1 /* $NetBSD: amdgpu_tonga_smumgr.c,v 1.3 2021/12/19 12:21:30 riastradh Exp $ */ 2 3 /* 4 * Copyright 2015 Advanced Micro Devices, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 */ 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: amdgpu_tonga_smumgr.c,v 1.3 2021/12/19 12:21:30 riastradh Exp $"); 27 28 #include "pp_debug.h" 29 #include <linux/types.h> 30 #include <linux/kernel.h> 31 #include <linux/pci.h> 32 #include <linux/slab.h> 33 #include <linux/gfp.h> 34 35 #include "smumgr.h" 36 #include "tonga_smumgr.h" 37 #include "smu_ucode_xfer_vi.h" 38 #include "tonga_ppsmc.h" 39 #include "smu/smu_7_1_2_d.h" 40 #include "smu/smu_7_1_2_sh_mask.h" 41 #include "cgs_common.h" 42 #include "smu7_smumgr.h" 43 44 #include "smu7_dyn_defaults.h" 45 46 #include "smu7_hwmgr.h" 47 #include "hardwaremanager.h" 48 #include "ppatomctrl.h" 49 50 #include "atombios.h" 51 52 #include "pppcielanes.h" 53 #include "pp_endian.h" 54 55 #include "gmc/gmc_8_1_d.h" 56 #include "gmc/gmc_8_1_sh_mask.h" 57 58 #include "bif/bif_5_0_d.h" 59 #include "bif/bif_5_0_sh_mask.h" 60 61 #include "dce/dce_10_0_d.h" 62 #include "dce/dce_10_0_sh_mask.h" 63 64 #define POWERTUNE_DEFAULT_SET_MAX 1 65 #define MC_CG_ARB_FREQ_F1 0x0b 66 #define VDDC_VDDCI_DELTA 200 67 68 69 static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { 70 /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, 71 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT 72 */ 73 {1, 0xF, 0xFD, 0x19, 74 5, 45, 0, 0xB0000, 75 {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 76 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, 77 {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 78 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4} 79 }, 80 }; 81 82 /* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */ 83 static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = { 84 {600, 1050, 3, 0}, 85 {600, 1050, 6, 1} 86 }; 87 88 /* [FF, SS] type, [] 4 voltage ranges, 89 * and [Floor Freq, Boundary Freq, VID min , VID max] 90 */ 91 static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = { 92 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, 93 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } 94 }; 95 96 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */ 97 static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = { 98 {0, 1, 3, 2, 4, 5}, 99 {0, 2, 4, 5, 6, 5} 100 }; 101 102 static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr) 103 { 104 int result; 105 106 /* Assert reset */ 107 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 108 SMC_SYSCON_RESET_CNTL, rst_reg, 1); 109 110 result = smu7_upload_smu_firmware_image(hwmgr); 111 if (result) 112 return result; 113 114 /* Clear status */ 115 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 116 ixSMU_STATUS, 0); 117 118 /* Enable clock */ 119 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 120 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 121 122 /* De-assert reset */ 123 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 124 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 125 126 /* Set SMU Auto Start */ 127 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 128 SMU_INPUT_DATA, AUTO_START, 1); 129 130 /* Clear firmware interrupt enable flag */ 131 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 132 ixFIRMWARE_FLAGS, 0); 133 134 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 135 RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); 136 137 /** 138 * Call Test SMU message with 0x20000 offset to trigger SMU start 139 */ 140 smu7_send_msg_to_smc_offset(hwmgr); 141 142 /* Wait for done bit to be set */ 143 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 144 SMU_STATUS, SMU_DONE, 0); 145 146 /* Check pass/failed indicator */ 147 if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 148 CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) { 149 pr_err("SMU Firmware start failed\n"); 150 return -EINVAL; 151 } 152 153 /* Wait for firmware to initialize */ 154 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 155 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); 156 157 return 0; 158 } 159 160 static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr) 161 { 162 int result = 0; 163 164 /* wait for smc boot up */ 165 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 166 RCU_UC_EVENTS, boot_seq_done, 0); 167 168 /*Clear firmware interrupt enable flag*/ 169 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 170 ixFIRMWARE_FLAGS, 0); 171 172 173 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 174 SMC_SYSCON_RESET_CNTL, rst_reg, 1); 175 176 result = smu7_upload_smu_firmware_image(hwmgr); 177 178 if (result != 0) 179 return result; 180 181 /* Set smc instruct start point at 0x0 */ 182 smu7_program_jump_on_start(hwmgr); 183 184 185 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 186 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 187 188 /*De-assert reset*/ 189 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 190 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 191 192 /* Wait for firmware to initialize */ 193 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 194 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); 195 196 return result; 197 } 198 199 static int tonga_start_smu(struct pp_hwmgr *hwmgr) 200 { 201 struct tonga_smumgr *priv = hwmgr->smu_backend; 202 int result; 203 204 /* Only start SMC if SMC RAM is not running */ 205 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { 206 /*Check if SMU is running in protected mode*/ 207 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 208 SMU_FIRMWARE, SMU_MODE)) { 209 result = tonga_start_in_non_protection_mode(hwmgr); 210 if (result) 211 return result; 212 } else { 213 result = tonga_start_in_protection_mode(hwmgr); 214 if (result) 215 return result; 216 } 217 } 218 219 /* Setup SoftRegsStart here to visit the register UcodeLoadStatus 220 * to check fw loading state 221 */ 222 smu7_read_smc_sram_dword(hwmgr, 223 SMU72_FIRMWARE_HEADER_LOCATION + 224 offsetof(SMU72_Firmware_Header, SoftRegisters), 225 &(priv->smu7_data.soft_regs_start), 0x40000); 226 227 result = smu7_request_smu_load_fw(hwmgr); 228 229 return result; 230 } 231 232 static int tonga_smu_init(struct pp_hwmgr *hwmgr) 233 { 234 struct tonga_smumgr *tonga_priv = NULL; 235 236 tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL); 237 if (tonga_priv == NULL) 238 return -ENOMEM; 239 240 hwmgr->smu_backend = tonga_priv; 241 242 if (smu7_init(hwmgr)) { 243 kfree(tonga_priv); 244 return -EINVAL; 245 } 246 247 return 0; 248 } 249 250 251 static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, 252 phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table, 253 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) 254 { 255 uint32_t i = 0; 256 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 257 struct phm_ppt_v1_information *pptable_info = 258 (struct phm_ppt_v1_information *)(hwmgr->pptable); 259 260 /* clock - voltage dependency table is empty table */ 261 if (allowed_clock_voltage_table->count == 0) 262 return -EINVAL; 263 264 for (i = 0; i < allowed_clock_voltage_table->count; i++) { 265 /* find first sclk bigger than request */ 266 if (allowed_clock_voltage_table->entries[i].clk >= clock) { 267 voltage->VddGfx = phm_get_voltage_index( 268 pptable_info->vddgfx_lookup_table, 269 allowed_clock_voltage_table->entries[i].vddgfx); 270 voltage->Vddc = phm_get_voltage_index( 271 pptable_info->vddc_lookup_table, 272 allowed_clock_voltage_table->entries[i].vddc); 273 274 if (allowed_clock_voltage_table->entries[i].vddci) 275 voltage->Vddci = 276 phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci); 277 else 278 voltage->Vddci = 279 phm_get_voltage_id(&data->vddci_voltage_table, 280 allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA); 281 282 283 if (allowed_clock_voltage_table->entries[i].mvdd) 284 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd; 285 286 voltage->Phases = 1; 287 return 0; 288 } 289 } 290 291 /* sclk is bigger than max sclk in the dependence table */ 292 voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 293 allowed_clock_voltage_table->entries[i-1].vddgfx); 294 voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table, 295 allowed_clock_voltage_table->entries[i-1].vddc); 296 297 if (allowed_clock_voltage_table->entries[i-1].vddci) 298 voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table, 299 allowed_clock_voltage_table->entries[i-1].vddci); 300 301 if (allowed_clock_voltage_table->entries[i-1].mvdd) 302 *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd; 303 304 return 0; 305 } 306 307 static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, 308 SMU72_Discrete_DpmTable *table) 309 { 310 unsigned int count; 311 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 312 313 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 314 table->VddcLevelCount = data->vddc_voltage_table.count; 315 for (count = 0; count < table->VddcLevelCount; count++) { 316 table->VddcTable[count] = 317 PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE); 318 } 319 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); 320 } 321 return 0; 322 } 323 324 static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr, 325 SMU72_Discrete_DpmTable *table) 326 { 327 unsigned int count; 328 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 329 330 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 331 table->VddGfxLevelCount = data->vddgfx_voltage_table.count; 332 for (count = 0; count < data->vddgfx_voltage_table.count; count++) { 333 table->VddGfxTable[count] = 334 PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE); 335 } 336 CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount); 337 } 338 return 0; 339 } 340 341 static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, 342 SMU72_Discrete_DpmTable *table) 343 { 344 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 345 uint32_t count; 346 347 table->VddciLevelCount = data->vddci_voltage_table.count; 348 for (count = 0; count < table->VddciLevelCount; count++) { 349 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 350 table->VddciTable[count] = 351 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); 352 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 353 table->SmioTable1.Pattern[count].Voltage = 354 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); 355 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */ 356 table->SmioTable1.Pattern[count].Smio = 357 (uint8_t) count; 358 table->Smio[count] |= 359 data->vddci_voltage_table.entries[count].smio_low; 360 table->VddciTable[count] = 361 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE); 362 } 363 } 364 365 table->SmioMask1 = data->vddci_voltage_table.mask_low; 366 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); 367 368 return 0; 369 } 370 371 static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, 372 SMU72_Discrete_DpmTable *table) 373 { 374 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 375 uint32_t count; 376 377 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 378 table->MvddLevelCount = data->mvdd_voltage_table.count; 379 for (count = 0; count < table->MvddLevelCount; count++) { 380 table->SmioTable2.Pattern[count].Voltage = 381 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); 382 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ 383 table->SmioTable2.Pattern[count].Smio = 384 (uint8_t) count; 385 table->Smio[count] |= 386 data->mvdd_voltage_table.entries[count].smio_low; 387 } 388 table->SmioMask2 = data->mvdd_voltage_table.mask_low; 389 390 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); 391 } 392 393 return 0; 394 } 395 396 static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr, 397 SMU72_Discrete_DpmTable *table) 398 { 399 uint32_t count; 400 uint8_t index = 0; 401 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 402 struct phm_ppt_v1_information *pptable_info = 403 (struct phm_ppt_v1_information *)(hwmgr->pptable); 404 struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = 405 pptable_info->vddgfx_lookup_table; 406 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = 407 pptable_info->vddc_lookup_table; 408 409 /* table is already swapped, so in order to use the value from it 410 * we need to swap it back. 411 */ 412 uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount); 413 uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount); 414 415 for (count = 0; count < vddc_level_count; count++) { 416 /* We are populating vddc CAC data to BapmVddc table in split and merged mode */ 417 index = phm_get_voltage_index(vddc_lookup_table, 418 data->vddc_voltage_table.entries[count].value); 419 table->BapmVddcVidLoSidd[count] = 420 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); 421 table->BapmVddcVidHiSidd[count] = 422 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); 423 table->BapmVddcVidHiSidd2[count] = 424 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); 425 } 426 427 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 428 /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */ 429 for (count = 0; count < vddgfx_level_count; count++) { 430 index = phm_get_voltage_index(vddgfx_lookup_table, 431 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid)); 432 table->BapmVddGfxVidHiSidd2[count] = 433 convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high); 434 } 435 } else { 436 for (count = 0; count < vddc_level_count; count++) { 437 index = phm_get_voltage_index(vddc_lookup_table, 438 data->vddc_voltage_table.entries[count].value); 439 table->BapmVddGfxVidLoSidd[count] = 440 convert_to_vid(vddc_lookup_table->entries[index].us_cac_low); 441 table->BapmVddGfxVidHiSidd[count] = 442 convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid); 443 table->BapmVddGfxVidHiSidd2[count] = 444 convert_to_vid(vddc_lookup_table->entries[index].us_cac_high); 445 } 446 } 447 448 return 0; 449 } 450 451 static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, 452 SMU72_Discrete_DpmTable *table) 453 { 454 int result; 455 456 result = tonga_populate_smc_vddc_table(hwmgr, table); 457 PP_ASSERT_WITH_CODE(!result, 458 "can not populate VDDC voltage table to SMC", 459 return -EINVAL); 460 461 result = tonga_populate_smc_vdd_ci_table(hwmgr, table); 462 PP_ASSERT_WITH_CODE(!result, 463 "can not populate VDDCI voltage table to SMC", 464 return -EINVAL); 465 466 result = tonga_populate_smc_vdd_gfx_table(hwmgr, table); 467 PP_ASSERT_WITH_CODE(!result, 468 "can not populate VDDGFX voltage table to SMC", 469 return -EINVAL); 470 471 result = tonga_populate_smc_mvdd_table(hwmgr, table); 472 PP_ASSERT_WITH_CODE(!result, 473 "can not populate MVDD voltage table to SMC", 474 return -EINVAL); 475 476 result = tonga_populate_cac_tables(hwmgr, table); 477 PP_ASSERT_WITH_CODE(!result, 478 "can not populate CAC voltage tables to SMC", 479 return -EINVAL); 480 481 return 0; 482 } 483 484 static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr, 485 struct SMU72_Discrete_Ulv *state) 486 { 487 struct phm_ppt_v1_information *table_info = 488 (struct phm_ppt_v1_information *)(hwmgr->pptable); 489 490 state->CcPwrDynRm = 0; 491 state->CcPwrDynRm1 = 0; 492 493 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; 494 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * 495 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); 496 497 state->VddcPhase = 1; 498 499 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); 500 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); 501 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); 502 503 return 0; 504 } 505 506 static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr, 507 struct SMU72_Discrete_DpmTable *table) 508 { 509 return tonga_populate_ulv_level(hwmgr, &table->Ulv); 510 } 511 512 static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table) 513 { 514 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 515 struct smu7_dpm_table *dpm_table = &data->dpm_table; 516 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 517 uint32_t i; 518 519 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ 520 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { 521 table->LinkLevel[i].PcieGenSpeed = 522 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; 523 table->LinkLevel[i].PcieLaneCount = 524 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); 525 table->LinkLevel[i].EnabledForActivity = 526 1; 527 table->LinkLevel[i].SPC = 528 (uint8_t)(data->pcie_spc_cap & 0xff); 529 table->LinkLevel[i].DownThreshold = 530 PP_HOST_TO_SMC_UL(5); 531 table->LinkLevel[i].UpThreshold = 532 PP_HOST_TO_SMC_UL(30); 533 } 534 535 smu_data->smc_state_table.LinkLevelCount = 536 (uint8_t)dpm_table->pcie_speed_table.count; 537 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 538 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); 539 540 return 0; 541 } 542 543 static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr, 544 uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk) 545 { 546 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 547 pp_atomctrl_clock_dividers_vi dividers; 548 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 549 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 550 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 551 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 552 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 553 uint32_t reference_clock; 554 uint32_t reference_divider; 555 uint32_t fbdiv; 556 int result; 557 558 /* get the engine clock dividers for this clock value*/ 559 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); 560 561 PP_ASSERT_WITH_CODE(result == 0, 562 "Error retrieving Engine Clock dividers from VBIOS.", return result); 563 564 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ 565 reference_clock = atomctrl_get_reference_clock(hwmgr); 566 567 reference_divider = 1 + dividers.uc_pll_ref_div; 568 569 /* low 14 bits is fraction and high 12 bits is divider*/ 570 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; 571 572 /* SPLL_FUNC_CNTL setup*/ 573 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 574 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); 575 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 576 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); 577 578 /* SPLL_FUNC_CNTL_3 setup*/ 579 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, 580 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); 581 582 /* set to use fractional accumulation*/ 583 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, 584 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); 585 586 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 587 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { 588 pp_atomctrl_internal_ss_info ss_info; 589 590 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; 591 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { 592 /* 593 * ss_info.speed_spectrum_percentage -- in unit of 0.01% 594 * ss_info.speed_spectrum_rate -- in unit of khz 595 */ 596 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ 597 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); 598 599 /* clkv = 2 * D * fbdiv / NS */ 600 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); 601 602 cg_spll_spread_spectrum = 603 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); 604 cg_spll_spread_spectrum = 605 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); 606 cg_spll_spread_spectrum_2 = 607 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); 608 } 609 } 610 611 sclk->SclkFrequency = engine_clock; 612 sclk->CgSpllFuncCntl3 = spll_func_cntl_3; 613 sclk->CgSpllFuncCntl4 = spll_func_cntl_4; 614 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; 615 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; 616 sclk->SclkDid = (uint8_t)dividers.pll_post_divider; 617 618 return 0; 619 } 620 621 static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, 622 uint32_t engine_clock, 623 SMU72_Discrete_GraphicsLevel *graphic_level) 624 { 625 int result; 626 uint32_t mvdd; 627 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 628 struct phm_ppt_v1_information *pptable_info = 629 (struct phm_ppt_v1_information *)(hwmgr->pptable); 630 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; 631 632 result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level); 633 634 if (hwmgr->od_enabled) 635 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; 636 else 637 vdd_dep_table = pptable_info->vdd_dep_on_sclk; 638 639 /* populate graphics levels*/ 640 result = tonga_get_dependency_volt_by_clk(hwmgr, 641 vdd_dep_table, engine_clock, 642 &graphic_level->MinVoltage, &mvdd); 643 PP_ASSERT_WITH_CODE((!result), 644 "can not find VDDC voltage value for VDDC " 645 "engine clock dependency table", return result); 646 647 /* SCLK frequency in units of 10KHz*/ 648 graphic_level->SclkFrequency = engine_clock; 649 /* Indicates maximum activity level for this performance level. 50% for now*/ 650 graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; 651 652 graphic_level->CcPwrDynRm = 0; 653 graphic_level->CcPwrDynRm1 = 0; 654 /* this level can be used if activity is high enough.*/ 655 graphic_level->EnabledForActivity = 0; 656 /* this level can be used for throttling.*/ 657 graphic_level->EnabledForThrottle = 1; 658 graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; 659 graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; 660 graphic_level->VoltageDownHyst = 0; 661 graphic_level->PowerThrottle = 0; 662 663 data->display_timing.min_clock_in_sr = 664 hwmgr->display_config->min_core_set_clock_in_sr; 665 666 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 667 PHM_PlatformCaps_SclkDeepSleep)) 668 graphic_level->DeepSleepDivId = 669 smu7_get_sleep_divider_id_from_clock(engine_clock, 670 data->display_timing.min_clock_in_sr); 671 672 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ 673 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 674 675 if (!result) { 676 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ 677 /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/ 678 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); 679 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); 680 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); 681 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); 682 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); 683 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); 684 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); 685 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); 686 } 687 688 return result; 689 } 690 691 static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 692 { 693 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 694 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 695 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 696 struct smu7_dpm_table *dpm_table = &data->dpm_table; 697 struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table; 698 uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count; 699 uint32_t level_array_address = smu_data->smu7_data.dpm_table_start + 700 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); 701 702 uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) * 703 SMU72_MAX_LEVELS_GRAPHICS; 704 705 SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; 706 707 uint32_t i, max_entry; 708 uint8_t highest_pcie_level_enabled = 0; 709 uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; 710 uint8_t count = 0; 711 int result = 0; 712 713 memset(levels, 0x00, level_array_size); 714 715 for (i = 0; i < dpm_table->sclk_table.count; i++) { 716 result = tonga_populate_single_graphic_level(hwmgr, 717 dpm_table->sclk_table.dpm_levels[i].value, 718 &(smu_data->smc_state_table.GraphicsLevel[i])); 719 if (result != 0) 720 return result; 721 722 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ 723 if (i > 1) 724 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; 725 } 726 727 /* Only enable level 0 for now. */ 728 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; 729 730 /* set highest level watermark to high */ 731 if (dpm_table->sclk_table.count > 1) 732 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = 733 PPSMC_DISPLAY_WATERMARK_HIGH; 734 735 smu_data->smc_state_table.GraphicsDpmLevelCount = 736 (uint8_t)dpm_table->sclk_table.count; 737 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 738 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); 739 740 if (pcie_table != NULL) { 741 PP_ASSERT_WITH_CODE((pcie_entry_count >= 1), 742 "There must be 1 or more PCIE levels defined in PPTable.", 743 return -EINVAL); 744 max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/ 745 for (i = 0; i < dpm_table->sclk_table.count; i++) { 746 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = 747 (uint8_t) ((i < max_entry) ? i : max_entry); 748 } 749 } else { 750 if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask) 751 pr_err("Pcie Dpm Enablemask is 0 !"); 752 753 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && 754 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 755 (1<<(highest_pcie_level_enabled+1))) != 0)) { 756 highest_pcie_level_enabled++; 757 } 758 759 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && 760 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 761 (1<<lowest_pcie_level_enabled)) == 0)) { 762 lowest_pcie_level_enabled++; 763 } 764 765 while ((count < highest_pcie_level_enabled) && 766 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 767 (1<<(lowest_pcie_level_enabled+1+count))) == 0)) { 768 count++; 769 } 770 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? 771 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; 772 773 774 /* set pcieDpmLevel to highest_pcie_level_enabled*/ 775 for (i = 2; i < dpm_table->sclk_table.count; i++) 776 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; 777 778 /* set pcieDpmLevel to lowest_pcie_level_enabled*/ 779 smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; 780 781 /* set pcieDpmLevel to mid_pcie_level_enabled*/ 782 smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; 783 } 784 /* level count will send to smc once at init smc table and never change*/ 785 result = smu7_copy_bytes_to_smc(hwmgr, level_array_address, 786 (uint8_t *)levels, (uint32_t)level_array_size, 787 SMC_RAM_END); 788 789 return result; 790 } 791 792 static int tonga_calculate_mclk_params( 793 struct pp_hwmgr *hwmgr, 794 uint32_t memory_clock, 795 SMU72_Discrete_MemoryLevel *mclk, 796 bool strobe_mode, 797 bool dllStateOn 798 ) 799 { 800 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 801 802 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 803 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 804 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; 805 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; 806 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; 807 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; 808 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; 809 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; 810 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; 811 812 pp_atomctrl_memory_clock_param mpll_param; 813 int result; 814 815 result = atomctrl_get_memory_pll_dividers_si(hwmgr, 816 memory_clock, &mpll_param, strobe_mode); 817 PP_ASSERT_WITH_CODE( 818 !result, 819 "Error retrieving Memory Clock Parameters from VBIOS.", 820 return result); 821 822 /* MPLL_FUNC_CNTL setup*/ 823 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, 824 mpll_param.bw_ctrl); 825 826 /* MPLL_FUNC_CNTL_1 setup*/ 827 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 828 MPLL_FUNC_CNTL_1, CLKF, 829 mpll_param.mpll_fb_divider.cl_kf); 830 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 831 MPLL_FUNC_CNTL_1, CLKFRAC, 832 mpll_param.mpll_fb_divider.clk_frac); 833 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 834 MPLL_FUNC_CNTL_1, VCO_MODE, 835 mpll_param.vco_mode); 836 837 /* MPLL_AD_FUNC_CNTL setup*/ 838 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, 839 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, 840 mpll_param.mpll_post_divider); 841 842 if (data->is_memory_gddr5) { 843 /* MPLL_DQ_FUNC_CNTL setup*/ 844 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 845 MPLL_DQ_FUNC_CNTL, YCLK_SEL, 846 mpll_param.yclk_sel); 847 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 848 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, 849 mpll_param.mpll_post_divider); 850 } 851 852 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 853 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { 854 /* 855 ************************************ 856 Fref = Reference Frequency 857 NF = Feedback divider ratio 858 NR = Reference divider ratio 859 Fnom = Nominal VCO output frequency = Fref * NF / NR 860 Fs = Spreading Rate 861 D = Percentage down-spread / 2 862 Fint = Reference input frequency to PFD = Fref / NR 863 NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) 864 CLKS = NS - 1 = ISS_STEP_NUM[11:0] 865 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) 866 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] 867 ************************************* 868 */ 869 pp_atomctrl_internal_ss_info ss_info; 870 uint32_t freq_nom; 871 uint32_t tmp; 872 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); 873 874 /* for GDDR5 for all modes and DDR3 */ 875 if (1 == mpll_param.qdr) 876 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); 877 else 878 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); 879 880 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ 881 tmp = (freq_nom / reference_clock); 882 tmp = tmp * tmp; 883 884 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { 885 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ 886 /* ss.Info.speed_spectrum_rate -- in unit of khz */ 887 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ 888 /* = reference_clock * 5 / speed_spectrum_rate */ 889 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; 890 891 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ 892 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ 893 uint32_t clkv = 894 (uint32_t)((((131 * ss_info.speed_spectrum_percentage * 895 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); 896 897 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); 898 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); 899 } 900 } 901 902 /* MCLK_PWRMGT_CNTL setup */ 903 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 904 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); 905 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 906 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); 907 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 908 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); 909 910 /* Save the result data to outpupt memory level structure */ 911 mclk->MclkFrequency = memory_clock; 912 mclk->MpllFuncCntl = mpll_func_cntl; 913 mclk->MpllFuncCntl_1 = mpll_func_cntl_1; 914 mclk->MpllFuncCntl_2 = mpll_func_cntl_2; 915 mclk->MpllAdFuncCntl = mpll_ad_func_cntl; 916 mclk->MpllDqFuncCntl = mpll_dq_func_cntl; 917 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; 918 mclk->DllCntl = dll_cntl; 919 mclk->MpllSs1 = mpll_ss1; 920 mclk->MpllSs2 = mpll_ss2; 921 922 return 0; 923 } 924 925 static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock, 926 bool strobe_mode) 927 { 928 uint8_t mc_para_index; 929 930 if (strobe_mode) { 931 if (memory_clock < 12500) 932 mc_para_index = 0x00; 933 else if (memory_clock > 47500) 934 mc_para_index = 0x0f; 935 else 936 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); 937 } else { 938 if (memory_clock < 65000) 939 mc_para_index = 0x00; 940 else if (memory_clock > 135000) 941 mc_para_index = 0x0f; 942 else 943 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); 944 } 945 946 return mc_para_index; 947 } 948 949 static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) 950 { 951 uint8_t mc_para_index; 952 953 if (memory_clock < 10000) 954 mc_para_index = 0; 955 else if (memory_clock >= 80000) 956 mc_para_index = 0x0f; 957 else 958 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); 959 960 return mc_para_index; 961 } 962 963 964 static int tonga_populate_single_memory_level( 965 struct pp_hwmgr *hwmgr, 966 uint32_t memory_clock, 967 SMU72_Discrete_MemoryLevel *memory_level 968 ) 969 { 970 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 971 struct phm_ppt_v1_information *pptable_info = 972 (struct phm_ppt_v1_information *)(hwmgr->pptable); 973 uint32_t mclk_edc_wr_enable_threshold = 40000; 974 uint32_t mclk_stutter_mode_threshold = 30000; 975 uint32_t mclk_edc_enable_threshold = 40000; 976 uint32_t mclk_strobe_mode_threshold = 40000; 977 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; 978 int result = 0; 979 bool dll_state_on; 980 uint32_t mvdd = 0; 981 982 if (hwmgr->od_enabled) 983 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; 984 else 985 vdd_dep_table = pptable_info->vdd_dep_on_mclk; 986 987 if (NULL != vdd_dep_table) { 988 result = tonga_get_dependency_volt_by_clk(hwmgr, 989 vdd_dep_table, 990 memory_clock, 991 &memory_level->MinVoltage, &mvdd); 992 PP_ASSERT_WITH_CODE( 993 !result, 994 "can not find MinVddc voltage value from memory VDDC " 995 "voltage dependency table", 996 return result); 997 } 998 999 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) 1000 memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value; 1001 else 1002 memory_level->MinMvdd = mvdd; 1003 1004 memory_level->EnabledForThrottle = 1; 1005 memory_level->EnabledForActivity = 0; 1006 memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; 1007 memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; 1008 memory_level->VoltageDownHyst = 0; 1009 1010 /* Indicates maximum activity level for this performance level.*/ 1011 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; 1012 memory_level->StutterEnable = 0; 1013 memory_level->StrobeEnable = 0; 1014 memory_level->EdcReadEnable = 0; 1015 memory_level->EdcWriteEnable = 0; 1016 memory_level->RttEnable = 0; 1017 1018 /* default set to low watermark. Highest level will be set to high later.*/ 1019 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1020 1021 data->display_timing.num_existing_displays = hwmgr->display_config->num_display; 1022 data->display_timing.vrefresh = hwmgr->display_config->vrefresh; 1023 1024 if ((mclk_stutter_mode_threshold != 0) && 1025 (memory_clock <= mclk_stutter_mode_threshold) && 1026 (!data->is_uvd_enabled) 1027 && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) 1028 && (data->display_timing.num_existing_displays <= 2) 1029 && (data->display_timing.num_existing_displays != 0)) 1030 memory_level->StutterEnable = 1; 1031 1032 /* decide strobe mode*/ 1033 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && 1034 (memory_clock <= mclk_strobe_mode_threshold); 1035 1036 /* decide EDC mode and memory clock ratio*/ 1037 if (data->is_memory_gddr5) { 1038 memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock, 1039 memory_level->StrobeEnable); 1040 1041 if ((mclk_edc_enable_threshold != 0) && 1042 (memory_clock > mclk_edc_enable_threshold)) { 1043 memory_level->EdcReadEnable = 1; 1044 } 1045 1046 if ((mclk_edc_wr_enable_threshold != 0) && 1047 (memory_clock > mclk_edc_wr_enable_threshold)) { 1048 memory_level->EdcWriteEnable = 1; 1049 } 1050 1051 if (memory_level->StrobeEnable) { 1052 if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >= 1053 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { 1054 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1055 } else { 1056 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; 1057 } 1058 1059 } else { 1060 dll_state_on = data->dll_default_on; 1061 } 1062 } else { 1063 memory_level->StrobeRatio = 1064 tonga_get_ddr3_mclk_frequency_ratio(memory_clock); 1065 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1066 } 1067 1068 result = tonga_calculate_mclk_params(hwmgr, 1069 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); 1070 1071 if (!result) { 1072 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd); 1073 /* MCLK frequency in units of 10KHz*/ 1074 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); 1075 /* Indicates maximum activity level for this performance level.*/ 1076 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); 1077 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); 1078 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); 1079 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); 1080 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); 1081 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); 1082 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); 1083 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); 1084 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); 1085 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); 1086 } 1087 1088 return result; 1089 } 1090 1091 int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1092 { 1093 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1094 struct tonga_smumgr *smu_data = 1095 (struct tonga_smumgr *)(hwmgr->smu_backend); 1096 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1097 int result; 1098 1099 /* populate MCLK dpm table to SMU7 */ 1100 uint32_t level_array_address = 1101 smu_data->smu7_data.dpm_table_start + 1102 offsetof(SMU72_Discrete_DpmTable, MemoryLevel); 1103 uint32_t level_array_size = 1104 sizeof(SMU72_Discrete_MemoryLevel) * 1105 SMU72_MAX_LEVELS_MEMORY; 1106 SMU72_Discrete_MemoryLevel *levels = 1107 smu_data->smc_state_table.MemoryLevel; 1108 uint32_t i; 1109 1110 memset(levels, 0x00, level_array_size); 1111 1112 for (i = 0; i < dpm_table->mclk_table.count; i++) { 1113 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), 1114 "can not populate memory level as memory clock is zero", 1115 return -EINVAL); 1116 result = tonga_populate_single_memory_level( 1117 hwmgr, 1118 dpm_table->mclk_table.dpm_levels[i].value, 1119 &(smu_data->smc_state_table.MemoryLevel[i])); 1120 if (result) 1121 return result; 1122 } 1123 1124 /* Only enable level 0 for now.*/ 1125 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; 1126 1127 /* 1128 * in order to prevent MC activity from stutter mode to push DPM up. 1129 * the UVD change complements this by putting the MCLK in a higher state 1130 * by default such that we are not effected by up threshold or and MCLK DPM latency. 1131 */ 1132 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; 1133 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); 1134 1135 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; 1136 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); 1137 /* set highest level watermark to high*/ 1138 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; 1139 1140 /* level count will send to smc once at init smc table and never change*/ 1141 result = smu7_copy_bytes_to_smc(hwmgr, 1142 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size, 1143 SMC_RAM_END); 1144 1145 return result; 1146 } 1147 1148 static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, 1149 uint32_t mclk, SMIO_Pattern *smio_pattern) 1150 { 1151 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1152 struct phm_ppt_v1_information *table_info = 1153 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1154 uint32_t i = 0; 1155 1156 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { 1157 /* find mvdd value which clock is more than request */ 1158 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { 1159 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { 1160 /* Always round to higher voltage. */ 1161 smio_pattern->Voltage = 1162 data->mvdd_voltage_table.entries[i].value; 1163 break; 1164 } 1165 } 1166 1167 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, 1168 "MVDD Voltage is outside the supported range.", 1169 return -EINVAL); 1170 } else { 1171 return -EINVAL; 1172 } 1173 1174 return 0; 1175 } 1176 1177 1178 static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, 1179 SMU72_Discrete_DpmTable *table) 1180 { 1181 int result = 0; 1182 struct tonga_smumgr *smu_data = 1183 (struct tonga_smumgr *)(hwmgr->smu_backend); 1184 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1185 struct pp_atomctrl_clock_dividers_vi dividers; 1186 1187 SMIO_Pattern voltage_level; 1188 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 1189 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; 1190 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 1191 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 1192 1193 /* The ACPI state should not do DPM on DC (or ever).*/ 1194 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; 1195 1196 table->ACPILevel.MinVoltage = 1197 smu_data->smc_state_table.GraphicsLevel[0].MinVoltage; 1198 1199 /* assign zero for now*/ 1200 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); 1201 1202 /* get the engine clock dividers for this clock value*/ 1203 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, 1204 table->ACPILevel.SclkFrequency, ÷rs); 1205 1206 PP_ASSERT_WITH_CODE(result == 0, 1207 "Error retrieving Engine Clock dividers from VBIOS.", 1208 return result); 1209 1210 /* divider ID for required SCLK*/ 1211 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; 1212 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1213 table->ACPILevel.DeepSleepDivId = 0; 1214 1215 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 1216 SPLL_PWRON, 0); 1217 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 1218 SPLL_RESET, 1); 1219 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, 1220 SCLK_MUX_SEL, 4); 1221 1222 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; 1223 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; 1224 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 1225 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 1226 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 1227 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 1228 table->ACPILevel.CcPwrDynRm = 0; 1229 table->ACPILevel.CcPwrDynRm1 = 0; 1230 1231 1232 /* For various features to be enabled/disabled while this level is active.*/ 1233 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); 1234 /* SCLK frequency in units of 10KHz*/ 1235 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); 1236 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); 1237 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); 1238 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); 1239 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); 1240 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); 1241 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); 1242 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); 1243 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); 1244 1245 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ 1246 table->MemoryACPILevel.MinVoltage = 1247 smu_data->smc_state_table.MemoryLevel[0].MinVoltage; 1248 1249 /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ 1250 1251 if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level)) 1252 table->MemoryACPILevel.MinMvdd = 1253 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); 1254 else 1255 table->MemoryACPILevel.MinMvdd = 0; 1256 1257 /* Force reset on DLL*/ 1258 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1259 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); 1260 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1261 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); 1262 1263 /* Disable DLL in ACPIState*/ 1264 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1265 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); 1266 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1267 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); 1268 1269 /* Enable DLL bypass signal*/ 1270 dll_cntl = PHM_SET_FIELD(dll_cntl, 1271 DLL_CNTL, MRDCK0_BYPASS, 0); 1272 dll_cntl = PHM_SET_FIELD(dll_cntl, 1273 DLL_CNTL, MRDCK1_BYPASS, 0); 1274 1275 table->MemoryACPILevel.DllCntl = 1276 PP_HOST_TO_SMC_UL(dll_cntl); 1277 table->MemoryACPILevel.MclkPwrmgtCntl = 1278 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); 1279 table->MemoryACPILevel.MpllAdFuncCntl = 1280 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); 1281 table->MemoryACPILevel.MpllDqFuncCntl = 1282 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); 1283 table->MemoryACPILevel.MpllFuncCntl = 1284 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); 1285 table->MemoryACPILevel.MpllFuncCntl_1 = 1286 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); 1287 table->MemoryACPILevel.MpllFuncCntl_2 = 1288 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); 1289 table->MemoryACPILevel.MpllSs1 = 1290 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); 1291 table->MemoryACPILevel.MpllSs2 = 1292 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); 1293 1294 table->MemoryACPILevel.EnabledForThrottle = 0; 1295 table->MemoryACPILevel.EnabledForActivity = 0; 1296 table->MemoryACPILevel.UpHyst = 0; 1297 table->MemoryACPILevel.DownHyst = 100; 1298 table->MemoryACPILevel.VoltageDownHyst = 0; 1299 /* Indicates maximum activity level for this performance level.*/ 1300 table->MemoryACPILevel.ActivityLevel = 1301 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); 1302 1303 table->MemoryACPILevel.StutterEnable = 0; 1304 table->MemoryACPILevel.StrobeEnable = 0; 1305 table->MemoryACPILevel.EdcReadEnable = 0; 1306 table->MemoryACPILevel.EdcWriteEnable = 0; 1307 table->MemoryACPILevel.RttEnable = 0; 1308 1309 return result; 1310 } 1311 1312 static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, 1313 SMU72_Discrete_DpmTable *table) 1314 { 1315 int result = 0; 1316 1317 uint8_t count; 1318 pp_atomctrl_clock_dividers_vi dividers; 1319 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1320 struct phm_ppt_v1_information *pptable_info = 1321 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1322 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1323 pptable_info->mm_dep_table; 1324 1325 table->UvdLevelCount = (uint8_t) (mm_table->count); 1326 table->UvdBootLevel = 0; 1327 1328 for (count = 0; count < table->UvdLevelCount; count++) { 1329 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; 1330 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; 1331 table->UvdLevel[count].MinVoltage.Vddc = 1332 phm_get_voltage_index(pptable_info->vddc_lookup_table, 1333 mm_table->entries[count].vddc); 1334 table->UvdLevel[count].MinVoltage.VddGfx = 1335 (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? 1336 phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 1337 mm_table->entries[count].vddgfx) : 0; 1338 table->UvdLevel[count].MinVoltage.Vddci = 1339 phm_get_voltage_id(&data->vddci_voltage_table, 1340 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); 1341 table->UvdLevel[count].MinVoltage.Phases = 1; 1342 1343 /* retrieve divider value for VBIOS */ 1344 result = atomctrl_get_dfs_pll_dividers_vi( 1345 hwmgr, 1346 table->UvdLevel[count].VclkFrequency, 1347 ÷rs); 1348 1349 PP_ASSERT_WITH_CODE((!result), 1350 "can not find divide id for Vclk clock", 1351 return result); 1352 1353 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; 1354 1355 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1356 table->UvdLevel[count].DclkFrequency, ÷rs); 1357 PP_ASSERT_WITH_CODE((!result), 1358 "can not find divide id for Dclk clock", 1359 return result); 1360 1361 table->UvdLevel[count].DclkDivider = 1362 (uint8_t)dividers.pll_post_divider; 1363 1364 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); 1365 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); 1366 } 1367 1368 return result; 1369 1370 } 1371 1372 static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr, 1373 SMU72_Discrete_DpmTable *table) 1374 { 1375 int result = 0; 1376 1377 uint8_t count; 1378 pp_atomctrl_clock_dividers_vi dividers; 1379 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1380 struct phm_ppt_v1_information *pptable_info = 1381 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1382 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1383 pptable_info->mm_dep_table; 1384 1385 table->VceLevelCount = (uint8_t) (mm_table->count); 1386 table->VceBootLevel = 0; 1387 1388 for (count = 0; count < table->VceLevelCount; count++) { 1389 table->VceLevel[count].Frequency = 1390 mm_table->entries[count].eclk; 1391 table->VceLevel[count].MinVoltage.Vddc = 1392 phm_get_voltage_index(pptable_info->vddc_lookup_table, 1393 mm_table->entries[count].vddc); 1394 table->VceLevel[count].MinVoltage.VddGfx = 1395 (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? 1396 phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 1397 mm_table->entries[count].vddgfx) : 0; 1398 table->VceLevel[count].MinVoltage.Vddci = 1399 phm_get_voltage_id(&data->vddci_voltage_table, 1400 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); 1401 table->VceLevel[count].MinVoltage.Phases = 1; 1402 1403 /* retrieve divider value for VBIOS */ 1404 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1405 table->VceLevel[count].Frequency, ÷rs); 1406 PP_ASSERT_WITH_CODE((!result), 1407 "can not find divide id for VCE engine clock", 1408 return result); 1409 1410 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1411 1412 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); 1413 } 1414 1415 return result; 1416 } 1417 1418 static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr, 1419 SMU72_Discrete_DpmTable *table) 1420 { 1421 int result = 0; 1422 uint8_t count; 1423 pp_atomctrl_clock_dividers_vi dividers; 1424 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1425 struct phm_ppt_v1_information *pptable_info = 1426 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1427 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1428 pptable_info->mm_dep_table; 1429 1430 table->AcpLevelCount = (uint8_t) (mm_table->count); 1431 table->AcpBootLevel = 0; 1432 1433 for (count = 0; count < table->AcpLevelCount; count++) { 1434 table->AcpLevel[count].Frequency = 1435 pptable_info->mm_dep_table->entries[count].aclk; 1436 table->AcpLevel[count].MinVoltage.Vddc = 1437 phm_get_voltage_index(pptable_info->vddc_lookup_table, 1438 mm_table->entries[count].vddc); 1439 table->AcpLevel[count].MinVoltage.VddGfx = 1440 (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ? 1441 phm_get_voltage_index(pptable_info->vddgfx_lookup_table, 1442 mm_table->entries[count].vddgfx) : 0; 1443 table->AcpLevel[count].MinVoltage.Vddci = 1444 phm_get_voltage_id(&data->vddci_voltage_table, 1445 mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); 1446 table->AcpLevel[count].MinVoltage.Phases = 1; 1447 1448 /* retrieve divider value for VBIOS */ 1449 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1450 table->AcpLevel[count].Frequency, ÷rs); 1451 PP_ASSERT_WITH_CODE((!result), 1452 "can not find divide id for engine clock", return result); 1453 1454 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1455 1456 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); 1457 } 1458 1459 return result; 1460 } 1461 1462 static int tonga_populate_memory_timing_parameters( 1463 struct pp_hwmgr *hwmgr, 1464 uint32_t engine_clock, 1465 uint32_t memory_clock, 1466 struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs 1467 ) 1468 { 1469 uint32_t dramTiming; 1470 uint32_t dramTiming2; 1471 uint32_t burstTime; 1472 int result; 1473 1474 result = atomctrl_set_engine_dram_timings_rv770(hwmgr, 1475 engine_clock, memory_clock); 1476 1477 PP_ASSERT_WITH_CODE(result == 0, 1478 "Error calling VBIOS to set DRAM_TIMING.", return result); 1479 1480 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 1481 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 1482 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 1483 1484 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); 1485 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); 1486 arb_regs->McArbBurstTime = (uint8_t)burstTime; 1487 1488 return 0; 1489 } 1490 1491 static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) 1492 { 1493 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1494 struct tonga_smumgr *smu_data = 1495 (struct tonga_smumgr *)(hwmgr->smu_backend); 1496 int result = 0; 1497 SMU72_Discrete_MCArbDramTimingTable arb_regs; 1498 uint32_t i, j; 1499 1500 memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable)); 1501 1502 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1503 for (j = 0; j < data->dpm_table.mclk_table.count; j++) { 1504 result = tonga_populate_memory_timing_parameters 1505 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, 1506 data->dpm_table.mclk_table.dpm_levels[j].value, 1507 &arb_regs.entries[i][j]); 1508 1509 if (result) 1510 break; 1511 } 1512 } 1513 1514 if (!result) { 1515 result = smu7_copy_bytes_to_smc( 1516 hwmgr, 1517 smu_data->smu7_data.arb_table_start, 1518 (uint8_t *)&arb_regs, 1519 sizeof(SMU72_Discrete_MCArbDramTimingTable), 1520 SMC_RAM_END 1521 ); 1522 } 1523 1524 return result; 1525 } 1526 1527 static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr, 1528 SMU72_Discrete_DpmTable *table) 1529 { 1530 int result = 0; 1531 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1532 struct tonga_smumgr *smu_data = 1533 (struct tonga_smumgr *)(hwmgr->smu_backend); 1534 table->GraphicsBootLevel = 0; 1535 table->MemoryBootLevel = 0; 1536 1537 /* find boot level from dpm table*/ 1538 result = phm_find_boot_level(&(data->dpm_table.sclk_table), 1539 data->vbios_boot_state.sclk_bootup_value, 1540 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); 1541 1542 if (result != 0) { 1543 smu_data->smc_state_table.GraphicsBootLevel = 0; 1544 pr_err("[powerplay] VBIOS did not find boot engine " 1545 "clock value in dependency table. " 1546 "Using Graphics DPM level 0 !"); 1547 result = 0; 1548 } 1549 1550 result = phm_find_boot_level(&(data->dpm_table.mclk_table), 1551 data->vbios_boot_state.mclk_bootup_value, 1552 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); 1553 1554 if (result != 0) { 1555 smu_data->smc_state_table.MemoryBootLevel = 0; 1556 pr_err("[powerplay] VBIOS did not find boot " 1557 "engine clock value in dependency table." 1558 "Using Memory DPM level 0 !"); 1559 result = 0; 1560 } 1561 1562 table->BootVoltage.Vddc = 1563 phm_get_voltage_id(&(data->vddc_voltage_table), 1564 data->vbios_boot_state.vddc_bootup_value); 1565 table->BootVoltage.VddGfx = 1566 phm_get_voltage_id(&(data->vddgfx_voltage_table), 1567 data->vbios_boot_state.vddgfx_bootup_value); 1568 table->BootVoltage.Vddci = 1569 phm_get_voltage_id(&(data->vddci_voltage_table), 1570 data->vbios_boot_state.vddci_bootup_value); 1571 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; 1572 1573 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); 1574 1575 return result; 1576 } 1577 1578 static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) 1579 { 1580 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, 1581 volt_with_cks, value; 1582 uint16_t clock_freq_u16; 1583 struct tonga_smumgr *smu_data = 1584 (struct tonga_smumgr *)(hwmgr->smu_backend); 1585 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, 1586 volt_offset = 0; 1587 struct phm_ppt_v1_information *table_info = 1588 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1589 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = 1590 table_info->vdd_dep_on_sclk; 1591 uint32_t hw_revision, dev_id; 1592 struct amdgpu_device *adev = hwmgr->adev; 1593 1594 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; 1595 1596 hw_revision = adev->pdev->revision; 1597 dev_id = adev->pdev->device; 1598 1599 /* Read SMU_Eefuse to read and calculate RO and determine 1600 * if the part is SS or FF. if RO >= 1660MHz, part is FF. 1601 */ 1602 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1603 ixSMU_EFUSE_0 + (146 * 4)); 1604 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1605 ixSMU_EFUSE_0 + (148 * 4)); 1606 efuse &= 0xFF000000; 1607 efuse = efuse >> 24; 1608 efuse2 &= 0xF; 1609 1610 if (efuse2 == 1) 1611 ro = (2300 - 1350) * efuse / 255 + 1350; 1612 else 1613 ro = (2500 - 1000) * efuse / 255 + 1000; 1614 1615 if (ro >= 1660) 1616 type = 0; 1617 else 1618 type = 1; 1619 1620 /* Populate Stretch amount */ 1621 smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; 1622 1623 1624 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ 1625 for (i = 0; i < sclk_table->count; i++) { 1626 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= 1627 sclk_table->entries[i].cks_enable << i; 1628 if (ASICID_IS_TONGA_P(dev_id, hw_revision)) { 1629 volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 * 1630 (sclk_table->entries[i].clk/100) / 10000) * 1000 / 1631 (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000))); 1632 volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 * 1633 (sclk_table->entries[i].clk/100) / 100000) * 1000 / 1634 (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000))); 1635 } else { 1636 volt_without_cks = (uint32_t)((14041 * 1637 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / 1638 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); 1639 volt_with_cks = (uint32_t)((13946 * 1640 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / 1641 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); 1642 } 1643 if (volt_without_cks >= volt_with_cks) 1644 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + 1645 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); 1646 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; 1647 } 1648 1649 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1650 STRETCH_ENABLE, 0x0); 1651 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1652 masterReset, 0x1); 1653 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1654 staticEnable, 0x1); 1655 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1656 masterReset, 0x0); 1657 1658 /* Populate CKS Lookup Table */ 1659 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) 1660 stretch_amount2 = 0; 1661 else if (stretch_amount == 3 || stretch_amount == 4) 1662 stretch_amount2 = 1; 1663 else { 1664 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1665 PHM_PlatformCaps_ClockStretcher); 1666 PP_ASSERT_WITH_CODE(false, 1667 "Stretch Amount in PPTable not supported", 1668 return -EINVAL); 1669 } 1670 1671 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1672 ixPWR_CKS_CNTL); 1673 value &= 0xFFC2FF87; 1674 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = 1675 tonga_clock_stretcher_lookup_table[stretch_amount2][0]; 1676 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = 1677 tonga_clock_stretcher_lookup_table[stretch_amount2][1]; 1678 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. 1679 GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. 1680 SclkFrequency) / 100); 1681 if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] < 1682 clock_freq_u16 && 1683 tonga_clock_stretcher_lookup_table[stretch_amount2][1] > 1684 clock_freq_u16) { 1685 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ 1686 value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; 1687 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ 1688 value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; 1689 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ 1690 value |= (tonga_clock_stretch_amount_conversion 1691 [tonga_clock_stretcher_lookup_table[stretch_amount2][3]] 1692 [stretch_amount]) << 3; 1693 } 1694 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. 1695 CKS_LOOKUPTableEntry[0].minFreq); 1696 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. 1697 CKS_LOOKUPTableEntry[0].maxFreq); 1698 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = 1699 tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; 1700 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= 1701 (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; 1702 1703 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1704 ixPWR_CKS_CNTL, value); 1705 1706 /* Populate DDT Lookup Table */ 1707 for (i = 0; i < 4; i++) { 1708 /* Assign the minimum and maximum VID stored 1709 * in the last row of Clock Stretcher Voltage Table. 1710 */ 1711 smu_data->smc_state_table.ClockStretcherDataTable. 1712 ClockStretcherDataTableEntry[i].minVID = 1713 (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2]; 1714 smu_data->smc_state_table.ClockStretcherDataTable. 1715 ClockStretcherDataTableEntry[i].maxVID = 1716 (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3]; 1717 /* Loop through each SCLK and check the frequency 1718 * to see if it lies within the frequency for clock stretcher. 1719 */ 1720 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { 1721 cks_setting = 0; 1722 clock_freq = PP_SMC_TO_HOST_UL( 1723 smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); 1724 /* Check the allowed frequency against the sclk level[j]. 1725 * Sclk's endianness has already been converted, 1726 * and it's in 10Khz unit, 1727 * as opposed to Data table, which is in Mhz unit. 1728 */ 1729 if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) { 1730 cks_setting |= 0x2; 1731 if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100) 1732 cks_setting |= 0x1; 1733 } 1734 smu_data->smc_state_table.ClockStretcherDataTable. 1735 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); 1736 } 1737 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. 1738 ClockStretcherDataTable. 1739 ClockStretcherDataTableEntry[i].setting); 1740 } 1741 1742 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1743 ixPWR_CKS_CNTL); 1744 value &= 0xFFFFFFFE; 1745 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1746 ixPWR_CKS_CNTL, value); 1747 1748 return 0; 1749 } 1750 1751 static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr, 1752 SMU72_Discrete_DpmTable *table) 1753 { 1754 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1755 uint16_t config; 1756 1757 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 1758 /* Splitted mode */ 1759 config = VR_SVI2_PLANE_1; 1760 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); 1761 1762 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 1763 config = VR_SVI2_PLANE_2; 1764 table->VRConfig |= config; 1765 } else { 1766 pr_err("VDDC and VDDGFX should " 1767 "be both on SVI2 control in splitted mode !\n"); 1768 } 1769 } else { 1770 /* Merged mode */ 1771 config = VR_MERGED_WITH_VDDC; 1772 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT); 1773 1774 /* Set Vddc Voltage Controller */ 1775 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 1776 config = VR_SVI2_PLANE_1; 1777 table->VRConfig |= config; 1778 } else { 1779 pr_err("VDDC should be on " 1780 "SVI2 control in merged mode !\n"); 1781 } 1782 } 1783 1784 /* Set Vddci Voltage Controller */ 1785 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 1786 config = VR_SVI2_PLANE_2; /* only in merged mode */ 1787 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); 1788 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 1789 config = VR_SMIO_PATTERN_1; 1790 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT); 1791 } 1792 1793 /* Set Mvdd Voltage Controller */ 1794 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 1795 config = VR_SMIO_PATTERN_2; 1796 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT); 1797 } 1798 1799 return 0; 1800 } 1801 1802 static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr) 1803 { 1804 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 1805 uint32_t tmp; 1806 int result; 1807 1808 /* 1809 * This is a read-modify-write on the first byte of the ARB table. 1810 * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure 1811 * is the field 'current'. 1812 * This solution is ugly, but we never write the whole table only 1813 * individual fields in it. 1814 * In reality this field should not be in that structure 1815 * but in a soft register. 1816 */ 1817 result = smu7_read_smc_sram_dword(hwmgr, 1818 smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); 1819 1820 if (result != 0) 1821 return result; 1822 1823 tmp &= 0x00FFFFFF; 1824 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; 1825 1826 return smu7_write_smc_sram_dword(hwmgr, 1827 smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); 1828 } 1829 1830 1831 static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) 1832 { 1833 struct tonga_smumgr *smu_data = 1834 (struct tonga_smumgr *)(hwmgr->smu_backend); 1835 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1836 SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); 1837 struct phm_ppt_v1_information *table_info = 1838 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1839 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; 1840 int i, j, k; 1841 const uint16_t *pdef1, *pdef2; 1842 1843 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( 1844 (uint16_t)(cac_dtp_table->usTDP * 256)); 1845 dpm_table->TargetTdp = PP_HOST_TO_SMC_US( 1846 (uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); 1847 1848 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, 1849 "Target Operating Temp is out of Range !", 1850 ); 1851 1852 dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); 1853 dpm_table->GpuTjHyst = 8; 1854 1855 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; 1856 1857 dpm_table->BAPM_TEMP_GRADIENT = 1858 PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); 1859 pdef1 = defaults->bapmti_r; 1860 pdef2 = defaults->bapmti_rc; 1861 1862 for (i = 0; i < SMU72_DTE_ITERATIONS; i++) { 1863 for (j = 0; j < SMU72_DTE_SOURCES; j++) { 1864 for (k = 0; k < SMU72_DTE_SINKS; k++) { 1865 dpm_table->BAPMTI_R[i][j][k] = 1866 PP_HOST_TO_SMC_US(*pdef1); 1867 dpm_table->BAPMTI_RC[i][j][k] = 1868 PP_HOST_TO_SMC_US(*pdef2); 1869 pdef1++; 1870 pdef2++; 1871 } 1872 } 1873 } 1874 1875 return 0; 1876 } 1877 1878 static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr) 1879 { 1880 struct tonga_smumgr *smu_data = 1881 (struct tonga_smumgr *)(hwmgr->smu_backend); 1882 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1883 1884 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; 1885 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC; 1886 smu_data->power_tune_table.SviLoadLineTrimVddC = 3; 1887 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; 1888 1889 return 0; 1890 } 1891 1892 static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr) 1893 { 1894 uint16_t tdc_limit; 1895 struct tonga_smumgr *smu_data = 1896 (struct tonga_smumgr *)(hwmgr->smu_backend); 1897 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1898 struct phm_ppt_v1_information *table_info = 1899 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1900 1901 /* TDC number of fraction bits are changed from 8 to 7 1902 * for Fiji as requested by SMC team 1903 */ 1904 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256); 1905 smu_data->power_tune_table.TDC_VDDC_PkgLimit = 1906 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); 1907 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = 1908 defaults->tdc_vddc_throttle_release_limit_perc; 1909 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; 1910 1911 return 0; 1912 } 1913 1914 static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) 1915 { 1916 struct tonga_smumgr *smu_data = 1917 (struct tonga_smumgr *)(hwmgr->smu_backend); 1918 const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults; 1919 uint32_t temp; 1920 1921 if (smu7_read_smc_sram_dword(hwmgr, 1922 fuse_table_offset + 1923 offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl), 1924 (uint32_t *)&temp, SMC_RAM_END)) 1925 PP_ASSERT_WITH_CODE(false, 1926 "Attempt to read PmFuses.DW6 " 1927 "(SviLoadLineEn) from SMC Failed !", 1928 return -EINVAL); 1929 else 1930 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; 1931 1932 return 0; 1933 } 1934 1935 static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr) 1936 { 1937 int i; 1938 struct tonga_smumgr *smu_data = 1939 (struct tonga_smumgr *)(hwmgr->smu_backend); 1940 1941 /* Currently not used. Set all to zero. */ 1942 for (i = 0; i < 16; i++) 1943 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; 1944 1945 return 0; 1946 } 1947 1948 static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) 1949 { 1950 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 1951 1952 if ((hwmgr->thermal_controller.advanceFanControlParameters. 1953 usFanOutputSensitivity & (1 << 15)) || 1954 (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0)) 1955 hwmgr->thermal_controller.advanceFanControlParameters. 1956 usFanOutputSensitivity = hwmgr->thermal_controller. 1957 advanceFanControlParameters.usDefaultFanOutputSensitivity; 1958 1959 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = 1960 PP_HOST_TO_SMC_US(hwmgr->thermal_controller. 1961 advanceFanControlParameters.usFanOutputSensitivity); 1962 return 0; 1963 } 1964 1965 static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr) 1966 { 1967 int i; 1968 struct tonga_smumgr *smu_data = 1969 (struct tonga_smumgr *)(hwmgr->smu_backend); 1970 1971 /* Currently not used. Set all to zero. */ 1972 for (i = 0; i < 16; i++) 1973 smu_data->power_tune_table.GnbLPML[i] = 0; 1974 1975 return 0; 1976 } 1977 1978 static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) 1979 { 1980 struct tonga_smumgr *smu_data = 1981 (struct tonga_smumgr *)(hwmgr->smu_backend); 1982 struct phm_ppt_v1_information *table_info = 1983 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1984 uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; 1985 uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; 1986 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; 1987 1988 hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); 1989 lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); 1990 1991 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = 1992 CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); 1993 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = 1994 CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); 1995 1996 return 0; 1997 } 1998 1999 static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr) 2000 { 2001 struct tonga_smumgr *smu_data = 2002 (struct tonga_smumgr *)(hwmgr->smu_backend); 2003 uint32_t pm_fuse_table_offset; 2004 2005 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2006 PHM_PlatformCaps_PowerContainment)) { 2007 if (smu7_read_smc_sram_dword(hwmgr, 2008 SMU72_FIRMWARE_HEADER_LOCATION + 2009 offsetof(SMU72_Firmware_Header, PmFuseTable), 2010 &pm_fuse_table_offset, SMC_RAM_END)) 2011 PP_ASSERT_WITH_CODE(false, 2012 "Attempt to get pm_fuse_table_offset Failed !", 2013 return -EINVAL); 2014 2015 /* DW6 */ 2016 if (tonga_populate_svi_load_line(hwmgr)) 2017 PP_ASSERT_WITH_CODE(false, 2018 "Attempt to populate SviLoadLine Failed !", 2019 return -EINVAL); 2020 /* DW7 */ 2021 if (tonga_populate_tdc_limit(hwmgr)) 2022 PP_ASSERT_WITH_CODE(false, 2023 "Attempt to populate TDCLimit Failed !", 2024 return -EINVAL); 2025 /* DW8 */ 2026 if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset)) 2027 PP_ASSERT_WITH_CODE(false, 2028 "Attempt to populate TdcWaterfallCtl Failed !", 2029 return -EINVAL); 2030 2031 /* DW9-DW12 */ 2032 if (tonga_populate_temperature_scaler(hwmgr) != 0) 2033 PP_ASSERT_WITH_CODE(false, 2034 "Attempt to populate LPMLTemperatureScaler Failed !", 2035 return -EINVAL); 2036 2037 /* DW13-DW14 */ 2038 if (tonga_populate_fuzzy_fan(hwmgr)) 2039 PP_ASSERT_WITH_CODE(false, 2040 "Attempt to populate Fuzzy Fan " 2041 "Control parameters Failed !", 2042 return -EINVAL); 2043 2044 /* DW15-DW18 */ 2045 if (tonga_populate_gnb_lpml(hwmgr)) 2046 PP_ASSERT_WITH_CODE(false, 2047 "Attempt to populate GnbLPML Failed !", 2048 return -EINVAL); 2049 2050 /* DW20 */ 2051 if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr)) 2052 PP_ASSERT_WITH_CODE( 2053 false, 2054 "Attempt to populate BapmVddCBaseLeakage " 2055 "Hi and Lo Sidd Failed !", 2056 return -EINVAL); 2057 2058 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, 2059 (uint8_t *)&smu_data->power_tune_table, 2060 sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END)) 2061 PP_ASSERT_WITH_CODE(false, 2062 "Attempt to download PmFuseTable Failed !", 2063 return -EINVAL); 2064 } 2065 return 0; 2066 } 2067 2068 static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, 2069 SMU72_Discrete_MCRegisters *mc_reg_table) 2070 { 2071 const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend; 2072 2073 uint32_t i, j; 2074 2075 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { 2076 if (smu_data->mc_reg_table.validflag & 1<<j) { 2077 PP_ASSERT_WITH_CODE( 2078 i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE, 2079 "Index of mc_reg_table->address[] array " 2080 "out of boundary", 2081 return -EINVAL); 2082 mc_reg_table->address[i].s0 = 2083 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); 2084 mc_reg_table->address[i].s1 = 2085 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); 2086 i++; 2087 } 2088 } 2089 2090 mc_reg_table->last = (uint8_t)i; 2091 2092 return 0; 2093 } 2094 2095 /*convert register values from driver to SMC format */ 2096 static void tonga_convert_mc_registers( 2097 const struct tonga_mc_reg_entry *entry, 2098 SMU72_Discrete_MCRegisterSet *data, 2099 uint32_t num_entries, uint32_t valid_flag) 2100 { 2101 uint32_t i, j; 2102 2103 for (i = 0, j = 0; j < num_entries; j++) { 2104 if (valid_flag & 1<<j) { 2105 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); 2106 i++; 2107 } 2108 } 2109 } 2110 2111 static int tonga_convert_mc_reg_table_entry_to_smc( 2112 struct pp_hwmgr *hwmgr, 2113 const uint32_t memory_clock, 2114 SMU72_Discrete_MCRegisterSet *mc_reg_table_data 2115 ) 2116 { 2117 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2118 uint32_t i = 0; 2119 2120 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { 2121 if (memory_clock <= 2122 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { 2123 break; 2124 } 2125 } 2126 2127 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) 2128 --i; 2129 2130 tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], 2131 mc_reg_table_data, smu_data->mc_reg_table.last, 2132 smu_data->mc_reg_table.validflag); 2133 2134 return 0; 2135 } 2136 2137 static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, 2138 SMU72_Discrete_MCRegisters *mc_regs) 2139 { 2140 int result = 0; 2141 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2142 int res; 2143 uint32_t i; 2144 2145 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 2146 res = tonga_convert_mc_reg_table_entry_to_smc( 2147 hwmgr, 2148 data->dpm_table.mclk_table.dpm_levels[i].value, 2149 &mc_regs->data[i] 2150 ); 2151 2152 if (0 != res) 2153 result = res; 2154 } 2155 2156 return result; 2157 } 2158 2159 static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) 2160 { 2161 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2162 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2163 uint32_t address; 2164 int32_t result; 2165 2166 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) 2167 return 0; 2168 2169 2170 memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters)); 2171 2172 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); 2173 2174 if (result != 0) 2175 return result; 2176 2177 2178 address = smu_data->smu7_data.mc_reg_table_start + 2179 (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]); 2180 2181 return smu7_copy_bytes_to_smc( 2182 hwmgr, address, 2183 (uint8_t *)&smu_data->mc_regs.data[0], 2184 sizeof(SMU72_Discrete_MCRegisterSet) * 2185 data->dpm_table.mclk_table.count, 2186 SMC_RAM_END); 2187 } 2188 2189 static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) 2190 { 2191 int result; 2192 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2193 2194 memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters)); 2195 result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); 2196 PP_ASSERT_WITH_CODE(!result, 2197 "Failed to initialize MCRegTable for the MC register addresses !", 2198 return result;); 2199 2200 result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); 2201 PP_ASSERT_WITH_CODE(!result, 2202 "Failed to initialize MCRegTable for driver state !", 2203 return result;); 2204 2205 return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, 2206 (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END); 2207 } 2208 2209 static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) 2210 { 2211 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2212 struct phm_ppt_v1_information *table_info = 2213 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2214 2215 if (table_info && 2216 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && 2217 table_info->cac_dtp_table->usPowerTuneDataSetID) 2218 smu_data->power_tune_defaults = 2219 &tonga_power_tune_data_set_array 2220 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; 2221 else 2222 smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0]; 2223 } 2224 2225 static int tonga_init_smc_table(struct pp_hwmgr *hwmgr) 2226 { 2227 int result; 2228 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2229 struct tonga_smumgr *smu_data = 2230 (struct tonga_smumgr *)(hwmgr->smu_backend); 2231 SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table); 2232 struct phm_ppt_v1_information *table_info = 2233 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2234 2235 uint8_t i; 2236 pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; 2237 2238 2239 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); 2240 2241 tonga_initialize_power_tune_defaults(hwmgr); 2242 2243 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) 2244 tonga_populate_smc_voltage_tables(hwmgr, table); 2245 2246 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2247 PHM_PlatformCaps_AutomaticDCTransition)) 2248 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; 2249 2250 2251 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2252 PHM_PlatformCaps_StepVddc)) 2253 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; 2254 2255 if (data->is_memory_gddr5) 2256 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; 2257 2258 i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN); 2259 2260 if (i == 1 || i == 0) 2261 table->SystemFlags |= 0x40; 2262 2263 if (data->ulv_supported && table_info->us_ulv_voltage_offset) { 2264 result = tonga_populate_ulv_state(hwmgr, table); 2265 PP_ASSERT_WITH_CODE(!result, 2266 "Failed to initialize ULV state !", 2267 return result;); 2268 2269 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 2270 ixCG_ULV_PARAMETER, 0x40035); 2271 } 2272 2273 result = tonga_populate_smc_link_level(hwmgr, table); 2274 PP_ASSERT_WITH_CODE(!result, 2275 "Failed to initialize Link Level !", return result); 2276 2277 result = tonga_populate_all_graphic_levels(hwmgr); 2278 PP_ASSERT_WITH_CODE(!result, 2279 "Failed to initialize Graphics Level !", return result); 2280 2281 result = tonga_populate_all_memory_levels(hwmgr); 2282 PP_ASSERT_WITH_CODE(!result, 2283 "Failed to initialize Memory Level !", return result); 2284 2285 result = tonga_populate_smc_acpi_level(hwmgr, table); 2286 PP_ASSERT_WITH_CODE(!result, 2287 "Failed to initialize ACPI Level !", return result); 2288 2289 result = tonga_populate_smc_vce_level(hwmgr, table); 2290 PP_ASSERT_WITH_CODE(!result, 2291 "Failed to initialize VCE Level !", return result); 2292 2293 result = tonga_populate_smc_acp_level(hwmgr, table); 2294 PP_ASSERT_WITH_CODE(!result, 2295 "Failed to initialize ACP Level !", return result); 2296 2297 /* Since only the initial state is completely set up at this 2298 * point (the other states are just copies of the boot state) we only 2299 * need to populate the ARB settings for the initial state. 2300 */ 2301 result = tonga_program_memory_timing_parameters(hwmgr); 2302 PP_ASSERT_WITH_CODE(!result, 2303 "Failed to Write ARB settings for the initial state.", 2304 return result;); 2305 2306 result = tonga_populate_smc_uvd_level(hwmgr, table); 2307 PP_ASSERT_WITH_CODE(!result, 2308 "Failed to initialize UVD Level !", return result); 2309 2310 result = tonga_populate_smc_boot_level(hwmgr, table); 2311 PP_ASSERT_WITH_CODE(!result, 2312 "Failed to initialize Boot Level !", return result); 2313 2314 tonga_populate_bapm_parameters_in_dpm_table(hwmgr); 2315 PP_ASSERT_WITH_CODE(!result, 2316 "Failed to populate BAPM Parameters !", return result); 2317 2318 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2319 PHM_PlatformCaps_ClockStretcher)) { 2320 result = tonga_populate_clock_stretcher_data_table(hwmgr); 2321 PP_ASSERT_WITH_CODE(!result, 2322 "Failed to populate Clock Stretcher Data Table !", 2323 return result;); 2324 } 2325 table->GraphicsVoltageChangeEnable = 1; 2326 table->GraphicsThermThrottleEnable = 1; 2327 table->GraphicsInterval = 1; 2328 table->VoltageInterval = 1; 2329 table->ThermalInterval = 1; 2330 table->TemperatureLimitHigh = 2331 table_info->cac_dtp_table->usTargetOperatingTemp * 2332 SMU7_Q88_FORMAT_CONVERSION_UNIT; 2333 table->TemperatureLimitLow = 2334 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * 2335 SMU7_Q88_FORMAT_CONVERSION_UNIT; 2336 table->MemoryVoltageChangeEnable = 1; 2337 table->MemoryInterval = 1; 2338 table->VoltageResponseTime = 0; 2339 table->PhaseResponseTime = 0; 2340 table->MemoryThermThrottleEnable = 1; 2341 2342 /* 2343 * Cail reads current link status and reports it as cap (we cannot 2344 * change this due to some previous issues we had) 2345 * SMC drops the link status to lowest level after enabling 2346 * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again 2347 * but this time Cail reads current link status which was set to low by 2348 * SMC and reports it as cap to powerplay 2349 * To avoid it, we set PCIeBootLinkLevel to highest dpm level 2350 */ 2351 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count), 2352 "There must be 1 or more PCIE levels defined in PPTable.", 2353 return -EINVAL); 2354 2355 table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count); 2356 2357 table->PCIeGenInterval = 1; 2358 2359 result = tonga_populate_vr_config(hwmgr, table); 2360 PP_ASSERT_WITH_CODE(!result, 2361 "Failed to populate VRConfig setting !", return result); 2362 data->vr_config = table->VRConfig; 2363 table->ThermGpio = 17; 2364 table->SclkStepSize = 0x4000; 2365 2366 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, 2367 &gpio_pin_assignment)) { 2368 table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; 2369 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2370 PHM_PlatformCaps_RegulatorHot); 2371 } else { 2372 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; 2373 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2374 PHM_PlatformCaps_RegulatorHot); 2375 } 2376 2377 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, 2378 &gpio_pin_assignment)) { 2379 table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; 2380 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2381 PHM_PlatformCaps_AutomaticDCTransition); 2382 } else { 2383 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; 2384 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2385 PHM_PlatformCaps_AutomaticDCTransition); 2386 } 2387 2388 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2389 PHM_PlatformCaps_Falcon_QuickTransition); 2390 2391 if (0) { 2392 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2393 PHM_PlatformCaps_AutomaticDCTransition); 2394 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2395 PHM_PlatformCaps_Falcon_QuickTransition); 2396 } 2397 2398 if (atomctrl_get_pp_assign_pin(hwmgr, 2399 THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) { 2400 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2401 PHM_PlatformCaps_ThermalOutGPIO); 2402 2403 table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; 2404 2405 table->ThermOutPolarity = 2406 (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & 2407 (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0; 2408 2409 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; 2410 2411 /* if required, combine VRHot/PCC with thermal out GPIO*/ 2412 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2413 PHM_PlatformCaps_RegulatorHot) && 2414 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2415 PHM_PlatformCaps_CombinePCCWithThermalSignal)){ 2416 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; 2417 } 2418 } else { 2419 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2420 PHM_PlatformCaps_ThermalOutGPIO); 2421 2422 table->ThermOutGpio = 17; 2423 table->ThermOutPolarity = 1; 2424 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; 2425 } 2426 2427 for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) 2428 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); 2429 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); 2430 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); 2431 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); 2432 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); 2433 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); 2434 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); 2435 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); 2436 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); 2437 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); 2438 2439 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ 2440 result = smu7_copy_bytes_to_smc( 2441 hwmgr, 2442 smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags), 2443 (uint8_t *)&(table->SystemFlags), 2444 sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController), 2445 SMC_RAM_END); 2446 2447 PP_ASSERT_WITH_CODE(!result, 2448 "Failed to upload dpm data to SMC memory !", return result;); 2449 2450 result = tonga_init_arb_table_index(hwmgr); 2451 PP_ASSERT_WITH_CODE(!result, 2452 "Failed to upload arb data to SMC memory !", return result); 2453 2454 tonga_populate_pm_fuses(hwmgr); 2455 PP_ASSERT_WITH_CODE((!result), 2456 "Failed to populate initialize pm fuses !", return result); 2457 2458 result = tonga_populate_initial_mc_reg_table(hwmgr); 2459 PP_ASSERT_WITH_CODE((!result), 2460 "Failed to populate initialize MC Reg table !", return result); 2461 2462 return 0; 2463 } 2464 2465 static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) 2466 { 2467 struct tonga_smumgr *smu_data = 2468 (struct tonga_smumgr *)(hwmgr->smu_backend); 2469 SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; 2470 uint32_t duty100; 2471 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; 2472 uint16_t fdo_min, slope1, slope2; 2473 uint32_t reference_clock; 2474 int res __unused; 2475 uint64_t tmp64; 2476 2477 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2478 PHM_PlatformCaps_MicrocodeFanControl)) 2479 return 0; 2480 2481 if (hwmgr->thermal_controller.fanInfo.bNoFan) { 2482 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2483 PHM_PlatformCaps_MicrocodeFanControl); 2484 return 0; 2485 } 2486 2487 if (0 == smu_data->smu7_data.fan_table_start) { 2488 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2489 PHM_PlatformCaps_MicrocodeFanControl); 2490 return 0; 2491 } 2492 2493 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 2494 CGS_IND_REG__SMC, 2495 CG_FDO_CTRL1, FMAX_DUTY100); 2496 2497 if (0 == duty100) { 2498 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2499 PHM_PlatformCaps_MicrocodeFanControl); 2500 return 0; 2501 } 2502 2503 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; 2504 do_div(tmp64, 10000); 2505 fdo_min = (uint16_t)tmp64; 2506 2507 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - 2508 hwmgr->thermal_controller.advanceFanControlParameters.usTMin; 2509 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - 2510 hwmgr->thermal_controller.advanceFanControlParameters.usTMed; 2511 2512 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - 2513 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; 2514 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - 2515 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; 2516 2517 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); 2518 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); 2519 2520 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); 2521 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); 2522 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); 2523 2524 fan_table.Slope1 = cpu_to_be16(slope1); 2525 fan_table.Slope2 = cpu_to_be16(slope2); 2526 2527 fan_table.FdoMin = cpu_to_be16(fdo_min); 2528 2529 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); 2530 2531 fan_table.HystUp = cpu_to_be16(1); 2532 2533 fan_table.HystSlope = cpu_to_be16(1); 2534 2535 fan_table.TempRespLim = cpu_to_be16(5); 2536 2537 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 2538 2539 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); 2540 2541 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); 2542 2543 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); 2544 2545 fan_table.FanControl_GL_Flag = 1; 2546 2547 res = smu7_copy_bytes_to_smc(hwmgr, 2548 smu_data->smu7_data.fan_table_start, 2549 (uint8_t *)&fan_table, 2550 (uint32_t)sizeof(fan_table), 2551 SMC_RAM_END); 2552 2553 return 0; 2554 } 2555 2556 2557 static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) 2558 { 2559 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2560 2561 if (data->need_update_smu7_dpm_table & 2562 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) 2563 return tonga_program_memory_timing_parameters(hwmgr); 2564 2565 return 0; 2566 } 2567 2568 static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr) 2569 { 2570 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2571 struct tonga_smumgr *smu_data = 2572 (struct tonga_smumgr *)(hwmgr->smu_backend); 2573 2574 int result = 0; 2575 uint32_t low_sclk_interrupt_threshold = 0; 2576 2577 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2578 PHM_PlatformCaps_SclkThrottleLowNotification) 2579 && (data->low_sclk_interrupt_threshold != 0)) { 2580 low_sclk_interrupt_threshold = 2581 data->low_sclk_interrupt_threshold; 2582 2583 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); 2584 2585 result = smu7_copy_bytes_to_smc( 2586 hwmgr, 2587 smu_data->smu7_data.dpm_table_start + 2588 offsetof(SMU72_Discrete_DpmTable, 2589 LowSclkInterruptThreshold), 2590 (uint8_t *)&low_sclk_interrupt_threshold, 2591 sizeof(uint32_t), 2592 SMC_RAM_END); 2593 } 2594 2595 result = tonga_update_and_upload_mc_reg_table(hwmgr); 2596 2597 PP_ASSERT_WITH_CODE((!result), 2598 "Failed to upload MC reg table !", 2599 return result); 2600 2601 result = tonga_program_mem_timing_parameters(hwmgr); 2602 PP_ASSERT_WITH_CODE((result == 0), 2603 "Failed to program memory timing parameters !", 2604 ); 2605 2606 return result; 2607 } 2608 2609 static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member) 2610 { 2611 switch (type) { 2612 case SMU_SoftRegisters: 2613 switch (member) { 2614 case HandshakeDisables: 2615 return offsetof(SMU72_SoftRegisters, HandshakeDisables); 2616 case VoltageChangeTimeout: 2617 return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout); 2618 case AverageGraphicsActivity: 2619 return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity); 2620 case AverageMemoryActivity: 2621 return offsetof(SMU72_SoftRegisters, AverageMemoryActivity); 2622 case PreVBlankGap: 2623 return offsetof(SMU72_SoftRegisters, PreVBlankGap); 2624 case VBlankTimeout: 2625 return offsetof(SMU72_SoftRegisters, VBlankTimeout); 2626 case UcodeLoadStatus: 2627 return offsetof(SMU72_SoftRegisters, UcodeLoadStatus); 2628 case DRAM_LOG_ADDR_H: 2629 return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H); 2630 case DRAM_LOG_ADDR_L: 2631 return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L); 2632 case DRAM_LOG_PHY_ADDR_H: 2633 return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H); 2634 case DRAM_LOG_PHY_ADDR_L: 2635 return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L); 2636 case DRAM_LOG_BUFF_SIZE: 2637 return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE); 2638 } 2639 break; 2640 case SMU_Discrete_DpmTable: 2641 switch (member) { 2642 case UvdBootLevel: 2643 return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); 2644 case VceBootLevel: 2645 return offsetof(SMU72_Discrete_DpmTable, VceBootLevel); 2646 case LowSclkInterruptThreshold: 2647 return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold); 2648 } 2649 break; 2650 } 2651 pr_warn("can't get the offset of type %x member %x\n", type, member); 2652 return 0; 2653 } 2654 2655 static uint32_t tonga_get_mac_definition(uint32_t value) 2656 { 2657 switch (value) { 2658 case SMU_MAX_LEVELS_GRAPHICS: 2659 return SMU72_MAX_LEVELS_GRAPHICS; 2660 case SMU_MAX_LEVELS_MEMORY: 2661 return SMU72_MAX_LEVELS_MEMORY; 2662 case SMU_MAX_LEVELS_LINK: 2663 return SMU72_MAX_LEVELS_LINK; 2664 case SMU_MAX_ENTRIES_SMIO: 2665 return SMU72_MAX_ENTRIES_SMIO; 2666 case SMU_MAX_LEVELS_VDDC: 2667 return SMU72_MAX_LEVELS_VDDC; 2668 case SMU_MAX_LEVELS_VDDGFX: 2669 return SMU72_MAX_LEVELS_VDDGFX; 2670 case SMU_MAX_LEVELS_VDDCI: 2671 return SMU72_MAX_LEVELS_VDDCI; 2672 case SMU_MAX_LEVELS_MVDD: 2673 return SMU72_MAX_LEVELS_MVDD; 2674 } 2675 pr_warn("can't get the mac value %x\n", value); 2676 2677 return 0; 2678 } 2679 2680 static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr) 2681 { 2682 struct tonga_smumgr *smu_data = 2683 (struct tonga_smumgr *)(hwmgr->smu_backend); 2684 uint32_t mm_boot_level_offset, mm_boot_level_value; 2685 struct phm_ppt_v1_information *table_info = 2686 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2687 2688 smu_data->smc_state_table.UvdBootLevel = 0; 2689 if (table_info->mm_dep_table->count > 0) 2690 smu_data->smc_state_table.UvdBootLevel = 2691 (uint8_t) (table_info->mm_dep_table->count - 1); 2692 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + 2693 offsetof(SMU72_Discrete_DpmTable, UvdBootLevel); 2694 mm_boot_level_offset /= 4; 2695 mm_boot_level_offset *= 4; 2696 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, 2697 CGS_IND_REG__SMC, mm_boot_level_offset); 2698 mm_boot_level_value &= 0x00FFFFFF; 2699 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; 2700 cgs_write_ind_register(hwmgr->device, 2701 CGS_IND_REG__SMC, 2702 mm_boot_level_offset, mm_boot_level_value); 2703 2704 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2705 PHM_PlatformCaps_UVDDPM) || 2706 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2707 PHM_PlatformCaps_StablePState)) 2708 smum_send_msg_to_smc_with_parameter(hwmgr, 2709 PPSMC_MSG_UVDDPM_SetEnabledMask, 2710 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); 2711 return 0; 2712 } 2713 2714 static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr) 2715 { 2716 struct tonga_smumgr *smu_data = 2717 (struct tonga_smumgr *)(hwmgr->smu_backend); 2718 uint32_t mm_boot_level_offset, mm_boot_level_value; 2719 struct phm_ppt_v1_information *table_info = 2720 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2721 2722 2723 smu_data->smc_state_table.VceBootLevel = 2724 (uint8_t) (table_info->mm_dep_table->count - 1); 2725 2726 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + 2727 offsetof(SMU72_Discrete_DpmTable, VceBootLevel); 2728 mm_boot_level_offset /= 4; 2729 mm_boot_level_offset *= 4; 2730 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, 2731 CGS_IND_REG__SMC, mm_boot_level_offset); 2732 mm_boot_level_value &= 0xFF00FFFF; 2733 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; 2734 cgs_write_ind_register(hwmgr->device, 2735 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); 2736 2737 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2738 PHM_PlatformCaps_StablePState)) 2739 smum_send_msg_to_smc_with_parameter(hwmgr, 2740 PPSMC_MSG_VCEDPM_SetEnabledMask, 2741 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); 2742 return 0; 2743 } 2744 2745 static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) 2746 { 2747 switch (type) { 2748 case SMU_UVD_TABLE: 2749 tonga_update_uvd_smc_table(hwmgr); 2750 break; 2751 case SMU_VCE_TABLE: 2752 tonga_update_vce_smc_table(hwmgr); 2753 break; 2754 default: 2755 break; 2756 } 2757 return 0; 2758 } 2759 2760 static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) 2761 { 2762 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2763 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 2764 2765 uint32_t tmp; 2766 int result; 2767 bool error = false; 2768 2769 result = smu7_read_smc_sram_dword(hwmgr, 2770 SMU72_FIRMWARE_HEADER_LOCATION + 2771 offsetof(SMU72_Firmware_Header, DpmTable), 2772 &tmp, SMC_RAM_END); 2773 2774 if (!result) 2775 smu_data->smu7_data.dpm_table_start = tmp; 2776 2777 error |= (result != 0); 2778 2779 result = smu7_read_smc_sram_dword(hwmgr, 2780 SMU72_FIRMWARE_HEADER_LOCATION + 2781 offsetof(SMU72_Firmware_Header, SoftRegisters), 2782 &tmp, SMC_RAM_END); 2783 2784 if (!result) { 2785 data->soft_regs_start = tmp; 2786 smu_data->smu7_data.soft_regs_start = tmp; 2787 } 2788 2789 error |= (result != 0); 2790 2791 2792 result = smu7_read_smc_sram_dword(hwmgr, 2793 SMU72_FIRMWARE_HEADER_LOCATION + 2794 offsetof(SMU72_Firmware_Header, mcRegisterTable), 2795 &tmp, SMC_RAM_END); 2796 2797 if (!result) 2798 smu_data->smu7_data.mc_reg_table_start = tmp; 2799 2800 result = smu7_read_smc_sram_dword(hwmgr, 2801 SMU72_FIRMWARE_HEADER_LOCATION + 2802 offsetof(SMU72_Firmware_Header, FanTable), 2803 &tmp, SMC_RAM_END); 2804 2805 if (!result) 2806 smu_data->smu7_data.fan_table_start = tmp; 2807 2808 error |= (result != 0); 2809 2810 result = smu7_read_smc_sram_dword(hwmgr, 2811 SMU72_FIRMWARE_HEADER_LOCATION + 2812 offsetof(SMU72_Firmware_Header, mcArbDramTimingTable), 2813 &tmp, SMC_RAM_END); 2814 2815 if (!result) 2816 smu_data->smu7_data.arb_table_start = tmp; 2817 2818 error |= (result != 0); 2819 2820 result = smu7_read_smc_sram_dword(hwmgr, 2821 SMU72_FIRMWARE_HEADER_LOCATION + 2822 offsetof(SMU72_Firmware_Header, Version), 2823 &tmp, SMC_RAM_END); 2824 2825 if (!result) 2826 hwmgr->microcode_version_info.SMC = tmp; 2827 2828 error |= (result != 0); 2829 2830 return error ? 1 : 0; 2831 } 2832 2833 /*---------------------------MC----------------------------*/ 2834 2835 static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr) 2836 { 2837 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); 2838 } 2839 2840 static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) 2841 { 2842 bool result = true; 2843 2844 switch (in_reg) { 2845 case mmMC_SEQ_RAS_TIMING: 2846 *out_reg = mmMC_SEQ_RAS_TIMING_LP; 2847 break; 2848 2849 case mmMC_SEQ_DLL_STBY: 2850 *out_reg = mmMC_SEQ_DLL_STBY_LP; 2851 break; 2852 2853 case mmMC_SEQ_G5PDX_CMD0: 2854 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; 2855 break; 2856 2857 case mmMC_SEQ_G5PDX_CMD1: 2858 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; 2859 break; 2860 2861 case mmMC_SEQ_G5PDX_CTRL: 2862 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; 2863 break; 2864 2865 case mmMC_SEQ_CAS_TIMING: 2866 *out_reg = mmMC_SEQ_CAS_TIMING_LP; 2867 break; 2868 2869 case mmMC_SEQ_MISC_TIMING: 2870 *out_reg = mmMC_SEQ_MISC_TIMING_LP; 2871 break; 2872 2873 case mmMC_SEQ_MISC_TIMING2: 2874 *out_reg = mmMC_SEQ_MISC_TIMING2_LP; 2875 break; 2876 2877 case mmMC_SEQ_PMG_DVS_CMD: 2878 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; 2879 break; 2880 2881 case mmMC_SEQ_PMG_DVS_CTL: 2882 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; 2883 break; 2884 2885 case mmMC_SEQ_RD_CTL_D0: 2886 *out_reg = mmMC_SEQ_RD_CTL_D0_LP; 2887 break; 2888 2889 case mmMC_SEQ_RD_CTL_D1: 2890 *out_reg = mmMC_SEQ_RD_CTL_D1_LP; 2891 break; 2892 2893 case mmMC_SEQ_WR_CTL_D0: 2894 *out_reg = mmMC_SEQ_WR_CTL_D0_LP; 2895 break; 2896 2897 case mmMC_SEQ_WR_CTL_D1: 2898 *out_reg = mmMC_SEQ_WR_CTL_D1_LP; 2899 break; 2900 2901 case mmMC_PMG_CMD_EMRS: 2902 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; 2903 break; 2904 2905 case mmMC_PMG_CMD_MRS: 2906 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; 2907 break; 2908 2909 case mmMC_PMG_CMD_MRS1: 2910 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; 2911 break; 2912 2913 case mmMC_SEQ_PMG_TIMING: 2914 *out_reg = mmMC_SEQ_PMG_TIMING_LP; 2915 break; 2916 2917 case mmMC_PMG_CMD_MRS2: 2918 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; 2919 break; 2920 2921 case mmMC_SEQ_WR_CTL_2: 2922 *out_reg = mmMC_SEQ_WR_CTL_2_LP; 2923 break; 2924 2925 default: 2926 result = false; 2927 break; 2928 } 2929 2930 return result; 2931 } 2932 2933 static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table) 2934 { 2935 uint32_t i; 2936 uint16_t address; 2937 2938 for (i = 0; i < table->last; i++) { 2939 table->mc_reg_address[i].s0 = 2940 tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, 2941 &address) ? 2942 address : 2943 table->mc_reg_address[i].s1; 2944 } 2945 return 0; 2946 } 2947 2948 static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, 2949 struct tonga_mc_reg_table *ni_table) 2950 { 2951 uint8_t i, j; 2952 2953 PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2954 "Invalid VramInfo table.", return -EINVAL); 2955 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), 2956 "Invalid VramInfo table.", return -EINVAL); 2957 2958 for (i = 0; i < table->last; i++) 2959 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; 2960 2961 ni_table->last = table->last; 2962 2963 for (i = 0; i < table->num_entries; i++) { 2964 ni_table->mc_reg_table_entry[i].mclk_max = 2965 table->mc_reg_table_entry[i].mclk_max; 2966 for (j = 0; j < table->last; j++) { 2967 ni_table->mc_reg_table_entry[i].mc_data[j] = 2968 table->mc_reg_table_entry[i].mc_data[j]; 2969 } 2970 } 2971 2972 ni_table->num_entries = table->num_entries; 2973 2974 return 0; 2975 } 2976 2977 static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, 2978 struct tonga_mc_reg_table *table) 2979 { 2980 uint8_t i, j, k; 2981 uint32_t temp_reg; 2982 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2983 2984 for (i = 0, j = table->last; i < table->last; i++) { 2985 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2986 "Invalid VramInfo table.", return -EINVAL); 2987 2988 switch (table->mc_reg_address[i].s1) { 2989 2990 case mmMC_SEQ_MISC1: 2991 temp_reg = cgs_read_register(hwmgr->device, 2992 mmMC_PMG_CMD_EMRS); 2993 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; 2994 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; 2995 for (k = 0; k < table->num_entries; k++) { 2996 table->mc_reg_table_entry[k].mc_data[j] = 2997 ((temp_reg & 0xffff0000)) | 2998 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); 2999 } 3000 j++; 3001 3002 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 3003 "Invalid VramInfo table.", return -EINVAL); 3004 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); 3005 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; 3006 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; 3007 for (k = 0; k < table->num_entries; k++) { 3008 table->mc_reg_table_entry[k].mc_data[j] = 3009 (temp_reg & 0xffff0000) | 3010 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 3011 3012 if (!data->is_memory_gddr5) 3013 table->mc_reg_table_entry[k].mc_data[j] |= 0x100; 3014 } 3015 j++; 3016 3017 if (!data->is_memory_gddr5) { 3018 PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE), 3019 "Invalid VramInfo table.", return -EINVAL); 3020 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; 3021 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; 3022 for (k = 0; k < table->num_entries; k++) 3023 table->mc_reg_table_entry[k].mc_data[j] = 3024 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; 3025 j++; 3026 } 3027 3028 break; 3029 3030 case mmMC_SEQ_RESERVE_M: 3031 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); 3032 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; 3033 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; 3034 for (k = 0; k < table->num_entries; k++) { 3035 table->mc_reg_table_entry[k].mc_data[j] = 3036 (temp_reg & 0xffff0000) | 3037 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 3038 } 3039 j++; 3040 break; 3041 3042 default: 3043 break; 3044 } 3045 3046 } 3047 3048 table->last = j; 3049 3050 return 0; 3051 } 3052 3053 static int tonga_set_valid_flag(struct tonga_mc_reg_table *table) 3054 { 3055 uint8_t i, j; 3056 3057 for (i = 0; i < table->last; i++) { 3058 for (j = 1; j < table->num_entries; j++) { 3059 if (table->mc_reg_table_entry[j-1].mc_data[i] != 3060 table->mc_reg_table_entry[j].mc_data[i]) { 3061 table->validflag |= (1<<i); 3062 break; 3063 } 3064 } 3065 } 3066 3067 return 0; 3068 } 3069 3070 static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) 3071 { 3072 int result; 3073 struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend); 3074 pp_atomctrl_mc_reg_table *table; 3075 struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table; 3076 uint8_t module_index = tonga_get_memory_modile_index(hwmgr); 3077 3078 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); 3079 3080 if (table == NULL) 3081 return -ENOMEM; 3082 3083 /* Program additional LP registers that are no longer programmed by VBIOS */ 3084 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, 3085 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); 3086 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, 3087 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); 3088 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, 3089 cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); 3090 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, 3091 cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); 3092 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, 3093 cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); 3094 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, 3095 cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); 3096 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, 3097 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); 3098 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, 3099 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); 3100 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, 3101 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); 3102 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, 3103 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); 3104 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, 3105 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); 3106 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, 3107 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); 3108 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, 3109 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); 3110 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, 3111 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); 3112 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, 3113 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); 3114 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, 3115 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); 3116 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, 3117 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); 3118 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, 3119 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); 3120 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, 3121 cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); 3122 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, 3123 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); 3124 3125 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); 3126 3127 if (!result) 3128 result = tonga_copy_vbios_smc_reg_table(table, ni_table); 3129 3130 if (!result) { 3131 tonga_set_s0_mc_reg_index(ni_table); 3132 result = tonga_set_mc_special_registers(hwmgr, ni_table); 3133 } 3134 3135 if (!result) 3136 tonga_set_valid_flag(ni_table); 3137 3138 kfree(table); 3139 3140 return result; 3141 } 3142 3143 static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr) 3144 { 3145 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, 3146 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) 3147 ? true : false; 3148 } 3149 3150 static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr, 3151 void *profile_setting) 3152 { 3153 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3154 struct tonga_smumgr *smu_data = (struct tonga_smumgr *) 3155 (hwmgr->smu_backend); 3156 struct profile_mode_setting *setting; 3157 struct SMU72_Discrete_GraphicsLevel *levels = 3158 smu_data->smc_state_table.GraphicsLevel; 3159 uint32_t array = smu_data->smu7_data.dpm_table_start + 3160 offsetof(SMU72_Discrete_DpmTable, GraphicsLevel); 3161 3162 uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + 3163 offsetof(SMU72_Discrete_DpmTable, MemoryLevel); 3164 struct SMU72_Discrete_MemoryLevel *mclk_levels = 3165 smu_data->smc_state_table.MemoryLevel; 3166 uint32_t i; 3167 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; 3168 3169 if (profile_setting == NULL) 3170 return -EINVAL; 3171 3172 setting = (struct profile_mode_setting *)profile_setting; 3173 3174 if (setting->bupdate_sclk) { 3175 if (!data->sclk_dpm_key_disabled) 3176 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel); 3177 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { 3178 if (levels[i].ActivityLevel != 3179 cpu_to_be16(setting->sclk_activity)) { 3180 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); 3181 3182 clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) 3183 + offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel); 3184 offset = clk_activity_offset & ~0x3; 3185 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3186 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); 3187 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3188 3189 } 3190 if (levels[i].UpHyst != setting->sclk_up_hyst || 3191 levels[i].DownHyst != setting->sclk_down_hyst) { 3192 levels[i].UpHyst = setting->sclk_up_hyst; 3193 levels[i].DownHyst = setting->sclk_down_hyst; 3194 up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) 3195 + offsetof(SMU72_Discrete_GraphicsLevel, UpHyst); 3196 down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i) 3197 + offsetof(SMU72_Discrete_GraphicsLevel, DownHyst); 3198 offset = up_hyst_offset & ~0x3; 3199 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3200 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); 3201 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); 3202 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3203 } 3204 } 3205 if (!data->sclk_dpm_key_disabled) 3206 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel); 3207 } 3208 3209 if (setting->bupdate_mclk) { 3210 if (!data->mclk_dpm_key_disabled) 3211 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel); 3212 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { 3213 if (mclk_levels[i].ActivityLevel != 3214 cpu_to_be16(setting->mclk_activity)) { 3215 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); 3216 3217 clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) 3218 + offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel); 3219 offset = clk_activity_offset & ~0x3; 3220 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3221 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); 3222 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3223 3224 } 3225 if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || 3226 mclk_levels[i].DownHyst != setting->mclk_down_hyst) { 3227 mclk_levels[i].UpHyst = setting->mclk_up_hyst; 3228 mclk_levels[i].DownHyst = setting->mclk_down_hyst; 3229 up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) 3230 + offsetof(SMU72_Discrete_MemoryLevel, UpHyst); 3231 down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i) 3232 + offsetof(SMU72_Discrete_MemoryLevel, DownHyst); 3233 offset = up_hyst_offset & ~0x3; 3234 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 3235 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); 3236 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); 3237 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 3238 } 3239 } 3240 if (!data->mclk_dpm_key_disabled) 3241 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel); 3242 } 3243 return 0; 3244 } 3245 3246 const struct pp_smumgr_func tonga_smu_funcs = { 3247 .name = "tonga_smu", 3248 .smu_init = &tonga_smu_init, 3249 .smu_fini = &smu7_smu_fini, 3250 .start_smu = &tonga_start_smu, 3251 .check_fw_load_finish = &smu7_check_fw_load_finish, 3252 .request_smu_load_fw = &smu7_request_smu_load_fw, 3253 .request_smu_load_specific_fw = NULL, 3254 .send_msg_to_smc = &smu7_send_msg_to_smc, 3255 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, 3256 .download_pptable_settings = NULL, 3257 .upload_pptable_settings = NULL, 3258 .update_smc_table = tonga_update_smc_table, 3259 .get_offsetof = tonga_get_offsetof, 3260 .process_firmware_header = tonga_process_firmware_header, 3261 .init_smc_table = tonga_init_smc_table, 3262 .update_sclk_threshold = tonga_update_sclk_threshold, 3263 .thermal_setup_fan_table = tonga_thermal_setup_fan_table, 3264 .populate_all_graphic_levels = tonga_populate_all_graphic_levels, 3265 .populate_all_memory_levels = tonga_populate_all_memory_levels, 3266 .get_mac_definition = tonga_get_mac_definition, 3267 .initialize_mc_reg_table = tonga_initialize_mc_reg_table, 3268 .is_dpm_running = tonga_is_dpm_running, 3269 .update_dpm_settings = tonga_update_dpm_settings, 3270 }; 3271