Home | History | Annotate | Line # | Download | only in builtins
      1 //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a fairly generic conversion from a wider to a narrower
     11 // IEEE-754 floating-point type in the default (round to nearest, ties to even)
     12 // rounding mode.  The constants and types defined following the includes below
     13 // parameterize the conversion.
     14 //
     15 // This routine can be trivially adapted to support conversions to
     16 // half-precision or from quad-precision. It does not support types that don't
     17 // use the usual IEEE-754 interchange formats; specifically, some work would be
     18 // needed to adapt it to (for example) the Intel 80-bit format or PowerPC
     19 // double-double format.
     20 //
     21 // Note please, however, that this implementation is only intended to support
     22 // *narrowing* operations; if you need to convert to a *wider* floating-point
     23 // type (e.g. float -> double), then this routine will not do what you want it
     24 // to.
     25 //
     26 // It also requires that integer types at least as large as both formats
     27 // are available on the target platform; this may pose a problem when trying
     28 // to add support for quad on some 32-bit systems, for example.
     29 //
     30 // Finally, the following assumptions are made:
     31 //
     32 // 1. floating-point types and integer types have the same endianness on the
     33 //    target platform
     34 //
     35 // 2. quiet NaNs, if supported, are indicated by the leading bit of the
     36 //    significand field being set
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "fp_trunc.h"
     41 
     42 static __inline dst_t __truncXfYf2__(src_t a) {
     43     // Various constants whose values follow from the type parameters.
     44     // Any reasonable optimizer will fold and propagate all of these.
     45     const int srcBits = sizeof(src_t)*CHAR_BIT;
     46     const int srcExpBits = srcBits - srcSigBits - 1;
     47     const int srcInfExp = (1 << srcExpBits) - 1;
     48     const int srcExpBias = srcInfExp >> 1;
     49 
     50     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
     51     const src_rep_t srcSignificandMask = srcMinNormal - 1;
     52     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
     53     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
     54     const src_rep_t srcAbsMask = srcSignMask - 1;
     55     const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
     56     const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
     57     const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
     58     const src_rep_t srcNaNCode = srcQNaN - 1;
     59 
     60     const int dstBits = sizeof(dst_t)*CHAR_BIT;
     61     const int dstExpBits = dstBits - dstSigBits - 1;
     62     const int dstInfExp = (1 << dstExpBits) - 1;
     63     const int dstExpBias = dstInfExp >> 1;
     64 
     65     const int underflowExponent = srcExpBias + 1 - dstExpBias;
     66     const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
     67     const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
     68     const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
     69 
     70     const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
     71     const dst_rep_t dstNaNCode = dstQNaN - 1;
     72 
     73     // Break a into a sign and representation of the absolute value
     74     const src_rep_t aRep = srcToRep(a);
     75     const src_rep_t aAbs = aRep & srcAbsMask;
     76     const src_rep_t sign = aRep & srcSignMask;
     77     dst_rep_t absResult;
     78 
     79     if (aAbs - underflow < aAbs - overflow) {
     80         // The exponent of a is within the range of normal numbers in the
     81         // destination format.  We can convert by simply right-shifting with
     82         // rounding and adjusting the exponent.
     83         absResult = aAbs >> (srcSigBits - dstSigBits);
     84         absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
     85 
     86         const src_rep_t roundBits = aAbs & roundMask;
     87         // Round to nearest
     88         if (roundBits > halfway)
     89             absResult++;
     90         // Ties to even
     91         else if (roundBits == halfway)
     92             absResult += absResult & 1;
     93     }
     94     else if (aAbs > srcInfinity) {
     95         // a is NaN.
     96         // Conjure the result by beginning with infinity, setting the qNaN
     97         // bit and inserting the (truncated) trailing NaN field.
     98         absResult = (dst_rep_t)dstInfExp << dstSigBits;
     99         absResult |= dstQNaN;
    100         absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode;
    101     }
    102     else if (aAbs >= overflow) {
    103         // a overflows to infinity.
    104         absResult = (dst_rep_t)dstInfExp << dstSigBits;
    105     }
    106     else {
    107         // a underflows on conversion to the destination type or is an exact
    108         // zero.  The result may be a denormal or zero.  Extract the exponent
    109         // to get the shift amount for the denormalization.
    110         const int aExp = aAbs >> srcSigBits;
    111         const int shift = srcExpBias - dstExpBias - aExp + 1;
    112 
    113         const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal;
    114 
    115         // Right shift by the denormalization amount with sticky.
    116         if (shift > srcSigBits) {
    117             absResult = 0;
    118         } else {
    119             const bool sticky = significand << (srcBits - shift);
    120             src_rep_t denormalizedSignificand = significand >> shift | sticky;
    121             absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
    122             const src_rep_t roundBits = denormalizedSignificand & roundMask;
    123             // Round to nearest
    124             if (roundBits > halfway)
    125                 absResult++;
    126             // Ties to even
    127             else if (roundBits == halfway)
    128                 absResult += absResult & 1;
    129         }
    130     }
    131 
    132     // Apply the signbit to (dst_t)abs(a).
    133     const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
    134     return dstFromRep(result);
    135 }
    136