ses.c revision 1.9 1 /* $NetBSD: ses.c,v 1.9 2001/04/25 17:53:41 bouyer Exp $ */
2 /*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 * derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author: mjacob (at) nas.nasa.gov
26 */
27
28
29 #include "opt_scsi.h"
30
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/ioctl.h>
38 #include <sys/scsiio.h>
39 #include <sys/buf.h>
40 #include <sys/uio.h>
41 #include <sys/malloc.h>
42 #include <sys/errno.h>
43 #include <sys/device.h>
44 #include <sys/disklabel.h>
45 #include <sys/disk.h>
46 #include <sys/proc.h>
47 #include <sys/conf.h>
48 #include <sys/vnode.h>
49 #include <machine/stdarg.h>
50
51 #include <dev/scsipi/scsipi_all.h>
52 #include <dev/scsipi/scsi_all.h>
53 #include <dev/scsipi/scsipi_disk.h>
54 #include <dev/scsipi/scsi_disk.h>
55 #include <dev/scsipi/scsiconf.h>
56 #include <dev/scsipi/ses.h>
57
58 /*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61 typedef enum {
62 SES_NONE,
63 SES_SES_SCSI2,
64 SES_SES,
65 SES_SES_PASSTHROUGH,
66 SES_SEN,
67 SES_SAFT
68 } enctyp;
69
70 struct ses_softc;
71 typedef struct ses_softc ses_softc_t;
72 typedef struct {
73 int (*softc_init) __P((ses_softc_t *, int));
74 int (*init_enc) __P((ses_softc_t *));
75 int (*get_encstat) __P((ses_softc_t *, int));
76 int (*set_encstat) __P((ses_softc_t *, ses_encstat, int));
77 int (*get_objstat) __P((ses_softc_t *, ses_objstat *, int));
78 int (*set_objstat) __P((ses_softc_t *, ses_objstat *, int));
79 } encvec;
80
81 #define ENCI_SVALID 0x80
82
83 typedef struct {
84 uint32_t
85 enctype : 8, /* enclosure type */
86 subenclosure : 8, /* subenclosure id */
87 svalid : 1, /* enclosure information valid */
88 priv : 15; /* private data, per object */
89 uint8_t encstat[4]; /* state && stats */
90 } encobj;
91
92 #define SEN_ID "UNISYS SUN_SEN"
93 #define SEN_ID_LEN 24
94
95 static enctyp ses_type __P((struct scsipi_inquiry_data *));
96
97
98 /* Forward reference to Enclosure Functions */
99 static int ses_softc_init __P((ses_softc_t *, int));
100 static int ses_init_enc __P((ses_softc_t *));
101 static int ses_get_encstat __P((ses_softc_t *, int));
102 static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103 static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104 static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105
106 static int safte_softc_init __P((ses_softc_t *, int));
107 static int safte_init_enc __P((ses_softc_t *));
108 static int safte_get_encstat __P((ses_softc_t *, int));
109 static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110 static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111 static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112
113 /*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117 #define STRNCMP strncmp
118 #define PRINTF printf
119 #define SES_LOG ses_log
120 #if defined(DEBUG) || defined(SCSIDEBUG)
121 #define SES_VLOG ses_log
122 #else
123 #define SES_VLOG if (0) ses_log
124 #endif
125 #define SES_MALLOC(amt) malloc(amt, M_DEVBUF, M_NOWAIT)
126 #define SES_FREE(ptr, amt) free(ptr, M_DEVBUF)
127 #define MEMZERO bzero
128 #define MEMCPY(dest, src, amt) bcopy(src, dest, amt)
129 #define RECEIVE_DIAGNOSTIC 0x1c
130 #define SEND_DIAGNOSTIC 0x1d
131 #define WRITE_BUFFER 0x3b
132 #define READ_BUFFER 0x3c
133
134 int sesopen __P((dev_t, int, int, struct proc *));
135 int sesclose __P((dev_t, int, int, struct proc *));
136 int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137
138 static int ses_runcmd __P((struct ses_softc *, char *, int, char *, int *));
139 static void ses_log __P((struct ses_softc *, const char *, ...))
140 __attribute__((__format__(__printf__, 2, 3)));
141
142 /*
143 * General NetBSD kernel stuff.
144 */
145
146 struct ses_softc {
147 struct device sc_device;
148 struct scsipi_periph *sc_periph;
149 enctyp ses_type; /* type of enclosure */
150 encvec ses_vec; /* vector to handlers */
151 void * ses_private; /* per-type private data */
152 encobj * ses_objmap; /* objects */
153 u_int32_t ses_nobjects; /* number of objects */
154 ses_encstat ses_encstat; /* overall status */
155 u_int8_t ses_flags;
156 };
157 #define SES_FLAG_INVALID 0x01
158 #define SES_FLAG_OPEN 0x02
159 #define SES_FLAG_INITIALIZED 0x04
160
161 #define SESUNIT(x) (minor((x)))
162
163 static int ses_match __P((struct device *, struct cfdata *, void *));
164 static void ses_attach __P((struct device *, struct device *, void *));
165 static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166
167 struct cfattach ses_ca = {
168 sizeof (struct ses_softc), ses_match, ses_attach
169 };
170 extern struct cfdriver ses_cd;
171
172 const struct scsipi_periphsw ses_switch = {
173 NULL,
174 NULL,
175 NULL,
176 NULL
177 };
178
179
180 int
181 ses_match(parent, match, aux)
182 struct device *parent;
183 struct cfdata *match;
184 void *aux;
185 {
186 struct scsipibus_attach_args *sa = aux;
187
188 switch (ses_device_type(sa)) {
189 case SES_SES:
190 case SES_SES_SCSI2:
191 case SES_SEN:
192 case SES_SAFT:
193 case SES_SES_PASSTHROUGH:
194 /*
195 * For these devices, it's a perfect match.
196 */
197 return (24);
198 default:
199 return (0);
200 }
201 }
202
203
204 /*
205 * Complete the attachment.
206 *
207 * We have to repeat the rerun of INQUIRY data as above because
208 * it's not until the return from the match routine that we have
209 * the softc available to set stuff in.
210 */
211 void
212 ses_attach(parent, self, aux)
213 struct device *parent;
214 struct device *self;
215 void *aux;
216 {
217 char *tname;
218 struct ses_softc *softc = (void *)self;
219 struct scsipibus_attach_args *sa = aux;
220 struct scsipi_periph *periph = sa->sa_periph;
221
222 SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223 softc->sc_periph = periph;
224 periph->periph_dev = &softc->sc_device;
225 periph->periph_switch = &ses_switch;
226 periph->periph_openings = 1;
227
228 softc->ses_type = ses_device_type(sa);
229 switch (softc->ses_type) {
230 case SES_SES:
231 case SES_SES_SCSI2:
232 case SES_SES_PASSTHROUGH:
233 softc->ses_vec.softc_init = ses_softc_init;
234 softc->ses_vec.init_enc = ses_init_enc;
235 softc->ses_vec.get_encstat = ses_get_encstat;
236 softc->ses_vec.set_encstat = ses_set_encstat;
237 softc->ses_vec.get_objstat = ses_get_objstat;
238 softc->ses_vec.set_objstat = ses_set_objstat;
239 break;
240 case SES_SAFT:
241 softc->ses_vec.softc_init = safte_softc_init;
242 softc->ses_vec.init_enc = safte_init_enc;
243 softc->ses_vec.get_encstat = safte_get_encstat;
244 softc->ses_vec.set_encstat = safte_set_encstat;
245 softc->ses_vec.get_objstat = safte_get_objstat;
246 softc->ses_vec.set_objstat = safte_set_objstat;
247 break;
248 case SES_SEN:
249 break;
250 case SES_NONE:
251 default:
252 break;
253 }
254
255 switch (softc->ses_type) {
256 default:
257 case SES_NONE:
258 tname = "No SES device";
259 break;
260 case SES_SES_SCSI2:
261 tname = "SCSI-2 SES Device";
262 break;
263 case SES_SES:
264 tname = "SCSI-3 SES Device";
265 break;
266 case SES_SES_PASSTHROUGH:
267 tname = "SES Passthrough Device";
268 break;
269 case SES_SEN:
270 tname = "UNISYS SEN Device (NOT HANDLED YET)";
271 break;
272 case SES_SAFT:
273 tname = "SAF-TE Compliant Device";
274 break;
275 }
276 printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277 }
278
279
280 static enctyp
281 ses_device_type(sa)
282 struct scsipibus_attach_args *sa;
283 {
284 struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285
286 if (inqp == NULL)
287 return (SES_NONE);
288
289 return (ses_type(inqp));
290 }
291
292 int
293 sesopen(dev, flags, fmt, p)
294 dev_t dev;
295 int flags;
296 int fmt;
297 struct proc *p;
298 {
299 struct ses_softc *softc;
300 int error, unit;
301
302 unit = SESUNIT(dev);
303 if (unit >= ses_cd.cd_ndevs)
304 return (ENXIO);
305 softc = ses_cd.cd_devs[unit];
306 if (softc == NULL)
307 return (ENXIO);
308
309 if (softc->ses_flags & SES_FLAG_INVALID) {
310 error = ENXIO;
311 goto out;
312 }
313 if (softc->ses_flags & SES_FLAG_OPEN) {
314 error = EBUSY;
315 goto out;
316 }
317 if (softc->ses_vec.softc_init == NULL) {
318 error = ENXIO;
319 goto out;
320 }
321 error = scsipi_adapter_addref(
322 softc->sc_periph->periph_channel->chan_adapter);
323 if (error != 0)
324 goto out;
325
326
327 softc->ses_flags |= SES_FLAG_OPEN;
328 if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
329 error = (*softc->ses_vec.softc_init)(softc, 1);
330 if (error)
331 softc->ses_flags &= ~SES_FLAG_OPEN;
332 else
333 softc->ses_flags |= SES_FLAG_INITIALIZED;
334 }
335
336 out:
337 return (error);
338 }
339
340 int
341 sesclose(dev, flags, fmt, p)
342 dev_t dev;
343 int flags;
344 int fmt;
345 struct proc *p;
346 {
347 struct ses_softc *softc;
348 int unit;
349
350 unit = SESUNIT(dev);
351 if (unit >= ses_cd.cd_ndevs)
352 return (ENXIO);
353 softc = ses_cd.cd_devs[unit];
354 if (softc == NULL)
355 return (ENXIO);
356
357 scsipi_wait_drain(softc->sc_periph);
358 scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
359 softc->ses_flags &= ~SES_FLAG_OPEN;
360 return (0);
361 }
362
363 int
364 sesioctl(dev, cmd, arg_addr, flag, p)
365 dev_t dev;
366 u_long cmd;
367 caddr_t arg_addr;
368 int flag;
369 struct proc *p;
370 {
371 ses_encstat tmp;
372 ses_objstat objs;
373 ses_object obj, *uobj;
374 struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
375 void *addr;
376 int error, i;
377
378
379 if (arg_addr)
380 addr = *((caddr_t *) arg_addr);
381 else
382 addr = NULL;
383
384 SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
385
386 /*
387 * Now check to see whether we're initialized or not.
388 */
389 if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
390 return (ENODEV);
391 }
392
393 error = 0;
394
395 /*
396 * If this command can change the device's state,
397 * we must have the device open for writing.
398 */
399 switch (cmd) {
400 case SESIOC_GETNOBJ:
401 case SESIOC_GETOBJMAP:
402 case SESIOC_GETENCSTAT:
403 case SESIOC_GETOBJSTAT:
404 break;
405 default:
406 if ((flag & FWRITE) == 0) {
407 return (EBADF);
408 }
409 }
410
411 switch (cmd) {
412 case SESIOC_GETNOBJ:
413 error = copyout(&ssc->ses_nobjects, addr,
414 sizeof (ssc->ses_nobjects));
415 break;
416
417 case SESIOC_GETOBJMAP:
418 for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
419 obj.obj_id = i;
420 obj.subencid = ssc->ses_objmap[i].subenclosure;
421 obj.object_type = ssc->ses_objmap[i].enctype;
422 error = copyout(&obj, uobj, sizeof (ses_object));
423 if (error) {
424 break;
425 }
426 }
427 break;
428
429 case SESIOC_GETENCSTAT:
430 error = (*ssc->ses_vec.get_encstat)(ssc, 1);
431 if (error)
432 break;
433 tmp = ssc->ses_encstat & ~ENCI_SVALID;
434 error = copyout(&tmp, addr, sizeof (ses_encstat));
435 ssc->ses_encstat = tmp;
436 break;
437
438 case SESIOC_SETENCSTAT:
439 error = copyin(addr, &tmp, sizeof (ses_encstat));
440 if (error)
441 break;
442 error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
443 break;
444
445 case SESIOC_GETOBJSTAT:
446 error = copyin(addr, &objs, sizeof (ses_objstat));
447 if (error)
448 break;
449 if (objs.obj_id >= ssc->ses_nobjects) {
450 error = EINVAL;
451 break;
452 }
453 error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
454 if (error)
455 break;
456 error = copyout(&objs, addr, sizeof (ses_objstat));
457 /*
458 * Always (for now) invalidate entry.
459 */
460 ssc->ses_objmap[objs.obj_id].svalid = 0;
461 break;
462
463 case SESIOC_SETOBJSTAT:
464 error = copyin(addr, &objs, sizeof (ses_objstat));
465 if (error)
466 break;
467
468 if (objs.obj_id >= ssc->ses_nobjects) {
469 error = EINVAL;
470 break;
471 }
472 error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
473
474 /*
475 * Always (for now) invalidate entry.
476 */
477 ssc->ses_objmap[objs.obj_id].svalid = 0;
478 break;
479
480 case SESIOC_INIT:
481
482 error = (*ssc->ses_vec.init_enc)(ssc);
483 break;
484
485 default:
486 error = scsipi_do_ioctl(ssc->sc_periph,
487 dev, cmd, addr, flag, p);
488 break;
489 }
490 return (error);
491 }
492
493 static int
494 ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
495 {
496 struct scsipi_generic sgen;
497 int dl, flg, error;
498
499 if (dptr) {
500 if ((dl = *dlenp) < 0) {
501 dl = -dl;
502 flg = XS_CTL_DATA_OUT;
503 } else {
504 flg = XS_CTL_DATA_IN;
505 }
506 } else {
507 dl = 0;
508 flg = 0;
509 }
510
511 if (cdbl > sizeof (struct scsipi_generic)) {
512 cdbl = sizeof (struct scsipi_generic);
513 }
514 bcopy(cdb, &sgen, cdbl);
515 #ifndef SCSIDEBUG
516 flg |= XS_CTL_SILENT;
517 #endif
518 error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
519 (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
520
521 if (error == 0 && dptr)
522 *dlenp = 0;
523
524 return (error);
525 }
526
527 #ifdef __STDC__
528 static void
529 ses_log(struct ses_softc *ssc, const char *fmt, ...)
530 {
531 va_list ap;
532
533 printf("%s: ", ssc->sc_device.dv_xname);
534 va_start(ap, fmt);
535 vprintf(fmt, ap);
536 va_end(ap);
537 }
538 #else
539 static void
540 ses_log(ssc, fmt, va_alist)
541 struct ses_softc *ssc;
542 char *fmt;
543 va_dcl
544 {
545 va_list ap;
546
547 printf("%s: ", ssc->sc_device.dv_xname);
548 va_start(ap, fmt);
549 vprintf(fmt, ap);
550 va_end(ap);
551 }
552 #endif
553
554 /*
555 * The code after this point runs on many platforms,
556 * so forgive the slightly awkward and nonconforming
557 * appearance.
558 */
559
560 /*
561 * Is this a device that supports enclosure services?
562 *
563 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
564 * an SES device. If it happens to be an old UNISYS SEN device, we can
565 * handle that too.
566 */
567
568 #define SAFTE_START 44
569 #define SAFTE_END 50
570 #define SAFTE_LEN SAFTE_END-SAFTE_START
571
572 static enctyp
573 ses_type(inqp)
574 struct scsipi_inquiry_data *inqp;
575 {
576 size_t given_len = inqp->additional_length + 4;
577
578 if (given_len < 8+SEN_ID_LEN)
579 return (SES_NONE);
580
581 if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
582 if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
583 return (SES_SEN);
584 } else if ((inqp->version & SID_ANSII) > 2) {
585 return (SES_SES);
586 } else {
587 return (SES_SES_SCSI2);
588 }
589 return (SES_NONE);
590 }
591
592 #ifdef SES_ENABLE_PASSTHROUGH
593 if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
594 /*
595 * PassThrough Device.
596 */
597 return (SES_SES_PASSTHROUGH);
598 }
599 #endif
600
601 /*
602 * The comparison is short for a reason-
603 * some vendors were chopping it short.
604 */
605
606 if (given_len < SAFTE_END - 2) {
607 return (SES_NONE);
608 }
609
610 if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
611 SAFTE_LEN - 2) == 0) {
612 return (SES_SAFT);
613 }
614
615 return (SES_NONE);
616 }
617
618 /*
619 * SES Native Type Device Support
620 */
621
622 /*
623 * SES Diagnostic Page Codes
624 */
625
626 typedef enum {
627 SesConfigPage = 0x1,
628 SesControlPage,
629 #define SesStatusPage SesControlPage
630 SesHelpTxt,
631 SesStringOut,
632 #define SesStringIn SesStringOut
633 SesThresholdOut,
634 #define SesThresholdIn SesThresholdOut
635 SesArrayControl,
636 #define SesArrayStatus SesArrayControl
637 SesElementDescriptor,
638 SesShortStatus
639 } SesDiagPageCodes;
640
641 /*
642 * minimal amounts
643 */
644
645 /*
646 * Minimum amount of data, starting from byte 0, to have
647 * the config header.
648 */
649 #define SES_CFGHDR_MINLEN 12
650
651 /*
652 * Minimum amount of data, starting from byte 0, to have
653 * the config header and one enclosure header.
654 */
655 #define SES_ENCHDR_MINLEN 48
656
657 /*
658 * Take this value, subtract it from VEnclen and you know
659 * the length of the vendor unique bytes.
660 */
661 #define SES_ENCHDR_VMIN 36
662
663 /*
664 * SES Data Structures
665 */
666
667 typedef struct {
668 uint32_t GenCode; /* Generation Code */
669 uint8_t Nsubenc; /* Number of Subenclosures */
670 } SesCfgHdr;
671
672 typedef struct {
673 uint8_t Subencid; /* SubEnclosure Identifier */
674 uint8_t Ntypes; /* # of supported types */
675 uint8_t VEnclen; /* Enclosure Descriptor Length */
676 } SesEncHdr;
677
678 typedef struct {
679 uint8_t encWWN[8]; /* XXX- Not Right Yet */
680 uint8_t encVid[8];
681 uint8_t encPid[16];
682 uint8_t encRev[4];
683 uint8_t encVen[1];
684 } SesEncDesc;
685
686 typedef struct {
687 uint8_t enc_type; /* type of element */
688 uint8_t enc_maxelt; /* maximum supported */
689 uint8_t enc_subenc; /* in SubEnc # N */
690 uint8_t enc_tlen; /* Type Descriptor Text Length */
691 } SesThdr;
692
693 typedef struct {
694 uint8_t comstatus;
695 uint8_t comstat[3];
696 } SesComStat;
697
698 struct typidx {
699 int ses_tidx;
700 int ses_oidx;
701 };
702
703 struct sscfg {
704 uint8_t ses_ntypes; /* total number of types supported */
705
706 /*
707 * We need to keep a type index as well as an
708 * object index for each object in an enclosure.
709 */
710 struct typidx *ses_typidx;
711
712 /*
713 * We also need to keep track of the number of elements
714 * per type of element. This is needed later so that we
715 * can find precisely in the returned status data the
716 * status for the Nth element of the Kth type.
717 */
718 uint8_t * ses_eltmap;
719 };
720
721
722 /*
723 * (de)canonicalization defines
724 */
725 #define sbyte(x, byte) ((((uint32_t)(x)) >> (byte * 8)) & 0xff)
726 #define sbit(x, bit) (((uint32_t)(x)) << bit)
727 #define sset8(outp, idx, sval) (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728
729 #define sset16(outp, idx, sval) \
730 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
731 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
732
733
734 #define sset24(outp, idx, sval) \
735 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
736 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738
739
740 #define sset32(outp, idx, sval) \
741 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
742 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
743 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
744 (((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
745
746 #define gbyte(x, byte) ((((uint32_t)(x)) & 0xff) << (byte * 8))
747 #define gbit(lv, in, idx, shft, mask) lv = ((in[idx] >> shft) & mask)
748 #define sget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx++])
749 #define gget8(inp, idx, lval) lval = (((uint8_t *)(inp))[idx])
750
751 #define sget16(inp, idx, lval) \
752 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
753 (((uint8_t *)(inp))[idx+1]), idx += 2
754
755 #define gget16(inp, idx, lval) \
756 lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
757 (((uint8_t *)(inp))[idx+1])
758
759 #define sget24(inp, idx, lval) \
760 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
761 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
762 (((uint8_t *)(inp))[idx+2]), idx += 3
763
764 #define gget24(inp, idx, lval) \
765 lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
766 gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
767 (((uint8_t *)(inp))[idx+2])
768
769 #define sget32(inp, idx, lval) \
770 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
771 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
772 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
773 (((uint8_t *)(inp))[idx+3]), idx += 4
774
775 #define gget32(inp, idx, lval) \
776 lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
777 gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
778 gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
779 (((uint8_t *)(inp))[idx+3])
780
781 #define SCSZ 0x2000
782 #define CFLEN (256 + SES_ENCHDR_MINLEN)
783
784 /*
785 * Routines specific && private to SES only
786 */
787
788 static int ses_getconfig(ses_softc_t *);
789 static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
790 static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
791 static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
792 static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
793 static int ses_getthdr(uint8_t *, int, int, SesThdr *);
794 static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
795 static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
796
797 static int
798 ses_softc_init(ses_softc_t *ssc, int doinit)
799 {
800 if (doinit == 0) {
801 struct sscfg *cc;
802 if (ssc->ses_nobjects) {
803 SES_FREE(ssc->ses_objmap,
804 ssc->ses_nobjects * sizeof (encobj));
805 ssc->ses_objmap = NULL;
806 }
807 if ((cc = ssc->ses_private) != NULL) {
808 if (cc->ses_eltmap && cc->ses_ntypes) {
809 SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
810 cc->ses_eltmap = NULL;
811 cc->ses_ntypes = 0;
812 }
813 if (cc->ses_typidx && ssc->ses_nobjects) {
814 SES_FREE(cc->ses_typidx,
815 ssc->ses_nobjects * sizeof (struct typidx));
816 cc->ses_typidx = NULL;
817 }
818 SES_FREE(cc, sizeof (struct sscfg));
819 ssc->ses_private = NULL;
820 }
821 ssc->ses_nobjects = 0;
822 return (0);
823 }
824 if (ssc->ses_private == NULL) {
825 ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
826 }
827 if (ssc->ses_private == NULL) {
828 return (ENOMEM);
829 }
830 ssc->ses_nobjects = 0;
831 ssc->ses_encstat = 0;
832 return (ses_getconfig(ssc));
833 }
834
835 static int
836 ses_init_enc(ses_softc_t *ssc)
837 {
838 return (0);
839 }
840
841 static int
842 ses_get_encstat(ses_softc_t *ssc, int slpflag)
843 {
844 SesComStat ComStat;
845 int status;
846
847 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
848 return (status);
849 }
850 ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
851 return (0);
852 }
853
854 static int
855 ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
856 {
857 SesComStat ComStat;
858 int status;
859
860 ComStat.comstatus = encstat & 0xf;
861 if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
862 return (status);
863 }
864 ssc->ses_encstat = encstat & 0xf; /* note no SVALID set */
865 return (0);
866 }
867
868 static int
869 ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
870 {
871 int i = (int)obp->obj_id;
872
873 if (ssc->ses_objmap[i].svalid == 0) {
874 SesComStat ComStat;
875 int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
876 if (err)
877 return (err);
878 ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
879 ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
880 ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
881 ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
882 ssc->ses_objmap[i].svalid = 1;
883 }
884 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
885 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
886 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
887 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
888 return (0);
889 }
890
891 static int
892 ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
893 {
894 SesComStat ComStat;
895 int err;
896 /*
897 * If this is clear, we don't do diddly.
898 */
899 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
900 return (0);
901 }
902 ComStat.comstatus = obp->cstat[0];
903 ComStat.comstat[0] = obp->cstat[1];
904 ComStat.comstat[1] = obp->cstat[2];
905 ComStat.comstat[2] = obp->cstat[3];
906 err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
907 ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
908 return (err);
909 }
910
911 static int
912 ses_getconfig(ses_softc_t *ssc)
913 {
914 struct sscfg *cc;
915 SesCfgHdr cf;
916 SesEncHdr hd;
917 SesEncDesc *cdp;
918 SesThdr thdr;
919 int err, amt, i, nobj, ntype, maxima;
920 char storage[CFLEN], *sdata;
921 static char cdb[6] = {
922 RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
923 };
924
925 cc = ssc->ses_private;
926 if (cc == NULL) {
927 return (ENXIO);
928 }
929
930 sdata = SES_MALLOC(SCSZ);
931 if (sdata == NULL)
932 return (ENOMEM);
933
934 amt = SCSZ;
935 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
936 if (err) {
937 SES_FREE(sdata, SCSZ);
938 return (err);
939 }
940 amt = SCSZ - amt;
941
942 if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
943 SES_LOG(ssc, "Unable to parse SES Config Header\n");
944 SES_FREE(sdata, SCSZ);
945 return (EIO);
946 }
947 if (amt < SES_ENCHDR_MINLEN) {
948 SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
949 SES_FREE(sdata, SCSZ);
950 return (EIO);
951 }
952
953 SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
954
955 /*
956 * Now waltz through all the subenclosures toting up the
957 * number of types available in each. For this, we only
958 * really need the enclosure header. However, we get the
959 * enclosure descriptor for debug purposes, as well
960 * as self-consistency checking purposes.
961 */
962
963 maxima = cf.Nsubenc + 1;
964 cdp = (SesEncDesc *) storage;
965 for (ntype = i = 0; i < maxima; i++) {
966 MEMZERO((caddr_t)cdp, sizeof (*cdp));
967 if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
968 SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
969 SES_FREE(sdata, SCSZ);
970 return (EIO);
971 }
972 SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
973 "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
974
975 if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
976 SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
977 SES_FREE(sdata, SCSZ);
978 return (EIO);
979 }
980 SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
981 cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
982 cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
983 cdp->encWWN[6], cdp->encWWN[7]);
984 ntype += hd.Ntypes;
985 }
986
987 /*
988 * Now waltz through all the types that are available, getting
989 * the type header so we can start adding up the number of
990 * objects available.
991 */
992 for (nobj = i = 0; i < ntype; i++) {
993 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
994 SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
995 SES_FREE(sdata, SCSZ);
996 return (EIO);
997 }
998 SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
999 "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1000 thdr.enc_subenc, thdr.enc_tlen);
1001 nobj += thdr.enc_maxelt;
1002 }
1003
1004
1005 /*
1006 * Now allocate the object array and type map.
1007 */
1008
1009 ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1010 cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1011 cc->ses_eltmap = SES_MALLOC(ntype);
1012
1013 if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1014 cc->ses_eltmap == NULL) {
1015 if (ssc->ses_objmap) {
1016 SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1017 ssc->ses_objmap = NULL;
1018 }
1019 if (cc->ses_typidx) {
1020 SES_FREE(cc->ses_typidx,
1021 (nobj * sizeof (struct typidx)));
1022 cc->ses_typidx = NULL;
1023 }
1024 if (cc->ses_eltmap) {
1025 SES_FREE(cc->ses_eltmap, ntype);
1026 cc->ses_eltmap = NULL;
1027 }
1028 SES_FREE(sdata, SCSZ);
1029 return (ENOMEM);
1030 }
1031 MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1032 MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1033 MEMZERO(cc->ses_eltmap, ntype);
1034 cc->ses_ntypes = (uint8_t) ntype;
1035 ssc->ses_nobjects = nobj;
1036
1037 /*
1038 * Now waltz through the # of types again to fill in the types
1039 * (and subenclosure ids) of the allocated objects.
1040 */
1041 nobj = 0;
1042 for (i = 0; i < ntype; i++) {
1043 int j;
1044 if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1045 continue;
1046 }
1047 cc->ses_eltmap[i] = thdr.enc_maxelt;
1048 for (j = 0; j < thdr.enc_maxelt; j++) {
1049 cc->ses_typidx[nobj].ses_tidx = i;
1050 cc->ses_typidx[nobj].ses_oidx = j;
1051 ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1052 ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1053 }
1054 }
1055 SES_FREE(sdata, SCSZ);
1056 return (0);
1057 }
1058
1059 static int
1060 ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1061 {
1062 struct sscfg *cc;
1063 int err, amt, bufsiz, tidx, oidx;
1064 char cdb[6], *sdata;
1065
1066 cc = ssc->ses_private;
1067 if (cc == NULL) {
1068 return (ENXIO);
1069 }
1070
1071 /*
1072 * If we're just getting overall enclosure status,
1073 * we only need 2 bytes of data storage.
1074 *
1075 * If we're getting anything else, we know how much
1076 * storage we need by noting that starting at offset
1077 * 8 in returned data, all object status bytes are 4
1078 * bytes long, and are stored in chunks of types(M)
1079 * and nth+1 instances of type M.
1080 */
1081 if (objid == -1) {
1082 bufsiz = 2;
1083 } else {
1084 bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1085 }
1086 sdata = SES_MALLOC(bufsiz);
1087 if (sdata == NULL)
1088 return (ENOMEM);
1089
1090 cdb[0] = RECEIVE_DIAGNOSTIC;
1091 cdb[1] = 1;
1092 cdb[2] = SesStatusPage;
1093 cdb[3] = bufsiz >> 8;
1094 cdb[4] = bufsiz & 0xff;
1095 cdb[5] = 0;
1096 amt = bufsiz;
1097 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1098 if (err) {
1099 SES_FREE(sdata, bufsiz);
1100 return (err);
1101 }
1102 amt = bufsiz - amt;
1103
1104 if (objid == -1) {
1105 tidx = -1;
1106 oidx = -1;
1107 } else {
1108 tidx = cc->ses_typidx[objid].ses_tidx;
1109 oidx = cc->ses_typidx[objid].ses_oidx;
1110 }
1111 if (in) {
1112 if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1113 err = ENODEV;
1114 }
1115 } else {
1116 if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1117 err = ENODEV;
1118 } else {
1119 cdb[0] = SEND_DIAGNOSTIC;
1120 cdb[1] = 0x10;
1121 cdb[2] = 0;
1122 cdb[3] = bufsiz >> 8;
1123 cdb[4] = bufsiz & 0xff;
1124 cdb[5] = 0;
1125 amt = -bufsiz;
1126 err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1127 }
1128 }
1129 SES_FREE(sdata, bufsiz);
1130 return (0);
1131 }
1132
1133
1134 /*
1135 * Routines to parse returned SES data structures.
1136 * Architecture and compiler independent.
1137 */
1138
1139 static int
1140 ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1141 {
1142 if (buflen < SES_CFGHDR_MINLEN) {
1143 return (-1);
1144 }
1145 gget8(buffer, 1, cfp->Nsubenc);
1146 gget32(buffer, 4, cfp->GenCode);
1147 return (0);
1148 }
1149
1150 static int
1151 ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1152 {
1153 int s, off = 8;
1154 for (s = 0; s < SubEncId; s++) {
1155 if (off + 3 > amt)
1156 return (-1);
1157 off += buffer[off+3] + 4;
1158 }
1159 if (off + 3 > amt) {
1160 return (-1);
1161 }
1162 gget8(buffer, off+1, chp->Subencid);
1163 gget8(buffer, off+2, chp->Ntypes);
1164 gget8(buffer, off+3, chp->VEnclen);
1165 return (0);
1166 }
1167
1168 static int
1169 ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1170 {
1171 int s, e, enclen, off = 8;
1172 for (s = 0; s < SubEncId; s++) {
1173 if (off + 3 > amt)
1174 return (-1);
1175 off += buffer[off+3] + 4;
1176 }
1177 if (off + 3 > amt) {
1178 return (-1);
1179 }
1180 gget8(buffer, off+3, enclen);
1181 off += 4;
1182 if (off >= amt)
1183 return (-1);
1184
1185 e = off + enclen;
1186 if (e > amt) {
1187 e = amt;
1188 }
1189 MEMCPY(cdp, &buffer[off], e - off);
1190 return (0);
1191 }
1192
1193 static int
1194 ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1195 {
1196 int s, off = 8;
1197
1198 if (amt < SES_CFGHDR_MINLEN) {
1199 return (-1);
1200 }
1201 for (s = 0; s < buffer[1]; s++) {
1202 if (off + 3 > amt)
1203 return (-1);
1204 off += buffer[off+3] + 4;
1205 }
1206 if (off + 3 > amt) {
1207 return (-1);
1208 }
1209 off += buffer[off+3] + 4 + (nth * 4);
1210 if (amt < (off + 4))
1211 return (-1);
1212
1213 gget8(buffer, off++, thp->enc_type);
1214 gget8(buffer, off++, thp->enc_maxelt);
1215 gget8(buffer, off++, thp->enc_subenc);
1216 gget8(buffer, off, thp->enc_tlen);
1217 return (0);
1218 }
1219
1220 /*
1221 * This function needs a little explanation.
1222 *
1223 * The arguments are:
1224 *
1225 *
1226 * char *b, int amt
1227 *
1228 * These describes the raw input SES status data and length.
1229 *
1230 * uint8_t *ep
1231 *
1232 * This is a map of the number of types for each element type
1233 * in the enclosure.
1234 *
1235 * int elt
1236 *
1237 * This is the element type being sought. If elt is -1,
1238 * then overall enclosure status is being sought.
1239 *
1240 * int elm
1241 *
1242 * This is the ordinal Mth element of type elt being sought.
1243 *
1244 * SesComStat *sp
1245 *
1246 * This is the output area to store the status for
1247 * the Mth element of type Elt.
1248 */
1249
1250 static int
1251 ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1252 {
1253 int idx, i;
1254
1255 /*
1256 * If it's overall enclosure status being sought, get that.
1257 * We need at least 2 bytes of status data to get that.
1258 */
1259 if (elt == -1) {
1260 if (amt < 2)
1261 return (-1);
1262 gget8(b, 1, sp->comstatus);
1263 sp->comstat[0] = 0;
1264 sp->comstat[1] = 0;
1265 sp->comstat[2] = 0;
1266 return (0);
1267 }
1268
1269 /*
1270 * Check to make sure that the Mth element is legal for type Elt.
1271 */
1272
1273 if (elm >= ep[elt])
1274 return (-1);
1275
1276 /*
1277 * Starting at offset 8, start skipping over the storage
1278 * for the element types we're not interested in.
1279 */
1280 for (idx = 8, i = 0; i < elt; i++) {
1281 idx += ((ep[i] + 1) * 4);
1282 }
1283
1284 /*
1285 * Skip over Overall status for this element type.
1286 */
1287 idx += 4;
1288
1289 /*
1290 * And skip to the index for the Mth element that we're going for.
1291 */
1292 idx += (4 * elm);
1293
1294 /*
1295 * Make sure we haven't overflowed the buffer.
1296 */
1297 if (idx+4 > amt)
1298 return (-1);
1299
1300 /*
1301 * Retrieve the status.
1302 */
1303 gget8(b, idx++, sp->comstatus);
1304 gget8(b, idx++, sp->comstat[0]);
1305 gget8(b, idx++, sp->comstat[1]);
1306 gget8(b, idx++, sp->comstat[2]);
1307 #if 0
1308 PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1309 #endif
1310 return (0);
1311 }
1312
1313 /*
1314 * This is the mirror function to ses_decode, but we set the 'select'
1315 * bit for the object which we're interested in. All other objects,
1316 * after a status fetch, should have that bit off. Hmm. It'd be easy
1317 * enough to ensure this, so we will.
1318 */
1319
1320 static int
1321 ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1322 {
1323 int idx, i;
1324
1325 /*
1326 * If it's overall enclosure status being sought, get that.
1327 * We need at least 2 bytes of status data to get that.
1328 */
1329 if (elt == -1) {
1330 if (amt < 2)
1331 return (-1);
1332 i = 0;
1333 sset8(b, i, 0);
1334 sset8(b, i, sp->comstatus & 0xf);
1335 #if 0
1336 PRINTF("set EncStat %x\n", sp->comstatus);
1337 #endif
1338 return (0);
1339 }
1340
1341 /*
1342 * Check to make sure that the Mth element is legal for type Elt.
1343 */
1344
1345 if (elm >= ep[elt])
1346 return (-1);
1347
1348 /*
1349 * Starting at offset 8, start skipping over the storage
1350 * for the element types we're not interested in.
1351 */
1352 for (idx = 8, i = 0; i < elt; i++) {
1353 idx += ((ep[i] + 1) * 4);
1354 }
1355
1356 /*
1357 * Skip over Overall status for this element type.
1358 */
1359 idx += 4;
1360
1361 /*
1362 * And skip to the index for the Mth element that we're going for.
1363 */
1364 idx += (4 * elm);
1365
1366 /*
1367 * Make sure we haven't overflowed the buffer.
1368 */
1369 if (idx+4 > amt)
1370 return (-1);
1371
1372 /*
1373 * Set the status.
1374 */
1375 sset8(b, idx, sp->comstatus);
1376 sset8(b, idx, sp->comstat[0]);
1377 sset8(b, idx, sp->comstat[1]);
1378 sset8(b, idx, sp->comstat[2]);
1379 idx -= 4;
1380
1381 #if 0
1382 PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1383 elt, elm, idx, sp->comstatus, sp->comstat[0],
1384 sp->comstat[1], sp->comstat[2]);
1385 #endif
1386
1387 /*
1388 * Now make sure all other 'Select' bits are off.
1389 */
1390 for (i = 8; i < amt; i += 4) {
1391 if (i != idx)
1392 b[i] &= ~0x80;
1393 }
1394 /*
1395 * And make sure the INVOP bit is clear.
1396 */
1397 b[2] &= ~0x10;
1398
1399 return (0);
1400 }
1401
1402 /*
1403 * SAF-TE Type Device Emulation
1404 */
1405
1406 static int safte_getconfig(ses_softc_t *);
1407 static int safte_rdstat(ses_softc_t *, int);;
1408 static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1409 static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1410 static void wrslot_stat(ses_softc_t *, int);
1411 static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1412
1413 #define ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1414 SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1415 /*
1416 * SAF-TE specific defines- Mandatory ones only...
1417 */
1418
1419 /*
1420 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1421 */
1422 #define SAFTE_RD_RDCFG 0x00 /* read enclosure configuration */
1423 #define SAFTE_RD_RDESTS 0x01 /* read enclosure status */
1424 #define SAFTE_RD_RDDSTS 0x04 /* read drive slot status */
1425
1426 /*
1427 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1428 */
1429 #define SAFTE_WT_DSTAT 0x10 /* write device slot status */
1430 #define SAFTE_WT_SLTOP 0x12 /* perform slot operation */
1431 #define SAFTE_WT_FANSPD 0x13 /* set fan speed */
1432 #define SAFTE_WT_ACTPWS 0x14 /* turn on/off power supply */
1433 #define SAFTE_WT_GLOBAL 0x15 /* send global command */
1434
1435
1436 #define SAFT_SCRATCH 64
1437 #define NPSEUDO_THERM 16
1438 #define NPSEUDO_ALARM 1
1439 struct scfg {
1440 /*
1441 * Cached Configuration
1442 */
1443 uint8_t Nfans; /* Number of Fans */
1444 uint8_t Npwr; /* Number of Power Supplies */
1445 uint8_t Nslots; /* Number of Device Slots */
1446 uint8_t DoorLock; /* Door Lock Installed */
1447 uint8_t Ntherm; /* Number of Temperature Sensors */
1448 uint8_t Nspkrs; /* Number of Speakers */
1449 uint8_t Nalarm; /* Number of Alarms (at least one) */
1450 /*
1451 * Cached Flag Bytes for Global Status
1452 */
1453 uint8_t flag1;
1454 uint8_t flag2;
1455 /*
1456 * What object index ID is where various slots start.
1457 */
1458 uint8_t pwroff;
1459 uint8_t slotoff;
1460 #define SAFT_ALARM_OFFSET(cc) (cc)->slotoff - 1
1461 };
1462
1463 #define SAFT_FLG1_ALARM 0x1
1464 #define SAFT_FLG1_GLOBFAIL 0x2
1465 #define SAFT_FLG1_GLOBWARN 0x4
1466 #define SAFT_FLG1_ENCPWROFF 0x8
1467 #define SAFT_FLG1_ENCFANFAIL 0x10
1468 #define SAFT_FLG1_ENCPWRFAIL 0x20
1469 #define SAFT_FLG1_ENCDRVFAIL 0x40
1470 #define SAFT_FLG1_ENCDRVWARN 0x80
1471
1472 #define SAFT_FLG2_LOCKDOOR 0x4
1473 #define SAFT_PRIVATE sizeof (struct scfg)
1474
1475 static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1476 #define SAFT_BAIL(r, x, k, l) \
1477 if (r >= x) { \
1478 SES_LOG(ssc, safte_2little, x, __LINE__);\
1479 SES_FREE(k, l); \
1480 return (EIO); \
1481 }
1482
1483
1484 int
1485 safte_softc_init(ses_softc_t *ssc, int doinit)
1486 {
1487 int err, i, r;
1488 struct scfg *cc;
1489
1490 if (doinit == 0) {
1491 if (ssc->ses_nobjects) {
1492 if (ssc->ses_objmap) {
1493 SES_FREE(ssc->ses_objmap,
1494 ssc->ses_nobjects * sizeof (encobj));
1495 ssc->ses_objmap = NULL;
1496 }
1497 ssc->ses_nobjects = 0;
1498 }
1499 if (ssc->ses_private) {
1500 SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1501 ssc->ses_private = NULL;
1502 }
1503 return (0);
1504 }
1505
1506 if (ssc->ses_private == NULL) {
1507 ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1508 if (ssc->ses_private == NULL) {
1509 return (ENOMEM);
1510 }
1511 MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1512 }
1513
1514 ssc->ses_nobjects = 0;
1515 ssc->ses_encstat = 0;
1516
1517 if ((err = safte_getconfig(ssc)) != 0) {
1518 return (err);
1519 }
1520
1521 /*
1522 * The number of objects here, as well as that reported by the
1523 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1524 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1525 */
1526 cc = ssc->ses_private;
1527 ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1528 cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1529 ssc->ses_objmap = (encobj *)
1530 SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1531 if (ssc->ses_objmap == NULL) {
1532 return (ENOMEM);
1533 }
1534 MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1535
1536 r = 0;
1537 /*
1538 * Note that this is all arranged for the convenience
1539 * in later fetches of status.
1540 */
1541 for (i = 0; i < cc->Nfans; i++)
1542 ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1543 cc->pwroff = (uint8_t) r;
1544 for (i = 0; i < cc->Npwr; i++)
1545 ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1546 for (i = 0; i < cc->DoorLock; i++)
1547 ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1548 for (i = 0; i < cc->Nspkrs; i++)
1549 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1550 for (i = 0; i < cc->Ntherm; i++)
1551 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1552 for (i = 0; i < NPSEUDO_THERM; i++)
1553 ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1554 ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1555 cc->slotoff = (uint8_t) r;
1556 for (i = 0; i < cc->Nslots; i++)
1557 ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1558 return (0);
1559 }
1560
1561 int
1562 safte_init_enc(ses_softc_t *ssc)
1563 {
1564 int err, amt;
1565 char *sdata;
1566 static char cdb0[6] = { SEND_DIAGNOSTIC };
1567 static char cdb[10] =
1568 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1569
1570 sdata = SES_MALLOC(SAFT_SCRATCH);
1571 if (sdata == NULL)
1572 return (ENOMEM);
1573
1574 err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1575 if (err) {
1576 SES_FREE(sdata, SAFT_SCRATCH);
1577 return (err);
1578 }
1579 sdata[0] = SAFTE_WT_GLOBAL;
1580 MEMZERO(&sdata[1], 15);
1581 amt = -SAFT_SCRATCH;
1582 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1583 SES_FREE(sdata, SAFT_SCRATCH);
1584 return (err);
1585 }
1586
1587 int
1588 safte_get_encstat(ses_softc_t *ssc, int slpflg)
1589 {
1590 return (safte_rdstat(ssc, slpflg));
1591 }
1592
1593 int
1594 safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1595 {
1596 struct scfg *cc = ssc->ses_private;
1597 if (cc == NULL)
1598 return (0);
1599 /*
1600 * Since SAF-TE devices aren't necessarily sticky in terms
1601 * of state, make our soft copy of enclosure status 'sticky'-
1602 * that is, things set in enclosure status stay set (as implied
1603 * by conditions set in reading object status) until cleared.
1604 */
1605 ssc->ses_encstat &= ~ALL_ENC_STAT;
1606 ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1607 ssc->ses_encstat |= ENCI_SVALID;
1608 cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1609 if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1610 cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1611 } else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1612 cc->flag1 |= SAFT_FLG1_GLOBWARN;
1613 }
1614 return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1615 }
1616
1617 int
1618 safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1619 {
1620 int i = (int)obp->obj_id;
1621
1622 if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1623 (ssc->ses_objmap[i].svalid) == 0) {
1624 int err = safte_rdstat(ssc, slpflg);
1625 if (err)
1626 return (err);
1627 }
1628 obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1629 obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1630 obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1631 obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1632 return (0);
1633 }
1634
1635
1636 int
1637 safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1638 {
1639 int idx, err;
1640 encobj *ep;
1641 struct scfg *cc;
1642
1643
1644 SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1645 (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1646 obp->cstat[3]);
1647
1648 /*
1649 * If this is clear, we don't do diddly.
1650 */
1651 if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1652 return (0);
1653 }
1654
1655 err = 0;
1656 /*
1657 * Check to see if the common bits are set and do them first.
1658 */
1659 if (obp->cstat[0] & ~SESCTL_CSEL) {
1660 err = set_objstat_sel(ssc, obp, slp);
1661 if (err)
1662 return (err);
1663 }
1664
1665 cc = ssc->ses_private;
1666 if (cc == NULL)
1667 return (0);
1668
1669 idx = (int)obp->obj_id;
1670 ep = &ssc->ses_objmap[idx];
1671
1672 switch (ep->enctype) {
1673 case SESTYP_DEVICE:
1674 {
1675 uint8_t slotop = 0;
1676 /*
1677 * XXX: I should probably cache the previous state
1678 * XXX: of SESCTL_DEVOFF so that when it goes from
1679 * XXX: true to false I can then set PREPARE FOR OPERATION
1680 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1681 */
1682 if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1683 slotop |= 0x2;
1684 }
1685 if (obp->cstat[2] & SESCTL_RQSID) {
1686 slotop |= 0x4;
1687 }
1688 err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1689 slotop, slp);
1690 if (err)
1691 return (err);
1692 if (obp->cstat[3] & SESCTL_RQSFLT) {
1693 ep->priv |= 0x2;
1694 } else {
1695 ep->priv &= ~0x2;
1696 }
1697 if (ep->priv & 0xc6) {
1698 ep->priv &= ~0x1;
1699 } else {
1700 ep->priv |= 0x1; /* no errors */
1701 }
1702 wrslot_stat(ssc, slp);
1703 break;
1704 }
1705 case SESTYP_POWER:
1706 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1707 cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1708 } else {
1709 cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1710 }
1711 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1712 cc->flag2, 0, slp);
1713 if (err)
1714 return (err);
1715 if (obp->cstat[3] & SESCTL_RQSTON) {
1716 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1717 idx - cc->pwroff, 0, 0, slp);
1718 } else {
1719 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1720 idx - cc->pwroff, 0, 1, slp);
1721 }
1722 break;
1723 case SESTYP_FAN:
1724 if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1725 cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1726 } else {
1727 cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1728 }
1729 err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1730 cc->flag2, 0, slp);
1731 if (err)
1732 return (err);
1733 if (obp->cstat[3] & SESCTL_RQSTON) {
1734 uint8_t fsp;
1735 if ((obp->cstat[3] & 0x7) == 7) {
1736 fsp = 4;
1737 } else if ((obp->cstat[3] & 0x7) == 6) {
1738 fsp = 3;
1739 } else if ((obp->cstat[3] & 0x7) == 4) {
1740 fsp = 2;
1741 } else {
1742 fsp = 1;
1743 }
1744 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1745 } else {
1746 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1747 }
1748 break;
1749 case SESTYP_DOORLOCK:
1750 if (obp->cstat[3] & 0x1) {
1751 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1752 } else {
1753 cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1754 }
1755 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1756 cc->flag2, 0, slp);
1757 break;
1758 case SESTYP_ALARM:
1759 /*
1760 * On all nonzero but the 'muted' bit, we turn on the alarm,
1761 */
1762 obp->cstat[3] &= ~0xa;
1763 if (obp->cstat[3] & 0x40) {
1764 cc->flag2 &= ~SAFT_FLG1_ALARM;
1765 } else if (obp->cstat[3] != 0) {
1766 cc->flag2 |= SAFT_FLG1_ALARM;
1767 } else {
1768 cc->flag2 &= ~SAFT_FLG1_ALARM;
1769 }
1770 ep->priv = obp->cstat[3];
1771 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1772 cc->flag2, 0, slp);
1773 break;
1774 default:
1775 break;
1776 }
1777 ep->svalid = 0;
1778 return (0);
1779 }
1780
1781 static int
1782 safte_getconfig(ses_softc_t *ssc)
1783 {
1784 struct scfg *cfg;
1785 int err, amt;
1786 char *sdata;
1787 static char cdb[10] =
1788 { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1789
1790 cfg = ssc->ses_private;
1791 if (cfg == NULL)
1792 return (ENXIO);
1793
1794 sdata = SES_MALLOC(SAFT_SCRATCH);
1795 if (sdata == NULL)
1796 return (ENOMEM);
1797
1798 amt = SAFT_SCRATCH;
1799 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1800 if (err) {
1801 SES_FREE(sdata, SAFT_SCRATCH);
1802 return (err);
1803 }
1804 amt = SAFT_SCRATCH - amt;
1805 if (amt < 6) {
1806 SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1807 SES_FREE(sdata, SAFT_SCRATCH);
1808 return (EIO);
1809 }
1810 SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1811 sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1812 cfg->Nfans = sdata[0];
1813 cfg->Npwr = sdata[1];
1814 cfg->Nslots = sdata[2];
1815 cfg->DoorLock = sdata[3];
1816 cfg->Ntherm = sdata[4];
1817 cfg->Nspkrs = sdata[5];
1818 cfg->Nalarm = NPSEUDO_ALARM;
1819 SES_FREE(sdata, SAFT_SCRATCH);
1820 return (0);
1821 }
1822
1823 static int
1824 safte_rdstat(ses_softc_t *ssc, int slpflg)
1825 {
1826 int err, oid, r, i, hiwater, nitems, amt;
1827 uint16_t tempflags;
1828 size_t buflen;
1829 uint8_t status, oencstat;
1830 char *sdata, cdb[10];
1831 struct scfg *cc = ssc->ses_private;
1832
1833
1834 /*
1835 * The number of objects overstates things a bit,
1836 * both for the bogus 'thermometer' entries and
1837 * the drive status (which isn't read at the same
1838 * time as the enclosure status), but that's okay.
1839 */
1840 buflen = 4 * cc->Nslots;
1841 if (ssc->ses_nobjects > buflen)
1842 buflen = ssc->ses_nobjects;
1843 sdata = SES_MALLOC(buflen);
1844 if (sdata == NULL)
1845 return (ENOMEM);
1846
1847 cdb[0] = READ_BUFFER;
1848 cdb[1] = 1;
1849 cdb[2] = SAFTE_RD_RDESTS;
1850 cdb[3] = 0;
1851 cdb[4] = 0;
1852 cdb[5] = 0;
1853 cdb[6] = 0;
1854 cdb[7] = (buflen >> 8) & 0xff;
1855 cdb[8] = buflen & 0xff;
1856 cdb[9] = 0;
1857 amt = buflen;
1858 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1859 if (err) {
1860 SES_FREE(sdata, buflen);
1861 return (err);
1862 }
1863 hiwater = buflen - amt;
1864
1865
1866 /*
1867 * invalidate all status bits.
1868 */
1869 for (i = 0; i < ssc->ses_nobjects; i++)
1870 ssc->ses_objmap[i].svalid = 0;
1871 oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1872 ssc->ses_encstat = 0;
1873
1874
1875 /*
1876 * Now parse returned buffer.
1877 * If we didn't get enough data back,
1878 * that's considered a fatal error.
1879 */
1880 oid = r = 0;
1881
1882 for (nitems = i = 0; i < cc->Nfans; i++) {
1883 SAFT_BAIL(r, hiwater, sdata, buflen);
1884 /*
1885 * 0 = Fan Operational
1886 * 1 = Fan is malfunctioning
1887 * 2 = Fan is not present
1888 * 0x80 = Unknown or Not Reportable Status
1889 */
1890 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1891 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1892 switch ((int)(uint8_t)sdata[r]) {
1893 case 0:
1894 nitems++;
1895 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1896 /*
1897 * We could get fancier and cache
1898 * fan speeds that we have set, but
1899 * that isn't done now.
1900 */
1901 ssc->ses_objmap[oid].encstat[3] = 7;
1902 break;
1903
1904 case 1:
1905 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1906 /*
1907 * FAIL and FAN STOPPED synthesized
1908 */
1909 ssc->ses_objmap[oid].encstat[3] = 0x40;
1910 /*
1911 * Enclosure marked with CRITICAL error
1912 * if only one fan or no thermometers,
1913 * else the NONCRITICAL error is set.
1914 */
1915 if (cc->Nfans == 1 || cc->Ntherm == 0)
1916 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1917 else
1918 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1919 break;
1920 case 2:
1921 ssc->ses_objmap[oid].encstat[0] =
1922 SES_OBJSTAT_NOTINSTALLED;
1923 ssc->ses_objmap[oid].encstat[3] = 0;
1924 /*
1925 * Enclosure marked with CRITICAL error
1926 * if only one fan or no thermometers,
1927 * else the NONCRITICAL error is set.
1928 */
1929 if (cc->Nfans == 1)
1930 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1931 else
1932 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1933 break;
1934 case 0x80:
1935 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1936 ssc->ses_objmap[oid].encstat[3] = 0;
1937 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1938 break;
1939 default:
1940 ssc->ses_objmap[oid].encstat[0] =
1941 SES_OBJSTAT_UNSUPPORTED;
1942 SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1943 sdata[r] & 0xff);
1944 break;
1945 }
1946 ssc->ses_objmap[oid++].svalid = 1;
1947 r++;
1948 }
1949
1950 /*
1951 * No matter how you cut it, no cooling elements when there
1952 * should be some there is critical.
1953 */
1954 if (cc->Nfans && nitems == 0) {
1955 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1956 }
1957
1958
1959 for (i = 0; i < cc->Npwr; i++) {
1960 SAFT_BAIL(r, hiwater, sdata, buflen);
1961 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1962 ssc->ses_objmap[oid].encstat[1] = 0; /* resvd */
1963 ssc->ses_objmap[oid].encstat[2] = 0; /* resvd */
1964 ssc->ses_objmap[oid].encstat[3] = 0x20; /* requested on */
1965 switch ((uint8_t)sdata[r]) {
1966 case 0x00: /* pws operational and on */
1967 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1968 break;
1969 case 0x01: /* pws operational and off */
1970 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1971 ssc->ses_objmap[oid].encstat[3] = 0x10;
1972 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1973 break;
1974 case 0x10: /* pws is malfunctioning and commanded on */
1975 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1976 ssc->ses_objmap[oid].encstat[3] = 0x61;
1977 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1978 break;
1979
1980 case 0x11: /* pws is malfunctioning and commanded off */
1981 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1982 ssc->ses_objmap[oid].encstat[3] = 0x51;
1983 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1984 break;
1985 case 0x20: /* pws is not present */
1986 ssc->ses_objmap[oid].encstat[0] =
1987 SES_OBJSTAT_NOTINSTALLED;
1988 ssc->ses_objmap[oid].encstat[3] = 0;
1989 ssc->ses_encstat |= SES_ENCSTAT_INFO;
1990 break;
1991 case 0x21: /* pws is present */
1992 /*
1993 * This is for enclosures that cannot tell whether the
1994 * device is on or malfunctioning, but know that it is
1995 * present. Just fall through.
1996 */
1997 /* FALLTHROUGH */
1998 case 0x80: /* Unknown or Not Reportable Status */
1999 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2000 ssc->ses_objmap[oid].encstat[3] = 0;
2001 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2002 break;
2003 default:
2004 SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2005 i, sdata[r] & 0xff);
2006 break;
2007 }
2008 ssc->ses_objmap[oid++].svalid = 1;
2009 r++;
2010 }
2011
2012 /*
2013 * Skip over Slot SCSI IDs
2014 */
2015 r += cc->Nslots;
2016
2017 /*
2018 * We always have doorlock status, no matter what,
2019 * but we only save the status if we have one.
2020 */
2021 SAFT_BAIL(r, hiwater, sdata, buflen);
2022 if (cc->DoorLock) {
2023 /*
2024 * 0 = Door Locked
2025 * 1 = Door Unlocked, or no Lock Installed
2026 * 0x80 = Unknown or Not Reportable Status
2027 */
2028 ssc->ses_objmap[oid].encstat[1] = 0;
2029 ssc->ses_objmap[oid].encstat[2] = 0;
2030 switch ((uint8_t)sdata[r]) {
2031 case 0:
2032 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2033 ssc->ses_objmap[oid].encstat[3] = 0;
2034 break;
2035 case 1:
2036 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2037 ssc->ses_objmap[oid].encstat[3] = 1;
2038 break;
2039 case 0x80:
2040 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2041 ssc->ses_objmap[oid].encstat[3] = 0;
2042 ssc->ses_encstat |= SES_ENCSTAT_INFO;
2043 break;
2044 default:
2045 ssc->ses_objmap[oid].encstat[0] =
2046 SES_OBJSTAT_UNSUPPORTED;
2047 SES_LOG(ssc, "unknown lock status 0x%x\n",
2048 sdata[r] & 0xff);
2049 break;
2050 }
2051 ssc->ses_objmap[oid++].svalid = 1;
2052 }
2053 r++;
2054
2055 /*
2056 * We always have speaker status, no matter what,
2057 * but we only save the status if we have one.
2058 */
2059 SAFT_BAIL(r, hiwater, sdata, buflen);
2060 if (cc->Nspkrs) {
2061 ssc->ses_objmap[oid].encstat[1] = 0;
2062 ssc->ses_objmap[oid].encstat[2] = 0;
2063 if (sdata[r] == 1) {
2064 /*
2065 * We need to cache tone urgency indicators.
2066 * Someday.
2067 */
2068 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2069 ssc->ses_objmap[oid].encstat[3] = 0x8;
2070 ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2071 } else if (sdata[r] == 0) {
2072 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2073 ssc->ses_objmap[oid].encstat[3] = 0;
2074 } else {
2075 ssc->ses_objmap[oid].encstat[0] =
2076 SES_OBJSTAT_UNSUPPORTED;
2077 ssc->ses_objmap[oid].encstat[3] = 0;
2078 SES_LOG(ssc, "unknown spkr status 0x%x\n",
2079 sdata[r] & 0xff);
2080 }
2081 ssc->ses_objmap[oid++].svalid = 1;
2082 }
2083 r++;
2084
2085 for (i = 0; i < cc->Ntherm; i++) {
2086 SAFT_BAIL(r, hiwater, sdata, buflen);
2087 /*
2088 * Status is a range from -10 to 245 deg Celsius,
2089 * which we need to normalize to -20 to -245 according
2090 * to the latest SCSI spec, which makes little
2091 * sense since this would overflow an 8bit value.
2092 * Well, still, the base normalization is -20,
2093 * not -10, so we have to adjust.
2094 *
2095 * So what's over and under temperature?
2096 * Hmm- we'll state that 'normal' operating
2097 * is 10 to 40 deg Celsius.
2098 */
2099
2100 /*
2101 * Actually.... All of the units that people out in the world
2102 * seem to have do not come even close to setting a value that
2103 * complies with this spec.
2104 *
2105 * The closest explanation I could find was in an
2106 * LSI-Logic manual, which seemed to indicate that
2107 * this value would be set by whatever the I2C code
2108 * would interpolate from the output of an LM75
2109 * temperature sensor.
2110 *
2111 * This means that it is impossible to use the actual
2112 * numeric value to predict anything. But we don't want
2113 * to lose the value. So, we'll propagate the *uncorrected*
2114 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2115 * temperature flags for warnings.
2116 */
2117 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2118 ssc->ses_objmap[oid].encstat[1] = 0;
2119 ssc->ses_objmap[oid].encstat[2] = sdata[r];
2120 ssc->ses_objmap[oid].encstat[3] = 0;;
2121 ssc->ses_objmap[oid++].svalid = 1;
2122 r++;
2123 }
2124
2125 /*
2126 * Now, for "pseudo" thermometers, we have two bytes
2127 * of information in enclosure status- 16 bits. Actually,
2128 * the MSB is a single TEMP ALERT flag indicating whether
2129 * any other bits are set, but, thanks to fuzzy thinking,
2130 * in the SAF-TE spec, this can also be set even if no
2131 * other bits are set, thus making this really another
2132 * binary temperature sensor.
2133 */
2134
2135 SAFT_BAIL(r, hiwater, sdata, buflen);
2136 tempflags = sdata[r++];
2137 SAFT_BAIL(r, hiwater, sdata, buflen);
2138 tempflags |= (tempflags << 8) | sdata[r++];
2139
2140 for (i = 0; i < NPSEUDO_THERM; i++) {
2141 ssc->ses_objmap[oid].encstat[1] = 0;
2142 if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2143 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2144 ssc->ses_objmap[4].encstat[2] = 0xff;
2145 /*
2146 * Set 'over temperature' failure.
2147 */
2148 ssc->ses_objmap[oid].encstat[3] = 8;
2149 ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2150 } else {
2151 /*
2152 * We used to say 'not available' and synthesize a
2153 * nominal 30 deg (C)- that was wrong. Actually,
2154 * Just say 'OK', and use the reserved value of
2155 * zero.
2156 */
2157 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2158 ssc->ses_objmap[oid].encstat[2] = 0;
2159 ssc->ses_objmap[oid].encstat[3] = 0;
2160 }
2161 ssc->ses_objmap[oid++].svalid = 1;
2162 }
2163
2164 /*
2165 * Get alarm status.
2166 */
2167 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2168 ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2169 ssc->ses_objmap[oid++].svalid = 1;
2170
2171 /*
2172 * Now get drive slot status
2173 */
2174 cdb[2] = SAFTE_RD_RDDSTS;
2175 amt = buflen;
2176 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2177 if (err) {
2178 SES_FREE(sdata, buflen);
2179 return (err);
2180 }
2181 hiwater = buflen - amt;
2182 for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2183 SAFT_BAIL(r+3, hiwater, sdata, buflen);
2184 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2185 ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2186 ssc->ses_objmap[oid].encstat[2] = 0;
2187 ssc->ses_objmap[oid].encstat[3] = 0;
2188 status = sdata[r+3];
2189 if ((status & 0x1) == 0) { /* no device */
2190 ssc->ses_objmap[oid].encstat[0] =
2191 SES_OBJSTAT_NOTINSTALLED;
2192 } else {
2193 ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2194 }
2195 if (status & 0x2) {
2196 ssc->ses_objmap[oid].encstat[2] = 0x8;
2197 }
2198 if ((status & 0x4) == 0) {
2199 ssc->ses_objmap[oid].encstat[3] = 0x10;
2200 }
2201 ssc->ses_objmap[oid++].svalid = 1;
2202 }
2203 /* see comment below about sticky enclosure status */
2204 ssc->ses_encstat |= ENCI_SVALID | oencstat;
2205 SES_FREE(sdata, buflen);
2206 return (0);
2207 }
2208
2209 static int
2210 set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2211 {
2212 int idx;
2213 encobj *ep;
2214 struct scfg *cc = ssc->ses_private;
2215
2216 if (cc == NULL)
2217 return (0);
2218
2219 idx = (int)obp->obj_id;
2220 ep = &ssc->ses_objmap[idx];
2221
2222 switch (ep->enctype) {
2223 case SESTYP_DEVICE:
2224 if (obp->cstat[0] & SESCTL_PRDFAIL) {
2225 ep->priv |= 0x40;
2226 }
2227 /* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2228 if (obp->cstat[0] & SESCTL_DISABLE) {
2229 ep->priv |= 0x80;
2230 /*
2231 * Hmm. Try to set the 'No Drive' flag.
2232 * Maybe that will count as a 'disable'.
2233 */
2234 }
2235 if (ep->priv & 0xc6) {
2236 ep->priv &= ~0x1;
2237 } else {
2238 ep->priv |= 0x1; /* no errors */
2239 }
2240 wrslot_stat(ssc, slp);
2241 break;
2242 case SESTYP_POWER:
2243 /*
2244 * Okay- the only one that makes sense here is to
2245 * do the 'disable' for a power supply.
2246 */
2247 if (obp->cstat[0] & SESCTL_DISABLE) {
2248 (void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2249 idx - cc->pwroff, 0, 0, slp);
2250 }
2251 break;
2252 case SESTYP_FAN:
2253 /*
2254 * Okay- the only one that makes sense here is to
2255 * set fan speed to zero on disable.
2256 */
2257 if (obp->cstat[0] & SESCTL_DISABLE) {
2258 /* remember- fans are the first items, so idx works */
2259 (void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2260 }
2261 break;
2262 case SESTYP_DOORLOCK:
2263 /*
2264 * Well, we can 'disable' the lock.
2265 */
2266 if (obp->cstat[0] & SESCTL_DISABLE) {
2267 cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2268 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2269 cc->flag2, 0, slp);
2270 }
2271 break;
2272 case SESTYP_ALARM:
2273 /*
2274 * Well, we can 'disable' the alarm.
2275 */
2276 if (obp->cstat[0] & SESCTL_DISABLE) {
2277 cc->flag2 &= ~SAFT_FLG1_ALARM;
2278 ep->priv |= 0x40; /* Muted */
2279 (void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2280 cc->flag2, 0, slp);
2281 }
2282 break;
2283 default:
2284 break;
2285 }
2286 ep->svalid = 0;
2287 return (0);
2288 }
2289
2290 /*
2291 * This function handles all of the 16 byte WRITE BUFFER commands.
2292 */
2293 static int
2294 wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2295 uint8_t b3, int slp)
2296 {
2297 int err, amt;
2298 char *sdata;
2299 struct scfg *cc = ssc->ses_private;
2300 static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2301
2302 if (cc == NULL)
2303 return (0);
2304
2305 sdata = SES_MALLOC(16);
2306 if (sdata == NULL)
2307 return (ENOMEM);
2308
2309 SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2310
2311 sdata[0] = op;
2312 sdata[1] = b1;
2313 sdata[2] = b2;
2314 sdata[3] = b3;
2315 MEMZERO(&sdata[4], 12);
2316 amt = -16;
2317 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2318 SES_FREE(sdata, 16);
2319 return (err);
2320 }
2321
2322 /*
2323 * This function updates the status byte for the device slot described.
2324 *
2325 * Since this is an optional SAF-TE command, there's no point in
2326 * returning an error.
2327 */
2328 static void
2329 wrslot_stat(ses_softc_t *ssc, int slp)
2330 {
2331 int i, amt;
2332 encobj *ep;
2333 char cdb[10], *sdata;
2334 struct scfg *cc = ssc->ses_private;
2335
2336 if (cc == NULL)
2337 return;
2338
2339 SES_VLOG(ssc, "saf_wrslot\n");
2340 cdb[0] = WRITE_BUFFER;
2341 cdb[1] = 1;
2342 cdb[2] = 0;
2343 cdb[3] = 0;
2344 cdb[4] = 0;
2345 cdb[5] = 0;
2346 cdb[6] = 0;
2347 cdb[7] = 0;
2348 cdb[8] = cc->Nslots * 3 + 1;
2349 cdb[9] = 0;
2350
2351 sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2352 if (sdata == NULL)
2353 return;
2354 MEMZERO(sdata, cc->Nslots * 3 + 1);
2355
2356 sdata[0] = SAFTE_WT_DSTAT;
2357 for (i = 0; i < cc->Nslots; i++) {
2358 ep = &ssc->ses_objmap[cc->slotoff + i];
2359 SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2360 sdata[1 + (3 * i)] = ep->priv & 0xff;
2361 }
2362 amt = -(cc->Nslots * 3 + 1);
2363 (void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2364 SES_FREE(sdata, cc->Nslots * 3 + 1);
2365 }
2366
2367 /*
2368 * This function issues the "PERFORM SLOT OPERATION" command.
2369 */
2370 static int
2371 perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2372 {
2373 int err, amt;
2374 char *sdata;
2375 struct scfg *cc = ssc->ses_private;
2376 static char cdb[10] =
2377 { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2378
2379 if (cc == NULL)
2380 return (0);
2381
2382 sdata = SES_MALLOC(SAFT_SCRATCH);
2383 if (sdata == NULL)
2384 return (ENOMEM);
2385 MEMZERO(sdata, SAFT_SCRATCH);
2386
2387 sdata[0] = SAFTE_WT_SLTOP;
2388 sdata[1] = slot;
2389 sdata[2] = opflag;
2390 SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2391 amt = -SAFT_SCRATCH;
2392 err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2393 SES_FREE(sdata, SAFT_SCRATCH);
2394 return (err);
2395 }
2396