1 /* $NetBSD: subr_time_arith.c,v 1.3 2025/04/01 23:14:23 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 62 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: subr_time_arith.c,v 1.3 2025/04/01 23:14:23 riastradh Exp $"); 67 68 #include <sys/types.h> 69 70 #include <sys/errno.h> 71 #include <sys/time.h> 72 #include <sys/timearith.h> 73 74 #if defined(_KERNEL) 75 76 #include <sys/kernel.h> 77 #include <sys/systm.h> 78 79 #include <machine/limits.h> 80 81 #elif defined(_TIME_TESTING) 82 83 #include <assert.h> 84 #include <limits.h> 85 #include <stdbool.h> 86 87 extern int hz; 88 extern int tick; 89 90 #define KASSERT assert 91 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y)) 92 93 #endif 94 95 /* 96 * Compute number of ticks in the specified amount of time. 97 */ 98 int 99 tvtohz(const struct timeval *tv) 100 { 101 unsigned long ticks; 102 long sec, usec; 103 104 /* 105 * If the number of usecs in the whole seconds part of the time 106 * difference fits in a long, then the total number of usecs will 107 * fit in an unsigned long. Compute the total and convert it to 108 * ticks, rounding up and adding 1 to allow for the current tick 109 * to expire. Rounding also depends on unsigned long arithmetic 110 * to avoid overflow. 111 * 112 * Otherwise, if the number of ticks in the whole seconds part of 113 * the time difference fits in a long, then convert the parts to 114 * ticks separately and add, using similar rounding methods and 115 * overflow avoidance. This method would work in the previous 116 * case, but it is slightly slower and assumes that hz is integral. 117 * 118 * Otherwise, round the time difference down to the maximum 119 * representable value. 120 * 121 * If ints are 32-bit, then the maximum value for any timeout in 122 * 10ms ticks is 248 days. 123 */ 124 sec = tv->tv_sec; 125 usec = tv->tv_usec; 126 127 KASSERT(usec >= 0); 128 KASSERT(usec < 1000000); 129 130 /* catch overflows in conversion time_t->int */ 131 if (tv->tv_sec > INT_MAX) 132 return INT_MAX; 133 if (tv->tv_sec < 0) 134 return 0; 135 136 if (sec < 0 || (sec == 0 && usec == 0)) { 137 /* 138 * Would expire now or in the past. Return 0 ticks. 139 * This is different from the legacy tvhzto() interface, 140 * and callers need to check for it. 141 */ 142 ticks = 0; 143 } else if (sec <= (LONG_MAX / 1000000)) 144 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 145 / tick) + 1; 146 else if (sec <= (LONG_MAX / hz)) 147 ticks = (sec * hz) + 148 (((unsigned long)usec + (tick - 1)) / tick) + 1; 149 else 150 ticks = LONG_MAX; 151 152 if (ticks > INT_MAX) 153 ticks = INT_MAX; 154 155 return ((int)ticks); 156 } 157 158 /* 159 * Check that a proposed value to load into the .it_value or 160 * .it_interval part of an interval timer is acceptable, and 161 * fix it to have at least minimal value (i.e. if it is less 162 * than the resolution of the clock, round it up.). We don't 163 * timeout the 0,0 value because this means to disable the 164 * timer or the interval. 165 */ 166 int 167 itimerfix(struct timeval *tv) 168 { 169 170 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000) 171 return EINVAL; 172 if (tv->tv_sec < 0) 173 return ETIMEDOUT; 174 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 175 tv->tv_usec = tick; 176 return 0; 177 } 178 179 int 180 itimespecfix(struct timespec *ts) 181 { 182 183 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 184 return EINVAL; 185 if (ts->tv_sec < 0) 186 return ETIMEDOUT; 187 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 188 ts->tv_nsec = tick * 1000; 189 return 0; 190 } 191 192 /* 193 * timespecaddok(tsp, usp) 194 * 195 * True if tsp + usp can be computed without overflow, i.e., if it 196 * is OK to do timespecadd(tsp, usp, ...). 197 */ 198 bool 199 timespecaddok(const struct timespec *tsp, const struct timespec *usp) 200 { 201 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) }; 202 time_t a = tsp->tv_sec; 203 time_t b = usp->tv_sec; 204 bool carry; 205 206 /* 207 * Caller is responsible for guaranteeing valid timespec 208 * inputs. Any user-controlled inputs must be validated or 209 * adjusted. 210 */ 211 KASSERT(tsp->tv_nsec >= 0); 212 KASSERT(usp->tv_nsec >= 0); 213 KASSERT(tsp->tv_nsec < 1000000000L); 214 KASSERT(usp->tv_nsec < 1000000000L); 215 __CTASSERT(1000000000L <= __type_max(long) - 1000000000L); 216 217 /* 218 * Fail if a + b + carry overflows TIME_MAX, or if a + b 219 * overflows TIME_MIN because timespecadd adds the carry after 220 * computing a + b. 221 * 222 * Break it into two mutually exclusive and exhaustive cases: 223 * I. a >= 0 224 * II. a < 0 225 */ 226 carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L); 227 if (a >= 0) { 228 /* 229 * Case I: a >= 0. If b < 0, then b + 1 <= 0, so 230 * 231 * a + b + 1 <= a + 0 <= TIME_MAX, 232 * 233 * and 234 * 235 * a + b >= 0 + b = b >= TIME_MIN, 236 * 237 * so this can't overflow. 238 * 239 * If b >= 0, then a + b + carry >= a + b >= 0, so 240 * negative results and thus results below TIME_MIN are 241 * impossible; we need only avoid 242 * 243 * a + b + carry > TIME_MAX, 244 * 245 * which we will do by rejecting if 246 * 247 * b > TIME_MAX - a - carry, 248 * 249 * which in turn is incidentally always false if b < 0 250 * so we don't need extra logic to discriminate on the 251 * b >= 0 and b < 0 cases. 252 * 253 * Since 0 <= a <= TIME_MAX, we know 254 * 255 * 0 <= TIME_MAX - a <= TIME_MAX, 256 * 257 * and hence 258 * 259 * -1 <= TIME_MAX - a - 1 < TIME_MAX. 260 * 261 * So we can compute TIME_MAX - a - carry (i.e., either 262 * TIME_MAX - a or TIME_MAX - a - 1) safely without 263 * overflow. 264 */ 265 if (b > TIME_MAX - a - carry) 266 return false; 267 } else { 268 /* 269 * Case II: a < 0. If b >= 0, then since a + 1 <= 0, 270 * we have 271 * 272 * a + b + 1 <= b <= TIME_MAX, 273 * 274 * and 275 * 276 * a + b >= a >= TIME_MIN, 277 * 278 * so this can't overflow. 279 * 280 * If b < 0, then the intermediate a + b is negative 281 * and the outcome a + b + 1 is nonpositive, so we need 282 * only avoid 283 * 284 * a + b < TIME_MIN, 285 * 286 * which we will do by rejecting if 287 * 288 * a < TIME_MIN - b. 289 * 290 * (Reminder: The carry is added afterward in 291 * timespecadd, so to avoid overflow it is not enough 292 * to merely reject a + b + carry < TIME_MIN.) 293 * 294 * It is safe to compute the difference TIME_MIN - b 295 * because b is negative, so the result lies in 296 * (TIME_MIN, 0]. 297 */ 298 if (b < 0 && a < TIME_MIN - b) 299 return false; 300 } 301 302 return true; 303 } 304 305 /* 306 * timespecsubok(tsp, usp) 307 * 308 * True if tsp - usp can be computed without overflow, i.e., if it 309 * is OK to do timespecsub(tsp, usp, ...). 310 */ 311 bool 312 timespecsubok(const struct timespec *tsp, const struct timespec *usp) 313 { 314 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) }; 315 time_t a = tsp->tv_sec, b = usp->tv_sec; 316 bool borrow; 317 318 /* 319 * Caller is responsible for guaranteeing valid timespec 320 * inputs. Any user-controlled inputs must be validated or 321 * adjusted. 322 */ 323 KASSERT(tsp->tv_nsec >= 0); 324 KASSERT(usp->tv_nsec >= 0); 325 KASSERT(tsp->tv_nsec < 1000000000L); 326 KASSERT(usp->tv_nsec < 1000000000L); 327 __CTASSERT(1000000000L <= __type_max(long) - 1000000000L); 328 329 /* 330 * Fail if a - b - borrow overflows TIME_MIN, or if a - b 331 * overflows TIME_MAX because timespecsub subtracts the borrow 332 * after computing a - b. 333 * 334 * Break it into two mutually exclusive and exhaustive cases: 335 * I. a < 0 336 * II. a >= 0 337 */ 338 borrow = (tsp->tv_nsec - usp->tv_nsec < 0); 339 if (a < 0) { 340 /* 341 * Case I: a < 0. If b < 0, then -b - 1 >= 0, so 342 * 343 * a - b - 1 >= a + 0 >= TIME_MIN, 344 * 345 * and, since a <= -1, provided that TIME_MIN <= 346 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in 347 * fact, equality holds, under the assumption of 348 * two's-complement arithmetic), 349 * 350 * a - b <= -1 - b = -b - 1 <= TIME_MAX, 351 * 352 * so this can't overflow. 353 */ 354 __CTASSERT(TIME_MIN <= -TIME_MAX - 1); 355 356 /* 357 * If b >= 0, then a - b - borrow <= a - b < 0, so 358 * positive results and thus results above TIME_MAX are 359 * impossible; we need only avoid 360 * 361 * a - b - borrow < TIME_MIN, 362 * 363 * which we will do by rejecting if 364 * 365 * a < TIME_MIN + b + borrow. 366 * 367 * The right-hand side is safe to evaluate for any 368 * values of b and borrow as long as TIME_MIN + 369 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1. 370 * (Note: If time_t were unsigned, this would fail!) 371 * 372 * Note: Unlike Case I in timespecaddok, this criterion 373 * does not work for b < 0, nor can the roles of a and 374 * b in the inequality be reversed (e.g., -b < TIME_MIN 375 * - a + borrow) without extra cases like checking for 376 * b = TEST_MIN. 377 */ 378 __CTASSERT(TIME_MIN < -1); 379 if (b >= 0 && a < TIME_MIN + b + borrow) 380 return false; 381 } else { 382 /* 383 * Case II: a >= 0. If b >= 0, then 384 * 385 * a - b <= a <= TIME_MAX, 386 * 387 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact, 388 * equality holds, under the assumption of 389 * two's-complement arithmetic) 390 * 391 * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN, 392 * 393 * so this can't overflow. 394 */ 395 __CTASSERT(TIME_MIN <= -TIME_MAX - 1); 396 397 /* 398 * If b < 0, then a - b >= a >= 0, so negative results 399 * and thus results below TIME_MIN are impossible; we 400 * need only avoid 401 * 402 * a - b > TIME_MAX, 403 * 404 * which we will do by rejecting if 405 * 406 * a > TIME_MAX + b. 407 * 408 * (Reminder: The borrow is subtracted afterward in 409 * timespecsub, so to avoid overflow it is not enough 410 * to merely reject a - b - borrow > TIME_MAX.) 411 * 412 * It is safe to compute the sum TIME_MAX + b because b 413 * is negative, so the result lies in [0, TIME_MAX). 414 */ 415 if (b < 0 && a > TIME_MAX + b) 416 return false; 417 } 418 419 return true; 420 } 421 422 static bool 423 timespec2nsok(const struct timespec *ts) 424 { 425 426 return ts->tv_sec < INT64_MAX/1000000000 || 427 (ts->tv_sec == INT64_MAX/1000000000 && 428 ts->tv_nsec <= INT64_MAX - (INT64_MAX/1000000000)*1000000000); 429 } 430 431 /* 432 * itimer_transition(it, now, next, &overruns) 433 * 434 * Given: 435 * 436 * - it: the current state of an itimer (it_value = last expiry 437 * time, it_interval = periodic rescheduling interval), and 438 * 439 * - now: the current time on the itimer's clock; 440 * 441 * compute: 442 * 443 * - next: the next time the itimer should be scheduled for, and 444 * - overruns: the number of overruns if we're firing late. 445 * 446 * XXX This should maybe also say whether the itimer should expire 447 * at all. 448 */ 449 void 450 itimer_transition(const struct itimerspec *restrict it, 451 const struct timespec *restrict now, 452 struct timespec *restrict next, 453 int *restrict overrunsp) 454 { 455 int64_t last_val, next_val, interval, remainder, now_ns; 456 int backwards; 457 458 /* 459 * Zero the outputs so we can test assertions in userland 460 * without undefined behaviour. 461 */ 462 timespecclear(next); 463 *overrunsp = 0; 464 465 /* 466 * Paranoia: Caller should guarantee this. 467 */ 468 if (!timespecisset(&it->it_interval)) { 469 timespecclear(next); 470 return; 471 } 472 473 /* Did the clock wind backwards? */ 474 backwards = (timespeccmp(&it->it_value, now, >)); 475 476 /* Valid value and interval guaranteed by itimerfix. */ 477 KASSERT(it->it_value.tv_sec >= 0); 478 KASSERT(it->it_value.tv_nsec < 1000000000); 479 KASSERT(it->it_interval.tv_sec >= 0); 480 KASSERT(it->it_interval.tv_nsec < 1000000000); 481 482 /* Nonnegative interval guaranteed by itimerfix. */ 483 KASSERT(it->it_interval.tv_sec >= 0); 484 KASSERT(it->it_interval.tv_nsec >= 0); 485 486 /* Handle the easy case of non-overflown timers first. */ 487 if (__predict_true(!backwards)) { 488 if (__predict_false(!timespecaddok(&it->it_value, 489 &it->it_interval))) 490 goto overflow; 491 timespecadd(&it->it_value, &it->it_interval, next); 492 if (__predict_true(timespeccmp(now, next, <))) 493 return; 494 } 495 496 /* 497 * If we can't represent the input as a number of nanoseconds, 498 * bail. This is good up to the year 2262, if we start 499 * counting from 1970 (2^63 nanoseconds ~ 292 years). 500 */ 501 if (__predict_false(!timespec2nsok(now)) || 502 __predict_false(!timespec2nsok(&it->it_value)) || 503 __predict_false(!timespec2nsok(&it->it_interval))) 504 goto overflow; 505 506 now_ns = timespec2ns(now); 507 last_val = timespec2ns(&it->it_value); 508 interval = timespec2ns(&it->it_interval); 509 510 KASSERT(now_ns >= 0); 511 KASSERT(last_val >= 0); 512 KASSERT(interval >= 0); 513 514 /* 515 * now [backwards] overruns now [forwards] 516 * | v v v | 517 * |--+----+-*--x----+----+----|----+----+----+--*-x----+--> 518 * \/ | \/ 519 * remainder last_val remainder 520 * (zero or negative) (zero or positive) 521 * 522 * Set next_val to last_value + k*interval for some k. 523 * 524 * The interval is always positive, and division in C 525 * truncates, so dividing a positive duration by the interval 526 * always gives zero or a positive remainder, and dividing a 527 * negative duration by the interval always gives zero or a 528 * negative remainder. Hence: 529 * 530 * - If now_ns < last_val -- which happens iff backwards, i.e., 531 * the clock was wound backwards -- then remainder is zero or 532 * negative, so subtracting it stays in place or moves 533 * forward in time, and thus this finds the _earliest_ value 534 * that is not earlier than now_ns. We will advance this by 535 * one more interval if we are already firing exactly on the 536 * interval to find the earliest value _after_ now_ns. 537 * 538 * - If now_ns > last_val -- which happens iff !backwards, 539 * i.e., the clock ran fast -- then remainder is zero or 540 * positive positive, so this finds the _latest_ value not 541 * later than now_ns. We will always advance this by one 542 * more interval to find the earliest value _after_ now_ns. 543 * We will also count overflows. 544 * 545 * (now_ns == last_val is not possible at this point because it 546 * only happens if the addition of struct timespec would 547 * overflow, and that is only possible when timespec2ns would 548 * also overflow for at least one of the inputs.) 549 */ 550 KASSERT(last_val != now_ns); 551 remainder = (now_ns - last_val) % interval; 552 next_val = now_ns - remainder; 553 KASSERT((last_val - next_val) % interval == 0); 554 if (backwards) { 555 /* 556 * If the clock was wound back to an exact multiple of 557 * the interval, so next_val = now_ns, don't demand to 558 * fire again in the same instant -- advance to the 559 * next interval. Overflow is not possible; proof is 560 * asserted. 561 */ 562 if (remainder == 0) { 563 KASSERT(now_ns < last_val); 564 KASSERT(next_val == now_ns); 565 KASSERT(last_val - next_val >= interval); 566 KASSERT(interval <= last_val - next_val); 567 KASSERT(next_val <= last_val - interval); 568 KASSERT(next_val <= INT64_MAX - interval); 569 next_val += interval; 570 } 571 } else { 572 /* 573 * next_val is the largest integer multiple of interval 574 * not later than now_ns. Count the number of full 575 * intervals that were skipped (division should be 576 * exact here), not counting any partial interval 577 * between next_val and now_ns, as the number of 578 * overruns. Advance by one interval -- unless that 579 * would overflow. 580 */ 581 *overrunsp += MIN(INT_MAX - *overrunsp, 582 (next_val - last_val) / interval); 583 if (__predict_false(next_val > INT64_MAX - interval)) 584 goto overflow; 585 next_val += interval; 586 } 587 588 next->tv_sec = next_val / 1000000000; 589 next->tv_nsec = next_val % 1000000000; 590 return; 591 592 overflow: 593 next->tv_sec = 0; 594 next->tv_nsec = 0; 595 } 596