1 //===-- asan_interface_test.cc --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "asan_test_utils.h" 14 #include "sanitizer_common/sanitizer_internal_defs.h" 15 #include <sanitizer/allocator_interface.h> 16 #include <sanitizer/asan_interface.h> 17 #include <vector> 18 19 TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) { 20 EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(0)); 21 const size_t sizes[] = { 1, 30, 1<<30 }; 22 for (size_t i = 0; i < 3; i++) { 23 EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(sizes[i])); 24 } 25 } 26 27 static const char* kGetAllocatedSizeErrorMsg = 28 "attempting to call __sanitizer_get_allocated_size"; 29 30 TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) { 31 const size_t kArraySize = 100; 32 char *array = Ident((char*)malloc(kArraySize)); 33 int *int_ptr = Ident(new int); 34 35 // Allocated memory is owned by allocator. Allocated size should be 36 // equal to requested size. 37 EXPECT_EQ(true, __sanitizer_get_ownership(array)); 38 EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(array)); 39 EXPECT_EQ(true, __sanitizer_get_ownership(int_ptr)); 40 EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(int_ptr)); 41 42 // We cannot call GetAllocatedSize from the memory we didn't map, 43 // and from the interior pointers (not returned by previous malloc). 44 void *wild_addr = (void*)0x1; 45 EXPECT_FALSE(__sanitizer_get_ownership(wild_addr)); 46 EXPECT_DEATH(__sanitizer_get_allocated_size(wild_addr), 47 kGetAllocatedSizeErrorMsg); 48 EXPECT_FALSE(__sanitizer_get_ownership(array + kArraySize / 2)); 49 EXPECT_DEATH(__sanitizer_get_allocated_size(array + kArraySize / 2), 50 kGetAllocatedSizeErrorMsg); 51 52 // NULL is not owned, but is a valid argument for 53 // __sanitizer_get_allocated_size(). 54 EXPECT_FALSE(__sanitizer_get_ownership(NULL)); 55 EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL)); 56 57 // When memory is freed, it's not owned, and call to GetAllocatedSize 58 // is forbidden. 59 free(array); 60 EXPECT_FALSE(__sanitizer_get_ownership(array)); 61 EXPECT_DEATH(__sanitizer_get_allocated_size(array), 62 kGetAllocatedSizeErrorMsg); 63 delete int_ptr; 64 65 void *zero_alloc = Ident(malloc(0)); 66 if (zero_alloc != 0) { 67 // If malloc(0) is not null, this pointer is owned and should have valid 68 // allocated size. 69 EXPECT_TRUE(__sanitizer_get_ownership(zero_alloc)); 70 // Allocated size is 0 or 1 depending on the allocator used. 71 EXPECT_LT(__sanitizer_get_allocated_size(zero_alloc), 2U); 72 } 73 free(zero_alloc); 74 } 75 76 TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) { 77 size_t before_malloc, after_malloc, after_free; 78 char *array; 79 const size_t kMallocSize = 100; 80 before_malloc = __sanitizer_get_current_allocated_bytes(); 81 82 array = Ident((char*)malloc(kMallocSize)); 83 after_malloc = __sanitizer_get_current_allocated_bytes(); 84 EXPECT_EQ(before_malloc + kMallocSize, after_malloc); 85 86 free(array); 87 after_free = __sanitizer_get_current_allocated_bytes(); 88 EXPECT_EQ(before_malloc, after_free); 89 } 90 91 TEST(AddressSanitizerInterface, GetHeapSizeTest) { 92 // ASan allocator does not keep huge chunks in free list, but unmaps them. 93 // The chunk should be greater than the quarantine size, 94 // otherwise it will be stuck in quarantine instead of being unmaped. 95 static const size_t kLargeMallocSize = (1 << 28) + 1; // 256M 96 free(Ident(malloc(kLargeMallocSize))); // Drain quarantine. 97 size_t old_heap_size = __sanitizer_get_heap_size(); 98 for (int i = 0; i < 3; i++) { 99 // fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize); 100 free(Ident(malloc(kLargeMallocSize))); 101 EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size()); 102 } 103 } 104 105 #if !defined(__NetBSD__) 106 static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357}; 107 static const size_t kManyThreadsIterations = 250; 108 static const size_t kManyThreadsNumThreads = 109 (SANITIZER_WORDSIZE == 32) ? 40 : 200; 110 111 static void *ManyThreadsWithStatsWorker(void *arg) { 112 (void)arg; 113 for (size_t iter = 0; iter < kManyThreadsIterations; iter++) { 114 for (size_t size_index = 0; size_index < 4; size_index++) { 115 free(Ident(malloc(kManyThreadsMallocSizes[size_index]))); 116 } 117 } 118 // Just one large allocation. 119 free(Ident(malloc(1 << 20))); 120 return 0; 121 } 122 123 TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) { 124 size_t before_test, after_test, i; 125 pthread_t threads[kManyThreadsNumThreads]; 126 before_test = __sanitizer_get_current_allocated_bytes(); 127 for (i = 0; i < kManyThreadsNumThreads; i++) { 128 PTHREAD_CREATE(&threads[i], 0, 129 (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i); 130 } 131 for (i = 0; i < kManyThreadsNumThreads; i++) { 132 PTHREAD_JOIN(threads[i], 0); 133 } 134 after_test = __sanitizer_get_current_allocated_bytes(); 135 // ASan stats also reflect memory usage of internal ASan RTL structs, 136 // so we can't check for equality here. 137 EXPECT_LT(after_test, before_test + (1UL<<20)); 138 } 139 #endif 140 141 static void DoDoubleFree() { 142 int *x = Ident(new int); 143 delete Ident(x); 144 delete Ident(x); 145 } 146 147 static void MyDeathCallback() { 148 fprintf(stderr, "MyDeathCallback\n"); 149 fflush(0); // On Windows, stderr doesn't flush on crash. 150 } 151 152 TEST(AddressSanitizerInterface, DeathCallbackTest) { 153 __asan_set_death_callback(MyDeathCallback); 154 EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback"); 155 __asan_set_death_callback(NULL); 156 } 157 158 #define GOOD_ACCESS(ptr, offset) \ 159 EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset)) 160 161 #define BAD_ACCESS(ptr, offset) \ 162 EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset)) 163 164 #if !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3 165 static const char* kUseAfterPoisonErrorMessage = "use-after-poison"; 166 167 TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) { 168 char *array = Ident((char*)malloc(120)); 169 // poison array[40..80) 170 __asan_poison_memory_region(array + 40, 40); 171 GOOD_ACCESS(array, 39); 172 GOOD_ACCESS(array, 80); 173 BAD_ACCESS(array, 40); 174 BAD_ACCESS(array, 60); 175 BAD_ACCESS(array, 79); 176 char value; 177 EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage); 178 __asan_unpoison_memory_region(array + 40, 40); 179 // access previously poisoned memory. 180 GOOD_ACCESS(array, 40); 181 GOOD_ACCESS(array, 79); 182 free(array); 183 } 184 185 TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) { 186 char *array = Ident((char*)malloc(120)); 187 // Poison [0..40) and [80..120) 188 __asan_poison_memory_region(array, 40); 189 __asan_poison_memory_region(array + 80, 40); 190 BAD_ACCESS(array, 20); 191 GOOD_ACCESS(array, 60); 192 BAD_ACCESS(array, 100); 193 // Poison whole array - [0..120) 194 __asan_poison_memory_region(array, 120); 195 BAD_ACCESS(array, 60); 196 // Unpoison [24..96) 197 __asan_unpoison_memory_region(array + 24, 72); 198 BAD_ACCESS(array, 23); 199 GOOD_ACCESS(array, 24); 200 GOOD_ACCESS(array, 60); 201 GOOD_ACCESS(array, 95); 202 BAD_ACCESS(array, 96); 203 free(array); 204 } 205 #endif // !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3 206 207 TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) { 208 // Vector of capacity 20 209 char *vec = Ident((char*)malloc(20)); 210 __asan_poison_memory_region(vec, 20); 211 for (size_t i = 0; i < 7; i++) { 212 // Simulate push_back. 213 __asan_unpoison_memory_region(vec + i, 1); 214 GOOD_ACCESS(vec, i); 215 BAD_ACCESS(vec, i + 1); 216 } 217 for (size_t i = 7; i > 0; i--) { 218 // Simulate pop_back. 219 __asan_poison_memory_region(vec + i - 1, 1); 220 BAD_ACCESS(vec, i - 1); 221 if (i > 1) GOOD_ACCESS(vec, i - 2); 222 } 223 free(vec); 224 } 225 226 #if !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3 227 // Make sure that each aligned block of size "2^granularity" doesn't have 228 // "true" value before "false" value. 229 static void MakeShadowValid(bool *shadow, int length, int granularity) { 230 bool can_be_poisoned = true; 231 for (int i = length - 1; i >= 0; i--) { 232 if (!shadow[i]) 233 can_be_poisoned = false; 234 if (!can_be_poisoned) 235 shadow[i] = false; 236 if (i % (1 << granularity) == 0) { 237 can_be_poisoned = true; 238 } 239 } 240 } 241 242 TEST(AddressSanitizerInterface, PoisoningStressTest) { 243 const size_t kSize = 24; 244 bool expected[kSize]; 245 char *arr = Ident((char*)malloc(kSize)); 246 for (size_t l1 = 0; l1 < kSize; l1++) { 247 for (size_t s1 = 1; l1 + s1 <= kSize; s1++) { 248 for (size_t l2 = 0; l2 < kSize; l2++) { 249 for (size_t s2 = 1; l2 + s2 <= kSize; s2++) { 250 // Poison [l1, l1+s1), [l2, l2+s2) and check result. 251 __asan_unpoison_memory_region(arr, kSize); 252 __asan_poison_memory_region(arr + l1, s1); 253 __asan_poison_memory_region(arr + l2, s2); 254 memset(expected, false, kSize); 255 memset(expected + l1, true, s1); 256 MakeShadowValid(expected, kSize, /*granularity*/ 3); 257 memset(expected + l2, true, s2); 258 MakeShadowValid(expected, kSize, /*granularity*/ 3); 259 for (size_t i = 0; i < kSize; i++) { 260 ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i)); 261 } 262 // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result. 263 __asan_poison_memory_region(arr, kSize); 264 __asan_unpoison_memory_region(arr + l1, s1); 265 __asan_unpoison_memory_region(arr + l2, s2); 266 memset(expected, true, kSize); 267 memset(expected + l1, false, s1); 268 MakeShadowValid(expected, kSize, /*granularity*/ 3); 269 memset(expected + l2, false, s2); 270 MakeShadowValid(expected, kSize, /*granularity*/ 3); 271 for (size_t i = 0; i < kSize; i++) { 272 ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i)); 273 } 274 } 275 } 276 } 277 } 278 free(arr); 279 } 280 #endif // !defined(ASAN_SHADOW_SCALE) || ASAN_SHADOW_SCALE == 3 281 282 TEST(AddressSanitizerInterface, GlobalRedzones) { 283 GOOD_ACCESS(glob1, 1 - 1); 284 GOOD_ACCESS(glob2, 2 - 1); 285 GOOD_ACCESS(glob3, 3 - 1); 286 GOOD_ACCESS(glob4, 4 - 1); 287 GOOD_ACCESS(glob5, 5 - 1); 288 GOOD_ACCESS(glob6, 6 - 1); 289 GOOD_ACCESS(glob7, 7 - 1); 290 GOOD_ACCESS(glob8, 8 - 1); 291 GOOD_ACCESS(glob9, 9 - 1); 292 GOOD_ACCESS(glob10, 10 - 1); 293 GOOD_ACCESS(glob11, 11 - 1); 294 GOOD_ACCESS(glob12, 12 - 1); 295 GOOD_ACCESS(glob13, 13 - 1); 296 GOOD_ACCESS(glob14, 14 - 1); 297 GOOD_ACCESS(glob15, 15 - 1); 298 GOOD_ACCESS(glob16, 16 - 1); 299 GOOD_ACCESS(glob17, 17 - 1); 300 GOOD_ACCESS(glob1000, 1000 - 1); 301 GOOD_ACCESS(glob10000, 10000 - 1); 302 GOOD_ACCESS(glob100000, 100000 - 1); 303 304 BAD_ACCESS(glob1, 1); 305 BAD_ACCESS(glob2, 2); 306 BAD_ACCESS(glob3, 3); 307 BAD_ACCESS(glob4, 4); 308 BAD_ACCESS(glob5, 5); 309 BAD_ACCESS(glob6, 6); 310 BAD_ACCESS(glob7, 7); 311 BAD_ACCESS(glob8, 8); 312 BAD_ACCESS(glob9, 9); 313 BAD_ACCESS(glob10, 10); 314 BAD_ACCESS(glob11, 11); 315 BAD_ACCESS(glob12, 12); 316 BAD_ACCESS(glob13, 13); 317 BAD_ACCESS(glob14, 14); 318 BAD_ACCESS(glob15, 15); 319 BAD_ACCESS(glob16, 16); 320 BAD_ACCESS(glob17, 17); 321 BAD_ACCESS(glob1000, 1000); 322 BAD_ACCESS(glob1000, 1100); // Redzone is at least 101 bytes. 323 BAD_ACCESS(glob10000, 10000); 324 BAD_ACCESS(glob10000, 11000); // Redzone is at least 1001 bytes. 325 BAD_ACCESS(glob100000, 100000); 326 BAD_ACCESS(glob100000, 110000); // Redzone is at least 10001 bytes. 327 } 328 329 TEST(AddressSanitizerInterface, PoisonedRegion) { 330 size_t rz = 16; 331 for (size_t size = 1; size <= 64; size++) { 332 char *p = new char[size]; 333 for (size_t beg = 0; beg < size + rz; beg++) { 334 for (size_t end = beg; end < size + rz; end++) { 335 void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg); 336 if (beg == end) { 337 EXPECT_FALSE(first_poisoned); 338 } else if (beg < size && end <= size) { 339 EXPECT_FALSE(first_poisoned); 340 } else if (beg >= size) { 341 EXPECT_EQ(p + beg, first_poisoned); 342 } else { 343 EXPECT_GT(end, size); 344 EXPECT_EQ(p + size, first_poisoned); 345 } 346 } 347 } 348 delete [] p; 349 } 350 } 351 352 // This is a performance benchmark for manual runs. 353 // asan's memset interceptor calls mem_is_zero for the entire shadow region. 354 // the profile should look like this: 355 // 89.10% [.] __memset_sse2 356 // 10.50% [.] __sanitizer::mem_is_zero 357 // I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles 358 // than memset itself. 359 TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) { 360 size_t size = 1 << 20; 361 char *x = new char[size]; 362 for (int i = 0; i < 100000; i++) 363 Ident(memset)(x, 0, size); 364 delete [] x; 365 } 366 367 // Same here, but we run memset with small sizes. 368 TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) { 369 size_t size = 32; 370 char *x = new char[size]; 371 for (int i = 0; i < 100000000; i++) 372 Ident(memset)(x, 0, size); 373 delete [] x; 374 } 375 static const char *kInvalidPoisonMessage = "invalid-poison-memory-range"; 376 static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range"; 377 378 TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) { 379 char *array = Ident((char*)malloc(120)); 380 __asan_unpoison_memory_region(array, 120); 381 // Try to unpoison not owned memory 382 EXPECT_DEATH(__asan_unpoison_memory_region(array, 121), 383 kInvalidUnpoisonMessage); 384 EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120), 385 kInvalidUnpoisonMessage); 386 387 __asan_poison_memory_region(array, 120); 388 // Try to poison not owned memory. 389 EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage); 390 EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120), 391 kInvalidPoisonMessage); 392 free(array); 393 } 394 395 TEST(AddressSanitizerInterface, GetOwnershipStressTest) { 396 std::vector<char *> pointers; 397 std::vector<size_t> sizes; 398 const size_t kNumMallocs = 1 << 9; 399 for (size_t i = 0; i < kNumMallocs; i++) { 400 size_t size = i * 100 + 1; 401 pointers.push_back((char*)malloc(size)); 402 sizes.push_back(size); 403 } 404 for (size_t i = 0; i < 4000000; i++) { 405 EXPECT_FALSE(__sanitizer_get_ownership(&pointers)); 406 EXPECT_FALSE(__sanitizer_get_ownership((void*)0x1234)); 407 size_t idx = i % kNumMallocs; 408 EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx])); 409 EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx])); 410 } 411 for (size_t i = 0, n = pointers.size(); i < n; i++) 412 free(pointers[i]); 413 } 414 415 TEST(AddressSanitizerInterface, HandleNoReturnTest) { 416 char array[40]; 417 __asan_poison_memory_region(array, sizeof(array)); 418 BAD_ACCESS(array, 20); 419 __asan_handle_no_return(); 420 // It unpoisons the whole thread stack. 421 GOOD_ACCESS(array, 20); 422 } 423