ses.c revision 1.5 1 /* $NetBSD: ses.c,v 1.5 2000/05/14 18:20:11 dante Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57
58 /*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61 typedef enum {
62 SES_NONE,
63 SES_SES_SCSI2,
64 SES_SES,
65 SES_SES_PASSTHROUGH,
66 SES_SEN,
67 SES_SAFT
68 } enctyp;
69
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 int (*softc_init) __P((ses_softc_t *, int));
74 int (*init_enc) __P((ses_softc_t *));
75 int (*get_encstat) __P((ses_softc_t *, int));
76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80
81 #define ENCI_SVALID 0x80
82
83 typedef struct {
84 uint32_t
85 enctype : 8, /* enclosure type */
86 subenclosure : 8, /* subenclosure id */
87 svalid : 1, /* enclosure information valid */
88 priv : 15; /* private data, per object */
89 uint8_t encstat[4]; /* state && stats */
90 } encobj;
91
92 #define SEN_ID "UNISYS SUN_SEN"
93 #define SEN_ID_LEN 24
94
95 static enctyp ses_type __P((struct scsipi_inquiry_data *));
96
97
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112
113 /*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117 #define STRNCMP strncmp
118 #define PRINTF printf
119 #define SES_LOG ses_log
120 #if defined(DEBUG) || defined(SCSIDEBUG)
121 #define SES_VLOG ses_log
122 #else
123 #define SES_VLOG if (0) ses_log
124 #endif
125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
127 #define MEMZERO bzero
128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
129 #define RECEIVE_DIAGNOSTIC 0x1c
130 #define SEND_DIAGNOSTIC 0x1d
131 #define WRITE_BUFFER 0x3b
132 #define READ_BUFFER 0x3c
133
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...));
140
141 /*
142 * General NetBSD kernel stuff.
143 */
144
145 struct ses_softc {
146 struct device sc_device;
147 struct scsipi_link *sc_link;
148 enctyp ses_type; /* type of enclosure */
149 encvec ses_vec; /* vector to handlers */
150 void * ses_private; /* per-type private data */
151 encobj * ses_objmap; /* objects */
152 u_int32_t ses_nobjects; /* number of objects */
153 ses_encstat ses_encstat; /* overall status */
154 u_int8_t ses_flags;
155 };
156 #define SES_FLAG_INVALID 0x01
157 #define SES_FLAG_OPEN 0x02
158 #define SES_FLAG_INITIALIZED 0x04
159
160 #define SESUNIT(x) (minor((x)))
161
162 static int ses_match __P((struct device *, struct cfdata *, void *));
163 static void ses_attach __P((struct device *, struct device *, void *));
164 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
165
166 struct cfattach ses_ca = {
167 sizeof (struct ses_softc), ses_match, ses_attach
168 };
169 extern struct cfdriver ses_cd;
170
171 struct scsipi_device ses_switch = {
172 NULL,
173 NULL,
174 NULL,
175 NULL
176 };
177
178
179 int
180 ses_match(parent, match, aux)
181 struct device *parent;
182 struct cfdata *match;
183 void *aux;
184 {
185 struct scsipibus_attach_args *sa = aux;
186
187 switch (ses_device_type(sa)) {
188 case SES_SES:
189 case SES_SES_SCSI2:
190 case SES_SEN:
191 case SES_SAFT:
192 case SES_SES_PASSTHROUGH:
193 /*
194 * For these devices, it's a perfect match.
195 */
196 return (24);
197 default:
198 return (0);
199 }
200 }
201
202
203 /*
204 * Complete the attachment.
205 *
206 * We have to repeat the rerun of INQUIRY data as above because
207 * it's not until the return from the match routine that we have
208 * the softc available to set stuff in.
209 */
210 void
211 ses_attach(parent, self, aux)
212 struct device *parent;
213 struct device *self;
214 void *aux;
215 {
216 char *tname;
217 struct ses_softc *softc = (void *)self;
218 struct scsipibus_attach_args *sa = aux;
219 struct scsipi_link *sc_link = sa->sa_sc_link;
220
221 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
222 softc->sc_link = sa->sa_sc_link;
223 sc_link->device = &ses_switch;
224 sc_link->device_softc = softc;
225 sc_link->openings = 1;
226
227 softc->ses_type = ses_device_type(sa);
228 switch (softc->ses_type) {
229 case SES_SES:
230 case SES_SES_SCSI2:
231 case SES_SES_PASSTHROUGH:
232 softc->ses_vec.softc_init = ses_softc_init;
233 softc->ses_vec.init_enc = ses_init_enc;
234 softc->ses_vec.get_encstat = ses_get_encstat;
235 softc->ses_vec.set_encstat = ses_set_encstat;
236 softc->ses_vec.get_objstat = ses_get_objstat;
237 softc->ses_vec.set_objstat = ses_set_objstat;
238 break;
239 case SES_SAFT:
240 softc->ses_vec.softc_init = safte_softc_init;
241 softc->ses_vec.init_enc = safte_init_enc;
242 softc->ses_vec.get_encstat = safte_get_encstat;
243 softc->ses_vec.set_encstat = safte_set_encstat;
244 softc->ses_vec.get_objstat = safte_get_objstat;
245 softc->ses_vec.set_objstat = safte_set_objstat;
246 break;
247 case SES_SEN:
248 break;
249 case SES_NONE:
250 default:
251 break;
252 }
253
254 switch (softc->ses_type) {
255 default:
256 case SES_NONE:
257 tname = "No SES device";
258 break;
259 case SES_SES_SCSI2:
260 tname = "SCSI-2 SES Device";
261 break;
262 case SES_SES:
263 tname = "SCSI-3 SES Device";
264 break;
265 case SES_SES_PASSTHROUGH:
266 tname = "SES Passthrough Device";
267 break;
268 case SES_SEN:
269 tname = "UNISYS SEN Device (NOT HANDLED YET)";
270 break;
271 case SES_SAFT:
272 tname = "SAF-TE Compliant Device";
273 break;
274 }
275 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
276 }
277
278
279 static enctyp
280 ses_device_type(sa)
281 struct scsipibus_attach_args *sa;
282 {
283 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284 int length;
285
286 if (inqp == NULL)
287 return (SES_NONE);
288
289 return (ses_type(inqp));
290 }
291
292 int
293 sesopen(dev, flags, fmt, p)
294 dev_t dev;
295 int flags;
296 int fmt;
297 struct proc *p;
298 {
299 struct ses_softc *softc;
300 int error, unit;
301
302 unit = SESUNIT(dev);
303 if (unit >= ses_cd.cd_ndevs)
304 return (ENXIO);
305 softc = ses_cd.cd_devs[unit];
306 if (softc == NULL)
307 return (ENXIO);
308
309 if (softc->ses_flags & SES_FLAG_INVALID) {
310 error = ENXIO;
311 goto out;
312 }
313 if (softc->ses_flags & SES_FLAG_OPEN) {
314 error = EBUSY;
315 goto out;
316 }
317 if (softc->ses_vec.softc_init == NULL) {
318 error = ENXIO;
319 goto out;
320 }
321 error = scsipi_adapter_addref(softc->sc_link);
322 if (error != 0)
323 goto out;
324
325
326 softc->ses_flags |= SES_FLAG_OPEN;
327 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
328 error = (*softc->ses_vec.softc_init)(softc, 1);
329 if (error)
330 softc->ses_flags &= ~SES_FLAG_OPEN;
331 else
332 softc->ses_flags |= SES_FLAG_INITIALIZED;
333 }
334
335 out:
336 return (error);
337 }
338
339 int
340 sesclose(dev, flags, fmt, p)
341 dev_t dev;
342 int flags;
343 int fmt;
344 struct proc *p;
345 {
346 struct ses_softc *softc;
347 int unit;
348
349 unit = SESUNIT(dev);
350 if (unit >= ses_cd.cd_ndevs)
351 return (ENXIO);
352 softc = ses_cd.cd_devs[unit];
353 if (softc == NULL)
354 return (ENXIO);
355
356 scsipi_wait_drain(softc->sc_link);
357 scsipi_adapter_delref(softc->sc_link);
358 softc->ses_flags &= ~SES_FLAG_OPEN;
359 return (0);
360 }
361
362 int
363 sesioctl(dev, cmd, arg_addr, flag, p)
364 dev_t dev;
365 u_long cmd;
366 caddr_t arg_addr;
367 int flag;
368 struct proc *p;
369 {
370 ses_encstat tmp;
371 ses_objstat objs;
372 ses_object obj, *uobj;
373 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
374 void *addr;
375 int error, i;
376
377
378 if (arg_addr)
379 addr = *((caddr_t *) arg_addr);
380 else
381 addr = NULL;
382
383 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
384
385 /*
386 * Now check to see whether we're initialized or not.
387 */
388 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
389 return (ENODEV);
390 }
391
392 error = 0;
393
394 /*
395 * If this command can change the device's state,
396 * we must have the device open for writing.
397 */
398 switch (cmd) {
399 case SESIOC_GETNOBJ:
400 case SESIOC_GETOBJMAP:
401 case SESIOC_GETENCSTAT:
402 case SESIOC_GETOBJSTAT:
403 break;
404 default:
405 if ((flag & FWRITE) == 0) {
406 return (EBADF);
407 }
408 }
409
410 switch (cmd) {
411 case SESIOC_GETNOBJ:
412 error = copyout(&ssc->ses_nobjects, addr,
413 sizeof (ssc->ses_nobjects));
414 break;
415
416 case SESIOC_GETOBJMAP:
417 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
418 obj.obj_id = i;
419 obj.subencid = ssc->ses_objmap[i].subenclosure;
420 obj.object_type = ssc->ses_objmap[i].enctype;
421 error = copyout(&obj, uobj, sizeof (ses_object));
422 if (error) {
423 break;
424 }
425 }
426 break;
427
428 case SESIOC_GETENCSTAT:
429 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 if (error)
431 break;
432 tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 error = copyout(&tmp, addr, sizeof (ses_encstat));
434 ssc->ses_encstat = tmp;
435 break;
436
437 case SESIOC_SETENCSTAT:
438 error = copyin(addr, &tmp, sizeof (ses_encstat));
439 if (error)
440 break;
441 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
442 break;
443
444 case SESIOC_GETOBJSTAT:
445 error = copyin(addr, &objs, sizeof (ses_objstat));
446 if (error)
447 break;
448 if (objs.obj_id >= ssc->ses_nobjects) {
449 error = EINVAL;
450 break;
451 }
452 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
453 if (error)
454 break;
455 error = copyout(&objs, addr, sizeof (ses_objstat));
456 /*
457 * Always (for now) invalidate entry.
458 */
459 ssc->ses_objmap[objs.obj_id].svalid = 0;
460 break;
461
462 case SESIOC_SETOBJSTAT:
463 error = copyin(addr, &objs, sizeof (ses_objstat));
464 if (error)
465 break;
466
467 if (objs.obj_id >= ssc->ses_nobjects) {
468 error = EINVAL;
469 break;
470 }
471 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
472
473 /*
474 * Always (for now) invalidate entry.
475 */
476 ssc->ses_objmap[objs.obj_id].svalid = 0;
477 break;
478
479 case SESIOC_INIT:
480
481 error = (*ssc->ses_vec.init_enc)(ssc);
482 break;
483
484 default:
485 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
486 break;
487 }
488 return (error);
489 }
490
491 static int
492 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
493 {
494 struct scsipi_generic sgen;
495 int dl, flg, error;
496
497 if (dptr) {
498 if ((dl = *dlenp) < 0) {
499 dl = -dl;
500 flg = XS_CTL_DATA_OUT;
501 } else {
502 flg = XS_CTL_DATA_IN;
503 }
504 } else {
505 dl = 0;
506 flg = 0;
507 }
508
509 if (cdbl > sizeof (struct scsipi_generic)) {
510 cdbl = sizeof (struct scsipi_generic);
511 }
512 bcopy(cdb, &sgen, cdbl);
513 #ifndef SCSIDEBUG
514 flg |= XS_CTL_SILENT;
515 #endif
516 error = scsipi_command(ssc->sc_link, &sgen, cdbl,
517 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
518
519 if (error == 0 && dptr)
520 *dlenp = 0;
521
522 return (error);
523 }
524
525 #ifdef __STDC__
526 static void
527 ses_log(struct ses_softc *ssc, const char *fmt, ...)
528 {
529 va_list ap;
530
531 printf("%s: ", ssc->sc_device.dv_xname);
532 va_start(ap, fmt);
533 vprintf(fmt, ap);
534 va_end(ap);
535 }
536 #else
537 static void
538 ses_log(ssc, fmt, va_alist)
539 struct ses_softc *ssc;
540 char *fmt;
541 va_dcl
542 {
543 va_list ap;
544
545 printf("%s: ", ssc->sc_device.dv_xname);
546 va_start(ap, fmt);
547 vprintf(fmt, ap);
548 va_end(ap);
549 }
550 #endif
551
552 /*
553 * The code after this point runs on many platforms,
554 * so forgive the slightly awkward and nonconforming
555 * appearance.
556 */
557
558 /*
559 * Is this a device that supports enclosure services?
560 *
561 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
562 * an SES device. If it happens to be an old UNISYS SEN device, we can
563 * handle that too.
564 */
565
566 #define SAFTE_START 44
567 #define SAFTE_END 50
568 #define SAFTE_LEN SAFTE_END-SAFTE_START
569
570 static enctyp
571 ses_type(inqp)
572 struct scsipi_inquiry_data *inqp;
573 {
574 size_t given_len = inqp->additional_length + 4;
575
576 if (given_len < 8+SEN_ID_LEN)
577 return (SES_NONE);
578
579 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
580 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
581 return (SES_SEN);
582 } else if ((inqp->version & SID_ANSII) > 2) {
583 return (SES_SES);
584 } else {
585 return (SES_SES_SCSI2);
586 }
587 return (SES_NONE);
588 }
589
590 #ifdef SES_ENABLE_PASSTHROUGH
591 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
592 /*
593 * PassThrough Device.
594 */
595 return (SES_SES_PASSTHROUGH);
596 }
597 #endif
598
599 /*
600 * The comparison is short for a reason-
601 * some vendors were chopping it short.
602 */
603
604 if (given_len < SAFTE_END - 2) {
605 return (SES_NONE);
606 }
607
608 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
609 SAFTE_LEN - 2) == 0) {
610 return (SES_SAFT);
611
612 return (SES_NONE);
613 }
614
615 /*
616 * SES Native Type Device Support
617 */
618
619 /*
620 * SES Diagnostic Page Codes
621 */
622
623 typedef enum {
624 SesConfigPage = 0x1,
625 SesControlPage,
626 #define SesStatusPage SesControlPage
627 SesHelpTxt,
628 SesStringOut,
629 #define SesStringIn SesStringOut
630 SesThresholdOut,
631 #define SesThresholdIn SesThresholdOut
632 SesArrayControl,
633 #define SesArrayStatus SesArrayControl
634 SesElementDescriptor,
635 SesShortStatus
636 } SesDiagPageCodes;
637
638 /*
639 * minimal amounts
640 */
641
642 /*
643 * Minimum amount of data, starting from byte 0, to have
644 * the config header.
645 */
646 #define SES_CFGHDR_MINLEN 12
647
648 /*
649 * Minimum amount of data, starting from byte 0, to have
650 * the config header and one enclosure header.
651 */
652 #define SES_ENCHDR_MINLEN 48
653
654 /*
655 * Take this value, subtract it from VEnclen and you know
656 * the length of the vendor unique bytes.
657 */
658 #define SES_ENCHDR_VMIN 36
659
660 /*
661 * SES Data Structures
662 */
663
664 typedef struct {
665 uint32_t GenCode; /* Generation Code */
666 uint8_t Nsubenc; /* Number of Subenclosures */
667 } SesCfgHdr;
668
669 typedef struct {
670 uint8_t Subencid; /* SubEnclosure Identifier */
671 uint8_t Ntypes; /* # of supported types */
672 uint8_t VEnclen; /* Enclosure Descriptor Length */
673 } SesEncHdr;
674
675 typedef struct {
676 uint8_t encWWN[8]; /* XXX- Not Right Yet */
677 uint8_t encVid[8];
678 uint8_t encPid[16];
679 uint8_t encRev[4];
680 uint8_t encVen[1];
681 } SesEncDesc;
682
683 typedef struct {
684 uint8_t enc_type; /* type of element */
685 uint8_t enc_maxelt; /* maximum supported */
686 uint8_t enc_subenc; /* in SubEnc # N */
687 uint8_t enc_tlen; /* Type Descriptor Text Length */
688 } SesThdr;
689
690 typedef struct {
691 uint8_t comstatus;
692 uint8_t comstat[3];
693 } SesComStat;
694
695 struct typidx {
696 int ses_tidx;
697 int ses_oidx;
698 };
699
700 struct sscfg {
701 uint8_t ses_ntypes; /* total number of types supported */
702
703 /*
704 * We need to keep a type index as well as an
705 * object index for each object in an enclosure.
706 */
707 struct typidx *ses_typidx;
708
709 /*
710 * We also need to keep track of the number of elements
711 * per type of element. This is needed later so that we
712 * can find precisely in the returned status data the
713 * status for the Nth element of the Kth type.
714 */
715 uint8_t * ses_eltmap;
716 };
717
718
719 /*
720 * (de)canonicalization defines
721 */
722 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
723 #define sbit(x, bit) (((uint32_t)(x)) << bit)
724 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
725
726 #define sset16(outp, idx, sval) \
727 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
729
730
731 #define sset24(outp, idx, sval) \
732 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
733 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
734 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
735
736
737 #define sset32(outp, idx, sval) \
738 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
739 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
740 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
742
743 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
744 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
745 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
746 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
747
748 #define sget16(inp, idx, lval) \
749 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
750 (((uint8_t *)(inp))[idx+1]), idx += 2
751
752 #define gget16(inp, idx, lval) \
753 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
754 (((uint8_t *)(inp))[idx+1])
755
756 #define sget24(inp, idx, lval) \
757 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
758 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
759 (((uint8_t *)(inp))[idx+2]), idx += 3
760
761 #define gget24(inp, idx, lval) \
762 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
763 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
764 (((uint8_t *)(inp))[idx+2])
765
766 #define sget32(inp, idx, lval) \
767 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
768 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
769 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
770 (((uint8_t *)(inp))[idx+3]), idx += 4
771
772 #define gget32(inp, idx, lval) \
773 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
774 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
775 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
776 (((uint8_t *)(inp))[idx+3])
777
778 #define SCSZ 0x2000
779 #define CFLEN (256 + SES_ENCHDR_MINLEN)
780
781 /*
782 * Routines specific && private to SES only
783 */
784
785 static int ses_getconfig(ses_softc_t *);
786 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
787 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
788 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
789 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
790 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
791 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
792 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
793
794 static int
795 ses_softc_init(ses_softc_t *ssc, int doinit)
796 {
797 if (doinit == 0) {
798 struct sscfg *cc;
799 if (ssc->ses_nobjects) {
800 SES_FREE(ssc->ses_objmap,
801 ssc->ses_nobjects * sizeof (encobj));
802 ssc->ses_objmap = NULL;
803 }
804 if ((cc = ssc->ses_private) != NULL) {
805 if (cc->ses_eltmap && cc->ses_ntypes) {
806 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
807 cc->ses_eltmap = NULL;
808 cc->ses_ntypes = 0;
809 }
810 if (cc->ses_typidx && ssc->ses_nobjects) {
811 SES_FREE(cc->ses_typidx,
812 ssc->ses_nobjects * sizeof (struct typidx));
813 cc->ses_typidx = NULL;
814 }
815 SES_FREE(cc, sizeof (struct sscfg));
816 ssc->ses_private = NULL;
817 }
818 ssc->ses_nobjects = 0;
819 return (0);
820 }
821 if (ssc->ses_private == NULL) {
822 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
823 }
824 if (ssc->ses_private == NULL) {
825 return (ENOMEM);
826 }
827 ssc->ses_nobjects = 0;
828 ssc->ses_encstat = 0;
829 return (ses_getconfig(ssc));
830 }
831
832 static int
833 ses_init_enc(ses_softc_t *ssc)
834 {
835 return (0);
836 }
837
838 static int
839 ses_get_encstat(ses_softc_t *ssc, int slpflag)
840 {
841 SesComStat ComStat;
842 int status;
843
844 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
845 return (status);
846 }
847 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
848 return (0);
849 }
850
851 static int
852 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
853 {
854 SesComStat ComStat;
855 int status;
856
857 ComStat.comstatus = encstat & 0xf;
858 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
859 return (status);
860 }
861 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
862 return (0);
863 }
864
865 static int
866 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
867 {
868 int i = (int)obp->obj_id;
869
870 if (ssc->ses_objmap[i].svalid == 0) {
871 SesComStat ComStat;
872 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
873 if (err)
874 return (err);
875 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
876 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
877 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
878 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
879 ssc->ses_objmap[i].svalid = 1;
880 }
881 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
882 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
883 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
884 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
885 return (0);
886 }
887
888 static int
889 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
890 {
891 SesComStat ComStat;
892 int err;
893 /*
894 * If this is clear, we don't do diddly.
895 */
896 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
897 return (0);
898 }
899 ComStat.comstatus = obp->cstat[0];
900 ComStat.comstat[0] = obp->cstat[1];
901 ComStat.comstat[1] = obp->cstat[2];
902 ComStat.comstat[2] = obp->cstat[3];
903 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
904 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
905 return (err);
906 }
907
908 static int
909 ses_getconfig(ses_softc_t *ssc)
910 {
911 struct sscfg *cc;
912 SesCfgHdr cf;
913 SesEncHdr hd;
914 SesEncDesc *cdp;
915 SesThdr thdr;
916 int err, amt, i, nobj, ntype, maxima;
917 char storage[CFLEN], *sdata;
918 static char cdb[6] = {
919 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
920 };
921
922 cc = ssc->ses_private;
923 if (cc == NULL) {
924 return (ENXIO);
925 }
926
927 sdata = SES_MALLOC(SCSZ);
928 if (sdata == NULL)
929 return (ENOMEM);
930
931 amt = SCSZ;
932 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
933 if (err) {
934 SES_FREE(sdata, SCSZ);
935 return (err);
936 }
937 amt = SCSZ - amt;
938
939 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
940 SES_LOG(ssc, "Unable to parse SES Config Header\n");
941 SES_FREE(sdata, SCSZ);
942 return (EIO);
943 }
944 if (amt < SES_ENCHDR_MINLEN) {
945 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
946 SES_FREE(sdata, SCSZ);
947 return (EIO);
948 }
949
950 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
951
952 /*
953 * Now waltz through all the subenclosures toting up the
954 * number of types available in each. For this, we only
955 * really need the enclosure header. However, we get the
956 * enclosure descriptor for debug purposes, as well
957 * as self-consistency checking purposes.
958 */
959
960 maxima = cf.Nsubenc + 1;
961 cdp = (SesEncDesc *) storage;
962 for (ntype = i = 0; i < maxima; i++) {
963 MEMZERO((caddr_t)cdp, sizeof (*cdp));
964 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
965 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
966 SES_FREE(sdata, SCSZ);
967 return (EIO);
968 }
969 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
970 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
971
972 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
973 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
974 SES_FREE(sdata, SCSZ);
975 return (EIO);
976 }
977 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
978 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
979 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
980 cdp->encWWN[6], cdp->encWWN[7]);
981 ntype += hd.Ntypes;
982 }
983
984 /*
985 * Now waltz through all the types that are available, getting
986 * the type header so we can start adding up the number of
987 * objects available.
988 */
989 for (nobj = i = 0; i < ntype; i++) {
990 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
991 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
992 SES_FREE(sdata, SCSZ);
993 return (EIO);
994 }
995 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
996 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
997 thdr.enc_subenc, thdr.enc_tlen);
998 nobj += thdr.enc_maxelt;
999 }
1000
1001
1002 /*
1003 * Now allocate the object array and type map.
1004 */
1005
1006 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1007 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1008 cc->ses_eltmap = SES_MALLOC(ntype);
1009
1010 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1011 cc->ses_eltmap == NULL) {
1012 if (ssc->ses_objmap) {
1013 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1014 ssc->ses_objmap = NULL;
1015 }
1016 if (cc->ses_typidx) {
1017 SES_FREE(cc->ses_typidx,
1018 (nobj * sizeof (struct typidx)));
1019 cc->ses_typidx = NULL;
1020 }
1021 if (cc->ses_eltmap) {
1022 SES_FREE(cc->ses_eltmap, ntype);
1023 cc->ses_eltmap = NULL;
1024 }
1025 SES_FREE(sdata, SCSZ);
1026 return (ENOMEM);
1027 }
1028 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1029 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1030 MEMZERO(cc->ses_eltmap, ntype);
1031 cc->ses_ntypes = (uint8_t) ntype;
1032 ssc->ses_nobjects = nobj;
1033
1034 /*
1035 * Now waltz through the # of types again to fill in the types
1036 * (and subenclosure ids) of the allocated objects.
1037 */
1038 nobj = 0;
1039 for (i = 0; i < ntype; i++) {
1040 int j;
1041 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1042 continue;
1043 }
1044 cc->ses_eltmap[i] = thdr.enc_maxelt;
1045 for (j = 0; j < thdr.enc_maxelt; j++) {
1046 cc->ses_typidx[nobj].ses_tidx = i;
1047 cc->ses_typidx[nobj].ses_oidx = j;
1048 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1049 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1050 }
1051 }
1052 SES_FREE(sdata, SCSZ);
1053 return (0);
1054 }
1055
1056 static int
1057 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1058 {
1059 struct sscfg *cc;
1060 int err, amt, bufsiz, tidx, oidx;
1061 char cdb[6], *sdata;
1062
1063 cc = ssc->ses_private;
1064 if (cc == NULL) {
1065 return (ENXIO);
1066 }
1067
1068 /*
1069 * If we're just getting overall enclosure status,
1070 * we only need 2 bytes of data storage.
1071 *
1072 * If we're getting anything else, we know how much
1073 * storage we need by noting that starting at offset
1074 * 8 in returned data, all object status bytes are 4
1075 * bytes long, and are stored in chunks of types(M)
1076 * and nth+1 instances of type M.
1077 */
1078 if (objid == -1) {
1079 bufsiz = 2;
1080 } else {
1081 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1082 }
1083 sdata = SES_MALLOC(bufsiz);
1084 if (sdata == NULL)
1085 return (ENOMEM);
1086
1087 cdb[0] = RECEIVE_DIAGNOSTIC;
1088 cdb[1] = 1;
1089 cdb[2] = SesStatusPage;
1090 cdb[3] = bufsiz >> 8;
1091 cdb[4] = bufsiz & 0xff;
1092 cdb[5] = 0;
1093 amt = bufsiz;
1094 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1095 if (err) {
1096 SES_FREE(sdata, bufsiz);
1097 return (err);
1098 }
1099 amt = bufsiz - amt;
1100
1101 if (objid == -1) {
1102 tidx = -1;
1103 oidx = -1;
1104 } else {
1105 tidx = cc->ses_typidx[objid].ses_tidx;
1106 oidx = cc->ses_typidx[objid].ses_oidx;
1107 }
1108 if (in) {
1109 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1110 err = ENODEV;
1111 }
1112 } else {
1113 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1114 err = ENODEV;
1115 } else {
1116 cdb[0] = SEND_DIAGNOSTIC;
1117 cdb[1] = 0x10;
1118 cdb[2] = 0;
1119 cdb[3] = bufsiz >> 8;
1120 cdb[4] = bufsiz & 0xff;
1121 cdb[5] = 0;
1122 amt = -bufsiz;
1123 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1124 }
1125 }
1126 SES_FREE(sdata, bufsiz);
1127 return (0);
1128 }
1129
1130
1131 /*
1132 * Routines to parse returned SES data structures.
1133 * Architecture and compiler independent.
1134 */
1135
1136 static int
1137 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1138 {
1139 if (buflen < SES_CFGHDR_MINLEN) {
1140 return (-1);
1141 }
1142 gget8(buffer, 1, cfp->Nsubenc);
1143 gget32(buffer, 4, cfp->GenCode);
1144 return (0);
1145 }
1146
1147 static int
1148 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1149 {
1150 int s, off = 8;
1151 for (s = 0; s < SubEncId; s++) {
1152 if (off + 3 > amt)
1153 return (-1);
1154 off += buffer[off+3] + 4;
1155 }
1156 if (off + 3 > amt) {
1157 return (-1);
1158 }
1159 gget8(buffer, off+1, chp->Subencid);
1160 gget8(buffer, off+2, chp->Ntypes);
1161 gget8(buffer, off+3, chp->VEnclen);
1162 return (0);
1163 }
1164
1165 static int
1166 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1167 {
1168 int s, e, enclen, off = 8;
1169 for (s = 0; s < SubEncId; s++) {
1170 if (off + 3 > amt)
1171 return (-1);
1172 off += buffer[off+3] + 4;
1173 }
1174 if (off + 3 > amt) {
1175 return (-1);
1176 }
1177 gget8(buffer, off+3, enclen);
1178 off += 4;
1179 if (off >= amt)
1180 return (-1);
1181
1182 e = off + enclen;
1183 if (e > amt) {
1184 e = amt;
1185 }
1186 MEMCPY(cdp, &buffer[off], e - off);
1187 return (0);
1188 }
1189
1190 static int
1191 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1192 {
1193 int s, off = 8;
1194
1195 if (amt < SES_CFGHDR_MINLEN) {
1196 return (-1);
1197 }
1198 for (s = 0; s < buffer[1]; s++) {
1199 if (off + 3 > amt)
1200 return (-1);
1201 off += buffer[off+3] + 4;
1202 }
1203 if (off + 3 > amt) {
1204 return (-1);
1205 }
1206 off += buffer[off+3] + 4 + (nth * 4);
1207 if (amt < (off + 4))
1208 return (-1);
1209
1210 gget8(buffer, off++, thp->enc_type);
1211 gget8(buffer, off++, thp->enc_maxelt);
1212 gget8(buffer, off++, thp->enc_subenc);
1213 gget8(buffer, off, thp->enc_tlen);
1214 return (0);
1215 }
1216
1217 /*
1218 * This function needs a little explanation.
1219 *
1220 * The arguments are:
1221 *
1222 *
1223 * char *b, int amt
1224 *
1225 * These describes the raw input SES status data and length.
1226 *
1227 * uint8_t *ep
1228 *
1229 * This is a map of the number of types for each element type
1230 * in the enclosure.
1231 *
1232 * int elt
1233 *
1234 * This is the element type being sought. If elt is -1,
1235 * then overall enclosure status is being sought.
1236 *
1237 * int elm
1238 *
1239 * This is the ordinal Mth element of type elt being sought.
1240 *
1241 * SesComStat *sp
1242 *
1243 * This is the output area to store the status for
1244 * the Mth element of type Elt.
1245 */
1246
1247 static int
1248 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1249 {
1250 int idx, i;
1251
1252 /*
1253 * If it's overall enclosure status being sought, get that.
1254 * We need at least 2 bytes of status data to get that.
1255 */
1256 if (elt == -1) {
1257 if (amt < 2)
1258 return (-1);
1259 gget8(b, 1, sp->comstatus);
1260 sp->comstat[0] = 0;
1261 sp->comstat[1] = 0;
1262 sp->comstat[2] = 0;
1263 return (0);
1264 }
1265
1266 /*
1267 * Check to make sure that the Mth element is legal for type Elt.
1268 */
1269
1270 if (elm >= ep[elt])
1271 return (-1);
1272
1273 /*
1274 * Starting at offset 8, start skipping over the storage
1275 * for the element types we're not interested in.
1276 */
1277 for (idx = 8, i = 0; i < elt; i++) {
1278 idx += ((ep[i] + 1) * 4);
1279 }
1280
1281 /*
1282 * Skip over Overall status for this element type.
1283 */
1284 idx += 4;
1285
1286 /*
1287 * And skip to the index for the Mth element that we're going for.
1288 */
1289 idx += (4 * elm);
1290
1291 /*
1292 * Make sure we haven't overflowed the buffer.
1293 */
1294 if (idx+4 > amt)
1295 return (-1);
1296
1297 /*
1298 * Retrieve the status.
1299 */
1300 gget8(b, idx++, sp->comstatus);
1301 gget8(b, idx++, sp->comstat[0]);
1302 gget8(b, idx++, sp->comstat[1]);
1303 gget8(b, idx++, sp->comstat[2]);
1304 #if 0
1305 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1306 #endif
1307 return (0);
1308 }
1309
1310 /*
1311 * This is the mirror function to ses_decode, but we set the 'select'
1312 * bit for the object which we're interested in. All other objects,
1313 * after a status fetch, should have that bit off. Hmm. It'd be easy
1314 * enough to ensure this, so we will.
1315 */
1316
1317 static int
1318 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1319 {
1320 int idx, i;
1321
1322 /*
1323 * If it's overall enclosure status being sought, get that.
1324 * We need at least 2 bytes of status data to get that.
1325 */
1326 if (elt == -1) {
1327 if (amt < 2)
1328 return (-1);
1329 i = 0;
1330 sset8(b, i, 0);
1331 sset8(b, i, sp->comstatus & 0xf);
1332 #if 0
1333 PRINTF("set EncStat %x\n", sp->comstatus);
1334 #endif
1335 return (0);
1336 }
1337
1338 /*
1339 * Check to make sure that the Mth element is legal for type Elt.
1340 */
1341
1342 if (elm >= ep[elt])
1343 return (-1);
1344
1345 /*
1346 * Starting at offset 8, start skipping over the storage
1347 * for the element types we're not interested in.
1348 */
1349 for (idx = 8, i = 0; i < elt; i++) {
1350 idx += ((ep[i] + 1) * 4);
1351 }
1352
1353 /*
1354 * Skip over Overall status for this element type.
1355 */
1356 idx += 4;
1357
1358 /*
1359 * And skip to the index for the Mth element that we're going for.
1360 */
1361 idx += (4 * elm);
1362
1363 /*
1364 * Make sure we haven't overflowed the buffer.
1365 */
1366 if (idx+4 > amt)
1367 return (-1);
1368
1369 /*
1370 * Set the status.
1371 */
1372 sset8(b, idx, sp->comstatus);
1373 sset8(b, idx, sp->comstat[0]);
1374 sset8(b, idx, sp->comstat[1]);
1375 sset8(b, idx, sp->comstat[2]);
1376 idx -= 4;
1377
1378 #if 0
1379 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1380 elt, elm, idx, sp->comstatus, sp->comstat[0],
1381 sp->comstat[1], sp->comstat[2]);
1382 #endif
1383
1384 /*
1385 * Now make sure all other 'Select' bits are off.
1386 */
1387 for (i = 8; i < amt; i += 4) {
1388 if (i != idx)
1389 b[i] &= ~0x80;
1390 }
1391 /*
1392 * And make sure the INVOP bit is clear.
1393 */
1394 b[2] &= ~0x10;
1395
1396 return (0);
1397 }
1398
1399 /*
1400 * SAF-TE Type Device Emulation
1401 */
1402
1403 static int safte_getconfig(ses_softc_t *);
1404 static int safte_rdstat(ses_softc_t *, int);;
1405 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1406 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1407 static void wrslot_stat(ses_softc_t *, int);
1408 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1409
1410 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1411 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1412 /*
1413 * SAF-TE specific defines- Mandatory ones only...
1414 */
1415
1416 /*
1417 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1418 */
1419 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1420 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1421 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1422
1423 /*
1424 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1425 */
1426 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1427 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1428 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1429 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1430 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1431
1432
1433 #define SAFT_SCRATCH 64
1434 #define NPSEUDO_THERM 16
1435 #define NPSEUDO_ALARM 1
1436 struct scfg {
1437 /*
1438 * Cached Configuration
1439 */
1440 uint8_t Nfans; /* Number of Fans */
1441 uint8_t Npwr; /* Number of Power Supplies */
1442 uint8_t Nslots; /* Number of Device Slots */
1443 uint8_t DoorLock; /* Door Lock Installed */
1444 uint8_t Ntherm; /* Number of Temperature Sensors */
1445 uint8_t Nspkrs; /* Number of Speakers */
1446 uint8_t Nalarm; /* Number of Alarms (at least one) */
1447 /*
1448 * Cached Flag Bytes for Global Status
1449 */
1450 uint8_t flag1;
1451 uint8_t flag2;
1452 /*
1453 * What object index ID is where various slots start.
1454 */
1455 uint8_t pwroff;
1456 uint8_t slotoff;
1457 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1458 };
1459
1460 #define SAFT_FLG1_ALARM 0x1
1461 #define SAFT_FLG1_GLOBFAIL 0x2
1462 #define SAFT_FLG1_GLOBWARN 0x4
1463 #define SAFT_FLG1_ENCPWROFF 0x8
1464 #define SAFT_FLG1_ENCFANFAIL 0x10
1465 #define SAFT_FLG1_ENCPWRFAIL 0x20
1466 #define SAFT_FLG1_ENCDRVFAIL 0x40
1467 #define SAFT_FLG1_ENCDRVWARN 0x80
1468
1469 #define SAFT_FLG2_LOCKDOOR 0x4
1470 #define SAFT_PRIVATE sizeof (struct scfg)
1471
1472 static char *safte_2little = "Too Little Data Returned (%d) at line %d\n";
1473 #define SAFT_BAIL(r, x, k, l) \
1474 if (r >= x) { \
1475 SES_LOG(ssc, safte_2little, x, __LINE__);\
1476 SES_FREE(k, l); \
1477 return (EIO); \
1478 }
1479
1480
1481 int
1482 safte_softc_init(ses_softc_t *ssc, int doinit)
1483 {
1484 int err, i, r;
1485 struct scfg *cc;
1486
1487 if (doinit == 0) {
1488 if (ssc->ses_nobjects) {
1489 if (ssc->ses_objmap) {
1490 SES_FREE(ssc->ses_objmap,
1491 ssc->ses_nobjects * sizeof (encobj));
1492 ssc->ses_objmap = NULL;
1493 }
1494 ssc->ses_nobjects = 0;
1495 }
1496 if (ssc->ses_private) {
1497 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1498 ssc->ses_private = NULL;
1499 }
1500 return (0);
1501 }
1502
1503 if (ssc->ses_private == NULL) {
1504 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1505 if (ssc->ses_private == NULL) {
1506 return (ENOMEM);
1507 }
1508 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1509 }
1510
1511 ssc->ses_nobjects = 0;
1512 ssc->ses_encstat = 0;
1513
1514 if ((err = safte_getconfig(ssc)) != 0) {
1515 return (err);
1516 }
1517
1518 /*
1519 * The number of objects here, as well as that reported by the
1520 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1521 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1522 */
1523 cc = ssc->ses_private;
1524 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1525 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1526 ssc->ses_objmap = (encobj *)
1527 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1528 if (ssc->ses_objmap == NULL) {
1529 return (ENOMEM);
1530 }
1531 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1532
1533 r = 0;
1534 /*
1535 * Note that this is all arranged for the convenience
1536 * in later fetches of status.
1537 */
1538 for (i = 0; i < cc->Nfans; i++)
1539 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1540 cc->pwroff = (uint8_t) r;
1541 for (i = 0; i < cc->Npwr; i++)
1542 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1543 for (i = 0; i < cc->DoorLock; i++)
1544 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1545 for (i = 0; i < cc->Nspkrs; i++)
1546 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1547 for (i = 0; i < cc->Ntherm; i++)
1548 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1549 for (i = 0; i < NPSEUDO_THERM; i++)
1550 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1551 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1552 cc->slotoff = (uint8_t) r;
1553 for (i = 0; i < cc->Nslots; i++)
1554 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1555 return (0);
1556 }
1557
1558 int
1559 safte_init_enc(ses_softc_t *ssc)
1560 {
1561 int err, amt;
1562 char *sdata;
1563 static char cdb0[6] = { SEND_DIAGNOSTIC };
1564 static char cdb[10] =
1565 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1566
1567 sdata = SES_MALLOC(SAFT_SCRATCH);
1568 if (sdata == NULL)
1569 return (ENOMEM);
1570
1571 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1572 if (err) {
1573 SES_FREE(sdata, SAFT_SCRATCH);
1574 return (err);
1575 }
1576 sdata[0] = SAFTE_WT_GLOBAL;
1577 MEMZERO(&sdata[1], 15);
1578 amt = -SAFT_SCRATCH;
1579 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1580 SES_FREE(sdata, SAFT_SCRATCH);
1581 return (err);
1582 }
1583
1584 int
1585 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1586 {
1587 return (safte_rdstat(ssc, slpflg));
1588 }
1589
1590 int
1591 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1592 {
1593 struct scfg *cc = ssc->ses_private;
1594 if (cc == NULL)
1595 return (0);
1596 /*
1597 * Since SAF-TE devices aren't necessarily sticky in terms
1598 * of state, make our soft copy of enclosure status 'sticky'-
1599 * that is, things set in enclosure status stay set (as implied
1600 * by conditions set in reading object status) until cleared.
1601 */
1602 ssc->ses_encstat &= ~ALL_ENC_STAT;
1603 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1604 ssc->ses_encstat |= ENCI_SVALID;
1605 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1606 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1607 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1608 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1609 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1610 }
1611 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1612 }
1613
1614 int
1615 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1616 {
1617 int i = (int)obp->obj_id;
1618
1619 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1620 (ssc->ses_objmap[i].svalid) == 0) {
1621 int err = safte_rdstat(ssc, slpflg);
1622 if (err)
1623 return (err);
1624 }
1625 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1626 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1627 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1628 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1629 return (0);
1630 }
1631
1632
1633 int
1634 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1635 {
1636 int idx, err;
1637 encobj *ep;
1638 struct scfg *cc;
1639
1640
1641 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1642 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1643 obp->cstat[3]);
1644
1645 /*
1646 * If this is clear, we don't do diddly.
1647 */
1648 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1649 return (0);
1650 }
1651
1652 err = 0;
1653 /*
1654 * Check to see if the common bits are set and do them first.
1655 */
1656 if (obp->cstat[0] & ~SESCTL_CSEL) {
1657 err = set_objstat_sel(ssc, obp, slp);
1658 if (err)
1659 return (err);
1660 }
1661
1662 cc = ssc->ses_private;
1663 if (cc == NULL)
1664 return (0);
1665
1666 idx = (int)obp->obj_id;
1667 ep = &ssc->ses_objmap[idx];
1668
1669 switch (ep->enctype) {
1670 case SESTYP_DEVICE:
1671 {
1672 uint8_t slotop = 0;
1673 /*
1674 * XXX: I should probably cache the previous state
1675 * XXX: of SESCTL_DEVOFF so that when it goes from
1676 * XXX: true to false I can then set PREPARE FOR OPERATION
1677 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1678 */
1679 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1680 slotop |= 0x2;
1681 }
1682 if (obp->cstat[2] & SESCTL_RQSID) {
1683 slotop |= 0x4;
1684 }
1685 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1686 slotop, slp);
1687 if (err)
1688 return (err);
1689 if (obp->cstat[3] & SESCTL_RQSFLT) {
1690 ep->priv |= 0x2;
1691 } else {
1692 ep->priv &= ~0x2;
1693 }
1694 if (ep->priv & 0xc6) {
1695 ep->priv &= ~0x1;
1696 } else {
1697 ep->priv |= 0x1; /* no errors */
1698 }
1699 wrslot_stat(ssc, slp);
1700 break;
1701 }
1702 case SESTYP_POWER:
1703 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1704 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1705 } else {
1706 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1707 }
1708 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1709 cc->flag2, 0, slp);
1710 if (err)
1711 return (err);
1712 if (obp->cstat[3] & SESCTL_RQSTON) {
1713 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1714 idx - cc->pwroff, 0, 0, slp);
1715 } else {
1716 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1717 idx - cc->pwroff, 0, 1, slp);
1718 }
1719 break;
1720 case SESTYP_FAN:
1721 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1722 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1723 } else {
1724 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1725 }
1726 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1727 cc->flag2, 0, slp);
1728 if (err)
1729 return (err);
1730 if (obp->cstat[3] & SESCTL_RQSTON) {
1731 uint8_t fsp;
1732 if ((obp->cstat[3] & 0x7) == 7) {
1733 fsp = 4;
1734 } else if ((obp->cstat[3] & 0x7) == 6) {
1735 fsp = 3;
1736 } else if ((obp->cstat[3] & 0x7) == 4) {
1737 fsp = 2;
1738 } else {
1739 fsp = 1;
1740 }
1741 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1742 } else {
1743 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1744 }
1745 break;
1746 case SESTYP_DOORLOCK:
1747 if (obp->cstat[3] & 0x1) {
1748 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1749 } else {
1750 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1751 }
1752 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1753 cc->flag2, 0, slp);
1754 break;
1755 case SESTYP_ALARM:
1756 /*
1757 * On all nonzero but the 'muted' bit, we turn on the alarm,
1758 */
1759 obp->cstat[3] &= ~0xa;
1760 if (obp->cstat[3] & 0x40) {
1761 cc->flag2 &= ~SAFT_FLG1_ALARM;
1762 } else if (obp->cstat[3] != 0) {
1763 cc->flag2 |= SAFT_FLG1_ALARM;
1764 } else {
1765 cc->flag2 &= ~SAFT_FLG1_ALARM;
1766 }
1767 ep->priv = obp->cstat[3];
1768 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1769 cc->flag2, 0, slp);
1770 break;
1771 default:
1772 break;
1773 }
1774 ep->svalid = 0;
1775 return (0);
1776 }
1777
1778 static int
1779 safte_getconfig(ses_softc_t *ssc)
1780 {
1781 struct scfg *cfg;
1782 int err, amt;
1783 char *sdata;
1784 static char cdb[10] =
1785 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1786
1787 cfg = ssc->ses_private;
1788 if (cfg == NULL)
1789 return (ENXIO);
1790
1791 sdata = SES_MALLOC(SAFT_SCRATCH);
1792 if (sdata == NULL)
1793 return (ENOMEM);
1794
1795 amt = SAFT_SCRATCH;
1796 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1797 if (err) {
1798 SES_FREE(sdata, SAFT_SCRATCH);
1799 return (err);
1800 }
1801 amt = SAFT_SCRATCH - amt;
1802 if (amt < 6) {
1803 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1804 SES_FREE(sdata, SAFT_SCRATCH);
1805 return (EIO);
1806 }
1807 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1808 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1809 cfg->Nfans = sdata[0];
1810 cfg->Npwr = sdata[1];
1811 cfg->Nslots = sdata[2];
1812 cfg->DoorLock = sdata[3];
1813 cfg->Ntherm = sdata[4];
1814 cfg->Nspkrs = sdata[5];
1815 cfg->Nalarm = NPSEUDO_ALARM;
1816 SES_FREE(sdata, SAFT_SCRATCH);
1817 return (0);
1818 }
1819
1820 static int
1821 safte_rdstat(ses_softc_t *ssc, int slpflg)
1822 {
1823 int err, oid, r, i, hiwater, nitems, amt;
1824 uint16_t tempflags;
1825 size_t buflen;
1826 uint8_t status, oencstat;
1827 char *sdata, cdb[10];
1828 struct scfg *cc = ssc->ses_private;
1829
1830
1831 /*
1832 * The number of objects overstates things a bit,
1833 * both for the bogus 'thermometer' entries and
1834 * the drive status (which isn't read at the same
1835 * time as the enclosure status), but that's okay.
1836 */
1837 buflen = 4 * cc->Nslots;
1838 if (ssc->ses_nobjects > buflen)
1839 buflen = ssc->ses_nobjects;
1840 sdata = SES_MALLOC(buflen);
1841 if (sdata == NULL)
1842 return (ENOMEM);
1843
1844 cdb[0] = READ_BUFFER;
1845 cdb[1] = 1;
1846 cdb[2] = SAFTE_RD_RDESTS;
1847 cdb[3] = 0;
1848 cdb[4] = 0;
1849 cdb[5] = 0;
1850 cdb[6] = 0;
1851 cdb[7] = (buflen >> 8) & 0xff;
1852 cdb[8] = buflen & 0xff;
1853 cdb[9] = 0;
1854 amt = buflen;
1855 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1856 if (err) {
1857 SES_FREE(sdata, buflen);
1858 return (err);
1859 }
1860 hiwater = buflen - amt;
1861
1862
1863 /*
1864 * invalidate all status bits.
1865 */
1866 for (i = 0; i < ssc->ses_nobjects; i++)
1867 ssc->ses_objmap[i].svalid = 0;
1868 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1869 ssc->ses_encstat = 0;
1870
1871
1872 /*
1873 * Now parse returned buffer.
1874 * If we didn't get enough data back,
1875 * that's considered a fatal error.
1876 */
1877 oid = r = 0;
1878
1879 for (nitems = i = 0; i < cc->Nfans; i++) {
1880 SAFT_BAIL(r, hiwater, sdata, buflen);
1881 /*
1882 * 0 = Fan Operational
1883 * 1 = Fan is malfunctioning
1884 * 2 = Fan is not present
1885 * 0x80 = Unknown or Not Reportable Status
1886 */
1887 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1888 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1889 switch ((int)(uint8_t)sdata[r]) {
1890 case 0:
1891 nitems++;
1892 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1893 /*
1894 * We could get fancier and cache
1895 * fan speeds that we have set, but
1896 * that isn't done now.
1897 */
1898 ssc->ses_objmap[oid].encstat[3] = 7;
1899 break;
1900
1901 case 1:
1902 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1903 /*
1904 * FAIL and FAN STOPPED synthesized
1905 */
1906 ssc->ses_objmap[oid].encstat[3] = 0x40;
1907 /*
1908 * Enclosure marked with CRITICAL error
1909 * if only one fan or no thermometers,
1910 * else the NONCRITICAL error is set.
1911 */
1912 if (cc->Nfans == 1 || cc->Ntherm == 0)
1913 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1914 else
1915 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1916 break;
1917 case 2:
1918 ssc->ses_objmap[oid].encstat[0] =
1919 SES_OBJSTAT_NOTINSTALLED;
1920 ssc->ses_objmap[oid].encstat[3] = 0;
1921 /*
1922 * Enclosure marked with CRITICAL error
1923 * if only one fan or no thermometers,
1924 * else the NONCRITICAL error is set.
1925 */
1926 if (cc->Nfans == 1)
1927 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1928 else
1929 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1930 break;
1931 case 0x80:
1932 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1933 ssc->ses_objmap[oid].encstat[3] = 0;
1934 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1935 break;
1936 default:
1937 ssc->ses_objmap[oid].encstat[0] =
1938 SES_OBJSTAT_UNSUPPORTED;
1939 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1940 sdata[r] & 0xff);
1941 break;
1942 }
1943 ssc->ses_objmap[oid++].svalid = 1;
1944 r++;
1945 }
1946
1947 /*
1948 * No matter how you cut it, no cooling elements when there
1949 * should be some there is critical.
1950 */
1951 if (cc->Nfans && nitems == 0) {
1952 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1953 }
1954
1955
1956 for (i = 0; i < cc->Npwr; i++) {
1957 SAFT_BAIL(r, hiwater, sdata, buflen);
1958 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1959 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1960 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1961 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1962 switch ((uint8_t)sdata[r]) {
1963 case 0x00: /* pws operational and on */
1964 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1965 break;
1966 case 0x01: /* pws operational and off */
1967 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1968 ssc->ses_objmap[oid].encstat[3] = 0x10;
1969 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1970 break;
1971 case 0x10: /* pws is malfunctioning and commanded on */
1972 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1973 ssc->ses_objmap[oid].encstat[3] = 0x61;
1974 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1975 break;
1976
1977 case 0x11: /* pws is malfunctioning and commanded off */
1978 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1979 ssc->ses_objmap[oid].encstat[3] = 0x51;
1980 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1981 break;
1982 case 0x20: /* pws is not present */
1983 ssc->ses_objmap[oid].encstat[0] =
1984 SES_OBJSTAT_NOTINSTALLED;
1985 ssc->ses_objmap[oid].encstat[3] = 0;
1986 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1987 break;
1988 case 0x21: /* pws is present */
1989 /*
1990 * This is for enclosures that cannot tell whether the
1991 * device is on or malfunctioning, but know that it is
1992 * present. Just fall through.
1993 */
1994 /* FALLTHROUGH */
1995 case 0x80: /* Unknown or Not Reportable Status */
1996 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1997 ssc->ses_objmap[oid].encstat[3] = 0;
1998 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1999 break;
2000 default:
2001 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2002 i, sdata[r] & 0xff);
2003 break;
2004 }
2005 ssc->ses_objmap[oid++].svalid = 1;
2006 r++;
2007 }
2008
2009 /*
2010 * Skip over Slot SCSI IDs
2011 */
2012 r += cc->Nslots;
2013
2014 /*
2015 * We always have doorlock status, no matter what,
2016 * but we only save the status if we have one.
2017 */
2018 SAFT_BAIL(r, hiwater, sdata, buflen);
2019 if (cc->DoorLock) {
2020 /*
2021 * 0 = Door Locked
2022 * 1 = Door Unlocked, or no Lock Installed
2023 * 0x80 = Unknown or Not Reportable Status
2024 */
2025 ssc->ses_objmap[oid].encstat[1] = 0;
2026 ssc->ses_objmap[oid].encstat[2] = 0;
2027 switch ((uint8_t)sdata[r]) {
2028 case 0:
2029 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2030 ssc->ses_objmap[oid].encstat[3] = 0;
2031 break;
2032 case 1:
2033 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2034 ssc->ses_objmap[oid].encstat[3] = 1;
2035 break;
2036 case 0x80:
2037 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2038 ssc->ses_objmap[oid].encstat[3] = 0;
2039 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2040 break;
2041 default:
2042 ssc->ses_objmap[oid].encstat[0] =
2043 SES_OBJSTAT_UNSUPPORTED;
2044 SES_LOG(ssc, "unknown lock status 0x%x\n",
2045 sdata[r] & 0xff);
2046 break;
2047 }
2048 ssc->ses_objmap[oid++].svalid = 1;
2049 }
2050 r++;
2051
2052 /*
2053 * We always have speaker status, no matter what,
2054 * but we only save the status if we have one.
2055 */
2056 SAFT_BAIL(r, hiwater, sdata, buflen);
2057 if (cc->Nspkrs) {
2058 ssc->ses_objmap[oid].encstat[1] = 0;
2059 ssc->ses_objmap[oid].encstat[2] = 0;
2060 if (sdata[r] == 1) {
2061 /*
2062 * We need to cache tone urgency indicators.
2063 * Someday.
2064 */
2065 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2066 ssc->ses_objmap[oid].encstat[3] = 0x8;
2067 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2068 } else if (sdata[r] == 0) {
2069 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2070 ssc->ses_objmap[oid].encstat[3] = 0;
2071 } else {
2072 ssc->ses_objmap[oid].encstat[0] =
2073 SES_OBJSTAT_UNSUPPORTED;
2074 ssc->ses_objmap[oid].encstat[3] = 0;
2075 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2076 sdata[r] & 0xff);
2077 }
2078 ssc->ses_objmap[oid++].svalid = 1;
2079 }
2080 r++;
2081
2082 for (i = 0; i < cc->Ntherm; i++) {
2083 SAFT_BAIL(r, hiwater, sdata, buflen);
2084 /*
2085 * Status is a range from -10 to 245 deg Celsius,
2086 * which we need to normalize to -20 to -245 according
2087 * to the latest SCSI spec, which makes little
2088 * sense since this would overflow an 8bit value.
2089 * Well, still, the base normalization is -20,
2090 * not -10, so we have to adjust.
2091 *
2092 * So what's over and under temperature?
2093 * Hmm- we'll state that 'normal' operating
2094 * is 10 to 40 deg Celsius.
2095 */
2096 ssc->ses_objmap[oid].encstat[1] = 0;
2097 ssc->ses_objmap[oid].encstat[2] =
2098 ((unsigned int) sdata[r]) - 10;
2099 if (sdata[r] < 20) {
2100 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2101 /*
2102 * Set 'under temperature' failure.
2103 */
2104 ssc->ses_objmap[oid].encstat[3] = 2;
2105 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2106 } else if (sdata[r] > 30) {
2107 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2108 /*
2109 * Set 'over temperature' failure.
2110 */
2111 ssc->ses_objmap[oid].encstat[3] = 8;
2112 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2113 } else {
2114 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2115 }
2116 ssc->ses_objmap[oid++].svalid = 1;
2117 r++;
2118 }
2119
2120 /*
2121 * Now, for "pseudo" thermometers, we have two bytes
2122 * of information in enclosure status- 16 bits. Actually,
2123 * the MSB is a single TEMP ALERT flag indicating whether
2124 * any other bits are set, but, thanks to fuzzy thinking,
2125 * in the SAF-TE spec, this can also be set even if no
2126 * other bits are set, thus making this really another
2127 * binary temperature sensor.
2128 */
2129
2130 SAFT_BAIL(r, hiwater, sdata, buflen);
2131 tempflags = sdata[r++];
2132 SAFT_BAIL(r, hiwater, sdata, buflen);
2133 tempflags |= (tempflags << 8) | sdata[r++];
2134
2135 for (i = 0; i < NPSEUDO_THERM; i++) {
2136 ssc->ses_objmap[oid].encstat[1] = 0;
2137 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2138 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2139 ssc->ses_objmap[4].encstat[2] = 0xff;
2140 /*
2141 * Set 'over temperature' failure.
2142 */
2143 ssc->ses_objmap[oid].encstat[3] = 8;
2144 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2145 } else {
2146 /*
2147 * We used to say 'not available' and synthesize a
2148 * nominal 30 deg (C)- that was wrong. Actually,
2149 * Just say 'OK', and use the reserved value of
2150 * zero.
2151 */
2152 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2153 ssc->ses_objmap[oid].encstat[2] = 0;
2154 ssc->ses_objmap[oid].encstat[3] = 0;
2155 }
2156 ssc->ses_objmap[oid++].svalid = 1;
2157 }
2158
2159 /*
2160 * Get alarm status.
2161 */
2162 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2163 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2164 ssc->ses_objmap[oid++].svalid = 1;
2165
2166 /*
2167 * Now get drive slot status
2168 */
2169 cdb[2] = SAFTE_RD_RDDSTS;
2170 amt = buflen;
2171 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2172 if (err) {
2173 SES_FREE(sdata, buflen);
2174 return (err);
2175 }
2176 hiwater = buflen - amt;
2177 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2178 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2179 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2180 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2181 ssc->ses_objmap[oid].encstat[2] = 0;
2182 ssc->ses_objmap[oid].encstat[3] = 0;
2183 status = sdata[r+3];
2184 if ((status & 0x1) == 0) { /* no device */
2185 ssc->ses_objmap[oid].encstat[0] =
2186 SES_OBJSTAT_NOTINSTALLED;
2187 } else {
2188 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2189 }
2190 if (status & 0x2) {
2191 ssc->ses_objmap[oid].encstat[2] = 0x8;
2192 }
2193 if ((status & 0x4) == 0) {
2194 ssc->ses_objmap[oid].encstat[3] = 0x10;
2195 }
2196 ssc->ses_objmap[oid++].svalid = 1;
2197 }
2198 /* see comment below about sticky enclosure status */
2199 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2200 SES_FREE(sdata, buflen);
2201 return (0);
2202 }
2203
2204 static int
2205 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2206 {
2207 int idx;
2208 encobj *ep;
2209 struct scfg *cc = ssc->ses_private;
2210
2211 if (cc == NULL)
2212 return (0);
2213
2214 idx = (int)obp->obj_id;
2215 ep = &ssc->ses_objmap[idx];
2216
2217 switch (ep->enctype) {
2218 case SESTYP_DEVICE:
2219 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2220 ep->priv |= 0x40;
2221 }
2222 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2223 if (obp->cstat[0] & SESCTL_DISABLE) {
2224 ep->priv |= 0x80;
2225 /*
2226 * Hmm. Try to set the 'No Drive' flag.
2227 * Maybe that will count as a 'disable'.
2228 */
2229 }
2230 if (ep->priv & 0xc6) {
2231 ep->priv &= ~0x1;
2232 } else {
2233 ep->priv |= 0x1; /* no errors */
2234 }
2235 wrslot_stat(ssc, slp);
2236 break;
2237 case SESTYP_POWER:
2238 /*
2239 * Okay- the only one that makes sense here is to
2240 * do the 'disable' for a power supply.
2241 */
2242 if (obp->cstat[0] & SESCTL_DISABLE) {
2243 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2244 idx - cc->pwroff, 0, 0, slp);
2245 }
2246 break;
2247 case SESTYP_FAN:
2248 /*
2249 * Okay- the only one that makes sense here is to
2250 * set fan speed to zero on disable.
2251 */
2252 if (obp->cstat[0] & SESCTL_DISABLE) {
2253 /* remember- fans are the first items, so idx works */
2254 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2255 }
2256 break;
2257 case SESTYP_DOORLOCK:
2258 /*
2259 * Well, we can 'disable' the lock.
2260 */
2261 if (obp->cstat[0] & SESCTL_DISABLE) {
2262 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2263 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2264 cc->flag2, 0, slp);
2265 }
2266 break;
2267 case SESTYP_ALARM:
2268 /*
2269 * Well, we can 'disable' the alarm.
2270 */
2271 if (obp->cstat[0] & SESCTL_DISABLE) {
2272 cc->flag2 &= ~SAFT_FLG1_ALARM;
2273 ep->priv |= 0x40; /* Muted */
2274 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2275 cc->flag2, 0, slp);
2276 }
2277 break;
2278 default:
2279 break;
2280 }
2281 ep->svalid = 0;
2282 return (0);
2283 }
2284
2285 /*
2286 * This function handles all of the 16 byte WRITE BUFFER commands.
2287 */
2288 static int
2289 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2290 uint8_t b3, int slp)
2291 {
2292 int err, amt;
2293 char *sdata;
2294 struct scfg *cc = ssc->ses_private;
2295 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2296
2297 if (cc == NULL)
2298 return (0);
2299
2300 sdata = SES_MALLOC(16);
2301 if (sdata == NULL)
2302 return (ENOMEM);
2303
2304 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2305
2306 sdata[0] = op;
2307 sdata[1] = b1;
2308 sdata[2] = b2;
2309 sdata[3] = b3;
2310 MEMZERO(&sdata[4], 12);
2311 amt = -16;
2312 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2313 SES_FREE(sdata, 16);
2314 return (err);
2315 }
2316
2317 /*
2318 * This function updates the status byte for the device slot described.
2319 *
2320 * Since this is an optional SAF-TE command, there's no point in
2321 * returning an error.
2322 */
2323 static void
2324 wrslot_stat(ses_softc_t *ssc, int slp)
2325 {
2326 int i, amt;
2327 encobj *ep;
2328 char cdb[10], *sdata;
2329 struct scfg *cc = ssc->ses_private;
2330
2331 if (cc == NULL)
2332 return;
2333
2334 SES_VLOG(ssc, "saf_wrslot\n");
2335 cdb[0] = WRITE_BUFFER;
2336 cdb[1] = 1;
2337 cdb[2] = 0;
2338 cdb[3] = 0;
2339 cdb[4] = 0;
2340 cdb[5] = 0;
2341 cdb[6] = 0;
2342 cdb[7] = 0;
2343 cdb[8] = cc->Nslots * 3 + 1;
2344 cdb[9] = 0;
2345
2346 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2347 if (sdata == NULL)
2348 return;
2349 MEMZERO(sdata, cc->Nslots * 3 + 1);
2350
2351 sdata[0] = SAFTE_WT_DSTAT;
2352 for (i = 0; i < cc->Nslots; i++) {
2353 ep = &ssc->ses_objmap[cc->slotoff + i];
2354 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2355 sdata[1 + (3 * i)] = ep->priv & 0xff;
2356 }
2357 amt = -(cc->Nslots * 3 + 1);
2358 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2359 SES_FREE(sdata, cc->Nslots * 3 + 1);
2360 }
2361
2362 /*
2363 * This function issues the "PERFORM SLOT OPERATION" command.
2364 */
2365 static int
2366 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2367 {
2368 int err, amt;
2369 char *sdata;
2370 struct scfg *cc = ssc->ses_private;
2371 static char cdb[10] =
2372 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2373
2374 if (cc == NULL)
2375 return (0);
2376
2377 sdata = SES_MALLOC(SAFT_SCRATCH);
2378 if (sdata == NULL)
2379 return (ENOMEM);
2380 MEMZERO(sdata, SAFT_SCRATCH);
2381
2382 sdata[0] = SAFTE_WT_SLTOP;
2383 sdata[1] = slot;
2384 sdata[2] = opflag;
2385 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2386 amt = -SAFT_SCRATCH;
2387 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2388 SES_FREE(sdata, SAFT_SCRATCH);
2389 return (err);
2390 }
2391