Home | History | Annotate | Line # | Download | only in sanitizer_common
      1 //===-- sanitizer_procmaps_mac.cc -----------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Information about the process mappings (Mac-specific parts).
     11 //===----------------------------------------------------------------------===//
     12 
     13 #include "sanitizer_platform.h"
     14 #if SANITIZER_MAC
     15 #include "sanitizer_common.h"
     16 #include "sanitizer_placement_new.h"
     17 #include "sanitizer_procmaps.h"
     18 
     19 #include <mach-o/dyld.h>
     20 #include <mach-o/loader.h>
     21 #include <mach/mach.h>
     22 
     23 // These are not available in older macOS SDKs.
     24 #ifndef CPU_SUBTYPE_X86_64_H
     25 #define CPU_SUBTYPE_X86_64_H  ((cpu_subtype_t)8)   /* Haswell */
     26 #endif
     27 #ifndef CPU_SUBTYPE_ARM_V7S
     28 #define CPU_SUBTYPE_ARM_V7S   ((cpu_subtype_t)11)  /* Swift */
     29 #endif
     30 #ifndef CPU_SUBTYPE_ARM_V7K
     31 #define CPU_SUBTYPE_ARM_V7K   ((cpu_subtype_t)12)
     32 #endif
     33 #ifndef CPU_TYPE_ARM64
     34 #define CPU_TYPE_ARM64        (CPU_TYPE_ARM | CPU_ARCH_ABI64)
     35 #endif
     36 
     37 namespace __sanitizer {
     38 
     39 // Contains information used to iterate through sections.
     40 struct MemoryMappedSegmentData {
     41   char name[kMaxSegName];
     42   uptr nsects;
     43   const char *current_load_cmd_addr;
     44   u32 lc_type;
     45   uptr base_virt_addr;
     46   uptr addr_mask;
     47 };
     48 
     49 template <typename Section>
     50 static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
     51                             bool isWritable) {
     52   const Section *sc = (const Section *)data->current_load_cmd_addr;
     53   data->current_load_cmd_addr += sizeof(Section);
     54 
     55   uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
     56   uptr sec_end = sec_start + sc->size;
     57   module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
     58                           sc->sectname);
     59 }
     60 
     61 void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
     62   // Don't iterate over sections when the caller hasn't set up the
     63   // data pointer, when there are no sections, or when the segment
     64   // is executable. Avoid iterating over executable sections because
     65   // it will confuse libignore, and because the extra granularity
     66   // of information is not needed by any sanitizers.
     67   if (!data_ || !data_->nsects || IsExecutable()) {
     68     module->addAddressRange(start, end, IsExecutable(), IsWritable(),
     69                             data_ ? data_->name : nullptr);
     70     return;
     71   }
     72 
     73   do {
     74     if (data_->lc_type == LC_SEGMENT) {
     75       NextSectionLoad<struct section>(module, data_, IsWritable());
     76 #ifdef MH_MAGIC_64
     77     } else if (data_->lc_type == LC_SEGMENT_64) {
     78       NextSectionLoad<struct section_64>(module, data_, IsWritable());
     79 #endif
     80     }
     81   } while (--data_->nsects);
     82 }
     83 
     84 MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
     85   Reset();
     86 }
     87 
     88 MemoryMappingLayout::~MemoryMappingLayout() {
     89 }
     90 
     91 // More information about Mach-O headers can be found in mach-o/loader.h
     92 // Each Mach-O image has a header (mach_header or mach_header_64) starting with
     93 // a magic number, and a list of linker load commands directly following the
     94 // header.
     95 // A load command is at least two 32-bit words: the command type and the
     96 // command size in bytes. We're interested only in segment load commands
     97 // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
     98 // into the task's address space.
     99 // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
    100 // segment_command_64 correspond to the memory address, memory size and the
    101 // file offset of the current memory segment.
    102 // Because these fields are taken from the images as is, one needs to add
    103 // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
    104 
    105 void MemoryMappingLayout::Reset() {
    106   // Count down from the top.
    107   // TODO(glider): as per man 3 dyld, iterating over the headers with
    108   // _dyld_image_count is thread-unsafe. We need to register callbacks for
    109   // adding and removing images which will invalidate the MemoryMappingLayout
    110   // state.
    111   data_.current_image = _dyld_image_count();
    112   data_.current_load_cmd_count = -1;
    113   data_.current_load_cmd_addr = 0;
    114   data_.current_magic = 0;
    115   data_.current_filetype = 0;
    116   data_.current_arch = kModuleArchUnknown;
    117   internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
    118 }
    119 
    120 // The dyld load address should be unchanged throughout process execution,
    121 // and it is expensive to compute once many libraries have been loaded,
    122 // so cache it here and do not reset.
    123 static mach_header *dyld_hdr = 0;
    124 static const char kDyldPath[] = "/usr/lib/dyld";
    125 static const int kDyldImageIdx = -1;
    126 
    127 // static
    128 void MemoryMappingLayout::CacheMemoryMappings() {
    129   // No-op on Mac for now.
    130 }
    131 
    132 void MemoryMappingLayout::LoadFromCache() {
    133   // No-op on Mac for now.
    134 }
    135 
    136 // _dyld_get_image_header() and related APIs don't report dyld itself.
    137 // We work around this by manually recursing through the memory map
    138 // until we hit a Mach header matching dyld instead. These recurse
    139 // calls are expensive, but the first memory map generation occurs
    140 // early in the process, when dyld is one of the only images loaded,
    141 // so it will be hit after only a few iterations.
    142 static mach_header *get_dyld_image_header() {
    143   unsigned depth = 1;
    144   vm_size_t size = 0;
    145   vm_address_t address = 0;
    146   kern_return_t err = KERN_SUCCESS;
    147   mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
    148 
    149   while (true) {
    150     struct vm_region_submap_info_64 info;
    151     err = vm_region_recurse_64(mach_task_self(), &address, &size, &depth,
    152                                (vm_region_info_t)&info, &count);
    153     if (err != KERN_SUCCESS) return nullptr;
    154 
    155     if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
    156       mach_header *hdr = (mach_header *)address;
    157       if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
    158           hdr->filetype == MH_DYLINKER) {
    159         return hdr;
    160       }
    161     }
    162     address += size;
    163   }
    164 }
    165 
    166 const mach_header *get_dyld_hdr() {
    167   if (!dyld_hdr) dyld_hdr = get_dyld_image_header();
    168 
    169   return dyld_hdr;
    170 }
    171 
    172 // Next and NextSegmentLoad were inspired by base/sysinfo.cc in
    173 // Google Perftools, https://github.com/gperftools/gperftools.
    174 
    175 // NextSegmentLoad scans the current image for the next segment load command
    176 // and returns the start and end addresses and file offset of the corresponding
    177 // segment.
    178 // Note that the segment addresses are not necessarily sorted.
    179 template <u32 kLCSegment, typename SegmentCommand>
    180 static bool NextSegmentLoad(MemoryMappedSegment *segment,
    181 MemoryMappedSegmentData *seg_data, MemoryMappingLayoutData &layout_data) {
    182   const char *lc = layout_data.current_load_cmd_addr;
    183   layout_data.current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
    184   if (((const load_command *)lc)->cmd == kLCSegment) {
    185     const SegmentCommand* sc = (const SegmentCommand *)lc;
    186     uptr base_virt_addr, addr_mask;
    187     if (layout_data.current_image == kDyldImageIdx) {
    188       base_virt_addr = (uptr)get_dyld_hdr();
    189       // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
    190       // it contains an absolute address rather than an offset for dyld.
    191       // To make matters even more complicated, this absolute address
    192       // isn't actually the absolute segment address, but the offset portion
    193       // of the address is accurate when combined with the dyld base address,
    194       // and the mask will give just this offset.
    195       addr_mask = 0xfffff;
    196     } else {
    197       base_virt_addr =
    198           (uptr)_dyld_get_image_vmaddr_slide(layout_data.current_image);
    199       addr_mask = ~0;
    200     }
    201 
    202     segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
    203     segment->end = segment->start + sc->vmsize;
    204     // Most callers don't need section information, so only fill this struct
    205     // when required.
    206     if (seg_data) {
    207       seg_data->nsects = sc->nsects;
    208       seg_data->current_load_cmd_addr =
    209           (const char *)lc + sizeof(SegmentCommand);
    210       seg_data->lc_type = kLCSegment;
    211       seg_data->base_virt_addr = base_virt_addr;
    212       seg_data->addr_mask = addr_mask;
    213       internal_strncpy(seg_data->name, sc->segname,
    214                        ARRAY_SIZE(seg_data->name));
    215     }
    216 
    217     // Return the initial protection.
    218     segment->protection = sc->initprot;
    219     segment->offset = (layout_data.current_filetype ==
    220                        /*MH_EXECUTE*/ 0x2)
    221                           ? sc->vmaddr
    222                           : sc->fileoff;
    223     if (segment->filename) {
    224       const char *src = (layout_data.current_image == kDyldImageIdx)
    225                             ? kDyldPath
    226                             : _dyld_get_image_name(layout_data.current_image);
    227       internal_strncpy(segment->filename, src, segment->filename_size);
    228     }
    229     segment->arch = layout_data.current_arch;
    230     internal_memcpy(segment->uuid, layout_data.current_uuid, kModuleUUIDSize);
    231     return true;
    232   }
    233   return false;
    234 }
    235 
    236 ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
    237   cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
    238   switch (cputype) {
    239     case CPU_TYPE_I386:
    240       return kModuleArchI386;
    241     case CPU_TYPE_X86_64:
    242       if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
    243       if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
    244       CHECK(0 && "Invalid subtype of x86_64");
    245       return kModuleArchUnknown;
    246     case CPU_TYPE_ARM:
    247       if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
    248       if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
    249       if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
    250       if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
    251       CHECK(0 && "Invalid subtype of ARM");
    252       return kModuleArchUnknown;
    253     case CPU_TYPE_ARM64:
    254       return kModuleArchARM64;
    255     default:
    256       CHECK(0 && "Invalid CPU type");
    257       return kModuleArchUnknown;
    258   }
    259 }
    260 
    261 static const load_command *NextCommand(const load_command *lc) {
    262   return (const load_command *)((const char *)lc + lc->cmdsize);
    263 }
    264 
    265 static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
    266   for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
    267     if (lc->cmd != LC_UUID) continue;
    268 
    269     const uuid_command *uuid_lc = (const uuid_command *)lc;
    270     const uint8_t *uuid = &uuid_lc->uuid[0];
    271     internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
    272     return;
    273   }
    274 }
    275 
    276 static bool IsModuleInstrumented(const load_command *first_lc) {
    277   for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
    278     if (lc->cmd != LC_LOAD_DYLIB) continue;
    279 
    280     const dylib_command *dylib_lc = (const dylib_command *)lc;
    281     uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
    282     const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
    283     dylib_name = StripModuleName(dylib_name);
    284     if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
    285       return true;
    286     }
    287   }
    288   return false;
    289 }
    290 
    291 bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
    292   for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
    293     const mach_header *hdr = (data_.current_image == kDyldImageIdx)
    294                                  ? get_dyld_hdr()
    295                                  : _dyld_get_image_header(data_.current_image);
    296     if (!hdr) continue;
    297     if (data_.current_load_cmd_count < 0) {
    298       // Set up for this image;
    299       data_.current_load_cmd_count = hdr->ncmds;
    300       data_.current_magic = hdr->magic;
    301       data_.current_filetype = hdr->filetype;
    302       data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
    303       switch (data_.current_magic) {
    304 #ifdef MH_MAGIC_64
    305         case MH_MAGIC_64: {
    306           data_.current_load_cmd_addr =
    307               (const char *)hdr + sizeof(mach_header_64);
    308           break;
    309         }
    310 #endif
    311         case MH_MAGIC: {
    312           data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
    313           break;
    314         }
    315         default: {
    316           continue;
    317         }
    318       }
    319       FindUUID((const load_command *)data_.current_load_cmd_addr,
    320                data_.current_uuid);
    321       data_.current_instrumented = IsModuleInstrumented(
    322           (const load_command *)data_.current_load_cmd_addr);
    323     }
    324 
    325     for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
    326       switch (data_.current_magic) {
    327         // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
    328 #ifdef MH_MAGIC_64
    329         case MH_MAGIC_64: {
    330           if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
    331           segment, segment->data_, data_))
    332             return true;
    333           break;
    334         }
    335 #endif
    336         case MH_MAGIC: {
    337           if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
    338           segment, segment->data_, data_))
    339             return true;
    340           break;
    341         }
    342       }
    343     }
    344     // If we get here, no more load_cmd's in this image talk about
    345     // segments.  Go on to the next image.
    346   }
    347   return false;
    348 }
    349 
    350 void MemoryMappingLayout::DumpListOfModules(
    351     InternalMmapVectorNoCtor<LoadedModule> *modules) {
    352   Reset();
    353   InternalScopedString module_name(kMaxPathLength);
    354   MemoryMappedSegment segment(module_name.data(), kMaxPathLength);
    355   MemoryMappedSegmentData data;
    356   segment.data_ = &data;
    357   while (Next(&segment)) {
    358     if (segment.filename[0] == '\0') continue;
    359     LoadedModule *cur_module = nullptr;
    360     if (!modules->empty() &&
    361         0 == internal_strcmp(segment.filename, modules->back().full_name())) {
    362       cur_module = &modules->back();
    363     } else {
    364       modules->push_back(LoadedModule());
    365       cur_module = &modules->back();
    366       cur_module->set(segment.filename, segment.start, segment.arch,
    367                       segment.uuid, data_.current_instrumented);
    368     }
    369     segment.AddAddressRanges(cur_module);
    370   }
    371 }
    372 
    373 }  // namespace __sanitizer
    374 
    375 #endif  // SANITIZER_MAC
    376