ses.c revision 1.7 1 /* $NetBSD: ses.c,v 1.7 2000/07/08 17:12:08 sommerfeld Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57
58 /*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61 typedef enum {
62 SES_NONE,
63 SES_SES_SCSI2,
64 SES_SES,
65 SES_SES_PASSTHROUGH,
66 SES_SEN,
67 SES_SAFT
68 } enctyp;
69
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 int (*softc_init) __P((ses_softc_t *, int));
74 int (*init_enc) __P((ses_softc_t *));
75 int (*get_encstat) __P((ses_softc_t *, int));
76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80
81 #define ENCI_SVALID 0x80
82
83 typedef struct {
84 uint32_t
85 enctype : 8, /* enclosure type */
86 subenclosure : 8, /* subenclosure id */
87 svalid : 1, /* enclosure information valid */
88 priv : 15; /* private data, per object */
89 uint8_t encstat[4]; /* state && stats */
90 } encobj;
91
92 #define SEN_ID "UNISYS SUN_SEN"
93 #define SEN_ID_LEN 24
94
95 static enctyp ses_type __P((struct scsipi_inquiry_data *));
96
97
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112
113 /*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117 #define STRNCMP strncmp
118 #define PRINTF printf
119 #define SES_LOG ses_log
120 #if defined(DEBUG) || defined(SCSIDEBUG)
121 #define SES_VLOG ses_log
122 #else
123 #define SES_VLOG if (0) ses_log
124 #endif
125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
127 #define MEMZERO bzero
128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
129 #define RECEIVE_DIAGNOSTIC 0x1c
130 #define SEND_DIAGNOSTIC 0x1d
131 #define WRITE_BUFFER 0x3b
132 #define READ_BUFFER 0x3c
133
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...))
140 __attribute__((__format__(__printf__, 2, 3)));
141
142 /*
143 * General NetBSD kernel stuff.
144 */
145
146 struct ses_softc {
147 struct device sc_device;
148 struct scsipi_link *sc_link;
149 enctyp ses_type; /* type of enclosure */
150 encvec ses_vec; /* vector to handlers */
151 void * ses_private; /* per-type private data */
152 encobj * ses_objmap; /* objects */
153 u_int32_t ses_nobjects; /* number of objects */
154 ses_encstat ses_encstat; /* overall status */
155 u_int8_t ses_flags;
156 };
157 #define SES_FLAG_INVALID 0x01
158 #define SES_FLAG_OPEN 0x02
159 #define SES_FLAG_INITIALIZED 0x04
160
161 #define SESUNIT(x) (minor((x)))
162
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166
167 struct cfattach ses_ca = {
168 sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171
172 struct scsipi_device ses_switch = {
173 NULL,
174 NULL,
175 NULL,
176 NULL
177 };
178
179
180 int
181 ses_match(parent, match, aux)
182 struct device *parent;
183 struct cfdata *match;
184 void *aux;
185 {
186 struct scsipibus_attach_args *sa = aux;
187
188 switch (ses_device_type(sa)) {
189 case SES_SES:
190 case SES_SES_SCSI2:
191 case SES_SEN:
192 case SES_SAFT:
193 case SES_SES_PASSTHROUGH:
194 /*
195 * For these devices, it's a perfect match.
196 */
197 return (24);
198 default:
199 return (0);
200 }
201 }
202
203
204 /*
205 * Complete the attachment.
206 *
207 * We have to repeat the rerun of INQUIRY data as above because
208 * it's not until the return from the match routine that we have
209 * the softc available to set stuff in.
210 */
211 void
212 ses_attach(parent, self, aux)
213 struct device *parent;
214 struct device *self;
215 void *aux;
216 {
217 char *tname;
218 struct ses_softc *softc = (void *)self;
219 struct scsipibus_attach_args *sa = aux;
220 struct scsipi_link *sc_link = sa->sa_sc_link;
221
222 SC_DEBUG(sc_link, SDEV_DB2, ("ssattach: "));
223 softc->sc_link = sa->sa_sc_link;
224 sc_link->device = &ses_switch;
225 sc_link->device_softc = softc;
226 sc_link->openings = 1;
227
228 softc->ses_type = ses_device_type(sa);
229 switch (softc->ses_type) {
230 case SES_SES:
231 case SES_SES_SCSI2:
232 case SES_SES_PASSTHROUGH:
233 softc->ses_vec.softc_init = ses_softc_init;
234 softc->ses_vec.init_enc = ses_init_enc;
235 softc->ses_vec.get_encstat = ses_get_encstat;
236 softc->ses_vec.set_encstat = ses_set_encstat;
237 softc->ses_vec.get_objstat = ses_get_objstat;
238 softc->ses_vec.set_objstat = ses_set_objstat;
239 break;
240 case SES_SAFT:
241 softc->ses_vec.softc_init = safte_softc_init;
242 softc->ses_vec.init_enc = safte_init_enc;
243 softc->ses_vec.get_encstat = safte_get_encstat;
244 softc->ses_vec.set_encstat = safte_set_encstat;
245 softc->ses_vec.get_objstat = safte_get_objstat;
246 softc->ses_vec.set_objstat = safte_set_objstat;
247 break;
248 case SES_SEN:
249 break;
250 case SES_NONE:
251 default:
252 break;
253 }
254
255 switch (softc->ses_type) {
256 default:
257 case SES_NONE:
258 tname = "No SES device";
259 break;
260 case SES_SES_SCSI2:
261 tname = "SCSI-2 SES Device";
262 break;
263 case SES_SES:
264 tname = "SCSI-3 SES Device";
265 break;
266 case SES_SES_PASSTHROUGH:
267 tname = "SES Passthrough Device";
268 break;
269 case SES_SEN:
270 tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 break;
272 case SES_SAFT:
273 tname = "SAF-TE Compliant Device";
274 break;
275 }
276 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278
279
280 static enctyp
281 ses_device_type(sa)
282 struct scsipibus_attach_args *sa;
283 {
284 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285
286 if (inqp == NULL)
287 return (SES_NONE);
288
289 return (ses_type(inqp));
290 }
291
292 int
293 sesopen(dev, flags, fmt, p)
294 dev_t dev;
295 int flags;
296 int fmt;
297 struct proc *p;
298 {
299 struct ses_softc *softc;
300 int error, unit;
301
302 unit = SESUNIT(dev);
303 if (unit >= ses_cd.cd_ndevs)
304 return (ENXIO);
305 softc = ses_cd.cd_devs[unit];
306 if (softc == NULL)
307 return (ENXIO);
308
309 if (softc->ses_flags & SES_FLAG_INVALID) {
310 error = ENXIO;
311 goto out;
312 }
313 if (softc->ses_flags & SES_FLAG_OPEN) {
314 error = EBUSY;
315 goto out;
316 }
317 if (softc->ses_vec.softc_init == NULL) {
318 error = ENXIO;
319 goto out;
320 }
321 error = scsipi_adapter_addref(softc->sc_link);
322 if (error != 0)
323 goto out;
324
325
326 softc->ses_flags |= SES_FLAG_OPEN;
327 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
328 error = (*softc->ses_vec.softc_init)(softc, 1);
329 if (error)
330 softc->ses_flags &= ~SES_FLAG_OPEN;
331 else
332 softc->ses_flags |= SES_FLAG_INITIALIZED;
333 }
334
335 out:
336 return (error);
337 }
338
339 int
340 sesclose(dev, flags, fmt, p)
341 dev_t dev;
342 int flags;
343 int fmt;
344 struct proc *p;
345 {
346 struct ses_softc *softc;
347 int unit;
348
349 unit = SESUNIT(dev);
350 if (unit >= ses_cd.cd_ndevs)
351 return (ENXIO);
352 softc = ses_cd.cd_devs[unit];
353 if (softc == NULL)
354 return (ENXIO);
355
356 scsipi_wait_drain(softc->sc_link);
357 scsipi_adapter_delref(softc->sc_link);
358 softc->ses_flags &= ~SES_FLAG_OPEN;
359 return (0);
360 }
361
362 int
363 sesioctl(dev, cmd, arg_addr, flag, p)
364 dev_t dev;
365 u_long cmd;
366 caddr_t arg_addr;
367 int flag;
368 struct proc *p;
369 {
370 ses_encstat tmp;
371 ses_objstat objs;
372 ses_object obj, *uobj;
373 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
374 void *addr;
375 int error, i;
376
377
378 if (arg_addr)
379 addr = *((caddr_t *) arg_addr);
380 else
381 addr = NULL;
382
383 SC_DEBUG(ssc->sc_link, SDEV_DB2, ("sesioctl 0x%lx ", cmd));
384
385 /*
386 * Now check to see whether we're initialized or not.
387 */
388 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
389 return (ENODEV);
390 }
391
392 error = 0;
393
394 /*
395 * If this command can change the device's state,
396 * we must have the device open for writing.
397 */
398 switch (cmd) {
399 case SESIOC_GETNOBJ:
400 case SESIOC_GETOBJMAP:
401 case SESIOC_GETENCSTAT:
402 case SESIOC_GETOBJSTAT:
403 break;
404 default:
405 if ((flag & FWRITE) == 0) {
406 return (EBADF);
407 }
408 }
409
410 switch (cmd) {
411 case SESIOC_GETNOBJ:
412 error = copyout(&ssc->ses_nobjects, addr,
413 sizeof (ssc->ses_nobjects));
414 break;
415
416 case SESIOC_GETOBJMAP:
417 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
418 obj.obj_id = i;
419 obj.subencid = ssc->ses_objmap[i].subenclosure;
420 obj.object_type = ssc->ses_objmap[i].enctype;
421 error = copyout(&obj, uobj, sizeof (ses_object));
422 if (error) {
423 break;
424 }
425 }
426 break;
427
428 case SESIOC_GETENCSTAT:
429 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
430 if (error)
431 break;
432 tmp = ssc->ses_encstat & ~ENCI_SVALID;
433 error = copyout(&tmp, addr, sizeof (ses_encstat));
434 ssc->ses_encstat = tmp;
435 break;
436
437 case SESIOC_SETENCSTAT:
438 error = copyin(addr, &tmp, sizeof (ses_encstat));
439 if (error)
440 break;
441 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
442 break;
443
444 case SESIOC_GETOBJSTAT:
445 error = copyin(addr, &objs, sizeof (ses_objstat));
446 if (error)
447 break;
448 if (objs.obj_id >= ssc->ses_nobjects) {
449 error = EINVAL;
450 break;
451 }
452 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
453 if (error)
454 break;
455 error = copyout(&objs, addr, sizeof (ses_objstat));
456 /*
457 * Always (for now) invalidate entry.
458 */
459 ssc->ses_objmap[objs.obj_id].svalid = 0;
460 break;
461
462 case SESIOC_SETOBJSTAT:
463 error = copyin(addr, &objs, sizeof (ses_objstat));
464 if (error)
465 break;
466
467 if (objs.obj_id >= ssc->ses_nobjects) {
468 error = EINVAL;
469 break;
470 }
471 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
472
473 /*
474 * Always (for now) invalidate entry.
475 */
476 ssc->ses_objmap[objs.obj_id].svalid = 0;
477 break;
478
479 case SESIOC_INIT:
480
481 error = (*ssc->ses_vec.init_enc)(ssc);
482 break;
483
484 default:
485 error = scsipi_do_ioctl(ssc->sc_link, dev, cmd, addr, flag, p);
486 break;
487 }
488 return (error);
489 }
490
491 static int
492 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
493 {
494 struct scsipi_generic sgen;
495 int dl, flg, error;
496
497 if (dptr) {
498 if ((dl = *dlenp) < 0) {
499 dl = -dl;
500 flg = XS_CTL_DATA_OUT;
501 } else {
502 flg = XS_CTL_DATA_IN;
503 }
504 } else {
505 dl = 0;
506 flg = 0;
507 }
508
509 if (cdbl > sizeof (struct scsipi_generic)) {
510 cdbl = sizeof (struct scsipi_generic);
511 }
512 bcopy(cdb, &sgen, cdbl);
513 #ifndef SCSIDEBUG
514 flg |= XS_CTL_SILENT;
515 #endif
516 error = scsipi_command(ssc->sc_link, &sgen, cdbl,
517 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
518
519 if (error == 0 && dptr)
520 *dlenp = 0;
521
522 return (error);
523 }
524
525 #ifdef __STDC__
526 static void
527 ses_log(struct ses_softc *ssc, const char *fmt, ...)
528 {
529 va_list ap;
530
531 printf("%s: ", ssc->sc_device.dv_xname);
532 va_start(ap, fmt);
533 vprintf(fmt, ap);
534 va_end(ap);
535 }
536 #else
537 static void
538 ses_log(ssc, fmt, va_alist)
539 struct ses_softc *ssc;
540 char *fmt;
541 va_dcl
542 {
543 va_list ap;
544
545 printf("%s: ", ssc->sc_device.dv_xname);
546 va_start(ap, fmt);
547 vprintf(fmt, ap);
548 va_end(ap);
549 }
550 #endif
551
552 /*
553 * The code after this point runs on many platforms,
554 * so forgive the slightly awkward and nonconforming
555 * appearance.
556 */
557
558 /*
559 * Is this a device that supports enclosure services?
560 *
561 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
562 * an SES device. If it happens to be an old UNISYS SEN device, we can
563 * handle that too.
564 */
565
566 #define SAFTE_START 44
567 #define SAFTE_END 50
568 #define SAFTE_LEN SAFTE_END-SAFTE_START
569
570 static enctyp
571 ses_type(inqp)
572 struct scsipi_inquiry_data *inqp;
573 {
574 size_t given_len = inqp->additional_length + 4;
575
576 if (given_len < 8+SEN_ID_LEN)
577 return (SES_NONE);
578
579 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
580 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
581 return (SES_SEN);
582 } else if ((inqp->version & SID_ANSII) > 2) {
583 return (SES_SES);
584 } else {
585 return (SES_SES_SCSI2);
586 }
587 return (SES_NONE);
588 }
589
590 #ifdef SES_ENABLE_PASSTHROUGH
591 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
592 /*
593 * PassThrough Device.
594 */
595 return (SES_SES_PASSTHROUGH);
596 }
597 #endif
598
599 /*
600 * The comparison is short for a reason-
601 * some vendors were chopping it short.
602 */
603
604 if (given_len < SAFTE_END - 2) {
605 return (SES_NONE);
606 }
607
608 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
609 SAFTE_LEN - 2) == 0) {
610 return (SES_SAFT);
611 }
612
613 return (SES_NONE);
614 }
615
616 /*
617 * SES Native Type Device Support
618 */
619
620 /*
621 * SES Diagnostic Page Codes
622 */
623
624 typedef enum {
625 SesConfigPage = 0x1,
626 SesControlPage,
627 #define SesStatusPage SesControlPage
628 SesHelpTxt,
629 SesStringOut,
630 #define SesStringIn SesStringOut
631 SesThresholdOut,
632 #define SesThresholdIn SesThresholdOut
633 SesArrayControl,
634 #define SesArrayStatus SesArrayControl
635 SesElementDescriptor,
636 SesShortStatus
637 } SesDiagPageCodes;
638
639 /*
640 * minimal amounts
641 */
642
643 /*
644 * Minimum amount of data, starting from byte 0, to have
645 * the config header.
646 */
647 #define SES_CFGHDR_MINLEN 12
648
649 /*
650 * Minimum amount of data, starting from byte 0, to have
651 * the config header and one enclosure header.
652 */
653 #define SES_ENCHDR_MINLEN 48
654
655 /*
656 * Take this value, subtract it from VEnclen and you know
657 * the length of the vendor unique bytes.
658 */
659 #define SES_ENCHDR_VMIN 36
660
661 /*
662 * SES Data Structures
663 */
664
665 typedef struct {
666 uint32_t GenCode; /* Generation Code */
667 uint8_t Nsubenc; /* Number of Subenclosures */
668 } SesCfgHdr;
669
670 typedef struct {
671 uint8_t Subencid; /* SubEnclosure Identifier */
672 uint8_t Ntypes; /* # of supported types */
673 uint8_t VEnclen; /* Enclosure Descriptor Length */
674 } SesEncHdr;
675
676 typedef struct {
677 uint8_t encWWN[8]; /* XXX- Not Right Yet */
678 uint8_t encVid[8];
679 uint8_t encPid[16];
680 uint8_t encRev[4];
681 uint8_t encVen[1];
682 } SesEncDesc;
683
684 typedef struct {
685 uint8_t enc_type; /* type of element */
686 uint8_t enc_maxelt; /* maximum supported */
687 uint8_t enc_subenc; /* in SubEnc # N */
688 uint8_t enc_tlen; /* Type Descriptor Text Length */
689 } SesThdr;
690
691 typedef struct {
692 uint8_t comstatus;
693 uint8_t comstat[3];
694 } SesComStat;
695
696 struct typidx {
697 int ses_tidx;
698 int ses_oidx;
699 };
700
701 struct sscfg {
702 uint8_t ses_ntypes; /* total number of types supported */
703
704 /*
705 * We need to keep a type index as well as an
706 * object index for each object in an enclosure.
707 */
708 struct typidx *ses_typidx;
709
710 /*
711 * We also need to keep track of the number of elements
712 * per type of element. This is needed later so that we
713 * can find precisely in the returned status data the
714 * status for the Nth element of the Kth type.
715 */
716 uint8_t * ses_eltmap;
717 };
718
719
720 /*
721 * (de)canonicalization defines
722 */
723 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
724 #define sbit(x, bit) (((uint32_t)(x)) << bit)
725 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
726
727 #define sset16(outp, idx, sval) \
728 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
729 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
730
731
732 #define sset24(outp, idx, sval) \
733 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
734 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
735 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
736
737
738 #define sset32(outp, idx, sval) \
739 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
740 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
742 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
743
744 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
745 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
746 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
747 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
748
749 #define sget16(inp, idx, lval) \
750 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
751 (((uint8_t *)(inp))[idx+1]), idx += 2
752
753 #define gget16(inp, idx, lval) \
754 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
755 (((uint8_t *)(inp))[idx+1])
756
757 #define sget24(inp, idx, lval) \
758 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
759 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
760 (((uint8_t *)(inp))[idx+2]), idx += 3
761
762 #define gget24(inp, idx, lval) \
763 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
764 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
765 (((uint8_t *)(inp))[idx+2])
766
767 #define sget32(inp, idx, lval) \
768 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
769 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
770 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
771 (((uint8_t *)(inp))[idx+3]), idx += 4
772
773 #define gget32(inp, idx, lval) \
774 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
775 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
776 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
777 (((uint8_t *)(inp))[idx+3])
778
779 #define SCSZ 0x2000
780 #define CFLEN (256 + SES_ENCHDR_MINLEN)
781
782 /*
783 * Routines specific && private to SES only
784 */
785
786 static int ses_getconfig(ses_softc_t *);
787 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
788 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
789 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
790 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
791 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
792 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
793 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
794
795 static int
796 ses_softc_init(ses_softc_t *ssc, int doinit)
797 {
798 if (doinit == 0) {
799 struct sscfg *cc;
800 if (ssc->ses_nobjects) {
801 SES_FREE(ssc->ses_objmap,
802 ssc->ses_nobjects * sizeof (encobj));
803 ssc->ses_objmap = NULL;
804 }
805 if ((cc = ssc->ses_private) != NULL) {
806 if (cc->ses_eltmap && cc->ses_ntypes) {
807 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
808 cc->ses_eltmap = NULL;
809 cc->ses_ntypes = 0;
810 }
811 if (cc->ses_typidx && ssc->ses_nobjects) {
812 SES_FREE(cc->ses_typidx,
813 ssc->ses_nobjects * sizeof (struct typidx));
814 cc->ses_typidx = NULL;
815 }
816 SES_FREE(cc, sizeof (struct sscfg));
817 ssc->ses_private = NULL;
818 }
819 ssc->ses_nobjects = 0;
820 return (0);
821 }
822 if (ssc->ses_private == NULL) {
823 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
824 }
825 if (ssc->ses_private == NULL) {
826 return (ENOMEM);
827 }
828 ssc->ses_nobjects = 0;
829 ssc->ses_encstat = 0;
830 return (ses_getconfig(ssc));
831 }
832
833 static int
834 ses_init_enc(ses_softc_t *ssc)
835 {
836 return (0);
837 }
838
839 static int
840 ses_get_encstat(ses_softc_t *ssc, int slpflag)
841 {
842 SesComStat ComStat;
843 int status;
844
845 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
846 return (status);
847 }
848 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
849 return (0);
850 }
851
852 static int
853 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
854 {
855 SesComStat ComStat;
856 int status;
857
858 ComStat.comstatus = encstat & 0xf;
859 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
860 return (status);
861 }
862 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
863 return (0);
864 }
865
866 static int
867 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
868 {
869 int i = (int)obp->obj_id;
870
871 if (ssc->ses_objmap[i].svalid == 0) {
872 SesComStat ComStat;
873 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
874 if (err)
875 return (err);
876 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
877 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
878 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
879 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
880 ssc->ses_objmap[i].svalid = 1;
881 }
882 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
883 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
884 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
885 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
886 return (0);
887 }
888
889 static int
890 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
891 {
892 SesComStat ComStat;
893 int err;
894 /*
895 * If this is clear, we don't do diddly.
896 */
897 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
898 return (0);
899 }
900 ComStat.comstatus = obp->cstat[0];
901 ComStat.comstat[0] = obp->cstat[1];
902 ComStat.comstat[1] = obp->cstat[2];
903 ComStat.comstat[2] = obp->cstat[3];
904 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
905 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
906 return (err);
907 }
908
909 static int
910 ses_getconfig(ses_softc_t *ssc)
911 {
912 struct sscfg *cc;
913 SesCfgHdr cf;
914 SesEncHdr hd;
915 SesEncDesc *cdp;
916 SesThdr thdr;
917 int err, amt, i, nobj, ntype, maxima;
918 char storage[CFLEN], *sdata;
919 static char cdb[6] = {
920 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
921 };
922
923 cc = ssc->ses_private;
924 if (cc == NULL) {
925 return (ENXIO);
926 }
927
928 sdata = SES_MALLOC(SCSZ);
929 if (sdata == NULL)
930 return (ENOMEM);
931
932 amt = SCSZ;
933 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
934 if (err) {
935 SES_FREE(sdata, SCSZ);
936 return (err);
937 }
938 amt = SCSZ - amt;
939
940 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
941 SES_LOG(ssc, "Unable to parse SES Config Header\n");
942 SES_FREE(sdata, SCSZ);
943 return (EIO);
944 }
945 if (amt < SES_ENCHDR_MINLEN) {
946 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
947 SES_FREE(sdata, SCSZ);
948 return (EIO);
949 }
950
951 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
952
953 /*
954 * Now waltz through all the subenclosures toting up the
955 * number of types available in each. For this, we only
956 * really need the enclosure header. However, we get the
957 * enclosure descriptor for debug purposes, as well
958 * as self-consistency checking purposes.
959 */
960
961 maxima = cf.Nsubenc + 1;
962 cdp = (SesEncDesc *) storage;
963 for (ntype = i = 0; i < maxima; i++) {
964 MEMZERO((caddr_t)cdp, sizeof (*cdp));
965 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
966 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
967 SES_FREE(sdata, SCSZ);
968 return (EIO);
969 }
970 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
971 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
972
973 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
974 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
975 SES_FREE(sdata, SCSZ);
976 return (EIO);
977 }
978 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
979 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
980 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
981 cdp->encWWN[6], cdp->encWWN[7]);
982 ntype += hd.Ntypes;
983 }
984
985 /*
986 * Now waltz through all the types that are available, getting
987 * the type header so we can start adding up the number of
988 * objects available.
989 */
990 for (nobj = i = 0; i < ntype; i++) {
991 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
992 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
993 SES_FREE(sdata, SCSZ);
994 return (EIO);
995 }
996 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
997 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
998 thdr.enc_subenc, thdr.enc_tlen);
999 nobj += thdr.enc_maxelt;
1000 }
1001
1002
1003 /*
1004 * Now allocate the object array and type map.
1005 */
1006
1007 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1008 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1009 cc->ses_eltmap = SES_MALLOC(ntype);
1010
1011 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1012 cc->ses_eltmap == NULL) {
1013 if (ssc->ses_objmap) {
1014 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1015 ssc->ses_objmap = NULL;
1016 }
1017 if (cc->ses_typidx) {
1018 SES_FREE(cc->ses_typidx,
1019 (nobj * sizeof (struct typidx)));
1020 cc->ses_typidx = NULL;
1021 }
1022 if (cc->ses_eltmap) {
1023 SES_FREE(cc->ses_eltmap, ntype);
1024 cc->ses_eltmap = NULL;
1025 }
1026 SES_FREE(sdata, SCSZ);
1027 return (ENOMEM);
1028 }
1029 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1030 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1031 MEMZERO(cc->ses_eltmap, ntype);
1032 cc->ses_ntypes = (uint8_t) ntype;
1033 ssc->ses_nobjects = nobj;
1034
1035 /*
1036 * Now waltz through the # of types again to fill in the types
1037 * (and subenclosure ids) of the allocated objects.
1038 */
1039 nobj = 0;
1040 for (i = 0; i < ntype; i++) {
1041 int j;
1042 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1043 continue;
1044 }
1045 cc->ses_eltmap[i] = thdr.enc_maxelt;
1046 for (j = 0; j < thdr.enc_maxelt; j++) {
1047 cc->ses_typidx[nobj].ses_tidx = i;
1048 cc->ses_typidx[nobj].ses_oidx = j;
1049 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1050 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1051 }
1052 }
1053 SES_FREE(sdata, SCSZ);
1054 return (0);
1055 }
1056
1057 static int
1058 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1059 {
1060 struct sscfg *cc;
1061 int err, amt, bufsiz, tidx, oidx;
1062 char cdb[6], *sdata;
1063
1064 cc = ssc->ses_private;
1065 if (cc == NULL) {
1066 return (ENXIO);
1067 }
1068
1069 /*
1070 * If we're just getting overall enclosure status,
1071 * we only need 2 bytes of data storage.
1072 *
1073 * If we're getting anything else, we know how much
1074 * storage we need by noting that starting at offset
1075 * 8 in returned data, all object status bytes are 4
1076 * bytes long, and are stored in chunks of types(M)
1077 * and nth+1 instances of type M.
1078 */
1079 if (objid == -1) {
1080 bufsiz = 2;
1081 } else {
1082 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1083 }
1084 sdata = SES_MALLOC(bufsiz);
1085 if (sdata == NULL)
1086 return (ENOMEM);
1087
1088 cdb[0] = RECEIVE_DIAGNOSTIC;
1089 cdb[1] = 1;
1090 cdb[2] = SesStatusPage;
1091 cdb[3] = bufsiz >> 8;
1092 cdb[4] = bufsiz & 0xff;
1093 cdb[5] = 0;
1094 amt = bufsiz;
1095 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1096 if (err) {
1097 SES_FREE(sdata, bufsiz);
1098 return (err);
1099 }
1100 amt = bufsiz - amt;
1101
1102 if (objid == -1) {
1103 tidx = -1;
1104 oidx = -1;
1105 } else {
1106 tidx = cc->ses_typidx[objid].ses_tidx;
1107 oidx = cc->ses_typidx[objid].ses_oidx;
1108 }
1109 if (in) {
1110 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1111 err = ENODEV;
1112 }
1113 } else {
1114 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1115 err = ENODEV;
1116 } else {
1117 cdb[0] = SEND_DIAGNOSTIC;
1118 cdb[1] = 0x10;
1119 cdb[2] = 0;
1120 cdb[3] = bufsiz >> 8;
1121 cdb[4] = bufsiz & 0xff;
1122 cdb[5] = 0;
1123 amt = -bufsiz;
1124 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1125 }
1126 }
1127 SES_FREE(sdata, bufsiz);
1128 return (0);
1129 }
1130
1131
1132 /*
1133 * Routines to parse returned SES data structures.
1134 * Architecture and compiler independent.
1135 */
1136
1137 static int
1138 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1139 {
1140 if (buflen < SES_CFGHDR_MINLEN) {
1141 return (-1);
1142 }
1143 gget8(buffer, 1, cfp->Nsubenc);
1144 gget32(buffer, 4, cfp->GenCode);
1145 return (0);
1146 }
1147
1148 static int
1149 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1150 {
1151 int s, off = 8;
1152 for (s = 0; s < SubEncId; s++) {
1153 if (off + 3 > amt)
1154 return (-1);
1155 off += buffer[off+3] + 4;
1156 }
1157 if (off + 3 > amt) {
1158 return (-1);
1159 }
1160 gget8(buffer, off+1, chp->Subencid);
1161 gget8(buffer, off+2, chp->Ntypes);
1162 gget8(buffer, off+3, chp->VEnclen);
1163 return (0);
1164 }
1165
1166 static int
1167 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1168 {
1169 int s, e, enclen, off = 8;
1170 for (s = 0; s < SubEncId; s++) {
1171 if (off + 3 > amt)
1172 return (-1);
1173 off += buffer[off+3] + 4;
1174 }
1175 if (off + 3 > amt) {
1176 return (-1);
1177 }
1178 gget8(buffer, off+3, enclen);
1179 off += 4;
1180 if (off >= amt)
1181 return (-1);
1182
1183 e = off + enclen;
1184 if (e > amt) {
1185 e = amt;
1186 }
1187 MEMCPY(cdp, &buffer[off], e - off);
1188 return (0);
1189 }
1190
1191 static int
1192 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1193 {
1194 int s, off = 8;
1195
1196 if (amt < SES_CFGHDR_MINLEN) {
1197 return (-1);
1198 }
1199 for (s = 0; s < buffer[1]; s++) {
1200 if (off + 3 > amt)
1201 return (-1);
1202 off += buffer[off+3] + 4;
1203 }
1204 if (off + 3 > amt) {
1205 return (-1);
1206 }
1207 off += buffer[off+3] + 4 + (nth * 4);
1208 if (amt < (off + 4))
1209 return (-1);
1210
1211 gget8(buffer, off++, thp->enc_type);
1212 gget8(buffer, off++, thp->enc_maxelt);
1213 gget8(buffer, off++, thp->enc_subenc);
1214 gget8(buffer, off, thp->enc_tlen);
1215 return (0);
1216 }
1217
1218 /*
1219 * This function needs a little explanation.
1220 *
1221 * The arguments are:
1222 *
1223 *
1224 * char *b, int amt
1225 *
1226 * These describes the raw input SES status data and length.
1227 *
1228 * uint8_t *ep
1229 *
1230 * This is a map of the number of types for each element type
1231 * in the enclosure.
1232 *
1233 * int elt
1234 *
1235 * This is the element type being sought. If elt is -1,
1236 * then overall enclosure status is being sought.
1237 *
1238 * int elm
1239 *
1240 * This is the ordinal Mth element of type elt being sought.
1241 *
1242 * SesComStat *sp
1243 *
1244 * This is the output area to store the status for
1245 * the Mth element of type Elt.
1246 */
1247
1248 static int
1249 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1250 {
1251 int idx, i;
1252
1253 /*
1254 * If it's overall enclosure status being sought, get that.
1255 * We need at least 2 bytes of status data to get that.
1256 */
1257 if (elt == -1) {
1258 if (amt < 2)
1259 return (-1);
1260 gget8(b, 1, sp->comstatus);
1261 sp->comstat[0] = 0;
1262 sp->comstat[1] = 0;
1263 sp->comstat[2] = 0;
1264 return (0);
1265 }
1266
1267 /*
1268 * Check to make sure that the Mth element is legal for type Elt.
1269 */
1270
1271 if (elm >= ep[elt])
1272 return (-1);
1273
1274 /*
1275 * Starting at offset 8, start skipping over the storage
1276 * for the element types we're not interested in.
1277 */
1278 for (idx = 8, i = 0; i < elt; i++) {
1279 idx += ((ep[i] + 1) * 4);
1280 }
1281
1282 /*
1283 * Skip over Overall status for this element type.
1284 */
1285 idx += 4;
1286
1287 /*
1288 * And skip to the index for the Mth element that we're going for.
1289 */
1290 idx += (4 * elm);
1291
1292 /*
1293 * Make sure we haven't overflowed the buffer.
1294 */
1295 if (idx+4 > amt)
1296 return (-1);
1297
1298 /*
1299 * Retrieve the status.
1300 */
1301 gget8(b, idx++, sp->comstatus);
1302 gget8(b, idx++, sp->comstat[0]);
1303 gget8(b, idx++, sp->comstat[1]);
1304 gget8(b, idx++, sp->comstat[2]);
1305 #if 0
1306 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1307 #endif
1308 return (0);
1309 }
1310
1311 /*
1312 * This is the mirror function to ses_decode, but we set the 'select'
1313 * bit for the object which we're interested in. All other objects,
1314 * after a status fetch, should have that bit off. Hmm. It'd be easy
1315 * enough to ensure this, so we will.
1316 */
1317
1318 static int
1319 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1320 {
1321 int idx, i;
1322
1323 /*
1324 * If it's overall enclosure status being sought, get that.
1325 * We need at least 2 bytes of status data to get that.
1326 */
1327 if (elt == -1) {
1328 if (amt < 2)
1329 return (-1);
1330 i = 0;
1331 sset8(b, i, 0);
1332 sset8(b, i, sp->comstatus & 0xf);
1333 #if 0
1334 PRINTF("set EncStat %x\n", sp->comstatus);
1335 #endif
1336 return (0);
1337 }
1338
1339 /*
1340 * Check to make sure that the Mth element is legal for type Elt.
1341 */
1342
1343 if (elm >= ep[elt])
1344 return (-1);
1345
1346 /*
1347 * Starting at offset 8, start skipping over the storage
1348 * for the element types we're not interested in.
1349 */
1350 for (idx = 8, i = 0; i < elt; i++) {
1351 idx += ((ep[i] + 1) * 4);
1352 }
1353
1354 /*
1355 * Skip over Overall status for this element type.
1356 */
1357 idx += 4;
1358
1359 /*
1360 * And skip to the index for the Mth element that we're going for.
1361 */
1362 idx += (4 * elm);
1363
1364 /*
1365 * Make sure we haven't overflowed the buffer.
1366 */
1367 if (idx+4 > amt)
1368 return (-1);
1369
1370 /*
1371 * Set the status.
1372 */
1373 sset8(b, idx, sp->comstatus);
1374 sset8(b, idx, sp->comstat[0]);
1375 sset8(b, idx, sp->comstat[1]);
1376 sset8(b, idx, sp->comstat[2]);
1377 idx -= 4;
1378
1379 #if 0
1380 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1381 elt, elm, idx, sp->comstatus, sp->comstat[0],
1382 sp->comstat[1], sp->comstat[2]);
1383 #endif
1384
1385 /*
1386 * Now make sure all other 'Select' bits are off.
1387 */
1388 for (i = 8; i < amt; i += 4) {
1389 if (i != idx)
1390 b[i] &= ~0x80;
1391 }
1392 /*
1393 * And make sure the INVOP bit is clear.
1394 */
1395 b[2] &= ~0x10;
1396
1397 return (0);
1398 }
1399
1400 /*
1401 * SAF-TE Type Device Emulation
1402 */
1403
1404 static int safte_getconfig(ses_softc_t *);
1405 static int safte_rdstat(ses_softc_t *, int);;
1406 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1407 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1408 static void wrslot_stat(ses_softc_t *, int);
1409 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1410
1411 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1412 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1413 /*
1414 * SAF-TE specific defines- Mandatory ones only...
1415 */
1416
1417 /*
1418 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1419 */
1420 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1421 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1422 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1423
1424 /*
1425 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1426 */
1427 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1428 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1429 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1430 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1431 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1432
1433
1434 #define SAFT_SCRATCH 64
1435 #define NPSEUDO_THERM 16
1436 #define NPSEUDO_ALARM 1
1437 struct scfg {
1438 /*
1439 * Cached Configuration
1440 */
1441 uint8_t Nfans; /* Number of Fans */
1442 uint8_t Npwr; /* Number of Power Supplies */
1443 uint8_t Nslots; /* Number of Device Slots */
1444 uint8_t DoorLock; /* Door Lock Installed */
1445 uint8_t Ntherm; /* Number of Temperature Sensors */
1446 uint8_t Nspkrs; /* Number of Speakers */
1447 uint8_t Nalarm; /* Number of Alarms (at least one) */
1448 /*
1449 * Cached Flag Bytes for Global Status
1450 */
1451 uint8_t flag1;
1452 uint8_t flag2;
1453 /*
1454 * What object index ID is where various slots start.
1455 */
1456 uint8_t pwroff;
1457 uint8_t slotoff;
1458 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1459 };
1460
1461 #define SAFT_FLG1_ALARM 0x1
1462 #define SAFT_FLG1_GLOBFAIL 0x2
1463 #define SAFT_FLG1_GLOBWARN 0x4
1464 #define SAFT_FLG1_ENCPWROFF 0x8
1465 #define SAFT_FLG1_ENCFANFAIL 0x10
1466 #define SAFT_FLG1_ENCPWRFAIL 0x20
1467 #define SAFT_FLG1_ENCDRVFAIL 0x40
1468 #define SAFT_FLG1_ENCDRVWARN 0x80
1469
1470 #define SAFT_FLG2_LOCKDOOR 0x4
1471 #define SAFT_PRIVATE sizeof (struct scfg)
1472
1473 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1474 #define SAFT_BAIL(r, x, k, l) \
1475 if (r >= x) { \
1476 SES_LOG(ssc, safte_2little, x, __LINE__);\
1477 SES_FREE(k, l); \
1478 return (EIO); \
1479 }
1480
1481
1482 int
1483 safte_softc_init(ses_softc_t *ssc, int doinit)
1484 {
1485 int err, i, r;
1486 struct scfg *cc;
1487
1488 if (doinit == 0) {
1489 if (ssc->ses_nobjects) {
1490 if (ssc->ses_objmap) {
1491 SES_FREE(ssc->ses_objmap,
1492 ssc->ses_nobjects * sizeof (encobj));
1493 ssc->ses_objmap = NULL;
1494 }
1495 ssc->ses_nobjects = 0;
1496 }
1497 if (ssc->ses_private) {
1498 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1499 ssc->ses_private = NULL;
1500 }
1501 return (0);
1502 }
1503
1504 if (ssc->ses_private == NULL) {
1505 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1506 if (ssc->ses_private == NULL) {
1507 return (ENOMEM);
1508 }
1509 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1510 }
1511
1512 ssc->ses_nobjects = 0;
1513 ssc->ses_encstat = 0;
1514
1515 if ((err = safte_getconfig(ssc)) != 0) {
1516 return (err);
1517 }
1518
1519 /*
1520 * The number of objects here, as well as that reported by the
1521 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1522 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1523 */
1524 cc = ssc->ses_private;
1525 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1526 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1527 ssc->ses_objmap = (encobj *)
1528 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1529 if (ssc->ses_objmap == NULL) {
1530 return (ENOMEM);
1531 }
1532 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1533
1534 r = 0;
1535 /*
1536 * Note that this is all arranged for the convenience
1537 * in later fetches of status.
1538 */
1539 for (i = 0; i < cc->Nfans; i++)
1540 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1541 cc->pwroff = (uint8_t) r;
1542 for (i = 0; i < cc->Npwr; i++)
1543 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1544 for (i = 0; i < cc->DoorLock; i++)
1545 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1546 for (i = 0; i < cc->Nspkrs; i++)
1547 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1548 for (i = 0; i < cc->Ntherm; i++)
1549 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1550 for (i = 0; i < NPSEUDO_THERM; i++)
1551 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1552 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1553 cc->slotoff = (uint8_t) r;
1554 for (i = 0; i < cc->Nslots; i++)
1555 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1556 return (0);
1557 }
1558
1559 int
1560 safte_init_enc(ses_softc_t *ssc)
1561 {
1562 int err, amt;
1563 char *sdata;
1564 static char cdb0[6] = { SEND_DIAGNOSTIC };
1565 static char cdb[10] =
1566 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1567
1568 sdata = SES_MALLOC(SAFT_SCRATCH);
1569 if (sdata == NULL)
1570 return (ENOMEM);
1571
1572 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1573 if (err) {
1574 SES_FREE(sdata, SAFT_SCRATCH);
1575 return (err);
1576 }
1577 sdata[0] = SAFTE_WT_GLOBAL;
1578 MEMZERO(&sdata[1], 15);
1579 amt = -SAFT_SCRATCH;
1580 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1581 SES_FREE(sdata, SAFT_SCRATCH);
1582 return (err);
1583 }
1584
1585 int
1586 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1587 {
1588 return (safte_rdstat(ssc, slpflg));
1589 }
1590
1591 int
1592 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1593 {
1594 struct scfg *cc = ssc->ses_private;
1595 if (cc == NULL)
1596 return (0);
1597 /*
1598 * Since SAF-TE devices aren't necessarily sticky in terms
1599 * of state, make our soft copy of enclosure status 'sticky'-
1600 * that is, things set in enclosure status stay set (as implied
1601 * by conditions set in reading object status) until cleared.
1602 */
1603 ssc->ses_encstat &= ~ALL_ENC_STAT;
1604 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1605 ssc->ses_encstat |= ENCI_SVALID;
1606 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1607 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1608 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1609 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1610 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1611 }
1612 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1613 }
1614
1615 int
1616 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1617 {
1618 int i = (int)obp->obj_id;
1619
1620 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1621 (ssc->ses_objmap[i].svalid) == 0) {
1622 int err = safte_rdstat(ssc, slpflg);
1623 if (err)
1624 return (err);
1625 }
1626 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1627 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1628 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1629 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1630 return (0);
1631 }
1632
1633
1634 int
1635 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1636 {
1637 int idx, err;
1638 encobj *ep;
1639 struct scfg *cc;
1640
1641
1642 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1643 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1644 obp->cstat[3]);
1645
1646 /*
1647 * If this is clear, we don't do diddly.
1648 */
1649 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1650 return (0);
1651 }
1652
1653 err = 0;
1654 /*
1655 * Check to see if the common bits are set and do them first.
1656 */
1657 if (obp->cstat[0] & ~SESCTL_CSEL) {
1658 err = set_objstat_sel(ssc, obp, slp);
1659 if (err)
1660 return (err);
1661 }
1662
1663 cc = ssc->ses_private;
1664 if (cc == NULL)
1665 return (0);
1666
1667 idx = (int)obp->obj_id;
1668 ep = &ssc->ses_objmap[idx];
1669
1670 switch (ep->enctype) {
1671 case SESTYP_DEVICE:
1672 {
1673 uint8_t slotop = 0;
1674 /*
1675 * XXX: I should probably cache the previous state
1676 * XXX: of SESCTL_DEVOFF so that when it goes from
1677 * XXX: true to false I can then set PREPARE FOR OPERATION
1678 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1679 */
1680 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1681 slotop |= 0x2;
1682 }
1683 if (obp->cstat[2] & SESCTL_RQSID) {
1684 slotop |= 0x4;
1685 }
1686 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1687 slotop, slp);
1688 if (err)
1689 return (err);
1690 if (obp->cstat[3] & SESCTL_RQSFLT) {
1691 ep->priv |= 0x2;
1692 } else {
1693 ep->priv &= ~0x2;
1694 }
1695 if (ep->priv & 0xc6) {
1696 ep->priv &= ~0x1;
1697 } else {
1698 ep->priv |= 0x1; /* no errors */
1699 }
1700 wrslot_stat(ssc, slp);
1701 break;
1702 }
1703 case SESTYP_POWER:
1704 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1705 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1706 } else {
1707 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1708 }
1709 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1710 cc->flag2, 0, slp);
1711 if (err)
1712 return (err);
1713 if (obp->cstat[3] & SESCTL_RQSTON) {
1714 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1715 idx - cc->pwroff, 0, 0, slp);
1716 } else {
1717 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1718 idx - cc->pwroff, 0, 1, slp);
1719 }
1720 break;
1721 case SESTYP_FAN:
1722 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1723 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1724 } else {
1725 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1726 }
1727 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1728 cc->flag2, 0, slp);
1729 if (err)
1730 return (err);
1731 if (obp->cstat[3] & SESCTL_RQSTON) {
1732 uint8_t fsp;
1733 if ((obp->cstat[3] & 0x7) == 7) {
1734 fsp = 4;
1735 } else if ((obp->cstat[3] & 0x7) == 6) {
1736 fsp = 3;
1737 } else if ((obp->cstat[3] & 0x7) == 4) {
1738 fsp = 2;
1739 } else {
1740 fsp = 1;
1741 }
1742 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1743 } else {
1744 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1745 }
1746 break;
1747 case SESTYP_DOORLOCK:
1748 if (obp->cstat[3] & 0x1) {
1749 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1750 } else {
1751 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1752 }
1753 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1754 cc->flag2, 0, slp);
1755 break;
1756 case SESTYP_ALARM:
1757 /*
1758 * On all nonzero but the 'muted' bit, we turn on the alarm,
1759 */
1760 obp->cstat[3] &= ~0xa;
1761 if (obp->cstat[3] & 0x40) {
1762 cc->flag2 &= ~SAFT_FLG1_ALARM;
1763 } else if (obp->cstat[3] != 0) {
1764 cc->flag2 |= SAFT_FLG1_ALARM;
1765 } else {
1766 cc->flag2 &= ~SAFT_FLG1_ALARM;
1767 }
1768 ep->priv = obp->cstat[3];
1769 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1770 cc->flag2, 0, slp);
1771 break;
1772 default:
1773 break;
1774 }
1775 ep->svalid = 0;
1776 return (0);
1777 }
1778
1779 static int
1780 safte_getconfig(ses_softc_t *ssc)
1781 {
1782 struct scfg *cfg;
1783 int err, amt;
1784 char *sdata;
1785 static char cdb[10] =
1786 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1787
1788 cfg = ssc->ses_private;
1789 if (cfg == NULL)
1790 return (ENXIO);
1791
1792 sdata = SES_MALLOC(SAFT_SCRATCH);
1793 if (sdata == NULL)
1794 return (ENOMEM);
1795
1796 amt = SAFT_SCRATCH;
1797 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1798 if (err) {
1799 SES_FREE(sdata, SAFT_SCRATCH);
1800 return (err);
1801 }
1802 amt = SAFT_SCRATCH - amt;
1803 if (amt < 6) {
1804 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1805 SES_FREE(sdata, SAFT_SCRATCH);
1806 return (EIO);
1807 }
1808 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1809 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1810 cfg->Nfans = sdata[0];
1811 cfg->Npwr = sdata[1];
1812 cfg->Nslots = sdata[2];
1813 cfg->DoorLock = sdata[3];
1814 cfg->Ntherm = sdata[4];
1815 cfg->Nspkrs = sdata[5];
1816 cfg->Nalarm = NPSEUDO_ALARM;
1817 SES_FREE(sdata, SAFT_SCRATCH);
1818 return (0);
1819 }
1820
1821 static int
1822 safte_rdstat(ses_softc_t *ssc, int slpflg)
1823 {
1824 int err, oid, r, i, hiwater, nitems, amt;
1825 uint16_t tempflags;
1826 size_t buflen;
1827 uint8_t status, oencstat;
1828 char *sdata, cdb[10];
1829 struct scfg *cc = ssc->ses_private;
1830
1831
1832 /*
1833 * The number of objects overstates things a bit,
1834 * both for the bogus 'thermometer' entries and
1835 * the drive status (which isn't read at the same
1836 * time as the enclosure status), but that's okay.
1837 */
1838 buflen = 4 * cc->Nslots;
1839 if (ssc->ses_nobjects > buflen)
1840 buflen = ssc->ses_nobjects;
1841 sdata = SES_MALLOC(buflen);
1842 if (sdata == NULL)
1843 return (ENOMEM);
1844
1845 cdb[0] = READ_BUFFER;
1846 cdb[1] = 1;
1847 cdb[2] = SAFTE_RD_RDESTS;
1848 cdb[3] = 0;
1849 cdb[4] = 0;
1850 cdb[5] = 0;
1851 cdb[6] = 0;
1852 cdb[7] = (buflen >> 8) & 0xff;
1853 cdb[8] = buflen & 0xff;
1854 cdb[9] = 0;
1855 amt = buflen;
1856 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1857 if (err) {
1858 SES_FREE(sdata, buflen);
1859 return (err);
1860 }
1861 hiwater = buflen - amt;
1862
1863
1864 /*
1865 * invalidate all status bits.
1866 */
1867 for (i = 0; i < ssc->ses_nobjects; i++)
1868 ssc->ses_objmap[i].svalid = 0;
1869 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1870 ssc->ses_encstat = 0;
1871
1872
1873 /*
1874 * Now parse returned buffer.
1875 * If we didn't get enough data back,
1876 * that's considered a fatal error.
1877 */
1878 oid = r = 0;
1879
1880 for (nitems = i = 0; i < cc->Nfans; i++) {
1881 SAFT_BAIL(r, hiwater, sdata, buflen);
1882 /*
1883 * 0 = Fan Operational
1884 * 1 = Fan is malfunctioning
1885 * 2 = Fan is not present
1886 * 0x80 = Unknown or Not Reportable Status
1887 */
1888 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1889 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1890 switch ((int)(uint8_t)sdata[r]) {
1891 case 0:
1892 nitems++;
1893 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1894 /*
1895 * We could get fancier and cache
1896 * fan speeds that we have set, but
1897 * that isn't done now.
1898 */
1899 ssc->ses_objmap[oid].encstat[3] = 7;
1900 break;
1901
1902 case 1:
1903 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1904 /*
1905 * FAIL and FAN STOPPED synthesized
1906 */
1907 ssc->ses_objmap[oid].encstat[3] = 0x40;
1908 /*
1909 * Enclosure marked with CRITICAL error
1910 * if only one fan or no thermometers,
1911 * else the NONCRITICAL error is set.
1912 */
1913 if (cc->Nfans == 1 || cc->Ntherm == 0)
1914 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1915 else
1916 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1917 break;
1918 case 2:
1919 ssc->ses_objmap[oid].encstat[0] =
1920 SES_OBJSTAT_NOTINSTALLED;
1921 ssc->ses_objmap[oid].encstat[3] = 0;
1922 /*
1923 * Enclosure marked with CRITICAL error
1924 * if only one fan or no thermometers,
1925 * else the NONCRITICAL error is set.
1926 */
1927 if (cc->Nfans == 1)
1928 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1929 else
1930 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1931 break;
1932 case 0x80:
1933 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1934 ssc->ses_objmap[oid].encstat[3] = 0;
1935 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1936 break;
1937 default:
1938 ssc->ses_objmap[oid].encstat[0] =
1939 SES_OBJSTAT_UNSUPPORTED;
1940 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1941 sdata[r] & 0xff);
1942 break;
1943 }
1944 ssc->ses_objmap[oid++].svalid = 1;
1945 r++;
1946 }
1947
1948 /*
1949 * No matter how you cut it, no cooling elements when there
1950 * should be some there is critical.
1951 */
1952 if (cc->Nfans && nitems == 0) {
1953 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1954 }
1955
1956
1957 for (i = 0; i < cc->Npwr; i++) {
1958 SAFT_BAIL(r, hiwater, sdata, buflen);
1959 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1960 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1961 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1962 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1963 switch ((uint8_t)sdata[r]) {
1964 case 0x00: /* pws operational and on */
1965 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1966 break;
1967 case 0x01: /* pws operational and off */
1968 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1969 ssc->ses_objmap[oid].encstat[3] = 0x10;
1970 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1971 break;
1972 case 0x10: /* pws is malfunctioning and commanded on */
1973 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1974 ssc->ses_objmap[oid].encstat[3] = 0x61;
1975 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1976 break;
1977
1978 case 0x11: /* pws is malfunctioning and commanded off */
1979 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1980 ssc->ses_objmap[oid].encstat[3] = 0x51;
1981 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1982 break;
1983 case 0x20: /* pws is not present */
1984 ssc->ses_objmap[oid].encstat[0] =
1985 SES_OBJSTAT_NOTINSTALLED;
1986 ssc->ses_objmap[oid].encstat[3] = 0;
1987 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1988 break;
1989 case 0x21: /* pws is present */
1990 /*
1991 * This is for enclosures that cannot tell whether the
1992 * device is on or malfunctioning, but know that it is
1993 * present. Just fall through.
1994 */
1995 /* FALLTHROUGH */
1996 case 0x80: /* Unknown or Not Reportable Status */
1997 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1998 ssc->ses_objmap[oid].encstat[3] = 0;
1999 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2000 break;
2001 default:
2002 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2003 i, sdata[r] & 0xff);
2004 break;
2005 }
2006 ssc->ses_objmap[oid++].svalid = 1;
2007 r++;
2008 }
2009
2010 /*
2011 * Skip over Slot SCSI IDs
2012 */
2013 r += cc->Nslots;
2014
2015 /*
2016 * We always have doorlock status, no matter what,
2017 * but we only save the status if we have one.
2018 */
2019 SAFT_BAIL(r, hiwater, sdata, buflen);
2020 if (cc->DoorLock) {
2021 /*
2022 * 0 = Door Locked
2023 * 1 = Door Unlocked, or no Lock Installed
2024 * 0x80 = Unknown or Not Reportable Status
2025 */
2026 ssc->ses_objmap[oid].encstat[1] = 0;
2027 ssc->ses_objmap[oid].encstat[2] = 0;
2028 switch ((uint8_t)sdata[r]) {
2029 case 0:
2030 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2031 ssc->ses_objmap[oid].encstat[3] = 0;
2032 break;
2033 case 1:
2034 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2035 ssc->ses_objmap[oid].encstat[3] = 1;
2036 break;
2037 case 0x80:
2038 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2039 ssc->ses_objmap[oid].encstat[3] = 0;
2040 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2041 break;
2042 default:
2043 ssc->ses_objmap[oid].encstat[0] =
2044 SES_OBJSTAT_UNSUPPORTED;
2045 SES_LOG(ssc, "unknown lock status 0x%x\n",
2046 sdata[r] & 0xff);
2047 break;
2048 }
2049 ssc->ses_objmap[oid++].svalid = 1;
2050 }
2051 r++;
2052
2053 /*
2054 * We always have speaker status, no matter what,
2055 * but we only save the status if we have one.
2056 */
2057 SAFT_BAIL(r, hiwater, sdata, buflen);
2058 if (cc->Nspkrs) {
2059 ssc->ses_objmap[oid].encstat[1] = 0;
2060 ssc->ses_objmap[oid].encstat[2] = 0;
2061 if (sdata[r] == 1) {
2062 /*
2063 * We need to cache tone urgency indicators.
2064 * Someday.
2065 */
2066 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2067 ssc->ses_objmap[oid].encstat[3] = 0x8;
2068 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2069 } else if (sdata[r] == 0) {
2070 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2071 ssc->ses_objmap[oid].encstat[3] = 0;
2072 } else {
2073 ssc->ses_objmap[oid].encstat[0] =
2074 SES_OBJSTAT_UNSUPPORTED;
2075 ssc->ses_objmap[oid].encstat[3] = 0;
2076 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2077 sdata[r] & 0xff);
2078 }
2079 ssc->ses_objmap[oid++].svalid = 1;
2080 }
2081 r++;
2082
2083 for (i = 0; i < cc->Ntherm; i++) {
2084 SAFT_BAIL(r, hiwater, sdata, buflen);
2085 /*
2086 * Status is a range from -10 to 245 deg Celsius,
2087 * which we need to normalize to -20 to -245 according
2088 * to the latest SCSI spec, which makes little
2089 * sense since this would overflow an 8bit value.
2090 * Well, still, the base normalization is -20,
2091 * not -10, so we have to adjust.
2092 *
2093 * So what's over and under temperature?
2094 * Hmm- we'll state that 'normal' operating
2095 * is 10 to 40 deg Celsius.
2096 */
2097 ssc->ses_objmap[oid].encstat[1] = 0;
2098 ssc->ses_objmap[oid].encstat[2] =
2099 ((unsigned int) sdata[r]) - 10;
2100 if (sdata[r] < 20) {
2101 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2102 /*
2103 * Set 'under temperature' failure.
2104 */
2105 ssc->ses_objmap[oid].encstat[3] = 2;
2106 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2107 } else if (sdata[r] > 30) {
2108 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2109 /*
2110 * Set 'over temperature' failure.
2111 */
2112 ssc->ses_objmap[oid].encstat[3] = 8;
2113 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2114 } else {
2115 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2116 }
2117 ssc->ses_objmap[oid++].svalid = 1;
2118 r++;
2119 }
2120
2121 /*
2122 * Now, for "pseudo" thermometers, we have two bytes
2123 * of information in enclosure status- 16 bits. Actually,
2124 * the MSB is a single TEMP ALERT flag indicating whether
2125 * any other bits are set, but, thanks to fuzzy thinking,
2126 * in the SAF-TE spec, this can also be set even if no
2127 * other bits are set, thus making this really another
2128 * binary temperature sensor.
2129 */
2130
2131 SAFT_BAIL(r, hiwater, sdata, buflen);
2132 tempflags = sdata[r++];
2133 SAFT_BAIL(r, hiwater, sdata, buflen);
2134 tempflags |= (tempflags << 8) | sdata[r++];
2135
2136 for (i = 0; i < NPSEUDO_THERM; i++) {
2137 ssc->ses_objmap[oid].encstat[1] = 0;
2138 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2139 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2140 ssc->ses_objmap[4].encstat[2] = 0xff;
2141 /*
2142 * Set 'over temperature' failure.
2143 */
2144 ssc->ses_objmap[oid].encstat[3] = 8;
2145 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2146 } else {
2147 /*
2148 * We used to say 'not available' and synthesize a
2149 * nominal 30 deg (C)- that was wrong. Actually,
2150 * Just say 'OK', and use the reserved value of
2151 * zero.
2152 */
2153 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2154 ssc->ses_objmap[oid].encstat[2] = 0;
2155 ssc->ses_objmap[oid].encstat[3] = 0;
2156 }
2157 ssc->ses_objmap[oid++].svalid = 1;
2158 }
2159
2160 /*
2161 * Get alarm status.
2162 */
2163 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2164 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2165 ssc->ses_objmap[oid++].svalid = 1;
2166
2167 /*
2168 * Now get drive slot status
2169 */
2170 cdb[2] = SAFTE_RD_RDDSTS;
2171 amt = buflen;
2172 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2173 if (err) {
2174 SES_FREE(sdata, buflen);
2175 return (err);
2176 }
2177 hiwater = buflen - amt;
2178 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2179 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2180 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2181 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2182 ssc->ses_objmap[oid].encstat[2] = 0;
2183 ssc->ses_objmap[oid].encstat[3] = 0;
2184 status = sdata[r+3];
2185 if ((status & 0x1) == 0) { /* no device */
2186 ssc->ses_objmap[oid].encstat[0] =
2187 SES_OBJSTAT_NOTINSTALLED;
2188 } else {
2189 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2190 }
2191 if (status & 0x2) {
2192 ssc->ses_objmap[oid].encstat[2] = 0x8;
2193 }
2194 if ((status & 0x4) == 0) {
2195 ssc->ses_objmap[oid].encstat[3] = 0x10;
2196 }
2197 ssc->ses_objmap[oid++].svalid = 1;
2198 }
2199 /* see comment below about sticky enclosure status */
2200 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2201 SES_FREE(sdata, buflen);
2202 return (0);
2203 }
2204
2205 static int
2206 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2207 {
2208 int idx;
2209 encobj *ep;
2210 struct scfg *cc = ssc->ses_private;
2211
2212 if (cc == NULL)
2213 return (0);
2214
2215 idx = (int)obp->obj_id;
2216 ep = &ssc->ses_objmap[idx];
2217
2218 switch (ep->enctype) {
2219 case SESTYP_DEVICE:
2220 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2221 ep->priv |= 0x40;
2222 }
2223 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2224 if (obp->cstat[0] & SESCTL_DISABLE) {
2225 ep->priv |= 0x80;
2226 /*
2227 * Hmm. Try to set the 'No Drive' flag.
2228 * Maybe that will count as a 'disable'.
2229 */
2230 }
2231 if (ep->priv & 0xc6) {
2232 ep->priv &= ~0x1;
2233 } else {
2234 ep->priv |= 0x1; /* no errors */
2235 }
2236 wrslot_stat(ssc, slp);
2237 break;
2238 case SESTYP_POWER:
2239 /*
2240 * Okay- the only one that makes sense here is to
2241 * do the 'disable' for a power supply.
2242 */
2243 if (obp->cstat[0] & SESCTL_DISABLE) {
2244 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2245 idx - cc->pwroff, 0, 0, slp);
2246 }
2247 break;
2248 case SESTYP_FAN:
2249 /*
2250 * Okay- the only one that makes sense here is to
2251 * set fan speed to zero on disable.
2252 */
2253 if (obp->cstat[0] & SESCTL_DISABLE) {
2254 /* remember- fans are the first items, so idx works */
2255 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2256 }
2257 break;
2258 case SESTYP_DOORLOCK:
2259 /*
2260 * Well, we can 'disable' the lock.
2261 */
2262 if (obp->cstat[0] & SESCTL_DISABLE) {
2263 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2264 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2265 cc->flag2, 0, slp);
2266 }
2267 break;
2268 case SESTYP_ALARM:
2269 /*
2270 * Well, we can 'disable' the alarm.
2271 */
2272 if (obp->cstat[0] & SESCTL_DISABLE) {
2273 cc->flag2 &= ~SAFT_FLG1_ALARM;
2274 ep->priv |= 0x40; /* Muted */
2275 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2276 cc->flag2, 0, slp);
2277 }
2278 break;
2279 default:
2280 break;
2281 }
2282 ep->svalid = 0;
2283 return (0);
2284 }
2285
2286 /*
2287 * This function handles all of the 16 byte WRITE BUFFER commands.
2288 */
2289 static int
2290 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2291 uint8_t b3, int slp)
2292 {
2293 int err, amt;
2294 char *sdata;
2295 struct scfg *cc = ssc->ses_private;
2296 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2297
2298 if (cc == NULL)
2299 return (0);
2300
2301 sdata = SES_MALLOC(16);
2302 if (sdata == NULL)
2303 return (ENOMEM);
2304
2305 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2306
2307 sdata[0] = op;
2308 sdata[1] = b1;
2309 sdata[2] = b2;
2310 sdata[3] = b3;
2311 MEMZERO(&sdata[4], 12);
2312 amt = -16;
2313 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2314 SES_FREE(sdata, 16);
2315 return (err);
2316 }
2317
2318 /*
2319 * This function updates the status byte for the device slot described.
2320 *
2321 * Since this is an optional SAF-TE command, there's no point in
2322 * returning an error.
2323 */
2324 static void
2325 wrslot_stat(ses_softc_t *ssc, int slp)
2326 {
2327 int i, amt;
2328 encobj *ep;
2329 char cdb[10], *sdata;
2330 struct scfg *cc = ssc->ses_private;
2331
2332 if (cc == NULL)
2333 return;
2334
2335 SES_VLOG(ssc, "saf_wrslot\n");
2336 cdb[0] = WRITE_BUFFER;
2337 cdb[1] = 1;
2338 cdb[2] = 0;
2339 cdb[3] = 0;
2340 cdb[4] = 0;
2341 cdb[5] = 0;
2342 cdb[6] = 0;
2343 cdb[7] = 0;
2344 cdb[8] = cc->Nslots * 3 + 1;
2345 cdb[9] = 0;
2346
2347 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2348 if (sdata == NULL)
2349 return;
2350 MEMZERO(sdata, cc->Nslots * 3 + 1);
2351
2352 sdata[0] = SAFTE_WT_DSTAT;
2353 for (i = 0; i < cc->Nslots; i++) {
2354 ep = &ssc->ses_objmap[cc->slotoff + i];
2355 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2356 sdata[1 + (3 * i)] = ep->priv & 0xff;
2357 }
2358 amt = -(cc->Nslots * 3 + 1);
2359 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2360 SES_FREE(sdata, cc->Nslots * 3 + 1);
2361 }
2362
2363 /*
2364 * This function issues the "PERFORM SLOT OPERATION" command.
2365 */
2366 static int
2367 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2368 {
2369 int err, amt;
2370 char *sdata;
2371 struct scfg *cc = ssc->ses_private;
2372 static char cdb[10] =
2373 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2374
2375 if (cc == NULL)
2376 return (0);
2377
2378 sdata = SES_MALLOC(SAFT_SCRATCH);
2379 if (sdata == NULL)
2380 return (ENOMEM);
2381 MEMZERO(sdata, SAFT_SCRATCH);
2382
2383 sdata[0] = SAFTE_WT_SLTOP;
2384 sdata[1] = slot;
2385 sdata[2] = opflag;
2386 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2387 amt = -SAFT_SCRATCH;
2388 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2389 SES_FREE(sdata, SAFT_SCRATCH);
2390 return (err);
2391 }
2392