get_encstat;
246 softc->ses_vec.set_encstat = ses_set_encstat;
247 softc->ses_vec.get_objstat = ses_get_objstat;
248 softc->ses_vec.set_objstat = ses_set_objstat;
249 break;
250 case SES_SAFT:
251 softc->ses_vec.softc_init = safte_softc_init;
252 softc->ses_vec.init_enc = safte_init_enc;
253 softc->ses_vec.get_encstat = safte_get_encstat;
254 softc->ses_vec.set_encstat = safte_set_encstat;
255 softc->ses_vec.get_objstat = safte_get_objstat;
256 softc->ses_vec.set_objstat = safte_set_objstat;
257 break;
258 case SES_SEN:
259 break;
260 case SES_NONE:
261 default:
262 break;
263 }
264
265 switch (softc->ses_type) {
266 default:
267 case SES_NONE:
268 tname = "No SES device";
269 break;
270 case SES_SES_SCSI2:
271 tname = "SCSI-2 SES Device";
272 break;
273 case SES_SES:
274 tname = "SCSI-3 SES Device";
275 break;
276 case SES_SES_PASSTHROUGH:
277 tname = "SES Passthrough Device";
278 break;
279 case SES_SEN:
280 tname = "UNISYS SEN Device (NOT HANDLED YET)";
281 break;
282 case SES_SAFT:
283 tname = "SAF-TE Compliant Device";
284 break;
285 }
286 printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
287 }
288
289 static enctyp
290 ses_device_type(struct scsipibus_attach_args *sa)
291 {
292 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
293
294 if (inqp == NULL)
295 return (SES_NONE);
296
297 return (ses_type(inqp));
298 }
299
300 static int
301 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
302 {
303 struct ses_softc *softc;
304 int error, unit;
305
306 unit = SESUNIT(dev);
307 softc = device_lookup_private(&ses_cd, unit);
308 if (softc == NULL)
309 return (ENXIO);
310
311 if (softc->ses_flags & SES_FLAG_INVALID) {
312 error = ENXIO;
313 goto out;
314 }
315 if (softc->ses_flags & SES_FLAG_OPEN) {
316 error = EBUSY;
317 goto out;
318 }
319 if (softc->ses_vec.softc_init == NULL) {
320 error = ENXIO;
321 goto out;
322 }
323 error = scsipi_adapter_addref(
324 softc->sc_periph->periph_channel->chan_adapter);
325 if (error != 0)
326 goto out;
327
328
329 softc->ses_flags |= SES_FLAG_OPEN;
330 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
331 error = (*softc->ses_vec.softc_init)(softc, 1);
332 if (error)
333 softc->ses_flags &= ~SES_FLAG_OPEN;
334 else
335 softc->ses_flags |= SES_FLAG_INITIALIZED;
336 }
337
338 out:
339 return (error);
340 }
341
342 static int
343 sesclose(dev_t dev, int flags, int fmt,
344 struct lwp *l)
345 {
346 struct ses_softc *softc;
347 int unit;
348
349 unit = SESUNIT(dev);
350 softc = device_lookup_private(&ses_cd, unit);
351 if (softc == NULL)
352 return (ENXIO);
353
354 scsipi_wait_drain(softc->sc_periph);
355 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
356 softc->ses_flags &= ~SES_FLAG_OPEN;
357 return (0);
358 }
359
360 static int
361 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
362 {
363 ses_encstat tmp;
364 ses_objstat objs;
365 ses_object obj, *uobj;
366 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
367 void *addr;
368 int error, i;
369
370
371 if (arg_addr)
372 addr = *((void **) arg_addr);
373 else
374 addr = NULL;
375
376 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
377
378 /*
379 * Now check to see whether we're initialized or not.
380 */
381 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
382 return (ENODEV);
383 }
384
385 error = 0;
386
387 /*
388 * If this command can change the device's state,
389 * we must have the device open for writing.
390 */
391 switch (cmd) {
392 case SESIOC_GETNOBJ:
393 case SESIOC_GETOBJMAP:
394 case SESIOC_GETENCSTAT:
395 case SESIOC_GETOBJSTAT:
396 break;
397 default:
398 if ((flag & FWRITE) == 0) {
399 return (EBADF);
400 }
401 }
402
403 switch (cmd) {
404 case SESIOC_GETNOBJ:
405 if (addr == NULL)
406 return EINVAL;
407 error = copyout(&ssc->ses_nobjects, addr,
408 sizeof (ssc->ses_nobjects));
409 break;
410
411 case SESIOC_GETOBJMAP:
412 if (addr == NULL)
413 return EINVAL;
414 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
415 obj.obj_id = i;
416 obj.subencid = ssc->ses_objmap[i].subenclosure;
417 obj.object_type = ssc->ses_objmap[i].enctype;
418 error = copyout(&obj, uobj, sizeof (ses_object));
419 if (error) {
420 break;
421 }
422 }
423 break;
424
425 case SESIOC_GETENCSTAT:
426 if (addr == NULL)
427 return EINVAL;
428 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
429 if (error)
430 break;
431 tmp = ssc->ses_encstat & ~ENCI_SVALID;
432 error = copyout(&tmp, addr, sizeof (ses_encstat));
433 ssc->ses_encstat = tmp;
434 break;
435
436 case SESIOC_SETENCSTAT:
437 if (addr == NULL)
438 return EINVAL;
439 error = copyin(addr, &tmp, sizeof (ses_encstat));
440 if (error)
441 break;
442 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
443 break;
444
445 case SESIOC_GETOBJSTAT:
446 if (addr == NULL)
447 return EINVAL;
448 error = copyin(addr, &objs, sizeof (ses_objstat));
449 if (error)
450 break;
451 if (objs.obj_id >= ssc->ses_nobjects) {
452 error = EINVAL;
453 break;
454 }
455 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
456 if (error)
457 break;
458 error = copyout(&objs, addr, sizeof (ses_objstat));
459 /*
460 * Always (for now) invalidate entry.
461 */
462 ssc->ses_objmap[objs.obj_id].svalid = 0;
463 break;
464
465 case SESIOC_SETOBJSTAT:
466 if (addr == NULL)
467 return EINVAL;
468 error = copyin(addr, &objs, sizeof (ses_objstat));
469 if (error)
470 break;
471
472 if (objs.obj_id >= ssc->ses_nobjects) {
473 error = EINVAL;
474 break;
475 }
476 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
477
478 /*
479 * Always (for now) invalidate entry.
480 */
481 ssc->ses_objmap[objs.obj_id].svalid = 0;
482 break;
483
484 case SESIOC_INIT:
485
486 error = (*ssc->ses_vec.init_enc)(ssc);
487 break;
488
489 default:
490 error = scsipi_do_ioctl(ssc->sc_periph,
491 dev, cmd, arg_addr, flag, l);
492 break;
493 }
494 return (error);
495 }
496
497 static int
498 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
499 {
500 struct scsipi_generic sgen;
501 int dl, flg, error;
502
503 if (dptr) {
504 if ((dl = *dlenp) < 0) {
505 dl = -dl;
506 flg = XS_CTL_DATA_OUT;
507 } else {
508 flg = XS_CTL_DATA_IN;
509 }
510 } else {
511 dl = 0;
512 flg = 0;
513 }
514
515 if (cdbl > sizeof (struct scsipi_generic)) {
516 cdbl = sizeof (struct scsipi_generic);
517 }
518 memcpy(&sgen, cdb, cdbl);
519 #ifndef SCSIDEBUG
520 flg |= XS_CTL_SILENT;
521 #endif
522 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
523 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
524
525 if (error == 0 && dptr)
526 *dlenp = 0;
527
528 return (error);
529 }
530
531 static void
532 ses_log(struct ses_softc *ssc, const char *fmt, ...)
533 {
534 va_list ap;
535
536 printf("%s: ", device_xname(ssc->sc_dev));
537 va_start(ap, fmt);
538 vprintf(fmt, ap);
539 va_end(ap);
540 }
541
542 /*
543 * The code after this point runs on many platforms,
544 * so forgive the slightly awkward and nonconforming
545 * appearance.
546 */
547
548 /*
549 * Is this a device that supports enclosure services?
550 *
551 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
552 * an SES device. If it happens to be an old UNISYS SEN device, we can
553 * handle that too.
554 */
555
556 #define SAFTE_START 44
557 #define SAFTE_END 50
558 #define SAFTE_LEN SAFTE_END-SAFTE_START
559
560 static enctyp
561 ses_type(struct scsipi_inquiry_data *inqp)
562 {
563 size_t given_len = inqp->additional_length + 4;
564
565 if (given_len < 8+SEN_ID_LEN)
566 return (SES_NONE);
567
568 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
569 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
570 return (SES_SEN);
571 } else if ((inqp->version & SID_ANSII) > 2) {
572 return (SES_SES);
573 } else {
574 return (SES_SES_SCSI2);
575 }
576 return (SES_NONE);
577 }
578
579 #ifdef SES_ENABLE_PASSTHROUGH
580 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
581 /*
582 * PassThrough Device.
583 */
584 return (SES_SES_PASSTHROUGH);
585 }
586 #endif
587
588 /*
589 * The comparison is short for a reason-
590 * some vendors were chopping it short.
591 */
592
593 if (given_len < SAFTE_END - 2) {
594 return (SES_NONE);
595 }
596
597 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
598 SAFTE_LEN - 2) == 0) {
599 return (SES_SAFT);
600 }
601
602 return (SES_NONE);
603 }
604
605 /*
606 * SES Native Type Device Support
607 */
608
609 /*
610 * SES Diagnostic Page Codes
611 */
612
613 typedef enum {
614 SesConfigPage = 0x1,
615 SesControlPage,
616 #define SesStatusPage SesControlPage
617 SesHelpTxt,
618 SesStringOut,
619 #define SesStringIn SesStringOut
620 SesThresholdOut,
621 #define SesThresholdIn SesThresholdOut
622 SesArrayControl,
623 #define SesArrayStatus SesArrayControl
624 SesElementDescriptor,
625 SesShortStatus
626 } SesDiagPageCodes;
627
628 /*
629 * minimal amounts
630 */
631
632 /*
633 * Minimum amount of data, starting from byte 0, to have
634 * the config header.
635 */
636 #define SES_CFGHDR_MINLEN 12
637
638 /*
639 * Minimum amount of data, starting from byte 0, to have
640 * the config header and one enclosure header.
641 */
642 #define SES_ENCHDR_MINLEN 48
643
644 /*
645 * Take this value, subtract it from VEnclen and you know
646 * the length of the vendor unique bytes.
647 */
648 #define SES_ENCHDR_VMIN 36
649
650 /*
651 * SES Data Structures
652 */
653
654 typedef struct {
655 uint32_t GenCode; /* Generation Code */
656 uint8_t Nsubenc; /* Number of Subenclosures */
657 } SesCfgHdr;
658
659 typedef struct {
660 uint8_t Subencid; /* SubEnclosure Identifier */
661 uint8_t Ntypes; /* # of supported types */
662 uint8_t VEnclen; /* Enclosure Descriptor Length */
663 } SesEncHdr;
664
665 typedef struct {
666 uint8_t encWWN[8]; /* XXX- Not Right Yet */
667 uint8_t encVid[8];
668 uint8_t encPid[16];
669 uint8_t encRev[4];
670 uint8_t encVen[1];
671 } SesEncDesc;
672
673 typedef struct {
674 uint8_t enc_type; /* type of element */
675 uint8_t enc_maxelt; /* maximum supported */
676 uint8_t enc_subenc; /* in SubEnc # N */
677 uint8_t enc_tlen; /* Type Descriptor Text Length */
678 } SesThdr;
679
680 typedef struct {
681 uint8_t comstatus;
682 uint8_t comstat[3];
683 } SesComStat;
684
685 struct typidx {
686 int ses_tidx;
687 int ses_oidx;
688 };
689
690 struct sscfg {
691 uint8_t ses_ntypes; /* total number of types supported */
692
693 /*
694 * We need to keep a type index as well as an
695 * object index for each object in an enclosure.
696 */
697 struct typidx *ses_typidx;
698
699 /*
700 * We also need to keep track of the number of elements
701 * per type of element. This is needed later so that we
702 * can find precisely in the returned status data the
703 * status for the Nth element of the Kth type.
704 */
705 uint8_t * ses_eltmap;
706 };
707
708
709 /*
710 * (de)canonicalization defines
711 */
712 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
713 #define sbit(x, bit) (((uint32_t)(x)) << bit)
714 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
715
716 #define sset16(outp, idx, sval) \
717 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
718 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
719
720
721 #define sset24(outp, idx, sval) \
722 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
723 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
724 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725
726
727 #define sset32(outp, idx, sval) \
728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
730 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
732
733 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
734 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
735 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
736 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
737
738 #define sget16(inp, idx, lval) \
739 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
740 (((uint8_t *)(inp))[idx+1]), idx += 2
741
742 #define gget16(inp, idx, lval) \
743 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
744 (((uint8_t *)(inp))[idx+1])
745
746 #define sget24(inp, idx, lval) \
747 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
748 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
749 (((uint8_t *)(inp))[idx+2]), idx += 3
750
751 #define gget24(inp, idx, lval) \
752 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
753 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
754 (((uint8_t *)(inp))[idx+2])
755
756 #define sget32(inp, idx, lval) \
757 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
758 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
759 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
760 (((uint8_t *)(inp))[idx+3]), idx += 4
761
762 #define gget32(inp, idx, lval) \
763 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
764 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
765 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
766 (((uint8_t *)(inp))[idx+3])
767
768 #define SCSZ 0x2000
769 #define CFLEN (256 + SES_ENCHDR_MINLEN)
770
771 /*
772 * Routines specific && private to SES only
773 */
774
775 static int ses_getconfig(ses_softc_t *);
776 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
777 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
778 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
779 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
780 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
781 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
782 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
783
784 static int
785 ses_softc_init(ses_softc_t *ssc, int doinit)
786 {
787 if (doinit == 0) {
788 struct sscfg *cc;
789 if (ssc->ses_nobjects) {
790 SES_FREE(ssc->ses_objmap,
791 ssc->ses_nobjects * sizeof (encobj));
792 ssc->ses_objmap = NULL;
793 }
794 if ((cc = ssc->ses_private) != NULL) {
795 if (cc->ses_eltmap && cc->ses_ntypes) {
796 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
797 cc->ses_eltmap = NULL;
798 cc->ses_ntypes = 0;
799 }
800 if (cc->ses_typidx && ssc->ses_nobjects) {
801 SES_FREE(cc->ses_typidx,
802 ssc->ses_nobjects * sizeof (struct typidx));
803 cc->ses_typidx = NULL;
804 }
805 SES_FREE(cc, sizeof (struct sscfg));
806 ssc->ses_private = NULL;
807 }
808 ssc->ses_nobjects = 0;
809 return (0);
810 }
811 if (ssc->ses_private == NULL) {
812 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
813 }
814 if (ssc->ses_private == NULL) {
815 return (ENOMEM);
816 }
817 ssc->ses_nobjects = 0;
818 ssc->ses_encstat = 0;
819 return (ses_getconfig(ssc));
820 }
821
822 static int
823 ses_detach(device_t self, int flags)
824 {
825 struct ses_softc *ssc = device_private(self);
826 struct sscfg *cc = ssc->ses_private;
827
828 if (ssc->ses_objmap) {
829 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
830 }
831 if (cc != NULL) {
832 if (cc->ses_typidx) {
833 SES_FREE(cc->ses_typidx,
834 (nobj * sizeof (struct typidx)));
835 }
836 if (cc->ses_eltmap) {
837 SES_FREE(cc->ses_eltmap, ntype);
838 }
839 SES_FREE(cc, sizeof (struct sscfg));
840 }
841
842 return 0;
843 }
844
845 static int
846 ses_init_enc(ses_softc_t *ssc)
847 {
848 return (0);
849 }
850
851 static int
852 ses_get_encstat(ses_softc_t *ssc, int slpflag)
853 {
854 SesComStat ComStat;
855 int status;
856
857 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
858 return (status);
859 }
860 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
861 return (0);
862 }
863
864 static int
865 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
866 {
867 SesComStat ComStat;
868 int status;
869
870 ComStat.comstatus = encstat & 0xf;
871 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
872 return (status);
873 }
874 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
875 return (0);
876 }
877
878 static int
879 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
880 {
881 int i = (int)obp->obj_id;
882
883 if (ssc->ses_objmap[i].svalid == 0) {
884 SesComStat ComStat;
885 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
886 if (err)
887 return (err);
888 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
889 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
890 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
891 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
892 ssc->ses_objmap[i].svalid = 1;
893 }
894 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
895 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
896 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
897 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
898 return (0);
899 }
900
901 static int
902 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
903 {
904 SesComStat ComStat;
905 int err;
906 /*
907 * If this is clear, we don't do diddly.
908 */
909 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
910 return (0);
911 }
912 ComStat.comstatus = obp->cstat[0];
913 ComStat.comstat[0] = obp->cstat[1];
914 ComStat.comstat[1] = obp->cstat[2];
915 ComStat.comstat[2] = obp->cstat[3];
916 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
917 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
918 return (err);
919 }
920
921 static int
922 ses_getconfig(ses_softc_t *ssc)
923 {
924 struct sscfg *cc;
925 SesCfgHdr cf;
926 SesEncHdr hd;
927 SesEncDesc *cdp;
928 SesThdr thdr;
929 int err, amt, i, nobj, ntype, maxima;
930 char storage[CFLEN], *sdata;
931 static char cdb[6] = {
932 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
933 };
934
935 cc = ssc->ses_private;
936 if (cc == NULL) {
937 return (ENXIO);
938 }
939
940 sdata = SES_MALLOC(SCSZ);
941 if (sdata == NULL)
942 return (ENOMEM);
943
944 amt = SCSZ;
945 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
946 if (err) {
947 SES_FREE(sdata, SCSZ);
948 return (err);
949 }
950 amt = SCSZ - amt;
951
952 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
953 SES_LOG(ssc, "Unable to parse SES Config Header\n");
954 SES_FREE(sdata, SCSZ);
955 return (EIO);
956 }
957 if (amt < SES_ENCHDR_MINLEN) {
958 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
959 SES_FREE(sdata, SCSZ);
960 return (EIO);
961 }
962
963 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
964
965 /*
966 * Now waltz through all the subenclosures toting up the
967 * number of types available in each. For this, we only
968 * really need the enclosure header. However, we get the
969 * enclosure descriptor for debug purposes, as well
970 * as self-consistency checking purposes.
971 */
972
973 maxima = cf.Nsubenc + 1;
974 cdp = (SesEncDesc *) storage;
975 for (ntype = i = 0; i < maxima; i++) {
976 MEMZERO((void *)cdp, sizeof (*cdp));
977 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
978 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
979 SES_FREE(sdata, SCSZ);
980 return (EIO);
981 }
982 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
983 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
984
985 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
986 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
987 SES_FREE(sdata, SCSZ);
988 return (EIO);
989 }
990 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
991 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
992 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
993 cdp->encWWN[6], cdp->encWWN[7]);
994 ntype += hd.Ntypes;
995 }
996
997 /*
998 * Now waltz through all the types that are available, getting
999 * the type header so we can start adding up the number of
1000 * objects available.
1001 */
1002 for (nobj = i = 0; i < ntype; i++) {
1003 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1004 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1005 SES_FREE(sdata, SCSZ);
1006 return (EIO);
1007 }
1008 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1009 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1010 thdr.enc_subenc, thdr.enc_tlen);
1011 nobj += thdr.enc_maxelt;
1012 }
1013
1014
1015 /*
1016 * Now allocate the object array and type map.
1017 */
1018
1019 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1020 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1021 cc->ses_eltmap = SES_MALLOC(ntype);
1022
1023 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1024 cc->ses_eltmap == NULL) {
1025 if (ssc->ses_objmap) {
1026 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1027 ssc->ses_objmap = NULL;
1028 }
1029 if (cc->ses_typidx) {
1030 SES_FREE(cc->ses_typidx,
1031 (nobj * sizeof (struct typidx)));
1032 cc->ses_typidx = NULL;
1033 }
1034 if (cc->ses_eltmap) {
1035 SES_FREE(cc->ses_eltmap, ntype);
1036 cc->ses_eltmap = NULL;
1037 }
1038 SES_FREE(sdata, SCSZ);
1039 return (ENOMEM);
1040 }
1041 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1042 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1043 MEMZERO(cc->ses_eltmap, ntype);
1044 cc->ses_ntypes = (uint8_t) ntype;
1045 ssc->ses_nobjects = nobj;
1046
1047 /*
1048 * Now waltz through the # of types again to fill in the types
1049 * (and subenclosure ids) of the allocated objects.
1050 */
1051 nobj = 0;
1052 for (i = 0; i < ntype; i++) {
1053 int j;
1054 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1055 continue;
1056 }
1057 cc->ses_eltmap[i] = thdr.enc_maxelt;
1058 for (j = 0; j < thdr.enc_maxelt; j++) {
1059 cc->ses_typidx[nobj].ses_tidx = i;
1060 cc->ses_typidx[nobj].ses_oidx = j;
1061 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1062 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1063 }
1064 }
1065 SES_FREE(sdata, SCSZ);
1066 return (0);
1067 }
1068
1069 static int
1070 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1071 int in)
1072 {
1073 struct sscfg *cc;
1074 int err, amt, bufsiz, tidx, oidx;
1075 char cdb[6], *sdata;
1076
1077 cc = ssc->ses_private;
1078 if (cc == NULL) {
1079 return (ENXIO);
1080 }
1081
1082 /*
1083 * If we're just getting overall enclosure status,
1084 * we only need 2 bytes of data storage.
1085 *
1086 * If we're getting anything else, we know how much
1087 * storage we need by noting that starting at offset
1088 * 8 in returned data, all object status bytes are 4
1089 * bytes long, and are stored in chunks of types(M)
1090 * and nth+1 instances of type M.
1091 */
1092 if (objid == -1) {
1093 bufsiz = 2;
1094 } else {
1095 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1096 }
1097 sdata = SES_MALLOC(bufsiz);
1098 if (sdata == NULL)
1099 return (ENOMEM);
1100
1101 cdb[0] = RECEIVE_DIAGNOSTIC;
1102 cdb[1] = 1;
1103 cdb[2] = SesStatusPage;
1104 cdb[3] = bufsiz >> 8;
1105 cdb[4] = bufsiz & 0xff;
1106 cdb[5] = 0;
1107 amt = bufsiz;
1108 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1109 if (err) {
1110 SES_FREE(sdata, bufsiz);
1111 return (err);
1112 }
1113 amt = bufsiz - amt;
1114
1115 if (objid == -1) {
1116 tidx = -1;
1117 oidx = -1;
1118 } else {
1119 tidx = cc->ses_typidx[objid].ses_tidx;
1120 oidx = cc->ses_typidx[objid].ses_oidx;
1121 }
1122 if (in) {
1123 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1124 err = ENODEV;
1125 }
1126 } else {
1127 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1128 err = ENODEV;
1129 } else {
1130 cdb[0] = SEND_DIAGNOSTIC;
1131 cdb[1] = 0x10;
1132 cdb[2] = 0;
1133 cdb[3] = bufsiz >> 8;
1134 cdb[4] = bufsiz & 0xff;
1135 cdb[5] = 0;
1136 amt = -bufsiz;
1137 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1138 }
1139 }
1140 SES_FREE(sdata, bufsiz);
1141 return (0);
1142 }
1143
1144
1145 /*
1146 * Routines to parse returned SES data structures.
1147 * Architecture and compiler independent.
1148 */
1149
1150 static int
1151 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1152 {
1153 if (buflen < SES_CFGHDR_MINLEN) {
1154 return (-1);
1155 }
1156 gget8(buffer, 1, cfp->Nsubenc);
1157 gget32(buffer, 4, cfp->GenCode);
1158 return (0);
1159 }
1160
1161 static int
1162 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1163 {
1164 int s, off = 8;
1165 for (s = 0; s < SubEncId; s++) {
1166 if (off + 3 > amt)
1167 return (-1);
1168 off += buffer[off+3] + 4;
1169 }
1170 if (off + 3 > amt) {
1171 return (-1);
1172 }
1173 gget8(buffer, off+1, chp->Subencid);
1174 gget8(buffer, off+2, chp->Ntypes);
1175 gget8(buffer, off+3, chp->VEnclen);
1176 return (0);
1177 }
1178
1179 static int
1180 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1181 {
1182 int s, e, enclen, off = 8;
1183 for (s = 0; s < SubEncId; s++) {
1184 if (off + 3 > amt)
1185 return (-1);
1186 off += buffer[off+3] + 4;
1187 }
1188 if (off + 3 > amt) {
1189 return (-1);
1190 }
1191 gget8(buffer, off+3, enclen);
1192 off += 4;
1193 if (off >= amt)
1194 return (-1);
1195
1196 e = off + enclen;
1197 if (e > amt) {
1198 e = amt;
1199 }
1200 MEMCPY(cdp, &buffer[off], e - off);
1201 return (0);
1202 }
1203
1204 static int
1205 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1206 {
1207 int s, off = 8;
1208
1209 if (amt < SES_CFGHDR_MINLEN) {
1210 return (-1);
1211 }
1212 for (s = 0; s < buffer[1]; s++) {
1213 if (off + 3 > amt)
1214 return (-1);
1215 off += buffer[off+3] + 4;
1216 }
1217 if (off + 3 > amt) {
1218 return (-1);
1219 }
1220 off += buffer[off+3] + 4 + (nth * 4);
1221 if (amt < (off + 4))
1222 return (-1);
1223
1224 gget8(buffer, off++, thp->enc_type);
1225 gget8(buffer, off++, thp->enc_maxelt);
1226 gget8(buffer, off++, thp->enc_subenc);
1227 gget8(buffer, off, thp->enc_tlen);
1228 return (0);
1229 }
1230
1231 /*
1232 * This function needs a little explanation.
1233 *
1234 * The arguments are:
1235 *
1236 *
1237 * char *b, int amt
1238 *
1239 * These describes the raw input SES status data and length.
1240 *
1241 * uint8_t *ep
1242 *
1243 * This is a map of the number of types for each element type
1244 * in the enclosure.
1245 *
1246 * int elt
1247 *
1248 * This is the element type being sought. If elt is -1,
1249 * then overall enclosure status is being sought.
1250 *
1251 * int elm
1252 *
1253 * This is the ordinal Mth element of type elt being sought.
1254 *
1255 * SesComStat *sp
1256 *
1257 * This is the output area to store the status for
1258 * the Mth element of type Elt.
1259 */
1260
1261 static int
1262 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1263 {
1264 int idx, i;
1265
1266 /*
1267 * If it's overall enclosure status being sought, get that.
1268 * We need at least 2 bytes of status data to get that.
1269 */
1270 if (elt == -1) {
1271 if (amt < 2)
1272 return (-1);
1273 gget8(b, 1, sp->comstatus);
1274 sp->comstat[0] = 0;
1275 sp->comstat[1] = 0;
1276 sp->comstat[2] = 0;
1277 return (0);
1278 }
1279
1280 /*
1281 * Check to make sure that the Mth element is legal for type Elt.
1282 */
1283
1284 if (elm >= ep[elt])
1285 return (-1);
1286
1287 /*
1288 * Starting at offset 8, start skipping over the storage
1289 * for the element types we're not interested in.
1290 */
1291 for (idx = 8, i = 0; i < elt; i++) {
1292 idx += ((ep[i] + 1) * 4);
1293 }
1294
1295 /*
1296 * Skip over Overall status for this element type.
1297 */
1298 idx += 4;
1299
1300 /*
1301 * And skip to the index for the Mth element that we're going for.
1302 */
1303 idx += (4 * elm);
1304
1305 /*
1306 * Make sure we haven't overflowed the buffer.
1307 */
1308 if (idx+4 > amt)
1309 return (-1);
1310
1311 /*
1312 * Retrieve the status.
1313 */
1314 gget8(b, idx++, sp->comstatus);
1315 gget8(b, idx++, sp->comstat[0]);
1316 gget8(b, idx++, sp->comstat[1]);
1317 gget8(b, idx++, sp->comstat[2]);
1318 #if 0
1319 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1320 #endif
1321 return (0);
1322 }
1323
1324 /*
1325 * This is the mirror function to ses_decode, but we set the 'select'
1326 * bit for the object which we're interested in. All other objects,
1327 * after a status fetch, should have that bit off. Hmm. It'd be easy
1328 * enough to ensure this, so we will.
1329 */
1330
1331 static int
1332 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1333 {
1334 int idx, i;
1335
1336 /*
1337 * If it's overall enclosure status being sought, get that.
1338 * We need at least 2 bytes of status data to get that.
1339 */
1340 if (elt == -1) {
1341 if (amt < 2)
1342 return (-1);
1343 i = 0;
1344 sset8(b, i, 0);
1345 sset8(b, i, sp->comstatus & 0xf);
1346 #if 0
1347 PRINTF("set EncStat %x\n", sp->comstatus);
1348 #endif
1349 return (0);
1350 }
1351
1352 /*
1353 * Check to make sure that the Mth element is legal for type Elt.
1354 */
1355
1356 if (elm >= ep[elt])
1357 return (-1);
1358
1359 /*
1360 * Starting at offset 8, start skipping over the storage
1361 * for the element types we're not interested in.
1362 */
1363 for (idx = 8, i = 0; i < elt; i++) {
1364 idx += ((ep[i] + 1) * 4);
1365 }
1366
1367 /*
1368 * Skip over Overall status for this element type.
1369 */
1370 idx += 4;
1371
1372 /*
1373 * And skip to the index for the Mth element that we're going for.
1374 */
1375 idx += (4 * elm);
1376
1377 /*
1378 * Make sure we haven't overflowed the buffer.
1379 */
1380 if (idx+4 > amt)
1381 return (-1);
1382
1383 /*
1384 * Set the status.
1385 */
1386 sset8(b, idx, sp->comstatus);
1387 sset8(b, idx, sp->comstat[0]);
1388 sset8(b, idx, sp->comstat[1]);
1389 sset8(b, idx, sp->comstat[2]);
1390 idx -= 4;
1391
1392 #if 0
1393 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1394 elt, elm, idx, sp->comstatus, sp->comstat[0],
1395 sp->comstat[1], sp->comstat[2]);
1396 #endif
1397
1398 /*
1399 * Now make sure all other 'Select' bits are off.
1400 */
1401 for (i = 8; i < amt; i += 4) {
1402 if (i != idx)
1403 b[i] &= ~0x80;
1404 }
1405 /*
1406 * And make sure the INVOP bit is clear.
1407 */
1408 b[2] &= ~0x10;
1409
1410 return (0);
1411 }
1412
1413 /*
1414 * SAF-TE Type Device Emulation
1415 */
1416
1417 static int safte_getconfig(ses_softc_t *);
1418 static int safte_rdstat(ses_softc_t *, int);
1419 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1420 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1421 static void wrslot_stat(ses_softc_t *, int);
1422 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1423
1424 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1425 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1426 /*
1427 * SAF-TE specific defines- Mandatory ones only...
1428 */
1429
1430 /*
1431 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1432 */
1433 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1434 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1435 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1436
1437 /*
1438 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1439 */
1440 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1441 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1442 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1443 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1444 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1445
1446
1447 #define SAFT_SCRATCH 64
1448 #define NPSEUDO_THERM 16
1449 #define NPSEUDO_ALARM 1
1450 struct scfg {
1451 /*
1452 * Cached Configuration
1453 */
1454 uint8_t Nfans; /* Number of Fans */
1455 uint8_t Npwr; /* Number of Power Supplies */
1456 uint8_t Nslots; /* Number of Device Slots */
1457 uint8_t DoorLock; /* Door Lock Installed */
1458 uint8_t Ntherm; /* Number of Temperature Sensors */
1459 uint8_t Nspkrs; /* Number of Speakers */
1460 uint8_t Nalarm; /* Number of Alarms (at least one) */
1461 /*
1462 * Cached Flag Bytes for Global Status
1463 */
1464 uint8_t flag1;
1465 uint8_t flag2;
1466 /*
1467 * What object index ID is where various slots start.
1468 */
1469 uint8_t pwroff;
1470 uint8_t slotoff;
1471 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1472 };
1473
1474 #define SAFT_FLG1_ALARM 0x1
1475 #define SAFT_FLG1_GLOBFAIL 0x2
1476 #define SAFT_FLG1_GLOBWARN 0x4
1477 #define SAFT_FLG1_ENCPWROFF 0x8
1478 #define SAFT_FLG1_ENCFANFAIL 0x10
1479 #define SAFT_FLG1_ENCPWRFAIL 0x20
1480 #define SAFT_FLG1_ENCDRVFAIL 0x40
1481 #define SAFT_FLG1_ENCDRVWARN 0x80
1482
1483 #define SAFT_FLG2_LOCKDOOR 0x4
1484 #define SAFT_PRIVATE sizeof (struct scfg)
1485
1486 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1487 #define SAFT_BAIL(r, x, k, l) \
1488 if (r >= x) { \
1489 SES_LOG(ssc, safte_2little, x, __LINE__);\
1490 SES_FREE(k, l); \
1491 return (EIO); \
1492 }
1493
1494
1495 static int
1496 safte_softc_init(ses_softc_t *ssc, int doinit)
1497 {
1498 int err, i, r;
1499 struct scfg *cc;
1500
1501 if (doinit == 0) {
1502 if (ssc->ses_nobjects) {
1503 if (ssc->ses_objmap) {
1504 SES_FREE(ssc->ses_objmap,
1505 ssc->ses_nobjects * sizeof (encobj));
1506 ssc->ses_objmap = NULL;
1507 }
1508 ssc->ses_nobjects = 0;
1509 }
1510 if (ssc->ses_private) {
1511 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1512 ssc->ses_private = NULL;
1513 }
1514 return (0);
1515 }
1516
1517 if (ssc->ses_private == NULL) {
1518 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1519 if (ssc->ses_private == NULL) {
1520 return (ENOMEM);
1521 }
1522 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1523 }
1524
1525 ssc->ses_nobjects = 0;
1526 ssc->ses_encstat = 0;
1527
1528 if ((err = safte_getconfig(ssc)) != 0) {
1529 return (err);
1530 }
1531
1532 /*
1533 * The number of objects here, as well as that reported by the
1534 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1535 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1536 */
1537 cc = ssc->ses_private;
1538 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1539 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1540 ssc->ses_objmap = (encobj *)
1541 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1542 if (ssc->ses_objmap == NULL) {
1543 return (ENOMEM);
1544 }
1545 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1546
1547 r = 0;
1548 /*
1549 * Note that this is all arranged for the convenience
1550 * in later fetches of status.
1551 */
1552 for (i = 0; i < cc->Nfans; i++)
1553 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1554 cc->pwroff = (uint8_t) r;
1555 for (i = 0; i < cc->Npwr; i++)
1556 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1557 for (i = 0; i < cc->DoorLock; i++)
1558 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1559 for (i = 0; i < cc->Nspkrs; i++)
1560 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1561 for (i = 0; i < cc->Ntherm; i++)
1562 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1563 for (i = 0; i < NPSEUDO_THERM; i++)
1564 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1565 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1566 cc->slotoff = (uint8_t) r;
1567 for (i = 0; i < cc->Nslots; i++)
1568 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1569 return (0);
1570 }
1571
1572 static int
1573 safte_init_enc(ses_softc_t *ssc)
1574 {
1575 int err, amt;
1576 char *sdata;
1577 static char cdb0[6] = { SEND_DIAGNOSTIC };
1578 static char cdb[10] =
1579 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1580
1581 sdata = SES_MALLOC(SAFT_SCRATCH);
1582 if (sdata == NULL)
1583 return (ENOMEM);
1584
1585 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1586 if (err) {
1587 SES_FREE(sdata, SAFT_SCRATCH);
1588 return (err);
1589 }
1590 sdata[0] = SAFTE_WT_GLOBAL;
1591 MEMZERO(&sdata[1], 15);
1592 amt = -SAFT_SCRATCH;
1593 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1594 SES_FREE(sdata, SAFT_SCRATCH);
1595 return (err);
1596 }
1597
1598 static int
1599 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1600 {
1601 return (safte_rdstat(ssc, slpflg));
1602 }
1603
1604 static int
1605 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1606 {
1607 struct scfg *cc = ssc->ses_private;
1608 if (cc == NULL)
1609 return (0);
1610 /*
1611 * Since SAF-TE devices aren't necessarily sticky in terms
1612 * of state, make our soft copy of enclosure status 'sticky'-
1613 * that is, things set in enclosure status stay set (as implied
1614 * by conditions set in reading object status) until cleared.
1615 */
1616 ssc->ses_encstat &= ~ALL_ENC_STAT;
1617 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1618 ssc->ses_encstat |= ENCI_SVALID;
1619 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1620 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1621 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1622 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1623 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1624 }
1625 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1626 }
1627
1628 static int
1629 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1630 {
1631 int i = (int)obp->obj_id;
1632
1633 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1634 (ssc->ses_objmap[i].svalid) == 0) {
1635 int err = safte_rdstat(ssc, slpflg);
1636 if (err)
1637 return (err);
1638 }
1639 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1640 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1641 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1642 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1643 return (0);
1644 }
1645
1646
1647 static int
1648 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1649 {
1650 int idx, err;
1651 encobj *ep;
1652 struct scfg *cc;
1653
1654
1655 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1656 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1657 obp->cstat[3]);
1658
1659 /*
1660 * If this is clear, we don't do diddly.
1661 */
1662 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1663 return (0);
1664 }
1665
1666 err = 0;
1667 /*
1668 * Check to see if the common bits are set and do them first.
1669 */
1670 if (obp->cstat[0] & ~SESCTL_CSEL) {
1671 err = set_objstat_sel(ssc, obp, slp);
1672 if (err)
1673 return (err);
1674 }
1675
1676 cc = ssc->ses_private;
1677 if (cc == NULL)
1678 return (0);
1679
1680 idx = (int)obp->obj_id;
1681 ep = &ssc->ses_objmap[idx];
1682
1683 switch (ep->enctype) {
1684 case SESTYP_DEVICE:
1685 {
1686 uint8_t slotop = 0;
1687 /*
1688 * XXX: I should probably cache the previous state
1689 * XXX: of SESCTL_DEVOFF so that when it goes from
1690 * XXX: true to false I can then set PREPARE FOR OPERATION
1691 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1692 */
1693 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1694 slotop |= 0x2;
1695 }
1696 if (obp->cstat[2] & SESCTL_RQSID) {
1697 slotop |= 0x4;
1698 }
1699 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1700 slotop, slp);
1701 if (err)
1702 return (err);
1703 if (obp->cstat[3] & SESCTL_RQSFLT) {
1704 ep->priv |= 0x2;
1705 } else {
1706 ep->priv &= ~0x2;
1707 }
1708 if (ep->priv & 0xc6) {
1709 ep->priv &= ~0x1;
1710 } else {
1711 ep->priv |= 0x1; /* no errors */
1712 }
1713 wrslot_stat(ssc, slp);
1714 break;
1715 }
1716 case SESTYP_POWER:
1717 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1718 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1719 } else {
1720 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1721 }
1722 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1723 cc->flag2, 0, slp);
1724 if (err)
1725 return (err);
1726 if (obp->cstat[3] & SESCTL_RQSTON) {
1727 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1728 idx - cc->pwroff, 0, 0, slp);
1729 } else {
1730 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1731 idx - cc->pwroff, 0, 1, slp);
1732 }
1733 break;
1734 case SESTYP_FAN:
1735 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1736 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1737 } else {
1738 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1739 }
1740 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1741 cc->flag2, 0, slp);
1742 if (err)
1743 return (err);
1744 if (obp->cstat[3] & SESCTL_RQSTON) {
1745 uint8_t fsp;
1746 if ((obp->cstat[3] & 0x7) == 7) {
1747 fsp = 4;
1748 } else if ((obp->cstat[3] & 0x7) == 6) {
1749 fsp = 3;
1750 } else if ((obp->cstat[3] & 0x7) == 4) {
1751 fsp = 2;
1752 } else {
1753 fsp = 1;
1754 }
1755 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1756 } else {
1757 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1758 }
1759 break;
1760 case SESTYP_DOORLOCK:
1761 if (obp->cstat[3] & 0x1) {
1762 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1763 } else {
1764 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1765 }
1766 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1767 cc->flag2, 0, slp);
1768 break;
1769 case SESTYP_ALARM:
1770 /*
1771 * On all nonzero but the 'muted' bit, we turn on the alarm,
1772 */
1773 obp->cstat[3] &= ~0xa;
1774 if (obp->cstat[3] & 0x40) {
1775 cc->flag2 &= ~SAFT_FLG1_ALARM;
1776 } else if (obp->cstat[3] != 0) {
1777 cc->flag2 |= SAFT_FLG1_ALARM;
1778 } else {
1779 cc->flag2 &= ~SAFT_FLG1_ALARM;
1780 }
1781 ep->priv = obp->cstat[3];
1782 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1783 cc->flag2, 0, slp);
1784 break;
1785 default:
1786 break;
1787 }
1788 ep->svalid = 0;
1789 return (0);
1790 }
1791
1792 static int
1793 safte_getconfig(ses_softc_t *ssc)
1794 {
1795 struct scfg *cfg;
1796 int err, amt;
1797 char *sdata;
1798 static char cdb[10] =
1799 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1800
1801 cfg = ssc->ses_private;
1802 if (cfg == NULL)
1803 return (ENXIO);
1804
1805 sdata = SES_MALLOC(SAFT_SCRATCH);
1806 if (sdata == NULL)
1807 return (ENOMEM);
1808
1809 amt = SAFT_SCRATCH;
1810 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1811 if (err) {
1812 SES_FREE(sdata, SAFT_SCRATCH);
1813 return (err);
1814 }
1815 amt = SAFT_SCRATCH - amt;
1816 if (amt < 6) {
1817 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1818 SES_FREE(sdata, SAFT_SCRATCH);
1819 return (EIO);
1820 }
1821 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1822 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1823 cfg->Nfans = sdata[0];
1824 cfg->Npwr = sdata[1];
1825 cfg->Nslots = sdata[2];
1826 cfg->DoorLock = sdata[3];
1827 cfg->Ntherm = sdata[4];
1828 cfg->Nspkrs = sdata[5];
1829 cfg->Nalarm = NPSEUDO_ALARM;
1830 SES_FREE(sdata, SAFT_SCRATCH);
1831 return (0);
1832 }
1833
1834 static int
1835 safte_rdstat(ses_softc_t *ssc, int slpflg)
1836 {
1837 int err, oid, r, i, hiwater, nitems, amt;
1838 uint16_t tempflags;
1839 size_t buflen;
1840 uint8_t status, oencstat;
1841 char *sdata, cdb[10];
1842 struct scfg *cc = ssc->ses_private;
1843
1844
1845 /*
1846 * The number of objects overstates things a bit,
1847 * both for the bogus 'thermometer' entries and
1848 * the drive status (which isn't read at the same
1849 * time as the enclosure status), but that's okay.
1850 */
1851 buflen = 4 * cc->Nslots;
1852 if (ssc->ses_nobjects > buflen)
1853 buflen = ssc->ses_nobjects;
1854 sdata = SES_MALLOC(buflen);
1855 if (sdata == NULL)
1856 return (ENOMEM);
1857
1858 cdb[0] = READ_BUFFER;
1859 cdb[1] = 1;
1860 cdb[2] = SAFTE_RD_RDESTS;
1861 cdb[3] = 0;
1862 cdb[4] = 0;
1863 cdb[5] = 0;
1864 cdb[6] = 0;
1865 cdb[7] = (buflen >> 8) & 0xff;
1866 cdb[8] = buflen & 0xff;
1867 cdb[9] = 0;
1868 amt = buflen;
1869 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1870 if (err) {
1871 SES_FREE(sdata, buflen);
1872 return (err);
1873 }
1874 hiwater = buflen - amt;
1875
1876
1877 /*
1878 * invalidate all status bits.
1879 */
1880 for (i = 0; i < ssc->ses_nobjects; i++)
1881 ssc->ses_objmap[i].svalid = 0;
1882 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1883 ssc->ses_encstat = 0;
1884
1885
1886 /*
1887 * Now parse returned buffer.
1888 * If we didn't get enough data back,
1889 * that's considered a fatal error.
1890 */
1891 oid = r = 0;
1892
1893 for (nitems = i = 0; i < cc->Nfans; i++) {
1894 SAFT_BAIL(r, hiwater, sdata, buflen);
1895 /*
1896 * 0 = Fan Operational
1897 * 1 = Fan is malfunctioning
1898 * 2 = Fan is not present
1899 * 0x80 = Unknown or Not Reportable Status
1900 */
1901 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1902 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1903 switch ((int)(uint8_t)sdata[r]) {
1904 case 0:
1905 nitems++;
1906 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1907 /*
1908 * We could get fancier and cache
1909 * fan speeds that we have set, but
1910 * that isn't done now.
1911 */
1912 ssc->ses_objmap[oid].encstat[3] = 7;
1913 break;
1914
1915 case 1:
1916 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1917 /*
1918 * FAIL and FAN STOPPED synthesized
1919 */
1920 ssc->ses_objmap[oid].encstat[3] = 0x40;
1921 /*
1922 * Enclosure marked with CRITICAL error
1923 * if only one fan or no thermometers,
1924 * else the NONCRITICAL error is set.
1925 */
1926 if (cc->Nfans == 1 || cc->Ntherm == 0)
1927 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1928 else
1929 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1930 break;
1931 case 2:
1932 ssc->ses_objmap[oid].encstat[0] =
1933 SES_OBJSTAT_NOTINSTALLED;
1934 ssc->ses_objmap[oid].encstat[3] = 0;
1935 /*
1936 * Enclosure marked with CRITICAL error
1937 * if only one fan or no thermometers,
1938 * else the NONCRITICAL error is set.
1939 */
1940 if (cc->Nfans == 1)
1941 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1942 else
1943 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1944 break;
1945 case 0x80:
1946 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1947 ssc->ses_objmap[oid].encstat[3] = 0;
1948 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1949 break;
1950 default:
1951 ssc->ses_objmap[oid].encstat[0] =
1952 SES_OBJSTAT_UNSUPPORTED;
1953 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1954 sdata[r] & 0xff);
1955 break;
1956 }
1957 ssc->ses_objmap[oid++].svalid = 1;
1958 r++;
1959 }
1960
1961 /*
1962 * No matter how you cut it, no cooling elements when there
1963 * should be some there is critical.
1964 */
1965 if (cc->Nfans && nitems == 0) {
1966 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1967 }
1968
1969
1970 for (i = 0; i < cc->Npwr; i++) {
1971 SAFT_BAIL(r, hiwater, sdata, buflen);
1972 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1973 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1974 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1975 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1976 switch ((uint8_t)sdata[r]) {
1977 case 0x00: /* pws operational and on */
1978 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1979 break;
1980 case 0x01: /* pws operational and off */
1981 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1982 ssc->ses_objmap[oid].encstat[3] = 0x10;
1983 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1984 break;
1985 case 0x10: /* pws is malfunctioning and commanded on */
1986 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1987 ssc->ses_objmap[oid].encstat[3] = 0x61;
1988 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1989 break;
1990
1991 case 0x11: /* pws is malfunctioning and commanded off */
1992 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1993 ssc->ses_objmap[oid].encstat[3] = 0x51;
1994 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1995 break;
1996 case 0x20: /* pws is not present */
1997 ssc->ses_objmap[oid].encstat[0] =
1998 SES_OBJSTAT_NOTINSTALLED;
1999 ssc->ses_objmap[oid].encstat[3] = 0;
2000 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2001 break;
2002 case 0x21: /* pws is present */
2003 /*
2004 * This is for enclosures that cannot tell whether the
2005 * device is on or malfunctioning, but know that it is
2006 * present. Just fall through.
2007 */
2008 /* FALLTHROUGH */
2009 case 0x80: /* Unknown or Not Reportable Status */
2010 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2011 ssc->ses_objmap[oid].encstat[3] = 0;
2012 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2013 break;
2014 default:
2015 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2016 i, sdata[r] & 0xff);
2017 break;
2018 }
2019 ssc->ses_objmap[oid++].svalid = 1;
2020 r++;
2021 }
2022
2023 /*
2024 * Skip over Slot SCSI IDs
2025 */
2026 r += cc->Nslots;
2027
2028 /*
2029 * We always have doorlock status, no matter what,
2030 * but we only save the status if we have one.
2031 */
2032 SAFT_BAIL(r, hiwater, sdata, buflen);
2033 if (cc->DoorLock) {
2034 /*
2035 * 0 = Door Locked
2036 * 1 = Door Unlocked, or no Lock Installed
2037 * 0x80 = Unknown or Not Reportable Status
2038 */
2039 ssc->ses_objmap[oid].encstat[1] = 0;
2040 ssc->ses_objmap[oid].encstat[2] = 0;
2041 switch ((uint8_t)sdata[r]) {
2042 case 0:
2043 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2044 ssc->ses_objmap[oid].encstat[3] = 0;
2045 break;
2046 case 1:
2047 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2048 ssc->ses_objmap[oid].encstat[3] = 1;
2049 break;
2050 case 0x80:
2051 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2052 ssc->ses_objmap[oid].encstat[3] = 0;
2053 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2054 break;
2055 default:
2056 ssc->ses_objmap[oid].encstat[0] =
2057 SES_OBJSTAT_UNSUPPORTED;
2058 SES_LOG(ssc, "unknown lock status 0x%x\n",
2059 sdata[r] & 0xff);
2060 break;
2061 }
2062 ssc->ses_objmap[oid++].svalid = 1;
2063 }
2064 r++;
2065
2066 /*
2067 * We always have speaker status, no matter what,
2068 * but we only save the status if we have one.
2069 */
2070 SAFT_BAIL(r, hiwater, sdata, buflen);
2071 if (cc->Nspkrs) {
2072 ssc->ses_objmap[oid].encstat[1] = 0;
2073 ssc->ses_objmap[oid].encstat[2] = 0;
2074 if (sdata[r] == 1) {
2075 /*
2076 * We need to cache tone urgency indicators.
2077 * Someday.
2078 */
2079 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2080 ssc->ses_objmap[oid].encstat[3] = 0x8;
2081 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2082 } else if (sdata[r] == 0) {
2083 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2084 ssc->ses_objmap[oid].encstat[3] = 0;
2085 } else {
2086 ssc->ses_objmap[oid].encstat[0] =
2087 SES_OBJSTAT_UNSUPPORTED;
2088 ssc->ses_objmap[oid].encstat[3] = 0;
2089 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2090 sdata[r] & 0xff);
2091 }
2092 ssc->ses_objmap[oid++].svalid = 1;
2093 }
2094 r++;
2095
2096 for (i = 0; i < cc->Ntherm; i++) {
2097 SAFT_BAIL(r, hiwater, sdata, buflen);
2098 /*
2099 * Status is a range from -10 to 245 deg Celsius,
2100 * which we need to normalize to -20 to -245 according
2101 * to the latest SCSI spec, which makes little
2102 * sense since this would overflow an 8bit value.
2103 * Well, still, the base normalization is -20,
2104 * not -10, so we have to adjust.
2105 *
2106 * So what's over and under temperature?
2107 * Hmm- we'll state that 'normal' operating
2108 * is 10 to 40 deg Celsius.
2109 */
2110
2111 /*
2112 * Actually.... All of the units that people out in the world
2113 * seem to have do not come even close to setting a value that
2114 * complies with this spec.
2115 *
2116 * The closest explanation I could find was in an
2117 * LSI-Logic manual, which seemed to indicate that
2118 * this value would be set by whatever the I2C code
2119 * would interpolate from the output of an LM75
2120 * temperature sensor.
2121 *
2122 * This means that it is impossible to use the actual
2123 * numeric value to predict anything. But we don't want
2124 * to lose the value. So, we'll propagate the *uncorrected*
2125 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2126 * temperature flags for warnings.
2127 */
2128 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2129 ssc->ses_objmap[oid].encstat[1] = 0;
2130 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2131 ssc->ses_objmap[oid].encstat[3] = 0;
2132 ssc->ses_objmap[oid++].svalid = 1;
2133 r++;
2134 }
2135
2136 /*
2137 * Now, for "pseudo" thermometers, we have two bytes
2138 * of information in enclosure status- 16 bits. Actually,
2139 * the MSB is a single TEMP ALERT flag indicating whether
2140 * any other bits are set, but, thanks to fuzzy thinking,
2141 * in the SAF-TE spec, this can also be set even if no
2142 * other bits are set, thus making this really another
2143 * binary temperature sensor.
2144 */
2145
2146 SAFT_BAIL(r, hiwater, sdata, buflen);
2147 tempflags = sdata[r++];
2148 SAFT_BAIL(r, hiwater, sdata, buflen);
2149 tempflags |= (tempflags << 8) | sdata[r++];
2150
2151 for (i = 0; i < NPSEUDO_THERM; i++) {
2152 ssc->ses_objmap[oid].encstat[1] = 0;
2153 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2154 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2155 ssc->ses_objmap[4].encstat[2] = 0xff;
2156 /*
2157 * Set 'over temperature' failure.
2158 */
2159 ssc->ses_objmap[oid].encstat[3] = 8;
2160 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2161 } else {
2162 /*
2163 * We used to say 'not available' and synthesize a
2164 * nominal 30 deg (C)- that was wrong. Actually,
2165 * Just say 'OK', and use the reserved value of
2166 * zero.
2167 */
2168 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2169 ssc->ses_objmap[oid].encstat[2] = 0;
2170 ssc->ses_objmap[oid].encstat[3] = 0;
2171 }
2172 ssc->ses_objmap[oid++].svalid = 1;
2173 }
2174
2175 /*
2176 * Get alarm status.
2177 */
2178 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2179 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2180 ssc->ses_objmap[oid++].svalid = 1;
2181
2182 /*
2183 * Now get drive slot status
2184 */
2185 cdb[2] = SAFTE_RD_RDDSTS;
2186 amt = buflen;
2187 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2188 if (err) {
2189 SES_FREE(sdata, buflen);
2190 return (err);
2191 }
2192 hiwater = buflen - amt;
2193 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2194 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2195 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2196 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2197 ssc->ses_objmap[oid].encstat[2] = 0;
2198 ssc->ses_objmap[oid].encstat[3] = 0;
2199 status = sdata[r+3];
2200 if ((status & 0x1) == 0) { /* no device */
2201 ssc->ses_objmap[oid].encstat[0] =
2202 SES_OBJSTAT_NOTINSTALLED;
2203 } else {
2204 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2205 }
2206 if (status & 0x2) {
2207 ssc->ses_objmap[oid].encstat[2] = 0x8;
2208 }
2209 if ((status & 0x4) == 0) {
2210 ssc->ses_objmap[oid].encstat[3] = 0x10;
2211 }
2212 ssc->ses_objmap[oid++].svalid = 1;
2213 }
2214 /* see comment below about sticky enclosure status */
2215 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2216 SES_FREE(sdata, buflen);
2217 return (0);
2218 }
2219
2220 static int
2221 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2222 {
2223 int idx;
2224 encobj *ep;
2225 struct scfg *cc = ssc->ses_private;
2226
2227 if (cc == NULL)
2228 return (0);
2229
2230 idx = (int)obp->obj_id;
2231 ep = &ssc->ses_objmap[idx];
2232
2233 switch (ep->enctype) {
2234 case SESTYP_DEVICE:
2235 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2236 ep->priv |= 0x40;
2237 }
2238 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2239 if (obp->cstat[0] & SESCTL_DISABLE) {
2240 ep->priv |= 0x80;
2241 /*
2242 * Hmm. Try to set the 'No Drive' flag.
2243 * Maybe that will count as a 'disable'.
2244 */
2245 }
2246 if (ep->priv & 0xc6) {
2247 ep->priv &= ~0x1;
2248 } else {
2249 ep->priv |= 0x1; /* no errors */
2250 }
2251 wrslot_stat(ssc, slp);
2252 break;
2253 case SESTYP_POWER:
2254 /*
2255 * Okay- the only one that makes sense here is to
2256 * do the 'disable' for a power supply.
2257 */
2258 if (obp->cstat[0] & SESCTL_DISABLE) {
2259 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2260 idx - cc->pwroff, 0, 0, slp);
2261 }
2262 break;
2263 case SESTYP_FAN:
2264 /*
2265 * Okay- the only one that makes sense here is to
2266 * set fan speed to zero on disable.
2267 */
2268 if (obp->cstat[0] & SESCTL_DISABLE) {
2269 /* remember- fans are the first items, so idx works */
2270 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2271 }
2272 break;
2273 case SESTYP_DOORLOCK:
2274 /*
2275 * Well, we can 'disable' the lock.
2276 */
2277 if (obp->cstat[0] & SESCTL_DISABLE) {
2278 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2279 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2280 cc->flag2, 0, slp);
2281 }
2282 break;
2283 case SESTYP_ALARM:
2284 /*
2285 * Well, we can 'disable' the alarm.
2286 */
2287 if (obp->cstat[0] & SESCTL_DISABLE) {
2288 cc->flag2 &= ~SAFT_FLG1_ALARM;
2289 ep->priv |= 0x40; /* Muted */
2290 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2291 cc->flag2, 0, slp);
2292 }
2293 break;
2294 default:
2295 break;
2296 }
2297 ep->svalid = 0;
2298 return (0);
2299 }
2300
2301 /*
2302 * This function handles all of the 16 byte WRITE BUFFER commands.
2303 */
2304 static int
2305 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2306 uint8_t b3, int slp)
2307 {
2308 int err, amt;
2309 char *sdata;
2310 struct scfg *cc = ssc->ses_private;
2311 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2312
2313 if (cc == NULL)
2314 return (0);
2315
2316 sdata = SES_MALLOC(16);
2317 if (sdata == NULL)
2318 return (ENOMEM);
2319
2320 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2321
2322 sdata[0] = op;
2323 sdata[1] = b1;
2324 sdata[2] = b2;
2325 sdata[3] = b3;
2326 MEMZERO(&sdata[4], 12);
2327 amt = -16;
2328 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2329 SES_FREE(sdata, 16);
2330 return (err);
2331 }
2332
2333 /*
2334 * This function updates the status byte for the device slot described.
2335 *
2336 * Since this is an optional SAF-TE command, there's no point in
2337 * returning an error.
2338 */
2339 static void
2340 wrslot_stat(ses_softc_t *ssc, int slp)
2341 {
2342 int i, amt;
2343 encobj *ep;
2344 char cdb[10], *sdata;
2345 struct scfg *cc = ssc->ses_private;
2346
2347 if (cc == NULL)
2348 return;
2349
2350 SES_VLOG(ssc, "saf_wrslot\n");
2351 cdb[0] = WRITE_BUFFER;
2352 cdb[1] = 1;
2353 cdb[2] = 0;
2354 cdb[3] = 0;
2355 cdb[4] = 0;
2356 cdb[5] = 0;
2357 cdb[6] = 0;
2358 cdb[7] = 0;
2359 cdb[8] = cc->Nslots * 3 + 1;
2360 cdb[9] = 0;
2361
2362 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2363 if (sdata == NULL)
2364 return;
2365 MEMZERO(sdata, cc->Nslots * 3 + 1);
2366
2367 sdata[0] = SAFTE_WT_DSTAT;
2368 for (i = 0; i < cc->Nslots; i++) {
2369 ep = &ssc->ses_objmap[cc->slotoff + i];
2370 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2371 sdata[1 + (3 * i)] = ep->priv & 0xff;
2372 }
2373 amt = -(cc->Nslots * 3 + 1);
2374 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2375 SES_FREE(sdata, cc->Nslots * 3 + 1);
2376 }
2377
2378 /*
2379 * This function issues the "PERFORM SLOT OPERATION" command.
2380 */
2381 static int
2382 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2383 {
2384 int err, amt;
2385 char *sdata;
2386 struct scfg *cc = ssc->ses_private;
2387 static char cdb[10] =
2388 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2389
2390 if (cc == NULL)
2391 return (0);
2392
2393 sdata = SES_MALLOC(SAFT_SCRATCH);
2394 if (sdata == NULL)
2395 return (ENOMEM);
2396 MEMZERO(sdata, SAFT_SCRATCH);
2397
2398 sdata[0] = SAFTE_WT_SLTOP;
2399 sdata[1] = slot;
2400 sdata[2] = opflag;
2401 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2402 amt = -SAFT_SCRATCH;
2403 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2404 SES_FREE(sdata, SAFT_SCRATCH);
2405 return (err);
2406 }
2407