ses.c revision 1.46.2.1 1 /* $NetBSD: ses.c,v 1.46.2.1 2014/08/10 06:54:58 tls Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.46.2.1 2014/08/10 06:54:58 tls Exp $");
30
31 #include "opt_scsi.h"
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/scsiio.h>
40 #include <sys/buf.h>
41 #include <sys/uio.h>
42 #include <sys/malloc.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/proc.h>
48 #include <sys/conf.h>
49 #include <sys/vnode.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsipi_disk.h>
53 #include <dev/scsipi/scsi_all.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsipiconf.h>
56 #include <dev/scsipi/scsipi_base.h>
57 #include <dev/scsipi/ses.h>
58
59 /*
60 * Platform Independent Driver Internal Definitions for SES devices.
61 */
62 typedef enum {
63 SES_NONE,
64 SES_SES_SCSI2,
65 SES_SES,
66 SES_SES_PASSTHROUGH,
67 SES_SEN,
68 SES_SAFT
69 } enctyp;
70
71 struct ses_softc;
72 typedef struct ses_softc ses_softc_t;
73 typedef struct {
74 int (*softc_init)(ses_softc_t *, int);
75 int (*init_enc)(ses_softc_t *);
76 int (*get_encstat)(ses_softc_t *, int);
77 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
78 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
79 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
80 } encvec;
81
82 #define ENCI_SVALID 0x80
83
84 typedef struct {
85 uint32_t
86 enctype : 8, /* enclosure type */
87 subenclosure : 8, /* subenclosure id */
88 svalid : 1, /* enclosure information valid */
89 priv : 15; /* private data, per object */
90 uint8_t encstat[4]; /* state && stats */
91 } encobj;
92
93 #define SEN_ID "UNISYS SUN_SEN"
94 #define SEN_ID_LEN 24
95
96 static enctyp ses_type(struct scsipi_inquiry_data *);
97
98
99 /* Forward reference to Enclosure Functions */
100 static int ses_softc_init(ses_softc_t *, int);
101 static int ses_init_enc(ses_softc_t *);
102 static int ses_get_encstat(ses_softc_t *, int);
103 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
104 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
105 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
106
107 static int safte_softc_init(ses_softc_t *, int);
108 static int safte_init_enc(ses_softc_t *);
109 static int safte_get_encstat(ses_softc_t *, int);
110 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
111 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
112 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
113
114 /*
115 * Platform implementation defines/functions for SES internal kernel stuff
116 */
117
118 #define STRNCMP strncmp
119 #define PRINTF printf
120 #define SES_LOG ses_log
121 #if defined(DEBUG) || defined(SCSIDEBUG)
122 #define SES_VLOG ses_log
123 #else
124 #define SES_VLOG if (0) ses_log
125 #endif
126 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
127 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
128 #define MEMZERO(dest, amt) memset(dest, 0, amt)
129 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
130 #define RECEIVE_DIAGNOSTIC 0x1c
131 #define SEND_DIAGNOSTIC 0x1d
132 #define WRITE_BUFFER 0x3b
133 #define READ_BUFFER 0x3c
134
135 static dev_type_open(sesopen);
136 static dev_type_close(sesclose);
137 static dev_type_ioctl(sesioctl);
138
139 const struct cdevsw ses_cdevsw = {
140 .d_open = sesopen,
141 .d_close = sesclose,
142 .d_read = noread,
143 .d_write = nowrite,
144 .d_ioctl = sesioctl,
145 .d_stop = nostop,
146 .d_tty = notty,
147 .d_poll = nopoll,
148 .d_mmap = nommap,
149 .d_kqfilter = nokqfilter,
150 .d_discard = nodiscard,
151 .d_flag = D_OTHER
152 };
153
154 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
155 static void ses_log(struct ses_softc *, const char *, ...)
156 __attribute__((__format__(__printf__, 2, 3)));
157
158 /*
159 * General NetBSD kernel stuff.
160 */
161
162 struct ses_softc {
163 device_t sc_dev;
164 struct scsipi_periph *sc_periph;
165 enctyp ses_type; /* type of enclosure */
166 encvec ses_vec; /* vector to handlers */
167 void * ses_private; /* per-type private data */
168 encobj * ses_objmap; /* objects */
169 u_int32_t ses_nobjects; /* number of objects */
170 ses_encstat ses_encstat; /* overall status */
171 u_int8_t ses_flags;
172 };
173 #define SES_FLAG_INVALID 0x01
174 #define SES_FLAG_OPEN 0x02
175 #define SES_FLAG_INITIALIZED 0x04
176
177 #define SESUNIT(x) (minor((x)))
178
179 static int ses_match(device_t, cfdata_t, void *);
180 static void ses_attach(device_t, device_t, void *);
181 static int ses_detach(device_t, int);
182 static enctyp ses_device_type(struct scsipibus_attach_args *);
183
184 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
185 ses_match, ses_attach, ses_detach, NULL);
186
187 extern struct cfdriver ses_cd;
188
189 static const struct scsipi_periphsw ses_switch = {
190 NULL,
191 NULL,
192 NULL,
193 NULL
194 };
195
196 static int
197 ses_match(device_t parent, cfdata_t match, void *aux)
198 {
199 struct scsipibus_attach_args *sa = aux;
200
201 switch (ses_device_type(sa)) {
202 case SES_SES:
203 case SES_SES_SCSI2:
204 case SES_SEN:
205 case SES_SAFT:
206 case SES_SES_PASSTHROUGH:
207 /*
208 * For these devices, it's a perfect match.
209 */
210 return (24);
211 default:
212 return (0);
213 }
214 }
215
216
217 /*
218 * Complete the attachment.
219 *
220 * We have to repeat the rerun of INQUIRY data as above because
221 * it's not until the return from the match routine that we have
222 * the softc available to set stuff in.
223 */
224 static void
225 ses_attach(device_t parent, device_t self, void *aux)
226 {
227 const char *tname;
228 struct ses_softc *softc = device_private(self);
229 struct scsipibus_attach_args *sa = aux;
230 struct scsipi_periph *periph = sa->sa_periph;
231
232 softc->sc_dev = self;
233 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
234 softc->sc_periph = periph;
235 periph->periph_dev = self;
236 periph->periph_switch = &ses_switch;
237 periph->periph_openings = 1;
238
239 softc->ses_type = ses_device_type(sa);
240 switch (softc->ses_type) {
241 case SES_SES:
242 case SES_SES_SCSI2:
243 case SES_SES_PASSTHROUGH:
244 softc->ses_vec.softc_init = ses_softc_init;
245 softc->ses_vec.init_enc = ses_init_enc;
246 softc->ses_vec.get_encstat = ses_get_encstat;
247 softc->ses_vec.set_encstat = ses_set_encstat;
248 softc->ses_vec.get_objstat = ses_get_objstat;
249 softc->ses_vec.set_objstat = ses_set_objstat;
250 break;
251 case SES_SAFT:
252 softc->ses_vec.softc_init = safte_softc_init;
253 softc->ses_vec.init_enc = safte_init_enc;
254 softc->ses_vec.get_encstat = safte_get_encstat;
255 softc->ses_vec.set_encstat = safte_set_encstat;
256 softc->ses_vec.get_objstat = safte_get_objstat;
257 softc->ses_vec.set_objstat = safte_set_objstat;
258 break;
259 case SES_SEN:
260 break;
261 case SES_NONE:
262 default:
263 break;
264 }
265
266 switch (softc->ses_type) {
267 default:
268 case SES_NONE:
269 tname = "No SES device";
270 break;
271 case SES_SES_SCSI2:
272 tname = "SCSI-2 SES Device";
273 break;
274 case SES_SES:
275 tname = "SCSI-3 SES Device";
276 break;
277 case SES_SES_PASSTHROUGH:
278 tname = "SES Passthrough Device";
279 break;
280 case SES_SEN:
281 tname = "UNISYS SEN Device (NOT HANDLED YET)";
282 break;
283 case SES_SAFT:
284 tname = "SAF-TE Compliant Device";
285 break;
286 }
287 printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
288 }
289
290 static enctyp
291 ses_device_type(struct scsipibus_attach_args *sa)
292 {
293 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
294
295 if (inqp == NULL)
296 return (SES_NONE);
297
298 return (ses_type(inqp));
299 }
300
301 static int
302 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
303 {
304 struct ses_softc *softc;
305 int error, unit;
306
307 unit = SESUNIT(dev);
308 softc = device_lookup_private(&ses_cd, unit);
309 if (softc == NULL)
310 return (ENXIO);
311
312 if (softc->ses_flags & SES_FLAG_INVALID) {
313 error = ENXIO;
314 goto out;
315 }
316 if (softc->ses_flags & SES_FLAG_OPEN) {
317 error = EBUSY;
318 goto out;
319 }
320 if (softc->ses_vec.softc_init == NULL) {
321 error = ENXIO;
322 goto out;
323 }
324 error = scsipi_adapter_addref(
325 softc->sc_periph->periph_channel->chan_adapter);
326 if (error != 0)
327 goto out;
328
329
330 softc->ses_flags |= SES_FLAG_OPEN;
331 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
332 error = (*softc->ses_vec.softc_init)(softc, 1);
333 if (error)
334 softc->ses_flags &= ~SES_FLAG_OPEN;
335 else
336 softc->ses_flags |= SES_FLAG_INITIALIZED;
337 }
338
339 out:
340 return (error);
341 }
342
343 static int
344 sesclose(dev_t dev, int flags, int fmt,
345 struct lwp *l)
346 {
347 struct ses_softc *softc;
348 int unit;
349
350 unit = SESUNIT(dev);
351 softc = device_lookup_private(&ses_cd, unit);
352 if (softc == NULL)
353 return (ENXIO);
354
355 scsipi_wait_drain(softc->sc_periph);
356 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
357 softc->ses_flags &= ~SES_FLAG_OPEN;
358 return (0);
359 }
360
361 static int
362 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
363 {
364 ses_encstat tmp;
365 ses_objstat objs;
366 ses_object obj, *uobj;
367 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
368 void *addr;
369 int error, i;
370
371
372 if (arg_addr)
373 addr = *((void **) arg_addr);
374 else
375 addr = NULL;
376
377 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
378
379 /*
380 * Now check to see whether we're initialized or not.
381 */
382 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
383 return (ENODEV);
384 }
385
386 error = 0;
387
388 /*
389 * If this command can change the device's state,
390 * we must have the device open for writing.
391 */
392 switch (cmd) {
393 case SESIOC_GETNOBJ:
394 case SESIOC_GETOBJMAP:
395 case SESIOC_GETENCSTAT:
396 case SESIOC_GETOBJSTAT:
397 break;
398 default:
399 if ((flag & FWRITE) == 0) {
400 return (EBADF);
401 }
402 }
403
404 switch (cmd) {
405 case SESIOC_GETNOBJ:
406 if (addr == NULL)
407 return EINVAL;
408 error = copyout(&ssc->ses_nobjects, addr,
409 sizeof (ssc->ses_nobjects));
410 break;
411
412 case SESIOC_GETOBJMAP:
413 if (addr == NULL)
414 return EINVAL;
415 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
416 obj.obj_id = i;
417 obj.subencid = ssc->ses_objmap[i].subenclosure;
418 obj.object_type = ssc->ses_objmap[i].enctype;
419 error = copyout(&obj, uobj, sizeof (ses_object));
420 if (error) {
421 break;
422 }
423 }
424 break;
425
426 case SESIOC_GETENCSTAT:
427 if (addr == NULL)
428 return EINVAL;
429 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 if (error)
431 break;
432 tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 error = copyout(&tmp, addr, sizeof (ses_encstat));
434 ssc->ses_encstat = tmp;
435 break;
436
437 case SESIOC_SETENCSTAT:
438 if (addr == NULL)
439 return EINVAL;
440 error = copyin(addr, &tmp, sizeof (ses_encstat));
441 if (error)
442 break;
443 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
444 break;
445
446 case SESIOC_GETOBJSTAT:
447 if (addr == NULL)
448 return EINVAL;
449 error = copyin(addr, &objs, sizeof (ses_objstat));
450 if (error)
451 break;
452 if (objs.obj_id >= ssc->ses_nobjects) {
453 error = EINVAL;
454 break;
455 }
456 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
457 if (error)
458 break;
459 error = copyout(&objs, addr, sizeof (ses_objstat));
460 /*
461 * Always (for now) invalidate entry.
462 */
463 ssc->ses_objmap[objs.obj_id].svalid = 0;
464 break;
465
466 case SESIOC_SETOBJSTAT:
467 if (addr == NULL)
468 return EINVAL;
469 error = copyin(addr, &objs, sizeof (ses_objstat));
470 if (error)
471 break;
472
473 if (objs.obj_id >= ssc->ses_nobjects) {
474 error = EINVAL;
475 break;
476 }
477 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
478
479 /*
480 * Always (for now) invalidate entry.
481 */
482 ssc->ses_objmap[objs.obj_id].svalid = 0;
483 break;
484
485 case SESIOC_INIT:
486
487 error = (*ssc->ses_vec.init_enc)(ssc);
488 break;
489
490 default:
491 error = scsipi_do_ioctl(ssc->sc_periph,
492 dev, cmd, arg_addr, flag, l);
493 break;
494 }
495 return (error);
496 }
497
498 static int
499 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
500 {
501 struct scsipi_generic sgen;
502 int dl, flg, error;
503
504 if (dptr) {
505 if ((dl = *dlenp) < 0) {
506 dl = -dl;
507 flg = XS_CTL_DATA_OUT;
508 } else {
509 flg = XS_CTL_DATA_IN;
510 }
511 } else {
512 dl = 0;
513 flg = 0;
514 }
515
516 if (cdbl > sizeof (struct scsipi_generic)) {
517 cdbl = sizeof (struct scsipi_generic);
518 }
519 memcpy(&sgen, cdb, cdbl);
520 #ifndef SCSIDEBUG
521 flg |= XS_CTL_SILENT;
522 #endif
523 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
524 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
525
526 if (error == 0 && dptr)
527 *dlenp = 0;
528
529 return (error);
530 }
531
532 static void
533 ses_log(struct ses_softc *ssc, const char *fmt, ...)
534 {
535 va_list ap;
536
537 printf("%s: ", device_xname(ssc->sc_dev));
538 va_start(ap, fmt);
539 vprintf(fmt, ap);
540 va_end(ap);
541 }
542
543 /*
544 * The code after this point runs on many platforms,
545 * so forgive the slightly awkward and nonconforming
546 * appearance.
547 */
548
549 /*
550 * Is this a device that supports enclosure services?
551 *
552 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
553 * an SES device. If it happens to be an old UNISYS SEN device, we can
554 * handle that too.
555 */
556
557 #define SAFTE_START 44
558 #define SAFTE_END 50
559 #define SAFTE_LEN SAFTE_END-SAFTE_START
560
561 static enctyp
562 ses_type(struct scsipi_inquiry_data *inqp)
563 {
564 size_t given_len = inqp->additional_length + 4;
565
566 if (given_len < 8+SEN_ID_LEN)
567 return (SES_NONE);
568
569 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
570 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
571 return (SES_SEN);
572 } else if ((inqp->version & SID_ANSII) > 2) {
573 return (SES_SES);
574 } else {
575 return (SES_SES_SCSI2);
576 }
577 return (SES_NONE);
578 }
579
580 #ifdef SES_ENABLE_PASSTHROUGH
581 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
582 /*
583 * PassThrough Device.
584 */
585 return (SES_SES_PASSTHROUGH);
586 }
587 #endif
588
589 /*
590 * The comparison is short for a reason-
591 * some vendors were chopping it short.
592 */
593
594 if (given_len < SAFTE_END - 2) {
595 return (SES_NONE);
596 }
597
598 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
599 SAFTE_LEN - 2) == 0) {
600 return (SES_SAFT);
601 }
602
603 return (SES_NONE);
604 }
605
606 /*
607 * SES Native Type Device Support
608 */
609
610 /*
611 * SES Diagnostic Page Codes
612 */
613
614 typedef enum {
615 SesConfigPage = 0x1,
616 SesControlPage,
617 #define SesStatusPage SesControlPage
618 SesHelpTxt,
619 SesStringOut,
620 #define SesStringIn SesStringOut
621 SesThresholdOut,
622 #define SesThresholdIn SesThresholdOut
623 SesArrayControl,
624 #define SesArrayStatus SesArrayControl
625 SesElementDescriptor,
626 SesShortStatus
627 } SesDiagPageCodes;
628
629 /*
630 * minimal amounts
631 */
632
633 /*
634 * Minimum amount of data, starting from byte 0, to have
635 * the config header.
636 */
637 #define SES_CFGHDR_MINLEN 12
638
639 /*
640 * Minimum amount of data, starting from byte 0, to have
641 * the config header and one enclosure header.
642 */
643 #define SES_ENCHDR_MINLEN 48
644
645 /*
646 * Take this value, subtract it from VEnclen and you know
647 * the length of the vendor unique bytes.
648 */
649 #define SES_ENCHDR_VMIN 36
650
651 /*
652 * SES Data Structures
653 */
654
655 typedef struct {
656 uint32_t GenCode; /* Generation Code */
657 uint8_t Nsubenc; /* Number of Subenclosures */
658 } SesCfgHdr;
659
660 typedef struct {
661 uint8_t Subencid; /* SubEnclosure Identifier */
662 uint8_t Ntypes; /* # of supported types */
663 uint8_t VEnclen; /* Enclosure Descriptor Length */
664 } SesEncHdr;
665
666 typedef struct {
667 uint8_t encWWN[8]; /* XXX- Not Right Yet */
668 uint8_t encVid[8];
669 uint8_t encPid[16];
670 uint8_t encRev[4];
671 uint8_t encVen[1];
672 } SesEncDesc;
673
674 typedef struct {
675 uint8_t enc_type; /* type of element */
676 uint8_t enc_maxelt; /* maximum supported */
677 uint8_t enc_subenc; /* in SubEnc # N */
678 uint8_t enc_tlen; /* Type Descriptor Text Length */
679 } SesThdr;
680
681 typedef struct {
682 uint8_t comstatus;
683 uint8_t comstat[3];
684 } SesComStat;
685
686 struct typidx {
687 int ses_tidx;
688 int ses_oidx;
689 };
690
691 struct sscfg {
692 uint8_t ses_ntypes; /* total number of types supported */
693
694 /*
695 * We need to keep a type index as well as an
696 * object index for each object in an enclosure.
697 */
698 struct typidx *ses_typidx;
699
700 /*
701 * We also need to keep track of the number of elements
702 * per type of element. This is needed later so that we
703 * can find precisely in the returned status data the
704 * status for the Nth element of the Kth type.
705 */
706 uint8_t * ses_eltmap;
707 };
708
709
710 /*
711 * (de)canonicalization defines
712 */
713 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
714 #define sbit(x, bit) (((uint32_t)(x)) << bit)
715 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
716
717 #define sset16(outp, idx, sval) \
718 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
719 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
720
721
722 #define sset24(outp, idx, sval) \
723 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
724 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
725 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726
727
728 #define sset32(outp, idx, sval) \
729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
730 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
733
734 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
735 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
736 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
737 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
738
739 #define sget16(inp, idx, lval) \
740 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
741 (((uint8_t *)(inp))[idx+1]), idx += 2
742
743 #define gget16(inp, idx, lval) \
744 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
745 (((uint8_t *)(inp))[idx+1])
746
747 #define sget24(inp, idx, lval) \
748 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
749 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
750 (((uint8_t *)(inp))[idx+2]), idx += 3
751
752 #define gget24(inp, idx, lval) \
753 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
754 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
755 (((uint8_t *)(inp))[idx+2])
756
757 #define sget32(inp, idx, lval) \
758 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
759 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
760 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
761 (((uint8_t *)(inp))[idx+3]), idx += 4
762
763 #define gget32(inp, idx, lval) \
764 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
765 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
766 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
767 (((uint8_t *)(inp))[idx+3])
768
769 #define SCSZ 0x2000
770 #define CFLEN (256 + SES_ENCHDR_MINLEN)
771
772 /*
773 * Routines specific && private to SES only
774 */
775
776 static int ses_getconfig(ses_softc_t *);
777 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
778 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
779 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
780 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
781 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
782 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
783 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
784
785 static int
786 ses_softc_init(ses_softc_t *ssc, int doinit)
787 {
788 if (doinit == 0) {
789 struct sscfg *cc;
790 if (ssc->ses_nobjects) {
791 SES_FREE(ssc->ses_objmap,
792 ssc->ses_nobjects * sizeof (encobj));
793 ssc->ses_objmap = NULL;
794 }
795 if ((cc = ssc->ses_private) != NULL) {
796 if (cc->ses_eltmap && cc->ses_ntypes) {
797 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
798 cc->ses_eltmap = NULL;
799 cc->ses_ntypes = 0;
800 }
801 if (cc->ses_typidx && ssc->ses_nobjects) {
802 SES_FREE(cc->ses_typidx,
803 ssc->ses_nobjects * sizeof (struct typidx));
804 cc->ses_typidx = NULL;
805 }
806 SES_FREE(cc, sizeof (struct sscfg));
807 ssc->ses_private = NULL;
808 }
809 ssc->ses_nobjects = 0;
810 return (0);
811 }
812 if (ssc->ses_private == NULL) {
813 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
814 }
815 if (ssc->ses_private == NULL) {
816 return (ENOMEM);
817 }
818 ssc->ses_nobjects = 0;
819 ssc->ses_encstat = 0;
820 return (ses_getconfig(ssc));
821 }
822
823 static int
824 ses_detach(device_t self, int flags)
825 {
826 struct ses_softc *ssc = device_private(self);
827 struct sscfg *cc = ssc->ses_private;
828
829 if (ssc->ses_objmap) {
830 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
831 }
832 if (cc != NULL) {
833 if (cc->ses_typidx) {
834 SES_FREE(cc->ses_typidx,
835 (nobj * sizeof (struct typidx)));
836 }
837 if (cc->ses_eltmap) {
838 SES_FREE(cc->ses_eltmap, ntype);
839 }
840 SES_FREE(cc, sizeof (struct sscfg));
841 }
842
843 return 0;
844 }
845
846 static int
847 ses_init_enc(ses_softc_t *ssc)
848 {
849 return (0);
850 }
851
852 static int
853 ses_get_encstat(ses_softc_t *ssc, int slpflag)
854 {
855 SesComStat ComStat;
856 int status;
857
858 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
859 return (status);
860 }
861 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
862 return (0);
863 }
864
865 static int
866 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
867 {
868 SesComStat ComStat;
869 int status;
870
871 ComStat.comstatus = encstat & 0xf;
872 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
873 return (status);
874 }
875 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
876 return (0);
877 }
878
879 static int
880 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
881 {
882 int i = (int)obp->obj_id;
883
884 if (ssc->ses_objmap[i].svalid == 0) {
885 SesComStat ComStat;
886 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
887 if (err)
888 return (err);
889 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
890 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
891 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
892 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
893 ssc->ses_objmap[i].svalid = 1;
894 }
895 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
896 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
897 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
898 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
899 return (0);
900 }
901
902 static int
903 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
904 {
905 SesComStat ComStat;
906 int err;
907 /*
908 * If this is clear, we don't do diddly.
909 */
910 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
911 return (0);
912 }
913 ComStat.comstatus = obp->cstat[0];
914 ComStat.comstat[0] = obp->cstat[1];
915 ComStat.comstat[1] = obp->cstat[2];
916 ComStat.comstat[2] = obp->cstat[3];
917 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
918 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
919 return (err);
920 }
921
922 static int
923 ses_getconfig(ses_softc_t *ssc)
924 {
925 struct sscfg *cc;
926 SesCfgHdr cf;
927 SesEncHdr hd;
928 SesEncDesc *cdp;
929 SesThdr thdr;
930 int err, amt, i, nobj, ntype, maxima;
931 char storage[CFLEN], *sdata;
932 static char cdb[6] = {
933 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
934 };
935
936 cc = ssc->ses_private;
937 if (cc == NULL) {
938 return (ENXIO);
939 }
940
941 sdata = SES_MALLOC(SCSZ);
942 if (sdata == NULL)
943 return (ENOMEM);
944
945 amt = SCSZ;
946 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
947 if (err) {
948 SES_FREE(sdata, SCSZ);
949 return (err);
950 }
951 amt = SCSZ - amt;
952
953 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
954 SES_LOG(ssc, "Unable to parse SES Config Header\n");
955 SES_FREE(sdata, SCSZ);
956 return (EIO);
957 }
958 if (amt < SES_ENCHDR_MINLEN) {
959 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
960 SES_FREE(sdata, SCSZ);
961 return (EIO);
962 }
963
964 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
965
966 /*
967 * Now waltz through all the subenclosures toting up the
968 * number of types available in each. For this, we only
969 * really need the enclosure header. However, we get the
970 * enclosure descriptor for debug purposes, as well
971 * as self-consistency checking purposes.
972 */
973
974 maxima = cf.Nsubenc + 1;
975 cdp = (SesEncDesc *) storage;
976 for (ntype = i = 0; i < maxima; i++) {
977 MEMZERO((void *)cdp, sizeof (*cdp));
978 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
979 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
980 SES_FREE(sdata, SCSZ);
981 return (EIO);
982 }
983 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
984 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
985
986 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
987 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
988 SES_FREE(sdata, SCSZ);
989 return (EIO);
990 }
991 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
992 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
993 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
994 cdp->encWWN[6], cdp->encWWN[7]);
995 ntype += hd.Ntypes;
996 }
997
998 /*
999 * Now waltz through all the types that are available, getting
1000 * the type header so we can start adding up the number of
1001 * objects available.
1002 */
1003 for (nobj = i = 0; i < ntype; i++) {
1004 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1005 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1006 SES_FREE(sdata, SCSZ);
1007 return (EIO);
1008 }
1009 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1010 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1011 thdr.enc_subenc, thdr.enc_tlen);
1012 nobj += thdr.enc_maxelt;
1013 }
1014
1015
1016 /*
1017 * Now allocate the object array and type map.
1018 */
1019
1020 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1021 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1022 cc->ses_eltmap = SES_MALLOC(ntype);
1023
1024 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1025 cc->ses_eltmap == NULL) {
1026 if (ssc->ses_objmap) {
1027 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1028 ssc->ses_objmap = NULL;
1029 }
1030 if (cc->ses_typidx) {
1031 SES_FREE(cc->ses_typidx,
1032 (nobj * sizeof (struct typidx)));
1033 cc->ses_typidx = NULL;
1034 }
1035 if (cc->ses_eltmap) {
1036 SES_FREE(cc->ses_eltmap, ntype);
1037 cc->ses_eltmap = NULL;
1038 }
1039 SES_FREE(sdata, SCSZ);
1040 return (ENOMEM);
1041 }
1042 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1043 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1044 MEMZERO(cc->ses_eltmap, ntype);
1045 cc->ses_ntypes = (uint8_t) ntype;
1046 ssc->ses_nobjects = nobj;
1047
1048 /*
1049 * Now waltz through the # of types again to fill in the types
1050 * (and subenclosure ids) of the allocated objects.
1051 */
1052 nobj = 0;
1053 for (i = 0; i < ntype; i++) {
1054 int j;
1055 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1056 continue;
1057 }
1058 cc->ses_eltmap[i] = thdr.enc_maxelt;
1059 for (j = 0; j < thdr.enc_maxelt; j++) {
1060 cc->ses_typidx[nobj].ses_tidx = i;
1061 cc->ses_typidx[nobj].ses_oidx = j;
1062 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1063 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1064 }
1065 }
1066 SES_FREE(sdata, SCSZ);
1067 return (0);
1068 }
1069
1070 static int
1071 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1072 int in)
1073 {
1074 struct sscfg *cc;
1075 int err, amt, bufsiz, tidx, oidx;
1076 char cdb[6], *sdata;
1077
1078 cc = ssc->ses_private;
1079 if (cc == NULL) {
1080 return (ENXIO);
1081 }
1082
1083 /*
1084 * If we're just getting overall enclosure status,
1085 * we only need 2 bytes of data storage.
1086 *
1087 * If we're getting anything else, we know how much
1088 * storage we need by noting that starting at offset
1089 * 8 in returned data, all object status bytes are 4
1090 * bytes long, and are stored in chunks of types(M)
1091 * and nth+1 instances of type M.
1092 */
1093 if (objid == -1) {
1094 bufsiz = 2;
1095 } else {
1096 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1097 }
1098 sdata = SES_MALLOC(bufsiz);
1099 if (sdata == NULL)
1100 return (ENOMEM);
1101
1102 cdb[0] = RECEIVE_DIAGNOSTIC;
1103 cdb[1] = 1;
1104 cdb[2] = SesStatusPage;
1105 cdb[3] = bufsiz >> 8;
1106 cdb[4] = bufsiz & 0xff;
1107 cdb[5] = 0;
1108 amt = bufsiz;
1109 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1110 if (err) {
1111 SES_FREE(sdata, bufsiz);
1112 return (err);
1113 }
1114 amt = bufsiz - amt;
1115
1116 if (objid == -1) {
1117 tidx = -1;
1118 oidx = -1;
1119 } else {
1120 tidx = cc->ses_typidx[objid].ses_tidx;
1121 oidx = cc->ses_typidx[objid].ses_oidx;
1122 }
1123 if (in) {
1124 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1125 err = ENODEV;
1126 }
1127 } else {
1128 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1129 err = ENODEV;
1130 } else {
1131 cdb[0] = SEND_DIAGNOSTIC;
1132 cdb[1] = 0x10;
1133 cdb[2] = 0;
1134 cdb[3] = bufsiz >> 8;
1135 cdb[4] = bufsiz & 0xff;
1136 cdb[5] = 0;
1137 amt = -bufsiz;
1138 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1139 }
1140 }
1141 SES_FREE(sdata, bufsiz);
1142 return (0);
1143 }
1144
1145
1146 /*
1147 * Routines to parse returned SES data structures.
1148 * Architecture and compiler independent.
1149 */
1150
1151 static int
1152 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1153 {
1154 if (buflen < SES_CFGHDR_MINLEN) {
1155 return (-1);
1156 }
1157 gget8(buffer, 1, cfp->Nsubenc);
1158 gget32(buffer, 4, cfp->GenCode);
1159 return (0);
1160 }
1161
1162 static int
1163 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1164 {
1165 int s, off = 8;
1166 for (s = 0; s < SubEncId; s++) {
1167 if (off + 3 > amt)
1168 return (-1);
1169 off += buffer[off+3] + 4;
1170 }
1171 if (off + 3 > amt) {
1172 return (-1);
1173 }
1174 gget8(buffer, off+1, chp->Subencid);
1175 gget8(buffer, off+2, chp->Ntypes);
1176 gget8(buffer, off+3, chp->VEnclen);
1177 return (0);
1178 }
1179
1180 static int
1181 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1182 {
1183 int s, e, enclen, off = 8;
1184 for (s = 0; s < SubEncId; s++) {
1185 if (off + 3 > amt)
1186 return (-1);
1187 off += buffer[off+3] + 4;
1188 }
1189 if (off + 3 > amt) {
1190 return (-1);
1191 }
1192 gget8(buffer, off+3, enclen);
1193 off += 4;
1194 if (off >= amt)
1195 return (-1);
1196
1197 e = off + enclen;
1198 if (e > amt) {
1199 e = amt;
1200 }
1201 MEMCPY(cdp, &buffer[off], e - off);
1202 return (0);
1203 }
1204
1205 static int
1206 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1207 {
1208 int s, off = 8;
1209
1210 if (amt < SES_CFGHDR_MINLEN) {
1211 return (-1);
1212 }
1213 for (s = 0; s < buffer[1]; s++) {
1214 if (off + 3 > amt)
1215 return (-1);
1216 off += buffer[off+3] + 4;
1217 }
1218 if (off + 3 > amt) {
1219 return (-1);
1220 }
1221 off += buffer[off+3] + 4 + (nth * 4);
1222 if (amt < (off + 4))
1223 return (-1);
1224
1225 gget8(buffer, off++, thp->enc_type);
1226 gget8(buffer, off++, thp->enc_maxelt);
1227 gget8(buffer, off++, thp->enc_subenc);
1228 gget8(buffer, off, thp->enc_tlen);
1229 return (0);
1230 }
1231
1232 /*
1233 * This function needs a little explanation.
1234 *
1235 * The arguments are:
1236 *
1237 *
1238 * char *b, int amt
1239 *
1240 * These describes the raw input SES status data and length.
1241 *
1242 * uint8_t *ep
1243 *
1244 * This is a map of the number of types for each element type
1245 * in the enclosure.
1246 *
1247 * int elt
1248 *
1249 * This is the element type being sought. If elt is -1,
1250 * then overall enclosure status is being sought.
1251 *
1252 * int elm
1253 *
1254 * This is the ordinal Mth element of type elt being sought.
1255 *
1256 * SesComStat *sp
1257 *
1258 * This is the output area to store the status for
1259 * the Mth element of type Elt.
1260 */
1261
1262 static int
1263 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1264 {
1265 int idx, i;
1266
1267 /*
1268 * If it's overall enclosure status being sought, get that.
1269 * We need at least 2 bytes of status data to get that.
1270 */
1271 if (elt == -1) {
1272 if (amt < 2)
1273 return (-1);
1274 gget8(b, 1, sp->comstatus);
1275 sp->comstat[0] = 0;
1276 sp->comstat[1] = 0;
1277 sp->comstat[2] = 0;
1278 return (0);
1279 }
1280
1281 /*
1282 * Check to make sure that the Mth element is legal for type Elt.
1283 */
1284
1285 if (elm >= ep[elt])
1286 return (-1);
1287
1288 /*
1289 * Starting at offset 8, start skipping over the storage
1290 * for the element types we're not interested in.
1291 */
1292 for (idx = 8, i = 0; i < elt; i++) {
1293 idx += ((ep[i] + 1) * 4);
1294 }
1295
1296 /*
1297 * Skip over Overall status for this element type.
1298 */
1299 idx += 4;
1300
1301 /*
1302 * And skip to the index for the Mth element that we're going for.
1303 */
1304 idx += (4 * elm);
1305
1306 /*
1307 * Make sure we haven't overflowed the buffer.
1308 */
1309 if (idx+4 > amt)
1310 return (-1);
1311
1312 /*
1313 * Retrieve the status.
1314 */
1315 gget8(b, idx++, sp->comstatus);
1316 gget8(b, idx++, sp->comstat[0]);
1317 gget8(b, idx++, sp->comstat[1]);
1318 gget8(b, idx++, sp->comstat[2]);
1319 #if 0
1320 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1321 #endif
1322 return (0);
1323 }
1324
1325 /*
1326 * This is the mirror function to ses_decode, but we set the 'select'
1327 * bit for the object which we're interested in. All other objects,
1328 * after a status fetch, should have that bit off. Hmm. It'd be easy
1329 * enough to ensure this, so we will.
1330 */
1331
1332 static int
1333 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1334 {
1335 int idx, i;
1336
1337 /*
1338 * If it's overall enclosure status being sought, get that.
1339 * We need at least 2 bytes of status data to get that.
1340 */
1341 if (elt == -1) {
1342 if (amt < 2)
1343 return (-1);
1344 i = 0;
1345 sset8(b, i, 0);
1346 sset8(b, i, sp->comstatus & 0xf);
1347 #if 0
1348 PRINTF("set EncStat %x\n", sp->comstatus);
1349 #endif
1350 return (0);
1351 }
1352
1353 /*
1354 * Check to make sure that the Mth element is legal for type Elt.
1355 */
1356
1357 if (elm >= ep[elt])
1358 return (-1);
1359
1360 /*
1361 * Starting at offset 8, start skipping over the storage
1362 * for the element types we're not interested in.
1363 */
1364 for (idx = 8, i = 0; i < elt; i++) {
1365 idx += ((ep[i] + 1) * 4);
1366 }
1367
1368 /*
1369 * Skip over Overall status for this element type.
1370 */
1371 idx += 4;
1372
1373 /*
1374 * And skip to the index for the Mth element that we're going for.
1375 */
1376 idx += (4 * elm);
1377
1378 /*
1379 * Make sure we haven't overflowed the buffer.
1380 */
1381 if (idx+4 > amt)
1382 return (-1);
1383
1384 /*
1385 * Set the status.
1386 */
1387 sset8(b, idx, sp->comstatus);
1388 sset8(b, idx, sp->comstat[0]);
1389 sset8(b, idx, sp->comstat[1]);
1390 sset8(b, idx, sp->comstat[2]);
1391 idx -= 4;
1392
1393 #if 0
1394 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1395 elt, elm, idx, sp->comstatus, sp->comstat[0],
1396 sp->comstat[1], sp->comstat[2]);
1397 #endif
1398
1399 /*
1400 * Now make sure all other 'Select' bits are off.
1401 */
1402 for (i = 8; i < amt; i += 4) {
1403 if (i != idx)
1404 b[i] &= ~0x80;
1405 }
1406 /*
1407 * And make sure the INVOP bit is clear.
1408 */
1409 b[2] &= ~0x10;
1410
1411 return (0);
1412 }
1413
1414 /*
1415 * SAF-TE Type Device Emulation
1416 */
1417
1418 static int safte_getconfig(ses_softc_t *);
1419 static int safte_rdstat(ses_softc_t *, int);
1420 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1421 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1422 static void wrslot_stat(ses_softc_t *, int);
1423 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1424
1425 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1426 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1427 /*
1428 * SAF-TE specific defines- Mandatory ones only...
1429 */
1430
1431 /*
1432 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1433 */
1434 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1435 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1436 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1437
1438 /*
1439 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1440 */
1441 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1442 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1443 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1444 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1445 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1446
1447
1448 #define SAFT_SCRATCH 64
1449 #define NPSEUDO_THERM 16
1450 #define NPSEUDO_ALARM 1
1451 struct scfg {
1452 /*
1453 * Cached Configuration
1454 */
1455 uint8_t Nfans; /* Number of Fans */
1456 uint8_t Npwr; /* Number of Power Supplies */
1457 uint8_t Nslots; /* Number of Device Slots */
1458 uint8_t DoorLock; /* Door Lock Installed */
1459 uint8_t Ntherm; /* Number of Temperature Sensors */
1460 uint8_t Nspkrs; /* Number of Speakers */
1461 uint8_t Nalarm; /* Number of Alarms (at least one) */
1462 /*
1463 * Cached Flag Bytes for Global Status
1464 */
1465 uint8_t flag1;
1466 uint8_t flag2;
1467 /*
1468 * What object index ID is where various slots start.
1469 */
1470 uint8_t pwroff;
1471 uint8_t slotoff;
1472 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1473 };
1474
1475 #define SAFT_FLG1_ALARM 0x1
1476 #define SAFT_FLG1_GLOBFAIL 0x2
1477 #define SAFT_FLG1_GLOBWARN 0x4
1478 #define SAFT_FLG1_ENCPWROFF 0x8
1479 #define SAFT_FLG1_ENCFANFAIL 0x10
1480 #define SAFT_FLG1_ENCPWRFAIL 0x20
1481 #define SAFT_FLG1_ENCDRVFAIL 0x40
1482 #define SAFT_FLG1_ENCDRVWARN 0x80
1483
1484 #define SAFT_FLG2_LOCKDOOR 0x4
1485 #define SAFT_PRIVATE sizeof (struct scfg)
1486
1487 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1488 #define SAFT_BAIL(r, x, k, l) \
1489 if (r >= x) { \
1490 SES_LOG(ssc, safte_2little, x, __LINE__);\
1491 SES_FREE(k, l); \
1492 return (EIO); \
1493 }
1494
1495
1496 static int
1497 safte_softc_init(ses_softc_t *ssc, int doinit)
1498 {
1499 int err, i, r;
1500 struct scfg *cc;
1501
1502 if (doinit == 0) {
1503 if (ssc->ses_nobjects) {
1504 if (ssc->ses_objmap) {
1505 SES_FREE(ssc->ses_objmap,
1506 ssc->ses_nobjects * sizeof (encobj));
1507 ssc->ses_objmap = NULL;
1508 }
1509 ssc->ses_nobjects = 0;
1510 }
1511 if (ssc->ses_private) {
1512 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1513 ssc->ses_private = NULL;
1514 }
1515 return (0);
1516 }
1517
1518 if (ssc->ses_private == NULL) {
1519 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1520 if (ssc->ses_private == NULL) {
1521 return (ENOMEM);
1522 }
1523 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1524 }
1525
1526 ssc->ses_nobjects = 0;
1527 ssc->ses_encstat = 0;
1528
1529 if ((err = safte_getconfig(ssc)) != 0) {
1530 return (err);
1531 }
1532
1533 /*
1534 * The number of objects here, as well as that reported by the
1535 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1536 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1537 */
1538 cc = ssc->ses_private;
1539 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1540 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1541 ssc->ses_objmap = (encobj *)
1542 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1543 if (ssc->ses_objmap == NULL) {
1544 return (ENOMEM);
1545 }
1546 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1547
1548 r = 0;
1549 /*
1550 * Note that this is all arranged for the convenience
1551 * in later fetches of status.
1552 */
1553 for (i = 0; i < cc->Nfans; i++)
1554 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1555 cc->pwroff = (uint8_t) r;
1556 for (i = 0; i < cc->Npwr; i++)
1557 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1558 for (i = 0; i < cc->DoorLock; i++)
1559 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1560 for (i = 0; i < cc->Nspkrs; i++)
1561 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1562 for (i = 0; i < cc->Ntherm; i++)
1563 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1564 for (i = 0; i < NPSEUDO_THERM; i++)
1565 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1566 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1567 cc->slotoff = (uint8_t) r;
1568 for (i = 0; i < cc->Nslots; i++)
1569 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1570 return (0);
1571 }
1572
1573 static int
1574 safte_init_enc(ses_softc_t *ssc)
1575 {
1576 int err, amt;
1577 char *sdata;
1578 static char cdb0[6] = { SEND_DIAGNOSTIC };
1579 static char cdb[10] =
1580 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1581
1582 sdata = SES_MALLOC(SAFT_SCRATCH);
1583 if (sdata == NULL)
1584 return (ENOMEM);
1585
1586 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1587 if (err) {
1588 SES_FREE(sdata, SAFT_SCRATCH);
1589 return (err);
1590 }
1591 sdata[0] = SAFTE_WT_GLOBAL;
1592 MEMZERO(&sdata[1], 15);
1593 amt = -SAFT_SCRATCH;
1594 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1595 SES_FREE(sdata, SAFT_SCRATCH);
1596 return (err);
1597 }
1598
1599 static int
1600 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1601 {
1602 return (safte_rdstat(ssc, slpflg));
1603 }
1604
1605 static int
1606 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1607 {
1608 struct scfg *cc = ssc->ses_private;
1609 if (cc == NULL)
1610 return (0);
1611 /*
1612 * Since SAF-TE devices aren't necessarily sticky in terms
1613 * of state, make our soft copy of enclosure status 'sticky'-
1614 * that is, things set in enclosure status stay set (as implied
1615 * by conditions set in reading object status) until cleared.
1616 */
1617 ssc->ses_encstat &= ~ALL_ENC_STAT;
1618 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1619 ssc->ses_encstat |= ENCI_SVALID;
1620 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1621 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1622 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1623 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1624 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1625 }
1626 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1627 }
1628
1629 static int
1630 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1631 {
1632 int i = (int)obp->obj_id;
1633
1634 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1635 (ssc->ses_objmap[i].svalid) == 0) {
1636 int err = safte_rdstat(ssc, slpflg);
1637 if (err)
1638 return (err);
1639 }
1640 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1641 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1642 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1643 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1644 return (0);
1645 }
1646
1647
1648 static int
1649 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1650 {
1651 int idx, err;
1652 encobj *ep;
1653 struct scfg *cc;
1654
1655
1656 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1657 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1658 obp->cstat[3]);
1659
1660 /*
1661 * If this is clear, we don't do diddly.
1662 */
1663 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1664 return (0);
1665 }
1666
1667 err = 0;
1668 /*
1669 * Check to see if the common bits are set and do them first.
1670 */
1671 if (obp->cstat[0] & ~SESCTL_CSEL) {
1672 err = set_objstat_sel(ssc, obp, slp);
1673 if (err)
1674 return (err);
1675 }
1676
1677 cc = ssc->ses_private;
1678 if (cc == NULL)
1679 return (0);
1680
1681 idx = (int)obp->obj_id;
1682 ep = &ssc->ses_objmap[idx];
1683
1684 switch (ep->enctype) {
1685 case SESTYP_DEVICE:
1686 {
1687 uint8_t slotop = 0;
1688 /*
1689 * XXX: I should probably cache the previous state
1690 * XXX: of SESCTL_DEVOFF so that when it goes from
1691 * XXX: true to false I can then set PREPARE FOR OPERATION
1692 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1693 */
1694 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1695 slotop |= 0x2;
1696 }
1697 if (obp->cstat[2] & SESCTL_RQSID) {
1698 slotop |= 0x4;
1699 }
1700 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1701 slotop, slp);
1702 if (err)
1703 return (err);
1704 if (obp->cstat[3] & SESCTL_RQSFLT) {
1705 ep->priv |= 0x2;
1706 } else {
1707 ep->priv &= ~0x2;
1708 }
1709 if (ep->priv & 0xc6) {
1710 ep->priv &= ~0x1;
1711 } else {
1712 ep->priv |= 0x1; /* no errors */
1713 }
1714 wrslot_stat(ssc, slp);
1715 break;
1716 }
1717 case SESTYP_POWER:
1718 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1719 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1720 } else {
1721 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1722 }
1723 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1724 cc->flag2, 0, slp);
1725 if (err)
1726 return (err);
1727 if (obp->cstat[3] & SESCTL_RQSTON) {
1728 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1729 idx - cc->pwroff, 0, 0, slp);
1730 } else {
1731 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1732 idx - cc->pwroff, 0, 1, slp);
1733 }
1734 break;
1735 case SESTYP_FAN:
1736 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1737 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1738 } else {
1739 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1740 }
1741 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1742 cc->flag2, 0, slp);
1743 if (err)
1744 return (err);
1745 if (obp->cstat[3] & SESCTL_RQSTON) {
1746 uint8_t fsp;
1747 if ((obp->cstat[3] & 0x7) == 7) {
1748 fsp = 4;
1749 } else if ((obp->cstat[3] & 0x7) == 6) {
1750 fsp = 3;
1751 } else if ((obp->cstat[3] & 0x7) == 4) {
1752 fsp = 2;
1753 } else {
1754 fsp = 1;
1755 }
1756 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1757 } else {
1758 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1759 }
1760 break;
1761 case SESTYP_DOORLOCK:
1762 if (obp->cstat[3] & 0x1) {
1763 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1764 } else {
1765 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1766 }
1767 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1768 cc->flag2, 0, slp);
1769 break;
1770 case SESTYP_ALARM:
1771 /*
1772 * On all nonzero but the 'muted' bit, we turn on the alarm,
1773 */
1774 obp->cstat[3] &= ~0xa;
1775 if (obp->cstat[3] & 0x40) {
1776 cc->flag2 &= ~SAFT_FLG1_ALARM;
1777 } else if (obp->cstat[3] != 0) {
1778 cc->flag2 |= SAFT_FLG1_ALARM;
1779 } else {
1780 cc->flag2 &= ~SAFT_FLG1_ALARM;
1781 }
1782 ep->priv = obp->cstat[3];
1783 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1784 cc->flag2, 0, slp);
1785 break;
1786 default:
1787 break;
1788 }
1789 ep->svalid = 0;
1790 return (0);
1791 }
1792
1793 static int
1794 safte_getconfig(ses_softc_t *ssc)
1795 {
1796 struct scfg *cfg;
1797 int err, amt;
1798 char *sdata;
1799 static char cdb[10] =
1800 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1801
1802 cfg = ssc->ses_private;
1803 if (cfg == NULL)
1804 return (ENXIO);
1805
1806 sdata = SES_MALLOC(SAFT_SCRATCH);
1807 if (sdata == NULL)
1808 return (ENOMEM);
1809
1810 amt = SAFT_SCRATCH;
1811 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1812 if (err) {
1813 SES_FREE(sdata, SAFT_SCRATCH);
1814 return (err);
1815 }
1816 amt = SAFT_SCRATCH - amt;
1817 if (amt < 6) {
1818 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1819 SES_FREE(sdata, SAFT_SCRATCH);
1820 return (EIO);
1821 }
1822 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1823 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1824 cfg->Nfans = sdata[0];
1825 cfg->Npwr = sdata[1];
1826 cfg->Nslots = sdata[2];
1827 cfg->DoorLock = sdata[3];
1828 cfg->Ntherm = sdata[4];
1829 cfg->Nspkrs = sdata[5];
1830 cfg->Nalarm = NPSEUDO_ALARM;
1831 SES_FREE(sdata, SAFT_SCRATCH);
1832 return (0);
1833 }
1834
1835 static int
1836 safte_rdstat(ses_softc_t *ssc, int slpflg)
1837 {
1838 int err, oid, r, i, hiwater, nitems, amt;
1839 uint16_t tempflags;
1840 size_t buflen;
1841 uint8_t status, oencstat;
1842 char *sdata, cdb[10];
1843 struct scfg *cc = ssc->ses_private;
1844
1845
1846 /*
1847 * The number of objects overstates things a bit,
1848 * both for the bogus 'thermometer' entries and
1849 * the drive status (which isn't read at the same
1850 * time as the enclosure status), but that's okay.
1851 */
1852 buflen = 4 * cc->Nslots;
1853 if (ssc->ses_nobjects > buflen)
1854 buflen = ssc->ses_nobjects;
1855 sdata = SES_MALLOC(buflen);
1856 if (sdata == NULL)
1857 return (ENOMEM);
1858
1859 cdb[0] = READ_BUFFER;
1860 cdb[1] = 1;
1861 cdb[2] = SAFTE_RD_RDESTS;
1862 cdb[3] = 0;
1863 cdb[4] = 0;
1864 cdb[5] = 0;
1865 cdb[6] = 0;
1866 cdb[7] = (buflen >> 8) & 0xff;
1867 cdb[8] = buflen & 0xff;
1868 cdb[9] = 0;
1869 amt = buflen;
1870 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1871 if (err) {
1872 SES_FREE(sdata, buflen);
1873 return (err);
1874 }
1875 hiwater = buflen - amt;
1876
1877
1878 /*
1879 * invalidate all status bits.
1880 */
1881 for (i = 0; i < ssc->ses_nobjects; i++)
1882 ssc->ses_objmap[i].svalid = 0;
1883 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1884 ssc->ses_encstat = 0;
1885
1886
1887 /*
1888 * Now parse returned buffer.
1889 * If we didn't get enough data back,
1890 * that's considered a fatal error.
1891 */
1892 oid = r = 0;
1893
1894 for (nitems = i = 0; i < cc->Nfans; i++) {
1895 SAFT_BAIL(r, hiwater, sdata, buflen);
1896 /*
1897 * 0 = Fan Operational
1898 * 1 = Fan is malfunctioning
1899 * 2 = Fan is not present
1900 * 0x80 = Unknown or Not Reportable Status
1901 */
1902 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1903 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1904 switch ((int)(uint8_t)sdata[r]) {
1905 case 0:
1906 nitems++;
1907 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1908 /*
1909 * We could get fancier and cache
1910 * fan speeds that we have set, but
1911 * that isn't done now.
1912 */
1913 ssc->ses_objmap[oid].encstat[3] = 7;
1914 break;
1915
1916 case 1:
1917 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1918 /*
1919 * FAIL and FAN STOPPED synthesized
1920 */
1921 ssc->ses_objmap[oid].encstat[3] = 0x40;
1922 /*
1923 * Enclosure marked with CRITICAL error
1924 * if only one fan or no thermometers,
1925 * else the NONCRITICAL error is set.
1926 */
1927 if (cc->Nfans == 1 || cc->Ntherm == 0)
1928 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1929 else
1930 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1931 break;
1932 case 2:
1933 ssc->ses_objmap[oid].encstat[0] =
1934 SES_OBJSTAT_NOTINSTALLED;
1935 ssc->ses_objmap[oid].encstat[3] = 0;
1936 /*
1937 * Enclosure marked with CRITICAL error
1938 * if only one fan or no thermometers,
1939 * else the NONCRITICAL error is set.
1940 */
1941 if (cc->Nfans == 1)
1942 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1943 else
1944 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1945 break;
1946 case 0x80:
1947 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1948 ssc->ses_objmap[oid].encstat[3] = 0;
1949 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1950 break;
1951 default:
1952 ssc->ses_objmap[oid].encstat[0] =
1953 SES_OBJSTAT_UNSUPPORTED;
1954 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1955 sdata[r] & 0xff);
1956 break;
1957 }
1958 ssc->ses_objmap[oid++].svalid = 1;
1959 r++;
1960 }
1961
1962 /*
1963 * No matter how you cut it, no cooling elements when there
1964 * should be some there is critical.
1965 */
1966 if (cc->Nfans && nitems == 0) {
1967 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1968 }
1969
1970
1971 for (i = 0; i < cc->Npwr; i++) {
1972 SAFT_BAIL(r, hiwater, sdata, buflen);
1973 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1974 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1975 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1976 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1977 switch ((uint8_t)sdata[r]) {
1978 case 0x00: /* pws operational and on */
1979 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1980 break;
1981 case 0x01: /* pws operational and off */
1982 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1983 ssc->ses_objmap[oid].encstat[3] = 0x10;
1984 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1985 break;
1986 case 0x10: /* pws is malfunctioning and commanded on */
1987 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1988 ssc->ses_objmap[oid].encstat[3] = 0x61;
1989 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1990 break;
1991
1992 case 0x11: /* pws is malfunctioning and commanded off */
1993 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1994 ssc->ses_objmap[oid].encstat[3] = 0x51;
1995 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1996 break;
1997 case 0x20: /* pws is not present */
1998 ssc->ses_objmap[oid].encstat[0] =
1999 SES_OBJSTAT_NOTINSTALLED;
2000 ssc->ses_objmap[oid].encstat[3] = 0;
2001 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2002 break;
2003 case 0x21: /* pws is present */
2004 /*
2005 * This is for enclosures that cannot tell whether the
2006 * device is on or malfunctioning, but know that it is
2007 * present. Just fall through.
2008 */
2009 /* FALLTHROUGH */
2010 case 0x80: /* Unknown or Not Reportable Status */
2011 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2012 ssc->ses_objmap[oid].encstat[3] = 0;
2013 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2014 break;
2015 default:
2016 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2017 i, sdata[r] & 0xff);
2018 break;
2019 }
2020 ssc->ses_objmap[oid++].svalid = 1;
2021 r++;
2022 }
2023
2024 /*
2025 * Skip over Slot SCSI IDs
2026 */
2027 r += cc->Nslots;
2028
2029 /*
2030 * We always have doorlock status, no matter what,
2031 * but we only save the status if we have one.
2032 */
2033 SAFT_BAIL(r, hiwater, sdata, buflen);
2034 if (cc->DoorLock) {
2035 /*
2036 * 0 = Door Locked
2037 * 1 = Door Unlocked, or no Lock Installed
2038 * 0x80 = Unknown or Not Reportable Status
2039 */
2040 ssc->ses_objmap[oid].encstat[1] = 0;
2041 ssc->ses_objmap[oid].encstat[2] = 0;
2042 switch ((uint8_t)sdata[r]) {
2043 case 0:
2044 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2045 ssc->ses_objmap[oid].encstat[3] = 0;
2046 break;
2047 case 1:
2048 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2049 ssc->ses_objmap[oid].encstat[3] = 1;
2050 break;
2051 case 0x80:
2052 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2053 ssc->ses_objmap[oid].encstat[3] = 0;
2054 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2055 break;
2056 default:
2057 ssc->ses_objmap[oid].encstat[0] =
2058 SES_OBJSTAT_UNSUPPORTED;
2059 SES_LOG(ssc, "unknown lock status 0x%x\n",
2060 sdata[r] & 0xff);
2061 break;
2062 }
2063 ssc->ses_objmap[oid++].svalid = 1;
2064 }
2065 r++;
2066
2067 /*
2068 * We always have speaker status, no matter what,
2069 * but we only save the status if we have one.
2070 */
2071 SAFT_BAIL(r, hiwater, sdata, buflen);
2072 if (cc->Nspkrs) {
2073 ssc->ses_objmap[oid].encstat[1] = 0;
2074 ssc->ses_objmap[oid].encstat[2] = 0;
2075 if (sdata[r] == 1) {
2076 /*
2077 * We need to cache tone urgency indicators.
2078 * Someday.
2079 */
2080 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2081 ssc->ses_objmap[oid].encstat[3] = 0x8;
2082 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2083 } else if (sdata[r] == 0) {
2084 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2085 ssc->ses_objmap[oid].encstat[3] = 0;
2086 } else {
2087 ssc->ses_objmap[oid].encstat[0] =
2088 SES_OBJSTAT_UNSUPPORTED;
2089 ssc->ses_objmap[oid].encstat[3] = 0;
2090 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2091 sdata[r] & 0xff);
2092 }
2093 ssc->ses_objmap[oid++].svalid = 1;
2094 }
2095 r++;
2096
2097 for (i = 0; i < cc->Ntherm; i++) {
2098 SAFT_BAIL(r, hiwater, sdata, buflen);
2099 /*
2100 * Status is a range from -10 to 245 deg Celsius,
2101 * which we need to normalize to -20 to -245 according
2102 * to the latest SCSI spec, which makes little
2103 * sense since this would overflow an 8bit value.
2104 * Well, still, the base normalization is -20,
2105 * not -10, so we have to adjust.
2106 *
2107 * So what's over and under temperature?
2108 * Hmm- we'll state that 'normal' operating
2109 * is 10 to 40 deg Celsius.
2110 */
2111
2112 /*
2113 * Actually.... All of the units that people out in the world
2114 * seem to have do not come even close to setting a value that
2115 * complies with this spec.
2116 *
2117 * The closest explanation I could find was in an
2118 * LSI-Logic manual, which seemed to indicate that
2119 * this value would be set by whatever the I2C code
2120 * would interpolate from the output of an LM75
2121 * temperature sensor.
2122 *
2123 * This means that it is impossible to use the actual
2124 * numeric value to predict anything. But we don't want
2125 * to lose the value. So, we'll propagate the *uncorrected*
2126 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2127 * temperature flags for warnings.
2128 */
2129 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2130 ssc->ses_objmap[oid].encstat[1] = 0;
2131 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2132 ssc->ses_objmap[oid].encstat[3] = 0;
2133 ssc->ses_objmap[oid++].svalid = 1;
2134 r++;
2135 }
2136
2137 /*
2138 * Now, for "pseudo" thermometers, we have two bytes
2139 * of information in enclosure status- 16 bits. Actually,
2140 * the MSB is a single TEMP ALERT flag indicating whether
2141 * any other bits are set, but, thanks to fuzzy thinking,
2142 * in the SAF-TE spec, this can also be set even if no
2143 * other bits are set, thus making this really another
2144 * binary temperature sensor.
2145 */
2146
2147 SAFT_BAIL(r, hiwater, sdata, buflen);
2148 tempflags = sdata[r++];
2149 SAFT_BAIL(r, hiwater, sdata, buflen);
2150 tempflags |= (tempflags << 8) | sdata[r++];
2151
2152 for (i = 0; i < NPSEUDO_THERM; i++) {
2153 ssc->ses_objmap[oid].encstat[1] = 0;
2154 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2155 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2156 ssc->ses_objmap[4].encstat[2] = 0xff;
2157 /*
2158 * Set 'over temperature' failure.
2159 */
2160 ssc->ses_objmap[oid].encstat[3] = 8;
2161 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2162 } else {
2163 /*
2164 * We used to say 'not available' and synthesize a
2165 * nominal 30 deg (C)- that was wrong. Actually,
2166 * Just say 'OK', and use the reserved value of
2167 * zero.
2168 */
2169 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2170 ssc->ses_objmap[oid].encstat[2] = 0;
2171 ssc->ses_objmap[oid].encstat[3] = 0;
2172 }
2173 ssc->ses_objmap[oid++].svalid = 1;
2174 }
2175
2176 /*
2177 * Get alarm status.
2178 */
2179 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2180 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2181 ssc->ses_objmap[oid++].svalid = 1;
2182
2183 /*
2184 * Now get drive slot status
2185 */
2186 cdb[2] = SAFTE_RD_RDDSTS;
2187 amt = buflen;
2188 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2189 if (err) {
2190 SES_FREE(sdata, buflen);
2191 return (err);
2192 }
2193 hiwater = buflen - amt;
2194 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2195 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2196 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2197 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2198 ssc->ses_objmap[oid].encstat[2] = 0;
2199 ssc->ses_objmap[oid].encstat[3] = 0;
2200 status = sdata[r+3];
2201 if ((status & 0x1) == 0) { /* no device */
2202 ssc->ses_objmap[oid].encstat[0] =
2203 SES_OBJSTAT_NOTINSTALLED;
2204 } else {
2205 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2206 }
2207 if (status & 0x2) {
2208 ssc->ses_objmap[oid].encstat[2] = 0x8;
2209 }
2210 if ((status & 0x4) == 0) {
2211 ssc->ses_objmap[oid].encstat[3] = 0x10;
2212 }
2213 ssc->ses_objmap[oid++].svalid = 1;
2214 }
2215 /* see comment below about sticky enclosure status */
2216 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2217 SES_FREE(sdata, buflen);
2218 return (0);
2219 }
2220
2221 static int
2222 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2223 {
2224 int idx;
2225 encobj *ep;
2226 struct scfg *cc = ssc->ses_private;
2227
2228 if (cc == NULL)
2229 return (0);
2230
2231 idx = (int)obp->obj_id;
2232 ep = &ssc->ses_objmap[idx];
2233
2234 switch (ep->enctype) {
2235 case SESTYP_DEVICE:
2236 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2237 ep->priv |= 0x40;
2238 }
2239 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2240 if (obp->cstat[0] & SESCTL_DISABLE) {
2241 ep->priv |= 0x80;
2242 /*
2243 * Hmm. Try to set the 'No Drive' flag.
2244 * Maybe that will count as a 'disable'.
2245 */
2246 }
2247 if (ep->priv & 0xc6) {
2248 ep->priv &= ~0x1;
2249 } else {
2250 ep->priv |= 0x1; /* no errors */
2251 }
2252 wrslot_stat(ssc, slp);
2253 break;
2254 case SESTYP_POWER:
2255 /*
2256 * Okay- the only one that makes sense here is to
2257 * do the 'disable' for a power supply.
2258 */
2259 if (obp->cstat[0] & SESCTL_DISABLE) {
2260 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2261 idx - cc->pwroff, 0, 0, slp);
2262 }
2263 break;
2264 case SESTYP_FAN:
2265 /*
2266 * Okay- the only one that makes sense here is to
2267 * set fan speed to zero on disable.
2268 */
2269 if (obp->cstat[0] & SESCTL_DISABLE) {
2270 /* remember- fans are the first items, so idx works */
2271 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2272 }
2273 break;
2274 case SESTYP_DOORLOCK:
2275 /*
2276 * Well, we can 'disable' the lock.
2277 */
2278 if (obp->cstat[0] & SESCTL_DISABLE) {
2279 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2280 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2281 cc->flag2, 0, slp);
2282 }
2283 break;
2284 case SESTYP_ALARM:
2285 /*
2286 * Well, we can 'disable' the alarm.
2287 */
2288 if (obp->cstat[0] & SESCTL_DISABLE) {
2289 cc->flag2 &= ~SAFT_FLG1_ALARM;
2290 ep->priv |= 0x40; /* Muted */
2291 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2292 cc->flag2, 0, slp);
2293 }
2294 break;
2295 default:
2296 break;
2297 }
2298 ep->svalid = 0;
2299 return (0);
2300 }
2301
2302 /*
2303 * This function handles all of the 16 byte WRITE BUFFER commands.
2304 */
2305 static int
2306 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2307 uint8_t b3, int slp)
2308 {
2309 int err, amt;
2310 char *sdata;
2311 struct scfg *cc = ssc->ses_private;
2312 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2313
2314 if (cc == NULL)
2315 return (0);
2316
2317 sdata = SES_MALLOC(16);
2318 if (sdata == NULL)
2319 return (ENOMEM);
2320
2321 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2322
2323 sdata[0] = op;
2324 sdata[1] = b1;
2325 sdata[2] = b2;
2326 sdata[3] = b3;
2327 MEMZERO(&sdata[4], 12);
2328 amt = -16;
2329 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2330 SES_FREE(sdata, 16);
2331 return (err);
2332 }
2333
2334 /*
2335 * This function updates the status byte for the device slot described.
2336 *
2337 * Since this is an optional SAF-TE command, there's no point in
2338 * returning an error.
2339 */
2340 static void
2341 wrslot_stat(ses_softc_t *ssc, int slp)
2342 {
2343 int i, amt;
2344 encobj *ep;
2345 char cdb[10], *sdata;
2346 struct scfg *cc = ssc->ses_private;
2347
2348 if (cc == NULL)
2349 return;
2350
2351 SES_VLOG(ssc, "saf_wrslot\n");
2352 cdb[0] = WRITE_BUFFER;
2353 cdb[1] = 1;
2354 cdb[2] = 0;
2355 cdb[3] = 0;
2356 cdb[4] = 0;
2357 cdb[5] = 0;
2358 cdb[6] = 0;
2359 cdb[7] = 0;
2360 cdb[8] = cc->Nslots * 3 + 1;
2361 cdb[9] = 0;
2362
2363 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2364 if (sdata == NULL)
2365 return;
2366 MEMZERO(sdata, cc->Nslots * 3 + 1);
2367
2368 sdata[0] = SAFTE_WT_DSTAT;
2369 for (i = 0; i < cc->Nslots; i++) {
2370 ep = &ssc->ses_objmap[cc->slotoff + i];
2371 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2372 sdata[1 + (3 * i)] = ep->priv & 0xff;
2373 }
2374 amt = -(cc->Nslots * 3 + 1);
2375 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2376 SES_FREE(sdata, cc->Nslots * 3 + 1);
2377 }
2378
2379 /*
2380 * This function issues the "PERFORM SLOT OPERATION" command.
2381 */
2382 static int
2383 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2384 {
2385 int err, amt;
2386 char *sdata;
2387 struct scfg *cc = ssc->ses_private;
2388 static char cdb[10] =
2389 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2390
2391 if (cc == NULL)
2392 return (0);
2393
2394 sdata = SES_MALLOC(SAFT_SCRATCH);
2395 if (sdata == NULL)
2396 return (ENOMEM);
2397 MEMZERO(sdata, SAFT_SCRATCH);
2398
2399 sdata[0] = SAFTE_WT_SLTOP;
2400 sdata[1] = slot;
2401 sdata[2] = opflag;
2402 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2403 amt = -SAFT_SCRATCH;
2404 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2405 SES_FREE(sdata, SAFT_SCRATCH);
2406 return (err);
2407 }
2408