Home | History | Annotate | Line # | Download | only in sanitizer_common
      1 //===-- sanitizer_coverage_fuchsia.cc -------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version.
     11 //
     12 // This Fuchsia-specific implementation uses the same basic scheme and the
     13 // same simple '.sancov' file format as the generic implementation.  The
     14 // difference is that we just produce a single blob of output for the whole
     15 // program, not a separate one per DSO.  We do not sort the PC table and do
     16 // not prune the zeros, so the resulting file is always as large as it
     17 // would be to report 100% coverage.  Implicit tracing information about
     18 // the address ranges of DSOs allows offline tools to split the one big
     19 // blob into separate files that the 'sancov' tool can understand.
     20 //
     21 // Unlike the traditional implementation that uses an atexit hook to write
     22 // out data files at the end, the results on Fuchsia do not go into a file
     23 // per se.  The 'coverage_dir' option is ignored.  Instead, they are stored
     24 // directly into a shared memory object (a Zircon VMO).  At exit, that VMO
     25 // is handed over to a system service that's responsible for getting the
     26 // data out to somewhere that it can be fed into the sancov tool (where and
     27 // how is not our problem).
     28 
     29 #include "sanitizer_platform.h"
     30 #if SANITIZER_FUCHSIA
     31 #include "sanitizer_atomic.h"
     32 #include "sanitizer_common.h"
     33 #include "sanitizer_internal_defs.h"
     34 #include "sanitizer_symbolizer_fuchsia.h"
     35 
     36 #include <zircon/process.h>
     37 #include <zircon/sanitizer.h>
     38 #include <zircon/syscalls.h>
     39 
     40 using namespace __sanitizer;  // NOLINT
     41 
     42 namespace __sancov {
     43 namespace {
     44 
     45 // TODO(mcgrathr): Move the constant into a header shared with other impls.
     46 constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL;
     47 static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64");
     48 
     49 constexpr const char kSancovSinkName[] = "sancov";
     50 
     51 // Collects trace-pc guard coverage.
     52 // This class relies on zero-initialization.
     53 class TracePcGuardController final {
     54  public:
     55   // For each PC location being tracked, there is a u32 reserved in global
     56   // data called the "guard".  At startup, we assign each guard slot a
     57   // unique index into the big results array.  Later during runtime, the
     58   // first call to TracePcGuard (below) will store the corresponding PC at
     59   // that index in the array.  (Each later call with the same guard slot is
     60   // presumed to be from the same PC.)  Then it clears the guard slot back
     61   // to zero, which tells the compiler not to bother calling in again.  At
     62   // the end of the run, we have a big array where each element is either
     63   // zero or is a tracked PC location that was hit in the trace.
     64 
     65   // This is called from global constructors.  Each translation unit has a
     66   // contiguous array of guard slots, and a constructor that calls here
     67   // with the bounds of its array.  Those constructors are allowed to call
     68   // here more than once for the same array.  Usually all of these
     69   // constructors run in the initial thread, but it's possible that a
     70   // dlopen call on a secondary thread will run constructors that get here.
     71   void InitTracePcGuard(u32 *start, u32 *end) {
     72     if (end > start && *start == 0 && common_flags()->coverage) {
     73       // Complete the setup before filling in any guards with indices.
     74       // This avoids the possibility of code called from Setup reentering
     75       // TracePcGuard.
     76       u32 idx = Setup(end - start);
     77       for (u32 *p = start; p < end; ++p) {
     78         *p = idx++;
     79       }
     80     }
     81   }
     82 
     83   void TracePcGuard(u32 *guard, uptr pc) {
     84     atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard);
     85     u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed);
     86     if (idx > 0) array_[idx] = pc;
     87   }
     88 
     89   void Dump() {
     90     BlockingMutexLock locked(&setup_lock_);
     91     if (array_) {
     92       CHECK_NE(vmo_, ZX_HANDLE_INVALID);
     93 
     94       // Publish the VMO to the system, where it can be collected and
     95       // analyzed after this process exits.  This always consumes the VMO
     96       // handle.  Any failure is just logged and not indicated to us.
     97       __sanitizer_publish_data(kSancovSinkName, vmo_);
     98       vmo_ = ZX_HANDLE_INVALID;
     99 
    100       // This will route to __sanitizer_log_write, which will ensure that
    101       // information about shared libraries is written out.  This message
    102       // uses the `dumpfile` symbolizer markup element to highlight the
    103       // dump.  See the explanation for this in:
    104       // https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md
    105       Printf("SanitizerCoverage: " FORMAT_DUMPFILE " with up to %u PCs\n",
    106              kSancovSinkName, vmo_name_, next_index_ - 1);
    107     }
    108   }
    109 
    110  private:
    111   // We map in the largest possible view into the VMO: one word
    112   // for every possible 32-bit index value.  This avoids the need
    113   // to change the mapping when increasing the size of the VMO.
    114   // We can always spare the 32G of address space.
    115   static constexpr size_t MappingSize = sizeof(uptr) << 32;
    116 
    117   BlockingMutex setup_lock_ = BlockingMutex(LINKER_INITIALIZED);
    118   uptr *array_ = nullptr;
    119   u32 next_index_ = 0;
    120   zx_handle_t vmo_ = {};
    121   char vmo_name_[ZX_MAX_NAME_LEN] = {};
    122 
    123   size_t DataSize() const { return next_index_ * sizeof(uintptr_t); }
    124 
    125   u32 Setup(u32 num_guards) {
    126     BlockingMutexLock locked(&setup_lock_);
    127     DCHECK(common_flags()->coverage);
    128 
    129     if (next_index_ == 0) {
    130       CHECK_EQ(vmo_, ZX_HANDLE_INVALID);
    131       CHECK_EQ(array_, nullptr);
    132 
    133       // The first sample goes at [1] to reserve [0] for the magic number.
    134       next_index_ = 1 + num_guards;
    135 
    136       zx_status_t status = _zx_vmo_create(DataSize(), 0, &vmo_);
    137       CHECK_EQ(status, ZX_OK);
    138 
    139       // Give the VMO a name including our process KOID so it's easy to spot.
    140       internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName,
    141                         internal_getpid());
    142       _zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_,
    143                               internal_strlen(vmo_name_));
    144 
    145       // Map the largest possible view we might need into the VMO.  Later
    146       // we might need to increase the VMO's size before we can use larger
    147       // indices, but we'll never move the mapping address so we don't have
    148       // any multi-thread synchronization issues with that.
    149       uintptr_t mapping;
    150       status =
    151           _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
    152                        0, vmo_, 0, MappingSize, &mapping);
    153       CHECK_EQ(status, ZX_OK);
    154 
    155       // Hereafter other threads are free to start storing into
    156       // elements [1, next_index_) of the big array.
    157       array_ = reinterpret_cast<uptr *>(mapping);
    158 
    159       // Store the magic number.
    160       // Hereafter, the VMO serves as the contents of the '.sancov' file.
    161       array_[0] = Magic64;
    162 
    163       return 1;
    164     } else {
    165       // The VMO is already mapped in, but it's not big enough to use the
    166       // new indices.  So increase the size to cover the new maximum index.
    167 
    168       CHECK_NE(vmo_, ZX_HANDLE_INVALID);
    169       CHECK_NE(array_, nullptr);
    170 
    171       uint32_t first_index = next_index_;
    172       next_index_ += num_guards;
    173 
    174       zx_status_t status = _zx_vmo_set_size(vmo_, DataSize());
    175       CHECK_EQ(status, ZX_OK);
    176 
    177       return first_index;
    178     }
    179   }
    180 };
    181 
    182 static TracePcGuardController pc_guard_controller;
    183 
    184 }  // namespace
    185 }  // namespace __sancov
    186 
    187 namespace __sanitizer {
    188 void InitializeCoverage(bool enabled, const char *dir) {
    189   CHECK_EQ(enabled, common_flags()->coverage);
    190   CHECK_EQ(dir, common_flags()->coverage_dir);
    191 
    192   static bool coverage_enabled = false;
    193   if (!coverage_enabled) {
    194     coverage_enabled = enabled;
    195     Atexit(__sanitizer_cov_dump);
    196     AddDieCallback(__sanitizer_cov_dump);
    197   }
    198 }
    199 }  // namespace __sanitizer
    200 
    201 extern "C" {
    202 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage(  // NOLINT
    203     const uptr *pcs, uptr len) {
    204   UNIMPLEMENTED();
    205 }
    206 
    207 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) {
    208   if (!*guard) return;
    209   __sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1);
    210 }
    211 
    212 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init,
    213                              u32 *start, u32 *end) {
    214   if (start == end || *start) return;
    215   __sancov::pc_guard_controller.InitTracePcGuard(start, end);
    216 }
    217 
    218 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() {
    219   __sancov::pc_guard_controller.Dump();
    220 }
    221 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
    222   __sanitizer_dump_trace_pc_guard_coverage();
    223 }
    224 // Default empty implementations (weak). Users should redefine them.
    225 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {}
    226 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {}
    227 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {}
    228 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {}
    229 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {}
    230 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {}
    231 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {}
    232 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {}
    233 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {}
    234 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {}
    235 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {}
    236 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {}
    237 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {}
    238 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {}
    239 }  // extern "C"
    240 
    241 #endif  // !SANITIZER_FUCHSIA
    242