ses.c revision 1.48 1 /* $NetBSD: ses.c,v 1.48 2015/08/24 23:13:15 pooka Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.48 2015/08/24 23:13:15 pooka Exp $");
30
31 #ifdef _KERNEL_OPT
32 #include "opt_scsi.h"
33 #endif
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/ioctl.h>
41 #include <sys/scsiio.h>
42 #include <sys/buf.h>
43 #include <sys/uio.h>
44 #include <sys/malloc.h>
45 #include <sys/errno.h>
46 #include <sys/device.h>
47 #include <sys/disklabel.h>
48 #include <sys/disk.h>
49 #include <sys/proc.h>
50 #include <sys/conf.h>
51 #include <sys/vnode.h>
52
53 #include <dev/scsipi/scsipi_all.h>
54 #include <dev/scsipi/scsipi_disk.h>
55 #include <dev/scsipi/scsi_all.h>
56 #include <dev/scsipi/scsi_disk.h>
57 #include <dev/scsipi/scsipiconf.h>
58 #include <dev/scsipi/scsipi_base.h>
59 #include <dev/scsipi/ses.h>
60
61 /*
62 * Platform Independent Driver Internal Definitions for SES devices.
63 */
64 typedef enum {
65 SES_NONE,
66 SES_SES_SCSI2,
67 SES_SES,
68 SES_SES_PASSTHROUGH,
69 SES_SEN,
70 SES_SAFT
71 } enctyp;
72
73 struct ses_softc;
74 typedef struct ses_softc ses_softc_t;
75 typedef struct {
76 int (*softc_init)(ses_softc_t *, int);
77 int (*init_enc)(ses_softc_t *);
78 int (*get_encstat)(ses_softc_t *, int);
79 int (*set_encstat)(ses_softc_t *, ses_encstat, int);
80 int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
81 int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
82 } encvec;
83
84 #define ENCI_SVALID 0x80
85
86 typedef struct {
87 uint32_t
88 enctype : 8, /* enclosure type */
89 subenclosure : 8, /* subenclosure id */
90 svalid : 1, /* enclosure information valid */
91 priv : 15; /* private data, per object */
92 uint8_t encstat[4]; /* state && stats */
93 } encobj;
94
95 #define SEN_ID "UNISYS SUN_SEN"
96 #define SEN_ID_LEN 24
97
98 static enctyp ses_type(struct scsipi_inquiry_data *);
99
100
101 /* Forward reference to Enclosure Functions */
102 static int ses_softc_init(ses_softc_t *, int);
103 static int ses_init_enc(ses_softc_t *);
104 static int ses_get_encstat(ses_softc_t *, int);
105 static int ses_set_encstat(ses_softc_t *, uint8_t, int);
106 static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
107 static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
108
109 static int safte_softc_init(ses_softc_t *, int);
110 static int safte_init_enc(ses_softc_t *);
111 static int safte_get_encstat(ses_softc_t *, int);
112 static int safte_set_encstat(ses_softc_t *, uint8_t, int);
113 static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
114 static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
115
116 /*
117 * Platform implementation defines/functions for SES internal kernel stuff
118 */
119
120 #define STRNCMP strncmp
121 #define PRINTF printf
122 #define SES_LOG ses_log
123 #if defined(DEBUG) || defined(SCSIDEBUG)
124 #define SES_VLOG ses_log
125 #else
126 #define SES_VLOG if (0) ses_log
127 #endif
128 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
129 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
130 #define MEMZERO(dest, amt) memset(dest, 0, amt)
131 #define MEMCPY(dest, src, amt) memcpy(dest, src, amt)
132 #define RECEIVE_DIAGNOSTIC 0x1c
133 #define SEND_DIAGNOSTIC 0x1d
134 #define WRITE_BUFFER 0x3b
135 #define READ_BUFFER 0x3c
136
137 static dev_type_open(sesopen);
138 static dev_type_close(sesclose);
139 static dev_type_ioctl(sesioctl);
140
141 const struct cdevsw ses_cdevsw = {
142 .d_open = sesopen,
143 .d_close = sesclose,
144 .d_read = noread,
145 .d_write = nowrite,
146 .d_ioctl = sesioctl,
147 .d_stop = nostop,
148 .d_tty = notty,
149 .d_poll = nopoll,
150 .d_mmap = nommap,
151 .d_kqfilter = nokqfilter,
152 .d_discard = nodiscard,
153 .d_flag = D_OTHER
154 };
155
156 static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
157 static void ses_log(struct ses_softc *, const char *, ...)
158 __attribute__((__format__(__printf__, 2, 3)));
159
160 /*
161 * General NetBSD kernel stuff.
162 */
163
164 struct ses_softc {
165 device_t sc_dev;
166 struct scsipi_periph *sc_periph;
167 enctyp ses_type; /* type of enclosure */
168 encvec ses_vec; /* vector to handlers */
169 void * ses_private; /* per-type private data */
170 encobj * ses_objmap; /* objects */
171 u_int32_t ses_nobjects; /* number of objects */
172 ses_encstat ses_encstat; /* overall status */
173 u_int8_t ses_flags;
174 };
175 #define SES_FLAG_INVALID 0x01
176 #define SES_FLAG_OPEN 0x02
177 #define SES_FLAG_INITIALIZED 0x04
178
179 #define SESUNIT(x) (minor((x)))
180
181 static int ses_match(device_t, cfdata_t, void *);
182 static void ses_attach(device_t, device_t, void *);
183 static int ses_detach(device_t, int);
184 static enctyp ses_device_type(struct scsipibus_attach_args *);
185
186 CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
187 ses_match, ses_attach, ses_detach, NULL);
188
189 extern struct cfdriver ses_cd;
190
191 static const struct scsipi_periphsw ses_switch = {
192 NULL,
193 NULL,
194 NULL,
195 NULL
196 };
197
198 static int
199 ses_match(device_t parent, cfdata_t match, void *aux)
200 {
201 struct scsipibus_attach_args *sa = aux;
202
203 switch (ses_device_type(sa)) {
204 case SES_SES:
205 case SES_SES_SCSI2:
206 case SES_SEN:
207 case SES_SAFT:
208 case SES_SES_PASSTHROUGH:
209 /*
210 * For these devices, it's a perfect match.
211 */
212 return (24);
213 default:
214 return (0);
215 }
216 }
217
218
219 /*
220 * Complete the attachment.
221 *
222 * We have to repeat the rerun of INQUIRY data as above because
223 * it's not until the return from the match routine that we have
224 * the softc available to set stuff in.
225 */
226 static void
227 ses_attach(device_t parent, device_t self, void *aux)
228 {
229 const char *tname;
230 struct ses_softc *softc = device_private(self);
231 struct scsipibus_attach_args *sa = aux;
232 struct scsipi_periph *periph = sa->sa_periph;
233
234 softc->sc_dev = self;
235 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
236 softc->sc_periph = periph;
237 periph->periph_dev = self;
238 periph->periph_switch = &ses_switch;
239 periph->periph_openings = 1;
240
241 softc->ses_type = ses_device_type(sa);
242 switch (softc->ses_type) {
243 case SES_SES:
244 case SES_SES_SCSI2:
245 case SES_SES_PASSTHROUGH:
246 softc->ses_vec.softc_init = ses_softc_init;
247 softc->ses_vec.init_enc = ses_init_enc;
248 softc->ses_vec.get_encstat = ses_get_encstat;
249 softc->ses_vec.set_encstat = ses_set_encstat;
250 softc->ses_vec.get_objstat = ses_get_objstat;
251 softc->ses_vec.set_objstat = ses_set_objstat;
252 break;
253 case SES_SAFT:
254 softc->ses_vec.softc_init = safte_softc_init;
255 softc->ses_vec.init_enc = safte_init_enc;
256 softc->ses_vec.get_encstat = safte_get_encstat;
257 softc->ses_vec.set_encstat = safte_set_encstat;
258 softc->ses_vec.get_objstat = safte_get_objstat;
259 softc->ses_vec.set_objstat = safte_set_objstat;
260 break;
261 case SES_SEN:
262 break;
263 case SES_NONE:
264 default:
265 break;
266 }
267
268 switch (softc->ses_type) {
269 default:
270 case SES_NONE:
271 tname = "No SES device";
272 break;
273 case SES_SES_SCSI2:
274 tname = "SCSI-2 SES Device";
275 break;
276 case SES_SES:
277 tname = "SCSI-3 SES Device";
278 break;
279 case SES_SES_PASSTHROUGH:
280 tname = "SES Passthrough Device";
281 break;
282 case SES_SEN:
283 tname = "UNISYS SEN Device (NOT HANDLED YET)";
284 break;
285 case SES_SAFT:
286 tname = "SAF-TE Compliant Device";
287 break;
288 }
289 printf("\n%s: %s\n", device_xname(softc->sc_dev), tname);
290 }
291
292 static enctyp
293 ses_device_type(struct scsipibus_attach_args *sa)
294 {
295 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
296
297 if (inqp == NULL)
298 return (SES_NONE);
299
300 return (ses_type(inqp));
301 }
302
303 static int
304 sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
305 {
306 struct ses_softc *softc;
307 int error, unit;
308
309 unit = SESUNIT(dev);
310 softc = device_lookup_private(&ses_cd, unit);
311 if (softc == NULL)
312 return (ENXIO);
313
314 if (softc->ses_flags & SES_FLAG_INVALID) {
315 error = ENXIO;
316 goto out;
317 }
318 if (softc->ses_flags & SES_FLAG_OPEN) {
319 error = EBUSY;
320 goto out;
321 }
322 if (softc->ses_vec.softc_init == NULL) {
323 error = ENXIO;
324 goto out;
325 }
326 error = scsipi_adapter_addref(
327 softc->sc_periph->periph_channel->chan_adapter);
328 if (error != 0)
329 goto out;
330
331
332 softc->ses_flags |= SES_FLAG_OPEN;
333 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
334 error = (*softc->ses_vec.softc_init)(softc, 1);
335 if (error)
336 softc->ses_flags &= ~SES_FLAG_OPEN;
337 else
338 softc->ses_flags |= SES_FLAG_INITIALIZED;
339 }
340
341 out:
342 return (error);
343 }
344
345 static int
346 sesclose(dev_t dev, int flags, int fmt,
347 struct lwp *l)
348 {
349 struct ses_softc *softc;
350 int unit;
351
352 unit = SESUNIT(dev);
353 softc = device_lookup_private(&ses_cd, unit);
354 if (softc == NULL)
355 return (ENXIO);
356
357 scsipi_wait_drain(softc->sc_periph);
358 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
359 softc->ses_flags &= ~SES_FLAG_OPEN;
360 return (0);
361 }
362
363 static int
364 sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
365 {
366 ses_encstat tmp;
367 ses_objstat objs;
368 ses_object obj, *uobj;
369 struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
370 void *addr;
371 int error, i;
372
373
374 if (arg_addr)
375 addr = *((void **) arg_addr);
376 else
377 addr = NULL;
378
379 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
380
381 /*
382 * Now check to see whether we're initialized or not.
383 */
384 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
385 return (ENODEV);
386 }
387
388 error = 0;
389
390 /*
391 * If this command can change the device's state,
392 * we must have the device open for writing.
393 */
394 switch (cmd) {
395 case SESIOC_GETNOBJ:
396 case SESIOC_GETOBJMAP:
397 case SESIOC_GETENCSTAT:
398 case SESIOC_GETOBJSTAT:
399 break;
400 default:
401 if ((flag & FWRITE) == 0) {
402 return (EBADF);
403 }
404 }
405
406 switch (cmd) {
407 case SESIOC_GETNOBJ:
408 if (addr == NULL)
409 return EINVAL;
410 error = copyout(&ssc->ses_nobjects, addr,
411 sizeof (ssc->ses_nobjects));
412 break;
413
414 case SESIOC_GETOBJMAP:
415 if (addr == NULL)
416 return EINVAL;
417 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
418 obj.obj_id = i;
419 obj.subencid = ssc->ses_objmap[i].subenclosure;
420 obj.object_type = ssc->ses_objmap[i].enctype;
421 error = copyout(&obj, uobj, sizeof (ses_object));
422 if (error) {
423 break;
424 }
425 }
426 break;
427
428 case SESIOC_GETENCSTAT:
429 if (addr == NULL)
430 return EINVAL;
431 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
432 if (error)
433 break;
434 tmp = ssc->ses_encstat & ~ENCI_SVALID;
435 error = copyout(&tmp, addr, sizeof (ses_encstat));
436 ssc->ses_encstat = tmp;
437 break;
438
439 case SESIOC_SETENCSTAT:
440 if (addr == NULL)
441 return EINVAL;
442 error = copyin(addr, &tmp, sizeof (ses_encstat));
443 if (error)
444 break;
445 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
446 break;
447
448 case SESIOC_GETOBJSTAT:
449 if (addr == NULL)
450 return EINVAL;
451 error = copyin(addr, &objs, sizeof (ses_objstat));
452 if (error)
453 break;
454 if (objs.obj_id >= ssc->ses_nobjects) {
455 error = EINVAL;
456 break;
457 }
458 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
459 if (error)
460 break;
461 error = copyout(&objs, addr, sizeof (ses_objstat));
462 /*
463 * Always (for now) invalidate entry.
464 */
465 ssc->ses_objmap[objs.obj_id].svalid = 0;
466 break;
467
468 case SESIOC_SETOBJSTAT:
469 if (addr == NULL)
470 return EINVAL;
471 error = copyin(addr, &objs, sizeof (ses_objstat));
472 if (error)
473 break;
474
475 if (objs.obj_id >= ssc->ses_nobjects) {
476 error = EINVAL;
477 break;
478 }
479 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
480
481 /*
482 * Always (for now) invalidate entry.
483 */
484 ssc->ses_objmap[objs.obj_id].svalid = 0;
485 break;
486
487 case SESIOC_INIT:
488
489 error = (*ssc->ses_vec.init_enc)(ssc);
490 break;
491
492 default:
493 error = scsipi_do_ioctl(ssc->sc_periph,
494 dev, cmd, arg_addr, flag, l);
495 break;
496 }
497 return (error);
498 }
499
500 static int
501 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
502 {
503 struct scsipi_generic sgen;
504 int dl, flg, error;
505
506 if (dptr) {
507 if ((dl = *dlenp) < 0) {
508 dl = -dl;
509 flg = XS_CTL_DATA_OUT;
510 } else {
511 flg = XS_CTL_DATA_IN;
512 }
513 } else {
514 dl = 0;
515 flg = 0;
516 }
517
518 if (cdbl > sizeof (struct scsipi_generic)) {
519 cdbl = sizeof (struct scsipi_generic);
520 }
521 memcpy(&sgen, cdb, cdbl);
522 #ifndef SCSIDEBUG
523 flg |= XS_CTL_SILENT;
524 #endif
525 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
526 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
527
528 if (error == 0 && dptr)
529 *dlenp = 0;
530
531 return (error);
532 }
533
534 static void
535 ses_log(struct ses_softc *ssc, const char *fmt, ...)
536 {
537 va_list ap;
538
539 printf("%s: ", device_xname(ssc->sc_dev));
540 va_start(ap, fmt);
541 vprintf(fmt, ap);
542 va_end(ap);
543 }
544
545 /*
546 * The code after this point runs on many platforms,
547 * so forgive the slightly awkward and nonconforming
548 * appearance.
549 */
550
551 /*
552 * Is this a device that supports enclosure services?
553 *
554 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
555 * an SES device. If it happens to be an old UNISYS SEN device, we can
556 * handle that too.
557 */
558
559 #define SAFTE_START 44
560 #define SAFTE_END 50
561 #define SAFTE_LEN SAFTE_END-SAFTE_START
562
563 static enctyp
564 ses_type(struct scsipi_inquiry_data *inqp)
565 {
566 size_t given_len = inqp->additional_length + 4;
567
568 if (given_len < 8+SEN_ID_LEN)
569 return (SES_NONE);
570
571 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
572 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
573 return (SES_SEN);
574 } else if ((inqp->version & SID_ANSII) > 2) {
575 return (SES_SES);
576 } else {
577 return (SES_SES_SCSI2);
578 }
579 return (SES_NONE);
580 }
581
582 #ifdef SES_ENABLE_PASSTHROUGH
583 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
584 /*
585 * PassThrough Device.
586 */
587 return (SES_SES_PASSTHROUGH);
588 }
589 #endif
590
591 /*
592 * The comparison is short for a reason-
593 * some vendors were chopping it short.
594 */
595
596 if (given_len < SAFTE_END - 2) {
597 return (SES_NONE);
598 }
599
600 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
601 SAFTE_LEN - 2) == 0) {
602 return (SES_SAFT);
603 }
604
605 return (SES_NONE);
606 }
607
608 /*
609 * SES Native Type Device Support
610 */
611
612 /*
613 * SES Diagnostic Page Codes
614 */
615
616 typedef enum {
617 SesConfigPage = 0x1,
618 SesControlPage,
619 #define SesStatusPage SesControlPage
620 SesHelpTxt,
621 SesStringOut,
622 #define SesStringIn SesStringOut
623 SesThresholdOut,
624 #define SesThresholdIn SesThresholdOut
625 SesArrayControl,
626 #define SesArrayStatus SesArrayControl
627 SesElementDescriptor,
628 SesShortStatus
629 } SesDiagPageCodes;
630
631 /*
632 * minimal amounts
633 */
634
635 /*
636 * Minimum amount of data, starting from byte 0, to have
637 * the config header.
638 */
639 #define SES_CFGHDR_MINLEN 12
640
641 /*
642 * Minimum amount of data, starting from byte 0, to have
643 * the config header and one enclosure header.
644 */
645 #define SES_ENCHDR_MINLEN 48
646
647 /*
648 * Take this value, subtract it from VEnclen and you know
649 * the length of the vendor unique bytes.
650 */
651 #define SES_ENCHDR_VMIN 36
652
653 /*
654 * SES Data Structures
655 */
656
657 typedef struct {
658 uint32_t GenCode; /* Generation Code */
659 uint8_t Nsubenc; /* Number of Subenclosures */
660 } SesCfgHdr;
661
662 typedef struct {
663 uint8_t Subencid; /* SubEnclosure Identifier */
664 uint8_t Ntypes; /* # of supported types */
665 uint8_t VEnclen; /* Enclosure Descriptor Length */
666 } SesEncHdr;
667
668 typedef struct {
669 uint8_t encWWN[8]; /* XXX- Not Right Yet */
670 uint8_t encVid[8];
671 uint8_t encPid[16];
672 uint8_t encRev[4];
673 uint8_t encVen[1];
674 } SesEncDesc;
675
676 typedef struct {
677 uint8_t enc_type; /* type of element */
678 uint8_t enc_maxelt; /* maximum supported */
679 uint8_t enc_subenc; /* in SubEnc # N */
680 uint8_t enc_tlen; /* Type Descriptor Text Length */
681 } SesThdr;
682
683 typedef struct {
684 uint8_t comstatus;
685 uint8_t comstat[3];
686 } SesComStat;
687
688 struct typidx {
689 int ses_tidx;
690 int ses_oidx;
691 };
692
693 struct sscfg {
694 uint8_t ses_ntypes; /* total number of types supported */
695
696 /*
697 * We need to keep a type index as well as an
698 * object index for each object in an enclosure.
699 */
700 struct typidx *ses_typidx;
701
702 /*
703 * We also need to keep track of the number of elements
704 * per type of element. This is needed later so that we
705 * can find precisely in the returned status data the
706 * status for the Nth element of the Kth type.
707 */
708 uint8_t * ses_eltmap;
709 };
710
711
712 /*
713 * (de)canonicalization defines
714 */
715 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
716 #define sbit(x, bit) (((uint32_t)(x)) << bit)
717 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
718
719 #define sset16(outp, idx, sval) \
720 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
721 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
722
723
724 #define sset24(outp, idx, sval) \
725 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
726 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
727 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728
729
730 #define sset32(outp, idx, sval) \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
733 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
734 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
735
736 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
737 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
738 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
739 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
740
741 #define sget16(inp, idx, lval) \
742 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
743 (((uint8_t *)(inp))[idx+1]), idx += 2
744
745 #define gget16(inp, idx, lval) \
746 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
747 (((uint8_t *)(inp))[idx+1])
748
749 #define sget24(inp, idx, lval) \
750 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
751 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
752 (((uint8_t *)(inp))[idx+2]), idx += 3
753
754 #define gget24(inp, idx, lval) \
755 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
756 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
757 (((uint8_t *)(inp))[idx+2])
758
759 #define sget32(inp, idx, lval) \
760 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
761 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
762 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
763 (((uint8_t *)(inp))[idx+3]), idx += 4
764
765 #define gget32(inp, idx, lval) \
766 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
767 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
768 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
769 (((uint8_t *)(inp))[idx+3])
770
771 #define SCSZ 0x2000
772 #define CFLEN (256 + SES_ENCHDR_MINLEN)
773
774 /*
775 * Routines specific && private to SES only
776 */
777
778 static int ses_getconfig(ses_softc_t *);
779 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
780 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
781 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
782 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
783 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
784 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
785 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
786
787 static int
788 ses_softc_init(ses_softc_t *ssc, int doinit)
789 {
790 if (doinit == 0) {
791 struct sscfg *cc;
792 if (ssc->ses_nobjects) {
793 SES_FREE(ssc->ses_objmap,
794 ssc->ses_nobjects * sizeof (encobj));
795 ssc->ses_objmap = NULL;
796 }
797 if ((cc = ssc->ses_private) != NULL) {
798 if (cc->ses_eltmap && cc->ses_ntypes) {
799 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
800 cc->ses_eltmap = NULL;
801 cc->ses_ntypes = 0;
802 }
803 if (cc->ses_typidx && ssc->ses_nobjects) {
804 SES_FREE(cc->ses_typidx,
805 ssc->ses_nobjects * sizeof (struct typidx));
806 cc->ses_typidx = NULL;
807 }
808 SES_FREE(cc, sizeof (struct sscfg));
809 ssc->ses_private = NULL;
810 }
811 ssc->ses_nobjects = 0;
812 return (0);
813 }
814 if (ssc->ses_private == NULL) {
815 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
816 }
817 if (ssc->ses_private == NULL) {
818 return (ENOMEM);
819 }
820 ssc->ses_nobjects = 0;
821 ssc->ses_encstat = 0;
822 return (ses_getconfig(ssc));
823 }
824
825 static int
826 ses_detach(device_t self, int flags)
827 {
828 struct ses_softc *ssc = device_private(self);
829 struct sscfg *cc = ssc->ses_private;
830
831 if (ssc->ses_objmap) {
832 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
833 }
834 if (cc != NULL) {
835 if (cc->ses_typidx) {
836 SES_FREE(cc->ses_typidx,
837 (nobj * sizeof (struct typidx)));
838 }
839 if (cc->ses_eltmap) {
840 SES_FREE(cc->ses_eltmap, ntype);
841 }
842 SES_FREE(cc, sizeof (struct sscfg));
843 }
844
845 return 0;
846 }
847
848 static int
849 ses_init_enc(ses_softc_t *ssc)
850 {
851 return (0);
852 }
853
854 static int
855 ses_get_encstat(ses_softc_t *ssc, int slpflag)
856 {
857 SesComStat ComStat;
858 int status;
859
860 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
861 return (status);
862 }
863 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
864 return (0);
865 }
866
867 static int
868 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
869 {
870 SesComStat ComStat;
871 int status;
872
873 ComStat.comstatus = encstat & 0xf;
874 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
875 return (status);
876 }
877 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
878 return (0);
879 }
880
881 static int
882 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
883 {
884 int i = (int)obp->obj_id;
885
886 if (ssc->ses_objmap[i].svalid == 0) {
887 SesComStat ComStat;
888 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
889 if (err)
890 return (err);
891 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
892 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
893 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
894 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
895 ssc->ses_objmap[i].svalid = 1;
896 }
897 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
898 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
899 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
900 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
901 return (0);
902 }
903
904 static int
905 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
906 {
907 SesComStat ComStat;
908 int err;
909 /*
910 * If this is clear, we don't do diddly.
911 */
912 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
913 return (0);
914 }
915 ComStat.comstatus = obp->cstat[0];
916 ComStat.comstat[0] = obp->cstat[1];
917 ComStat.comstat[1] = obp->cstat[2];
918 ComStat.comstat[2] = obp->cstat[3];
919 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
920 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
921 return (err);
922 }
923
924 static int
925 ses_getconfig(ses_softc_t *ssc)
926 {
927 struct sscfg *cc;
928 SesCfgHdr cf;
929 SesEncHdr hd;
930 SesEncDesc *cdp;
931 SesThdr thdr;
932 int err, amt, i, nobj, ntype, maxima;
933 char storage[CFLEN], *sdata;
934 static char cdb[6] = {
935 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
936 };
937
938 cc = ssc->ses_private;
939 if (cc == NULL) {
940 return (ENXIO);
941 }
942
943 sdata = SES_MALLOC(SCSZ);
944 if (sdata == NULL)
945 return (ENOMEM);
946
947 amt = SCSZ;
948 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
949 if (err) {
950 SES_FREE(sdata, SCSZ);
951 return (err);
952 }
953 amt = SCSZ - amt;
954
955 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
956 SES_LOG(ssc, "Unable to parse SES Config Header\n");
957 SES_FREE(sdata, SCSZ);
958 return (EIO);
959 }
960 if (amt < SES_ENCHDR_MINLEN) {
961 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
962 SES_FREE(sdata, SCSZ);
963 return (EIO);
964 }
965
966 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
967
968 /*
969 * Now waltz through all the subenclosures toting up the
970 * number of types available in each. For this, we only
971 * really need the enclosure header. However, we get the
972 * enclosure descriptor for debug purposes, as well
973 * as self-consistency checking purposes.
974 */
975
976 maxima = cf.Nsubenc + 1;
977 cdp = (SesEncDesc *) storage;
978 for (ntype = i = 0; i < maxima; i++) {
979 MEMZERO((void *)cdp, sizeof (*cdp));
980 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
981 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
982 SES_FREE(sdata, SCSZ);
983 return (EIO);
984 }
985 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
986 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
987
988 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
989 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
990 SES_FREE(sdata, SCSZ);
991 return (EIO);
992 }
993 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
994 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
995 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
996 cdp->encWWN[6], cdp->encWWN[7]);
997 ntype += hd.Ntypes;
998 }
999
1000 /*
1001 * Now waltz through all the types that are available, getting
1002 * the type header so we can start adding up the number of
1003 * objects available.
1004 */
1005 for (nobj = i = 0; i < ntype; i++) {
1006 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1007 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1008 SES_FREE(sdata, SCSZ);
1009 return (EIO);
1010 }
1011 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1012 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1013 thdr.enc_subenc, thdr.enc_tlen);
1014 nobj += thdr.enc_maxelt;
1015 }
1016
1017
1018 /*
1019 * Now allocate the object array and type map.
1020 */
1021
1022 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1023 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1024 cc->ses_eltmap = SES_MALLOC(ntype);
1025
1026 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1027 cc->ses_eltmap == NULL) {
1028 if (ssc->ses_objmap) {
1029 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1030 ssc->ses_objmap = NULL;
1031 }
1032 if (cc->ses_typidx) {
1033 SES_FREE(cc->ses_typidx,
1034 (nobj * sizeof (struct typidx)));
1035 cc->ses_typidx = NULL;
1036 }
1037 if (cc->ses_eltmap) {
1038 SES_FREE(cc->ses_eltmap, ntype);
1039 cc->ses_eltmap = NULL;
1040 }
1041 SES_FREE(sdata, SCSZ);
1042 return (ENOMEM);
1043 }
1044 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1045 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1046 MEMZERO(cc->ses_eltmap, ntype);
1047 cc->ses_ntypes = (uint8_t) ntype;
1048 ssc->ses_nobjects = nobj;
1049
1050 /*
1051 * Now waltz through the # of types again to fill in the types
1052 * (and subenclosure ids) of the allocated objects.
1053 */
1054 nobj = 0;
1055 for (i = 0; i < ntype; i++) {
1056 int j;
1057 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1058 continue;
1059 }
1060 cc->ses_eltmap[i] = thdr.enc_maxelt;
1061 for (j = 0; j < thdr.enc_maxelt; j++) {
1062 cc->ses_typidx[nobj].ses_tidx = i;
1063 cc->ses_typidx[nobj].ses_oidx = j;
1064 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1065 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1066 }
1067 }
1068 SES_FREE(sdata, SCSZ);
1069 return (0);
1070 }
1071
1072 static int
1073 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1074 int in)
1075 {
1076 struct sscfg *cc;
1077 int err, amt, bufsiz, tidx, oidx;
1078 char cdb[6], *sdata;
1079
1080 cc = ssc->ses_private;
1081 if (cc == NULL) {
1082 return (ENXIO);
1083 }
1084
1085 /*
1086 * If we're just getting overall enclosure status,
1087 * we only need 2 bytes of data storage.
1088 *
1089 * If we're getting anything else, we know how much
1090 * storage we need by noting that starting at offset
1091 * 8 in returned data, all object status bytes are 4
1092 * bytes long, and are stored in chunks of types(M)
1093 * and nth+1 instances of type M.
1094 */
1095 if (objid == -1) {
1096 bufsiz = 2;
1097 } else {
1098 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1099 }
1100 sdata = SES_MALLOC(bufsiz);
1101 if (sdata == NULL)
1102 return (ENOMEM);
1103
1104 cdb[0] = RECEIVE_DIAGNOSTIC;
1105 cdb[1] = 1;
1106 cdb[2] = SesStatusPage;
1107 cdb[3] = bufsiz >> 8;
1108 cdb[4] = bufsiz & 0xff;
1109 cdb[5] = 0;
1110 amt = bufsiz;
1111 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1112 if (err) {
1113 SES_FREE(sdata, bufsiz);
1114 return (err);
1115 }
1116 amt = bufsiz - amt;
1117
1118 if (objid == -1) {
1119 tidx = -1;
1120 oidx = -1;
1121 } else {
1122 tidx = cc->ses_typidx[objid].ses_tidx;
1123 oidx = cc->ses_typidx[objid].ses_oidx;
1124 }
1125 if (in) {
1126 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1127 err = ENODEV;
1128 }
1129 } else {
1130 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1131 err = ENODEV;
1132 } else {
1133 cdb[0] = SEND_DIAGNOSTIC;
1134 cdb[1] = 0x10;
1135 cdb[2] = 0;
1136 cdb[3] = bufsiz >> 8;
1137 cdb[4] = bufsiz & 0xff;
1138 cdb[5] = 0;
1139 amt = -bufsiz;
1140 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1141 }
1142 }
1143 SES_FREE(sdata, bufsiz);
1144 return (0);
1145 }
1146
1147
1148 /*
1149 * Routines to parse returned SES data structures.
1150 * Architecture and compiler independent.
1151 */
1152
1153 static int
1154 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1155 {
1156 if (buflen < SES_CFGHDR_MINLEN) {
1157 return (-1);
1158 }
1159 gget8(buffer, 1, cfp->Nsubenc);
1160 gget32(buffer, 4, cfp->GenCode);
1161 return (0);
1162 }
1163
1164 static int
1165 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1166 {
1167 int s, off = 8;
1168 for (s = 0; s < SubEncId; s++) {
1169 if (off + 3 > amt)
1170 return (-1);
1171 off += buffer[off+3] + 4;
1172 }
1173 if (off + 3 > amt) {
1174 return (-1);
1175 }
1176 gget8(buffer, off+1, chp->Subencid);
1177 gget8(buffer, off+2, chp->Ntypes);
1178 gget8(buffer, off+3, chp->VEnclen);
1179 return (0);
1180 }
1181
1182 static int
1183 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1184 {
1185 int s, e, enclen, off = 8;
1186 for (s = 0; s < SubEncId; s++) {
1187 if (off + 3 > amt)
1188 return (-1);
1189 off += buffer[off+3] + 4;
1190 }
1191 if (off + 3 > amt) {
1192 return (-1);
1193 }
1194 gget8(buffer, off+3, enclen);
1195 off += 4;
1196 if (off >= amt)
1197 return (-1);
1198
1199 e = off + enclen;
1200 if (e > amt) {
1201 e = amt;
1202 }
1203 MEMCPY(cdp, &buffer[off], e - off);
1204 return (0);
1205 }
1206
1207 static int
1208 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1209 {
1210 int s, off = 8;
1211
1212 if (amt < SES_CFGHDR_MINLEN) {
1213 return (-1);
1214 }
1215 for (s = 0; s < buffer[1]; s++) {
1216 if (off + 3 > amt)
1217 return (-1);
1218 off += buffer[off+3] + 4;
1219 }
1220 if (off + 3 > amt) {
1221 return (-1);
1222 }
1223 off += buffer[off+3] + 4 + (nth * 4);
1224 if (amt < (off + 4))
1225 return (-1);
1226
1227 gget8(buffer, off++, thp->enc_type);
1228 gget8(buffer, off++, thp->enc_maxelt);
1229 gget8(buffer, off++, thp->enc_subenc);
1230 gget8(buffer, off, thp->enc_tlen);
1231 return (0);
1232 }
1233
1234 /*
1235 * This function needs a little explanation.
1236 *
1237 * The arguments are:
1238 *
1239 *
1240 * char *b, int amt
1241 *
1242 * These describes the raw input SES status data and length.
1243 *
1244 * uint8_t *ep
1245 *
1246 * This is a map of the number of types for each element type
1247 * in the enclosure.
1248 *
1249 * int elt
1250 *
1251 * This is the element type being sought. If elt is -1,
1252 * then overall enclosure status is being sought.
1253 *
1254 * int elm
1255 *
1256 * This is the ordinal Mth element of type elt being sought.
1257 *
1258 * SesComStat *sp
1259 *
1260 * This is the output area to store the status for
1261 * the Mth element of type Elt.
1262 */
1263
1264 static int
1265 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1266 {
1267 int idx, i;
1268
1269 /*
1270 * If it's overall enclosure status being sought, get that.
1271 * We need at least 2 bytes of status data to get that.
1272 */
1273 if (elt == -1) {
1274 if (amt < 2)
1275 return (-1);
1276 gget8(b, 1, sp->comstatus);
1277 sp->comstat[0] = 0;
1278 sp->comstat[1] = 0;
1279 sp->comstat[2] = 0;
1280 return (0);
1281 }
1282
1283 /*
1284 * Check to make sure that the Mth element is legal for type Elt.
1285 */
1286
1287 if (elm >= ep[elt])
1288 return (-1);
1289
1290 /*
1291 * Starting at offset 8, start skipping over the storage
1292 * for the element types we're not interested in.
1293 */
1294 for (idx = 8, i = 0; i < elt; i++) {
1295 idx += ((ep[i] + 1) * 4);
1296 }
1297
1298 /*
1299 * Skip over Overall status for this element type.
1300 */
1301 idx += 4;
1302
1303 /*
1304 * And skip to the index for the Mth element that we're going for.
1305 */
1306 idx += (4 * elm);
1307
1308 /*
1309 * Make sure we haven't overflowed the buffer.
1310 */
1311 if (idx+4 > amt)
1312 return (-1);
1313
1314 /*
1315 * Retrieve the status.
1316 */
1317 gget8(b, idx++, sp->comstatus);
1318 gget8(b, idx++, sp->comstat[0]);
1319 gget8(b, idx++, sp->comstat[1]);
1320 gget8(b, idx++, sp->comstat[2]);
1321 #if 0
1322 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1323 #endif
1324 return (0);
1325 }
1326
1327 /*
1328 * This is the mirror function to ses_decode, but we set the 'select'
1329 * bit for the object which we're interested in. All other objects,
1330 * after a status fetch, should have that bit off. Hmm. It'd be easy
1331 * enough to ensure this, so we will.
1332 */
1333
1334 static int
1335 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1336 {
1337 int idx, i;
1338
1339 /*
1340 * If it's overall enclosure status being sought, get that.
1341 * We need at least 2 bytes of status data to get that.
1342 */
1343 if (elt == -1) {
1344 if (amt < 2)
1345 return (-1);
1346 i = 0;
1347 sset8(b, i, 0);
1348 sset8(b, i, sp->comstatus & 0xf);
1349 #if 0
1350 PRINTF("set EncStat %x\n", sp->comstatus);
1351 #endif
1352 return (0);
1353 }
1354
1355 /*
1356 * Check to make sure that the Mth element is legal for type Elt.
1357 */
1358
1359 if (elm >= ep[elt])
1360 return (-1);
1361
1362 /*
1363 * Starting at offset 8, start skipping over the storage
1364 * for the element types we're not interested in.
1365 */
1366 for (idx = 8, i = 0; i < elt; i++) {
1367 idx += ((ep[i] + 1) * 4);
1368 }
1369
1370 /*
1371 * Skip over Overall status for this element type.
1372 */
1373 idx += 4;
1374
1375 /*
1376 * And skip to the index for the Mth element that we're going for.
1377 */
1378 idx += (4 * elm);
1379
1380 /*
1381 * Make sure we haven't overflowed the buffer.
1382 */
1383 if (idx+4 > amt)
1384 return (-1);
1385
1386 /*
1387 * Set the status.
1388 */
1389 sset8(b, idx, sp->comstatus);
1390 sset8(b, idx, sp->comstat[0]);
1391 sset8(b, idx, sp->comstat[1]);
1392 sset8(b, idx, sp->comstat[2]);
1393 idx -= 4;
1394
1395 #if 0
1396 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1397 elt, elm, idx, sp->comstatus, sp->comstat[0],
1398 sp->comstat[1], sp->comstat[2]);
1399 #endif
1400
1401 /*
1402 * Now make sure all other 'Select' bits are off.
1403 */
1404 for (i = 8; i < amt; i += 4) {
1405 if (i != idx)
1406 b[i] &= ~0x80;
1407 }
1408 /*
1409 * And make sure the INVOP bit is clear.
1410 */
1411 b[2] &= ~0x10;
1412
1413 return (0);
1414 }
1415
1416 /*
1417 * SAF-TE Type Device Emulation
1418 */
1419
1420 static int safte_getconfig(ses_softc_t *);
1421 static int safte_rdstat(ses_softc_t *, int);
1422 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1423 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1424 static void wrslot_stat(ses_softc_t *, int);
1425 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1426
1427 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1428 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1429 /*
1430 * SAF-TE specific defines- Mandatory ones only...
1431 */
1432
1433 /*
1434 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1435 */
1436 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1437 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1438 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1439
1440 /*
1441 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1442 */
1443 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1444 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1445 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1446 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1447 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1448
1449
1450 #define SAFT_SCRATCH 64
1451 #define NPSEUDO_THERM 16
1452 #define NPSEUDO_ALARM 1
1453 struct scfg {
1454 /*
1455 * Cached Configuration
1456 */
1457 uint8_t Nfans; /* Number of Fans */
1458 uint8_t Npwr; /* Number of Power Supplies */
1459 uint8_t Nslots; /* Number of Device Slots */
1460 uint8_t DoorLock; /* Door Lock Installed */
1461 uint8_t Ntherm; /* Number of Temperature Sensors */
1462 uint8_t Nspkrs; /* Number of Speakers */
1463 uint8_t Nalarm; /* Number of Alarms (at least one) */
1464 /*
1465 * Cached Flag Bytes for Global Status
1466 */
1467 uint8_t flag1;
1468 uint8_t flag2;
1469 /*
1470 * What object index ID is where various slots start.
1471 */
1472 uint8_t pwroff;
1473 uint8_t slotoff;
1474 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1475 };
1476
1477 #define SAFT_FLG1_ALARM 0x1
1478 #define SAFT_FLG1_GLOBFAIL 0x2
1479 #define SAFT_FLG1_GLOBWARN 0x4
1480 #define SAFT_FLG1_ENCPWROFF 0x8
1481 #define SAFT_FLG1_ENCFANFAIL 0x10
1482 #define SAFT_FLG1_ENCPWRFAIL 0x20
1483 #define SAFT_FLG1_ENCDRVFAIL 0x40
1484 #define SAFT_FLG1_ENCDRVWARN 0x80
1485
1486 #define SAFT_FLG2_LOCKDOOR 0x4
1487 #define SAFT_PRIVATE sizeof (struct scfg)
1488
1489 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1490 #define SAFT_BAIL(r, x, k, l) \
1491 if (r >= x) { \
1492 SES_LOG(ssc, safte_2little, x, __LINE__);\
1493 SES_FREE(k, l); \
1494 return (EIO); \
1495 }
1496
1497
1498 static int
1499 safte_softc_init(ses_softc_t *ssc, int doinit)
1500 {
1501 int err, i, r;
1502 struct scfg *cc;
1503
1504 if (doinit == 0) {
1505 if (ssc->ses_nobjects) {
1506 if (ssc->ses_objmap) {
1507 SES_FREE(ssc->ses_objmap,
1508 ssc->ses_nobjects * sizeof (encobj));
1509 ssc->ses_objmap = NULL;
1510 }
1511 ssc->ses_nobjects = 0;
1512 }
1513 if (ssc->ses_private) {
1514 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1515 ssc->ses_private = NULL;
1516 }
1517 return (0);
1518 }
1519
1520 if (ssc->ses_private == NULL) {
1521 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1522 if (ssc->ses_private == NULL) {
1523 return (ENOMEM);
1524 }
1525 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1526 }
1527
1528 ssc->ses_nobjects = 0;
1529 ssc->ses_encstat = 0;
1530
1531 if ((err = safte_getconfig(ssc)) != 0) {
1532 return (err);
1533 }
1534
1535 /*
1536 * The number of objects here, as well as that reported by the
1537 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1538 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1539 */
1540 cc = ssc->ses_private;
1541 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1542 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1543 ssc->ses_objmap = (encobj *)
1544 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1545 if (ssc->ses_objmap == NULL) {
1546 return (ENOMEM);
1547 }
1548 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1549
1550 r = 0;
1551 /*
1552 * Note that this is all arranged for the convenience
1553 * in later fetches of status.
1554 */
1555 for (i = 0; i < cc->Nfans; i++)
1556 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1557 cc->pwroff = (uint8_t) r;
1558 for (i = 0; i < cc->Npwr; i++)
1559 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1560 for (i = 0; i < cc->DoorLock; i++)
1561 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1562 for (i = 0; i < cc->Nspkrs; i++)
1563 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1564 for (i = 0; i < cc->Ntherm; i++)
1565 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1566 for (i = 0; i < NPSEUDO_THERM; i++)
1567 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1568 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1569 cc->slotoff = (uint8_t) r;
1570 for (i = 0; i < cc->Nslots; i++)
1571 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1572 return (0);
1573 }
1574
1575 static int
1576 safte_init_enc(ses_softc_t *ssc)
1577 {
1578 int err, amt;
1579 char *sdata;
1580 static char cdb0[6] = { SEND_DIAGNOSTIC };
1581 static char cdb[10] =
1582 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1583
1584 sdata = SES_MALLOC(SAFT_SCRATCH);
1585 if (sdata == NULL)
1586 return (ENOMEM);
1587
1588 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1589 if (err) {
1590 SES_FREE(sdata, SAFT_SCRATCH);
1591 return (err);
1592 }
1593 sdata[0] = SAFTE_WT_GLOBAL;
1594 MEMZERO(&sdata[1], 15);
1595 amt = -SAFT_SCRATCH;
1596 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1597 SES_FREE(sdata, SAFT_SCRATCH);
1598 return (err);
1599 }
1600
1601 static int
1602 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1603 {
1604 return (safte_rdstat(ssc, slpflg));
1605 }
1606
1607 static int
1608 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1609 {
1610 struct scfg *cc = ssc->ses_private;
1611 if (cc == NULL)
1612 return (0);
1613 /*
1614 * Since SAF-TE devices aren't necessarily sticky in terms
1615 * of state, make our soft copy of enclosure status 'sticky'-
1616 * that is, things set in enclosure status stay set (as implied
1617 * by conditions set in reading object status) until cleared.
1618 */
1619 ssc->ses_encstat &= ~ALL_ENC_STAT;
1620 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1621 ssc->ses_encstat |= ENCI_SVALID;
1622 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1623 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1624 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1625 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1626 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1627 }
1628 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1629 }
1630
1631 static int
1632 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1633 {
1634 int i = (int)obp->obj_id;
1635
1636 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1637 (ssc->ses_objmap[i].svalid) == 0) {
1638 int err = safte_rdstat(ssc, slpflg);
1639 if (err)
1640 return (err);
1641 }
1642 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1643 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1644 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1645 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1646 return (0);
1647 }
1648
1649
1650 static int
1651 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1652 {
1653 int idx, err;
1654 encobj *ep;
1655 struct scfg *cc;
1656
1657
1658 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1659 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1660 obp->cstat[3]);
1661
1662 /*
1663 * If this is clear, we don't do diddly.
1664 */
1665 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1666 return (0);
1667 }
1668
1669 err = 0;
1670 /*
1671 * Check to see if the common bits are set and do them first.
1672 */
1673 if (obp->cstat[0] & ~SESCTL_CSEL) {
1674 err = set_objstat_sel(ssc, obp, slp);
1675 if (err)
1676 return (err);
1677 }
1678
1679 cc = ssc->ses_private;
1680 if (cc == NULL)
1681 return (0);
1682
1683 idx = (int)obp->obj_id;
1684 ep = &ssc->ses_objmap[idx];
1685
1686 switch (ep->enctype) {
1687 case SESTYP_DEVICE:
1688 {
1689 uint8_t slotop = 0;
1690 /*
1691 * XXX: I should probably cache the previous state
1692 * XXX: of SESCTL_DEVOFF so that when it goes from
1693 * XXX: true to false I can then set PREPARE FOR OPERATION
1694 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1695 */
1696 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1697 slotop |= 0x2;
1698 }
1699 if (obp->cstat[2] & SESCTL_RQSID) {
1700 slotop |= 0x4;
1701 }
1702 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1703 slotop, slp);
1704 if (err)
1705 return (err);
1706 if (obp->cstat[3] & SESCTL_RQSFLT) {
1707 ep->priv |= 0x2;
1708 } else {
1709 ep->priv &= ~0x2;
1710 }
1711 if (ep->priv & 0xc6) {
1712 ep->priv &= ~0x1;
1713 } else {
1714 ep->priv |= 0x1; /* no errors */
1715 }
1716 wrslot_stat(ssc, slp);
1717 break;
1718 }
1719 case SESTYP_POWER:
1720 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1721 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1722 } else {
1723 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1724 }
1725 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1726 cc->flag2, 0, slp);
1727 if (err)
1728 return (err);
1729 if (obp->cstat[3] & SESCTL_RQSTON) {
1730 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1731 idx - cc->pwroff, 0, 0, slp);
1732 } else {
1733 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1734 idx - cc->pwroff, 0, 1, slp);
1735 }
1736 break;
1737 case SESTYP_FAN:
1738 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1739 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1740 } else {
1741 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1742 }
1743 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1744 cc->flag2, 0, slp);
1745 if (err)
1746 return (err);
1747 if (obp->cstat[3] & SESCTL_RQSTON) {
1748 uint8_t fsp;
1749 if ((obp->cstat[3] & 0x7) == 7) {
1750 fsp = 4;
1751 } else if ((obp->cstat[3] & 0x7) == 6) {
1752 fsp = 3;
1753 } else if ((obp->cstat[3] & 0x7) == 4) {
1754 fsp = 2;
1755 } else {
1756 fsp = 1;
1757 }
1758 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1759 } else {
1760 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1761 }
1762 break;
1763 case SESTYP_DOORLOCK:
1764 if (obp->cstat[3] & 0x1) {
1765 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1766 } else {
1767 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1768 }
1769 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1770 cc->flag2, 0, slp);
1771 break;
1772 case SESTYP_ALARM:
1773 /*
1774 * On all nonzero but the 'muted' bit, we turn on the alarm,
1775 */
1776 obp->cstat[3] &= ~0xa;
1777 if (obp->cstat[3] & 0x40) {
1778 cc->flag2 &= ~SAFT_FLG1_ALARM;
1779 } else if (obp->cstat[3] != 0) {
1780 cc->flag2 |= SAFT_FLG1_ALARM;
1781 } else {
1782 cc->flag2 &= ~SAFT_FLG1_ALARM;
1783 }
1784 ep->priv = obp->cstat[3];
1785 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1786 cc->flag2, 0, slp);
1787 break;
1788 default:
1789 break;
1790 }
1791 ep->svalid = 0;
1792 return (0);
1793 }
1794
1795 static int
1796 safte_getconfig(ses_softc_t *ssc)
1797 {
1798 struct scfg *cfg;
1799 int err, amt;
1800 char *sdata;
1801 static char cdb[10] =
1802 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1803
1804 cfg = ssc->ses_private;
1805 if (cfg == NULL)
1806 return (ENXIO);
1807
1808 sdata = SES_MALLOC(SAFT_SCRATCH);
1809 if (sdata == NULL)
1810 return (ENOMEM);
1811
1812 amt = SAFT_SCRATCH;
1813 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1814 if (err) {
1815 SES_FREE(sdata, SAFT_SCRATCH);
1816 return (err);
1817 }
1818 amt = SAFT_SCRATCH - amt;
1819 if (amt < 6) {
1820 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1821 SES_FREE(sdata, SAFT_SCRATCH);
1822 return (EIO);
1823 }
1824 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1825 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1826 cfg->Nfans = sdata[0];
1827 cfg->Npwr = sdata[1];
1828 cfg->Nslots = sdata[2];
1829 cfg->DoorLock = sdata[3];
1830 cfg->Ntherm = sdata[4];
1831 cfg->Nspkrs = sdata[5];
1832 cfg->Nalarm = NPSEUDO_ALARM;
1833 SES_FREE(sdata, SAFT_SCRATCH);
1834 return (0);
1835 }
1836
1837 static int
1838 safte_rdstat(ses_softc_t *ssc, int slpflg)
1839 {
1840 int err, oid, r, i, hiwater, nitems, amt;
1841 uint16_t tempflags;
1842 size_t buflen;
1843 uint8_t status, oencstat;
1844 char *sdata, cdb[10];
1845 struct scfg *cc = ssc->ses_private;
1846
1847
1848 /*
1849 * The number of objects overstates things a bit,
1850 * both for the bogus 'thermometer' entries and
1851 * the drive status (which isn't read at the same
1852 * time as the enclosure status), but that's okay.
1853 */
1854 buflen = 4 * cc->Nslots;
1855 if (ssc->ses_nobjects > buflen)
1856 buflen = ssc->ses_nobjects;
1857 sdata = SES_MALLOC(buflen);
1858 if (sdata == NULL)
1859 return (ENOMEM);
1860
1861 cdb[0] = READ_BUFFER;
1862 cdb[1] = 1;
1863 cdb[2] = SAFTE_RD_RDESTS;
1864 cdb[3] = 0;
1865 cdb[4] = 0;
1866 cdb[5] = 0;
1867 cdb[6] = 0;
1868 cdb[7] = (buflen >> 8) & 0xff;
1869 cdb[8] = buflen & 0xff;
1870 cdb[9] = 0;
1871 amt = buflen;
1872 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1873 if (err) {
1874 SES_FREE(sdata, buflen);
1875 return (err);
1876 }
1877 hiwater = buflen - amt;
1878
1879
1880 /*
1881 * invalidate all status bits.
1882 */
1883 for (i = 0; i < ssc->ses_nobjects; i++)
1884 ssc->ses_objmap[i].svalid = 0;
1885 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1886 ssc->ses_encstat = 0;
1887
1888
1889 /*
1890 * Now parse returned buffer.
1891 * If we didn't get enough data back,
1892 * that's considered a fatal error.
1893 */
1894 oid = r = 0;
1895
1896 for (nitems = i = 0; i < cc->Nfans; i++) {
1897 SAFT_BAIL(r, hiwater, sdata, buflen);
1898 /*
1899 * 0 = Fan Operational
1900 * 1 = Fan is malfunctioning
1901 * 2 = Fan is not present
1902 * 0x80 = Unknown or Not Reportable Status
1903 */
1904 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1905 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1906 switch ((int)(uint8_t)sdata[r]) {
1907 case 0:
1908 nitems++;
1909 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1910 /*
1911 * We could get fancier and cache
1912 * fan speeds that we have set, but
1913 * that isn't done now.
1914 */
1915 ssc->ses_objmap[oid].encstat[3] = 7;
1916 break;
1917
1918 case 1:
1919 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1920 /*
1921 * FAIL and FAN STOPPED synthesized
1922 */
1923 ssc->ses_objmap[oid].encstat[3] = 0x40;
1924 /*
1925 * Enclosure marked with CRITICAL error
1926 * if only one fan or no thermometers,
1927 * else the NONCRITICAL error is set.
1928 */
1929 if (cc->Nfans == 1 || cc->Ntherm == 0)
1930 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1931 else
1932 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1933 break;
1934 case 2:
1935 ssc->ses_objmap[oid].encstat[0] =
1936 SES_OBJSTAT_NOTINSTALLED;
1937 ssc->ses_objmap[oid].encstat[3] = 0;
1938 /*
1939 * Enclosure marked with CRITICAL error
1940 * if only one fan or no thermometers,
1941 * else the NONCRITICAL error is set.
1942 */
1943 if (cc->Nfans == 1)
1944 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1945 else
1946 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1947 break;
1948 case 0x80:
1949 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1950 ssc->ses_objmap[oid].encstat[3] = 0;
1951 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1952 break;
1953 default:
1954 ssc->ses_objmap[oid].encstat[0] =
1955 SES_OBJSTAT_UNSUPPORTED;
1956 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1957 sdata[r] & 0xff);
1958 break;
1959 }
1960 ssc->ses_objmap[oid++].svalid = 1;
1961 r++;
1962 }
1963
1964 /*
1965 * No matter how you cut it, no cooling elements when there
1966 * should be some there is critical.
1967 */
1968 if (cc->Nfans && nitems == 0) {
1969 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1970 }
1971
1972
1973 for (i = 0; i < cc->Npwr; i++) {
1974 SAFT_BAIL(r, hiwater, sdata, buflen);
1975 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1976 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1977 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1978 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1979 switch ((uint8_t)sdata[r]) {
1980 case 0x00: /* pws operational and on */
1981 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1982 break;
1983 case 0x01: /* pws operational and off */
1984 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1985 ssc->ses_objmap[oid].encstat[3] = 0x10;
1986 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1987 break;
1988 case 0x10: /* pws is malfunctioning and commanded on */
1989 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1990 ssc->ses_objmap[oid].encstat[3] = 0x61;
1991 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1992 break;
1993
1994 case 0x11: /* pws is malfunctioning and commanded off */
1995 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1996 ssc->ses_objmap[oid].encstat[3] = 0x51;
1997 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1998 break;
1999 case 0x20: /* pws is not present */
2000 ssc->ses_objmap[oid].encstat[0] =
2001 SES_OBJSTAT_NOTINSTALLED;
2002 ssc->ses_objmap[oid].encstat[3] = 0;
2003 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2004 break;
2005 case 0x21: /* pws is present */
2006 /*
2007 * This is for enclosures that cannot tell whether the
2008 * device is on or malfunctioning, but know that it is
2009 * present. Just fall through.
2010 */
2011 /* FALLTHROUGH */
2012 case 0x80: /* Unknown or Not Reportable Status */
2013 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2014 ssc->ses_objmap[oid].encstat[3] = 0;
2015 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2016 break;
2017 default:
2018 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2019 i, sdata[r] & 0xff);
2020 break;
2021 }
2022 ssc->ses_objmap[oid++].svalid = 1;
2023 r++;
2024 }
2025
2026 /*
2027 * Skip over Slot SCSI IDs
2028 */
2029 r += cc->Nslots;
2030
2031 /*
2032 * We always have doorlock status, no matter what,
2033 * but we only save the status if we have one.
2034 */
2035 SAFT_BAIL(r, hiwater, sdata, buflen);
2036 if (cc->DoorLock) {
2037 /*
2038 * 0 = Door Locked
2039 * 1 = Door Unlocked, or no Lock Installed
2040 * 0x80 = Unknown or Not Reportable Status
2041 */
2042 ssc->ses_objmap[oid].encstat[1] = 0;
2043 ssc->ses_objmap[oid].encstat[2] = 0;
2044 switch ((uint8_t)sdata[r]) {
2045 case 0:
2046 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2047 ssc->ses_objmap[oid].encstat[3] = 0;
2048 break;
2049 case 1:
2050 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2051 ssc->ses_objmap[oid].encstat[3] = 1;
2052 break;
2053 case 0x80:
2054 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2055 ssc->ses_objmap[oid].encstat[3] = 0;
2056 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2057 break;
2058 default:
2059 ssc->ses_objmap[oid].encstat[0] =
2060 SES_OBJSTAT_UNSUPPORTED;
2061 SES_LOG(ssc, "unknown lock status 0x%x\n",
2062 sdata[r] & 0xff);
2063 break;
2064 }
2065 ssc->ses_objmap[oid++].svalid = 1;
2066 }
2067 r++;
2068
2069 /*
2070 * We always have speaker status, no matter what,
2071 * but we only save the status if we have one.
2072 */
2073 SAFT_BAIL(r, hiwater, sdata, buflen);
2074 if (cc->Nspkrs) {
2075 ssc->ses_objmap[oid].encstat[1] = 0;
2076 ssc->ses_objmap[oid].encstat[2] = 0;
2077 if (sdata[r] == 1) {
2078 /*
2079 * We need to cache tone urgency indicators.
2080 * Someday.
2081 */
2082 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2083 ssc->ses_objmap[oid].encstat[3] = 0x8;
2084 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2085 } else if (sdata[r] == 0) {
2086 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2087 ssc->ses_objmap[oid].encstat[3] = 0;
2088 } else {
2089 ssc->ses_objmap[oid].encstat[0] =
2090 SES_OBJSTAT_UNSUPPORTED;
2091 ssc->ses_objmap[oid].encstat[3] = 0;
2092 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2093 sdata[r] & 0xff);
2094 }
2095 ssc->ses_objmap[oid++].svalid = 1;
2096 }
2097 r++;
2098
2099 for (i = 0; i < cc->Ntherm; i++) {
2100 SAFT_BAIL(r, hiwater, sdata, buflen);
2101 /*
2102 * Status is a range from -10 to 245 deg Celsius,
2103 * which we need to normalize to -20 to -245 according
2104 * to the latest SCSI spec, which makes little
2105 * sense since this would overflow an 8bit value.
2106 * Well, still, the base normalization is -20,
2107 * not -10, so we have to adjust.
2108 *
2109 * So what's over and under temperature?
2110 * Hmm- we'll state that 'normal' operating
2111 * is 10 to 40 deg Celsius.
2112 */
2113
2114 /*
2115 * Actually.... All of the units that people out in the world
2116 * seem to have do not come even close to setting a value that
2117 * complies with this spec.
2118 *
2119 * The closest explanation I could find was in an
2120 * LSI-Logic manual, which seemed to indicate that
2121 * this value would be set by whatever the I2C code
2122 * would interpolate from the output of an LM75
2123 * temperature sensor.
2124 *
2125 * This means that it is impossible to use the actual
2126 * numeric value to predict anything. But we don't want
2127 * to lose the value. So, we'll propagate the *uncorrected*
2128 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2129 * temperature flags for warnings.
2130 */
2131 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2132 ssc->ses_objmap[oid].encstat[1] = 0;
2133 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2134 ssc->ses_objmap[oid].encstat[3] = 0;
2135 ssc->ses_objmap[oid++].svalid = 1;
2136 r++;
2137 }
2138
2139 /*
2140 * Now, for "pseudo" thermometers, we have two bytes
2141 * of information in enclosure status- 16 bits. Actually,
2142 * the MSB is a single TEMP ALERT flag indicating whether
2143 * any other bits are set, but, thanks to fuzzy thinking,
2144 * in the SAF-TE spec, this can also be set even if no
2145 * other bits are set, thus making this really another
2146 * binary temperature sensor.
2147 */
2148
2149 SAFT_BAIL(r, hiwater, sdata, buflen);
2150 tempflags = sdata[r++];
2151 SAFT_BAIL(r, hiwater, sdata, buflen);
2152 tempflags |= (tempflags << 8) | sdata[r++];
2153
2154 for (i = 0; i < NPSEUDO_THERM; i++) {
2155 ssc->ses_objmap[oid].encstat[1] = 0;
2156 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2157 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2158 ssc->ses_objmap[4].encstat[2] = 0xff;
2159 /*
2160 * Set 'over temperature' failure.
2161 */
2162 ssc->ses_objmap[oid].encstat[3] = 8;
2163 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2164 } else {
2165 /*
2166 * We used to say 'not available' and synthesize a
2167 * nominal 30 deg (C)- that was wrong. Actually,
2168 * Just say 'OK', and use the reserved value of
2169 * zero.
2170 */
2171 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2172 ssc->ses_objmap[oid].encstat[2] = 0;
2173 ssc->ses_objmap[oid].encstat[3] = 0;
2174 }
2175 ssc->ses_objmap[oid++].svalid = 1;
2176 }
2177
2178 /*
2179 * Get alarm status.
2180 */
2181 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2182 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2183 ssc->ses_objmap[oid++].svalid = 1;
2184
2185 /*
2186 * Now get drive slot status
2187 */
2188 cdb[2] = SAFTE_RD_RDDSTS;
2189 amt = buflen;
2190 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2191 if (err) {
2192 SES_FREE(sdata, buflen);
2193 return (err);
2194 }
2195 hiwater = buflen - amt;
2196 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2197 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2198 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2199 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2200 ssc->ses_objmap[oid].encstat[2] = 0;
2201 ssc->ses_objmap[oid].encstat[3] = 0;
2202 status = sdata[r+3];
2203 if ((status & 0x1) == 0) { /* no device */
2204 ssc->ses_objmap[oid].encstat[0] =
2205 SES_OBJSTAT_NOTINSTALLED;
2206 } else {
2207 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2208 }
2209 if (status & 0x2) {
2210 ssc->ses_objmap[oid].encstat[2] = 0x8;
2211 }
2212 if ((status & 0x4) == 0) {
2213 ssc->ses_objmap[oid].encstat[3] = 0x10;
2214 }
2215 ssc->ses_objmap[oid++].svalid = 1;
2216 }
2217 /* see comment below about sticky enclosure status */
2218 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2219 SES_FREE(sdata, buflen);
2220 return (0);
2221 }
2222
2223 static int
2224 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2225 {
2226 int idx;
2227 encobj *ep;
2228 struct scfg *cc = ssc->ses_private;
2229
2230 if (cc == NULL)
2231 return (0);
2232
2233 idx = (int)obp->obj_id;
2234 ep = &ssc->ses_objmap[idx];
2235
2236 switch (ep->enctype) {
2237 case SESTYP_DEVICE:
2238 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2239 ep->priv |= 0x40;
2240 }
2241 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2242 if (obp->cstat[0] & SESCTL_DISABLE) {
2243 ep->priv |= 0x80;
2244 /*
2245 * Hmm. Try to set the 'No Drive' flag.
2246 * Maybe that will count as a 'disable'.
2247 */
2248 }
2249 if (ep->priv & 0xc6) {
2250 ep->priv &= ~0x1;
2251 } else {
2252 ep->priv |= 0x1; /* no errors */
2253 }
2254 wrslot_stat(ssc, slp);
2255 break;
2256 case SESTYP_POWER:
2257 /*
2258 * Okay- the only one that makes sense here is to
2259 * do the 'disable' for a power supply.
2260 */
2261 if (obp->cstat[0] & SESCTL_DISABLE) {
2262 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2263 idx - cc->pwroff, 0, 0, slp);
2264 }
2265 break;
2266 case SESTYP_FAN:
2267 /*
2268 * Okay- the only one that makes sense here is to
2269 * set fan speed to zero on disable.
2270 */
2271 if (obp->cstat[0] & SESCTL_DISABLE) {
2272 /* remember- fans are the first items, so idx works */
2273 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2274 }
2275 break;
2276 case SESTYP_DOORLOCK:
2277 /*
2278 * Well, we can 'disable' the lock.
2279 */
2280 if (obp->cstat[0] & SESCTL_DISABLE) {
2281 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2282 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2283 cc->flag2, 0, slp);
2284 }
2285 break;
2286 case SESTYP_ALARM:
2287 /*
2288 * Well, we can 'disable' the alarm.
2289 */
2290 if (obp->cstat[0] & SESCTL_DISABLE) {
2291 cc->flag2 &= ~SAFT_FLG1_ALARM;
2292 ep->priv |= 0x40; /* Muted */
2293 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2294 cc->flag2, 0, slp);
2295 }
2296 break;
2297 default:
2298 break;
2299 }
2300 ep->svalid = 0;
2301 return (0);
2302 }
2303
2304 /*
2305 * This function handles all of the 16 byte WRITE BUFFER commands.
2306 */
2307 static int
2308 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2309 uint8_t b3, int slp)
2310 {
2311 int err, amt;
2312 char *sdata;
2313 struct scfg *cc = ssc->ses_private;
2314 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2315
2316 if (cc == NULL)
2317 return (0);
2318
2319 sdata = SES_MALLOC(16);
2320 if (sdata == NULL)
2321 return (ENOMEM);
2322
2323 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2324
2325 sdata[0] = op;
2326 sdata[1] = b1;
2327 sdata[2] = b2;
2328 sdata[3] = b3;
2329 MEMZERO(&sdata[4], 12);
2330 amt = -16;
2331 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2332 SES_FREE(sdata, 16);
2333 return (err);
2334 }
2335
2336 /*
2337 * This function updates the status byte for the device slot described.
2338 *
2339 * Since this is an optional SAF-TE command, there's no point in
2340 * returning an error.
2341 */
2342 static void
2343 wrslot_stat(ses_softc_t *ssc, int slp)
2344 {
2345 int i, amt;
2346 encobj *ep;
2347 char cdb[10], *sdata;
2348 struct scfg *cc = ssc->ses_private;
2349
2350 if (cc == NULL)
2351 return;
2352
2353 SES_VLOG(ssc, "saf_wrslot\n");
2354 cdb[0] = WRITE_BUFFER;
2355 cdb[1] = 1;
2356 cdb[2] = 0;
2357 cdb[3] = 0;
2358 cdb[4] = 0;
2359 cdb[5] = 0;
2360 cdb[6] = 0;
2361 cdb[7] = 0;
2362 cdb[8] = cc->Nslots * 3 + 1;
2363 cdb[9] = 0;
2364
2365 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2366 if (sdata == NULL)
2367 return;
2368 MEMZERO(sdata, cc->Nslots * 3 + 1);
2369
2370 sdata[0] = SAFTE_WT_DSTAT;
2371 for (i = 0; i < cc->Nslots; i++) {
2372 ep = &ssc->ses_objmap[cc->slotoff + i];
2373 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2374 sdata[1 + (3 * i)] = ep->priv & 0xff;
2375 }
2376 amt = -(cc->Nslots * 3 + 1);
2377 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2378 SES_FREE(sdata, cc->Nslots * 3 + 1);
2379 }
2380
2381 /*
2382 * This function issues the "PERFORM SLOT OPERATION" command.
2383 */
2384 static int
2385 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2386 {
2387 int err, amt;
2388 char *sdata;
2389 struct scfg *cc = ssc->ses_private;
2390 static char cdb[10] =
2391 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2392
2393 if (cc == NULL)
2394 return (0);
2395
2396 sdata = SES_MALLOC(SAFT_SCRATCH);
2397 if (sdata == NULL)
2398 return (ENOMEM);
2399 MEMZERO(sdata, SAFT_SCRATCH);
2400
2401 sdata[0] = SAFTE_WT_SLTOP;
2402 sdata[1] = slot;
2403 sdata[2] = opflag;
2404 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2405 amt = -SAFT_SCRATCH;
2406 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2407 SES_FREE(sdata, SAFT_SCRATCH);
2408 return (err);
2409 }
2410