subr_time_arith.c revision 1.3 1 1.3 riastrad /* $NetBSD: subr_time_arith.c,v 1.3 2025/04/01 23:14:23 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5 1.1 riastrad * The NetBSD Foundation, Inc.
6 1.1 riastrad * All rights reserved.
7 1.1 riastrad *
8 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
9 1.1 riastrad * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10 1.1 riastrad *
11 1.1 riastrad * Redistribution and use in source and binary forms, with or without
12 1.1 riastrad * modification, are permitted provided that the following conditions
13 1.1 riastrad * are met:
14 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
15 1.1 riastrad * notice, this list of conditions and the following disclaimer.
16 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
18 1.1 riastrad * documentation and/or other materials provided with the distribution.
19 1.1 riastrad *
20 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
31 1.1 riastrad */
32 1.1 riastrad
33 1.1 riastrad /*
34 1.1 riastrad * Copyright (c) 1982, 1986, 1989, 1993
35 1.1 riastrad * The Regents of the University of California. All rights reserved.
36 1.1 riastrad *
37 1.1 riastrad * Redistribution and use in source and binary forms, with or without
38 1.1 riastrad * modification, are permitted provided that the following conditions
39 1.1 riastrad * are met:
40 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
41 1.1 riastrad * notice, this list of conditions and the following disclaimer.
42 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
43 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
44 1.1 riastrad * documentation and/or other materials provided with the distribution.
45 1.1 riastrad * 3. Neither the name of the University nor the names of its contributors
46 1.1 riastrad * may be used to endorse or promote products derived from this software
47 1.1 riastrad * without specific prior written permission.
48 1.1 riastrad *
49 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 1.1 riastrad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 1.1 riastrad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 1.1 riastrad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 1.1 riastrad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 1.1 riastrad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 1.1 riastrad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 1.1 riastrad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 1.1 riastrad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 1.1 riastrad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 1.1 riastrad * SUCH DAMAGE.
60 1.1 riastrad *
61 1.1 riastrad * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
62 1.1 riastrad * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
63 1.1 riastrad */
64 1.1 riastrad
65 1.1 riastrad #include <sys/cdefs.h>
66 1.3 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_time_arith.c,v 1.3 2025/04/01 23:14:23 riastradh Exp $");
67 1.1 riastrad
68 1.1 riastrad #include <sys/types.h>
69 1.1 riastrad
70 1.1 riastrad #include <sys/errno.h>
71 1.1 riastrad #include <sys/time.h>
72 1.1 riastrad #include <sys/timearith.h>
73 1.1 riastrad
74 1.1 riastrad #if defined(_KERNEL)
75 1.1 riastrad
76 1.1 riastrad #include <sys/kernel.h>
77 1.1 riastrad #include <sys/systm.h>
78 1.1 riastrad
79 1.1 riastrad #include <machine/limits.h>
80 1.1 riastrad
81 1.1 riastrad #elif defined(_TIME_TESTING)
82 1.1 riastrad
83 1.1 riastrad #include <assert.h>
84 1.1 riastrad #include <limits.h>
85 1.1 riastrad #include <stdbool.h>
86 1.1 riastrad
87 1.1 riastrad extern int hz;
88 1.2 riastrad extern int tick;
89 1.1 riastrad
90 1.1 riastrad #define KASSERT assert
91 1.3 riastrad #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
92 1.1 riastrad
93 1.1 riastrad #endif
94 1.1 riastrad
95 1.1 riastrad /*
96 1.1 riastrad * Compute number of ticks in the specified amount of time.
97 1.1 riastrad */
98 1.1 riastrad int
99 1.1 riastrad tvtohz(const struct timeval *tv)
100 1.1 riastrad {
101 1.1 riastrad unsigned long ticks;
102 1.1 riastrad long sec, usec;
103 1.1 riastrad
104 1.1 riastrad /*
105 1.1 riastrad * If the number of usecs in the whole seconds part of the time
106 1.1 riastrad * difference fits in a long, then the total number of usecs will
107 1.1 riastrad * fit in an unsigned long. Compute the total and convert it to
108 1.1 riastrad * ticks, rounding up and adding 1 to allow for the current tick
109 1.1 riastrad * to expire. Rounding also depends on unsigned long arithmetic
110 1.1 riastrad * to avoid overflow.
111 1.1 riastrad *
112 1.1 riastrad * Otherwise, if the number of ticks in the whole seconds part of
113 1.1 riastrad * the time difference fits in a long, then convert the parts to
114 1.1 riastrad * ticks separately and add, using similar rounding methods and
115 1.1 riastrad * overflow avoidance. This method would work in the previous
116 1.1 riastrad * case, but it is slightly slower and assumes that hz is integral.
117 1.1 riastrad *
118 1.1 riastrad * Otherwise, round the time difference down to the maximum
119 1.1 riastrad * representable value.
120 1.1 riastrad *
121 1.1 riastrad * If ints are 32-bit, then the maximum value for any timeout in
122 1.1 riastrad * 10ms ticks is 248 days.
123 1.1 riastrad */
124 1.1 riastrad sec = tv->tv_sec;
125 1.1 riastrad usec = tv->tv_usec;
126 1.1 riastrad
127 1.1 riastrad KASSERT(usec >= 0);
128 1.1 riastrad KASSERT(usec < 1000000);
129 1.1 riastrad
130 1.1 riastrad /* catch overflows in conversion time_t->int */
131 1.1 riastrad if (tv->tv_sec > INT_MAX)
132 1.1 riastrad return INT_MAX;
133 1.1 riastrad if (tv->tv_sec < 0)
134 1.1 riastrad return 0;
135 1.1 riastrad
136 1.1 riastrad if (sec < 0 || (sec == 0 && usec == 0)) {
137 1.1 riastrad /*
138 1.1 riastrad * Would expire now or in the past. Return 0 ticks.
139 1.1 riastrad * This is different from the legacy tvhzto() interface,
140 1.1 riastrad * and callers need to check for it.
141 1.1 riastrad */
142 1.1 riastrad ticks = 0;
143 1.1 riastrad } else if (sec <= (LONG_MAX / 1000000))
144 1.1 riastrad ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
145 1.1 riastrad / tick) + 1;
146 1.1 riastrad else if (sec <= (LONG_MAX / hz))
147 1.1 riastrad ticks = (sec * hz) +
148 1.1 riastrad (((unsigned long)usec + (tick - 1)) / tick) + 1;
149 1.1 riastrad else
150 1.1 riastrad ticks = LONG_MAX;
151 1.1 riastrad
152 1.1 riastrad if (ticks > INT_MAX)
153 1.1 riastrad ticks = INT_MAX;
154 1.1 riastrad
155 1.1 riastrad return ((int)ticks);
156 1.1 riastrad }
157 1.1 riastrad
158 1.1 riastrad /*
159 1.1 riastrad * Check that a proposed value to load into the .it_value or
160 1.1 riastrad * .it_interval part of an interval timer is acceptable, and
161 1.1 riastrad * fix it to have at least minimal value (i.e. if it is less
162 1.1 riastrad * than the resolution of the clock, round it up.). We don't
163 1.1 riastrad * timeout the 0,0 value because this means to disable the
164 1.1 riastrad * timer or the interval.
165 1.1 riastrad */
166 1.1 riastrad int
167 1.1 riastrad itimerfix(struct timeval *tv)
168 1.1 riastrad {
169 1.1 riastrad
170 1.1 riastrad if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
171 1.1 riastrad return EINVAL;
172 1.1 riastrad if (tv->tv_sec < 0)
173 1.1 riastrad return ETIMEDOUT;
174 1.1 riastrad if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
175 1.1 riastrad tv->tv_usec = tick;
176 1.1 riastrad return 0;
177 1.1 riastrad }
178 1.1 riastrad
179 1.1 riastrad int
180 1.1 riastrad itimespecfix(struct timespec *ts)
181 1.1 riastrad {
182 1.1 riastrad
183 1.1 riastrad if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
184 1.1 riastrad return EINVAL;
185 1.1 riastrad if (ts->tv_sec < 0)
186 1.1 riastrad return ETIMEDOUT;
187 1.1 riastrad if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
188 1.1 riastrad ts->tv_nsec = tick * 1000;
189 1.1 riastrad return 0;
190 1.1 riastrad }
191 1.1 riastrad
192 1.1 riastrad /*
193 1.1 riastrad * timespecaddok(tsp, usp)
194 1.1 riastrad *
195 1.1 riastrad * True if tsp + usp can be computed without overflow, i.e., if it
196 1.1 riastrad * is OK to do timespecadd(tsp, usp, ...).
197 1.1 riastrad */
198 1.1 riastrad bool
199 1.1 riastrad timespecaddok(const struct timespec *tsp, const struct timespec *usp)
200 1.1 riastrad {
201 1.1 riastrad enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
202 1.1 riastrad time_t a = tsp->tv_sec;
203 1.1 riastrad time_t b = usp->tv_sec;
204 1.1 riastrad bool carry;
205 1.1 riastrad
206 1.1 riastrad /*
207 1.1 riastrad * Caller is responsible for guaranteeing valid timespec
208 1.1 riastrad * inputs. Any user-controlled inputs must be validated or
209 1.1 riastrad * adjusted.
210 1.1 riastrad */
211 1.1 riastrad KASSERT(tsp->tv_nsec >= 0);
212 1.1 riastrad KASSERT(usp->tv_nsec >= 0);
213 1.1 riastrad KASSERT(tsp->tv_nsec < 1000000000L);
214 1.1 riastrad KASSERT(usp->tv_nsec < 1000000000L);
215 1.1 riastrad __CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
216 1.1 riastrad
217 1.1 riastrad /*
218 1.1 riastrad * Fail if a + b + carry overflows TIME_MAX, or if a + b
219 1.1 riastrad * overflows TIME_MIN because timespecadd adds the carry after
220 1.1 riastrad * computing a + b.
221 1.1 riastrad *
222 1.1 riastrad * Break it into two mutually exclusive and exhaustive cases:
223 1.1 riastrad * I. a >= 0
224 1.1 riastrad * II. a < 0
225 1.1 riastrad */
226 1.1 riastrad carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
227 1.1 riastrad if (a >= 0) {
228 1.1 riastrad /*
229 1.1 riastrad * Case I: a >= 0. If b < 0, then b + 1 <= 0, so
230 1.1 riastrad *
231 1.1 riastrad * a + b + 1 <= a + 0 <= TIME_MAX,
232 1.1 riastrad *
233 1.1 riastrad * and
234 1.1 riastrad *
235 1.1 riastrad * a + b >= 0 + b = b >= TIME_MIN,
236 1.1 riastrad *
237 1.1 riastrad * so this can't overflow.
238 1.1 riastrad *
239 1.1 riastrad * If b >= 0, then a + b + carry >= a + b >= 0, so
240 1.1 riastrad * negative results and thus results below TIME_MIN are
241 1.1 riastrad * impossible; we need only avoid
242 1.1 riastrad *
243 1.1 riastrad * a + b + carry > TIME_MAX,
244 1.1 riastrad *
245 1.1 riastrad * which we will do by rejecting if
246 1.1 riastrad *
247 1.1 riastrad * b > TIME_MAX - a - carry,
248 1.1 riastrad *
249 1.1 riastrad * which in turn is incidentally always false if b < 0
250 1.1 riastrad * so we don't need extra logic to discriminate on the
251 1.1 riastrad * b >= 0 and b < 0 cases.
252 1.1 riastrad *
253 1.1 riastrad * Since 0 <= a <= TIME_MAX, we know
254 1.1 riastrad *
255 1.1 riastrad * 0 <= TIME_MAX - a <= TIME_MAX,
256 1.1 riastrad *
257 1.1 riastrad * and hence
258 1.1 riastrad *
259 1.1 riastrad * -1 <= TIME_MAX - a - 1 < TIME_MAX.
260 1.1 riastrad *
261 1.1 riastrad * So we can compute TIME_MAX - a - carry (i.e., either
262 1.1 riastrad * TIME_MAX - a or TIME_MAX - a - 1) safely without
263 1.1 riastrad * overflow.
264 1.1 riastrad */
265 1.1 riastrad if (b > TIME_MAX - a - carry)
266 1.1 riastrad return false;
267 1.1 riastrad } else {
268 1.1 riastrad /*
269 1.1 riastrad * Case II: a < 0. If b >= 0, then since a + 1 <= 0,
270 1.1 riastrad * we have
271 1.1 riastrad *
272 1.1 riastrad * a + b + 1 <= b <= TIME_MAX,
273 1.1 riastrad *
274 1.1 riastrad * and
275 1.1 riastrad *
276 1.1 riastrad * a + b >= a >= TIME_MIN,
277 1.1 riastrad *
278 1.1 riastrad * so this can't overflow.
279 1.1 riastrad *
280 1.1 riastrad * If b < 0, then the intermediate a + b is negative
281 1.1 riastrad * and the outcome a + b + 1 is nonpositive, so we need
282 1.1 riastrad * only avoid
283 1.1 riastrad *
284 1.1 riastrad * a + b < TIME_MIN,
285 1.1 riastrad *
286 1.1 riastrad * which we will do by rejecting if
287 1.1 riastrad *
288 1.1 riastrad * a < TIME_MIN - b.
289 1.1 riastrad *
290 1.1 riastrad * (Reminder: The carry is added afterward in
291 1.1 riastrad * timespecadd, so to avoid overflow it is not enough
292 1.1 riastrad * to merely reject a + b + carry < TIME_MIN.)
293 1.1 riastrad *
294 1.1 riastrad * It is safe to compute the difference TIME_MIN - b
295 1.1 riastrad * because b is negative, so the result lies in
296 1.1 riastrad * (TIME_MIN, 0].
297 1.1 riastrad */
298 1.1 riastrad if (b < 0 && a < TIME_MIN - b)
299 1.1 riastrad return false;
300 1.1 riastrad }
301 1.1 riastrad
302 1.1 riastrad return true;
303 1.1 riastrad }
304 1.1 riastrad
305 1.1 riastrad /*
306 1.1 riastrad * timespecsubok(tsp, usp)
307 1.1 riastrad *
308 1.1 riastrad * True if tsp - usp can be computed without overflow, i.e., if it
309 1.1 riastrad * is OK to do timespecsub(tsp, usp, ...).
310 1.1 riastrad */
311 1.1 riastrad bool
312 1.1 riastrad timespecsubok(const struct timespec *tsp, const struct timespec *usp)
313 1.1 riastrad {
314 1.1 riastrad enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
315 1.1 riastrad time_t a = tsp->tv_sec, b = usp->tv_sec;
316 1.1 riastrad bool borrow;
317 1.1 riastrad
318 1.1 riastrad /*
319 1.1 riastrad * Caller is responsible for guaranteeing valid timespec
320 1.1 riastrad * inputs. Any user-controlled inputs must be validated or
321 1.1 riastrad * adjusted.
322 1.1 riastrad */
323 1.1 riastrad KASSERT(tsp->tv_nsec >= 0);
324 1.1 riastrad KASSERT(usp->tv_nsec >= 0);
325 1.1 riastrad KASSERT(tsp->tv_nsec < 1000000000L);
326 1.1 riastrad KASSERT(usp->tv_nsec < 1000000000L);
327 1.1 riastrad __CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
328 1.1 riastrad
329 1.1 riastrad /*
330 1.1 riastrad * Fail if a - b - borrow overflows TIME_MIN, or if a - b
331 1.1 riastrad * overflows TIME_MAX because timespecsub subtracts the borrow
332 1.1 riastrad * after computing a - b.
333 1.1 riastrad *
334 1.1 riastrad * Break it into two mutually exclusive and exhaustive cases:
335 1.1 riastrad * I. a < 0
336 1.1 riastrad * II. a >= 0
337 1.1 riastrad */
338 1.1 riastrad borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
339 1.1 riastrad if (a < 0) {
340 1.1 riastrad /*
341 1.1 riastrad * Case I: a < 0. If b < 0, then -b - 1 >= 0, so
342 1.1 riastrad *
343 1.1 riastrad * a - b - 1 >= a + 0 >= TIME_MIN,
344 1.1 riastrad *
345 1.1 riastrad * and, since a <= -1, provided that TIME_MIN <=
346 1.1 riastrad * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
347 1.1 riastrad * fact, equality holds, under the assumption of
348 1.1 riastrad * two's-complement arithmetic),
349 1.1 riastrad *
350 1.1 riastrad * a - b <= -1 - b = -b - 1 <= TIME_MAX,
351 1.1 riastrad *
352 1.1 riastrad * so this can't overflow.
353 1.1 riastrad */
354 1.1 riastrad __CTASSERT(TIME_MIN <= -TIME_MAX - 1);
355 1.1 riastrad
356 1.1 riastrad /*
357 1.1 riastrad * If b >= 0, then a - b - borrow <= a - b < 0, so
358 1.1 riastrad * positive results and thus results above TIME_MAX are
359 1.1 riastrad * impossible; we need only avoid
360 1.1 riastrad *
361 1.1 riastrad * a - b - borrow < TIME_MIN,
362 1.1 riastrad *
363 1.1 riastrad * which we will do by rejecting if
364 1.1 riastrad *
365 1.1 riastrad * a < TIME_MIN + b + borrow.
366 1.1 riastrad *
367 1.1 riastrad * The right-hand side is safe to evaluate for any
368 1.1 riastrad * values of b and borrow as long as TIME_MIN +
369 1.1 riastrad * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
370 1.1 riastrad * (Note: If time_t were unsigned, this would fail!)
371 1.1 riastrad *
372 1.1 riastrad * Note: Unlike Case I in timespecaddok, this criterion
373 1.1 riastrad * does not work for b < 0, nor can the roles of a and
374 1.1 riastrad * b in the inequality be reversed (e.g., -b < TIME_MIN
375 1.1 riastrad * - a + borrow) without extra cases like checking for
376 1.1 riastrad * b = TEST_MIN.
377 1.1 riastrad */
378 1.1 riastrad __CTASSERT(TIME_MIN < -1);
379 1.1 riastrad if (b >= 0 && a < TIME_MIN + b + borrow)
380 1.1 riastrad return false;
381 1.1 riastrad } else {
382 1.1 riastrad /*
383 1.1 riastrad * Case II: a >= 0. If b >= 0, then
384 1.1 riastrad *
385 1.1 riastrad * a - b <= a <= TIME_MAX,
386 1.1 riastrad *
387 1.1 riastrad * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
388 1.1 riastrad * equality holds, under the assumption of
389 1.1 riastrad * two's-complement arithmetic)
390 1.1 riastrad *
391 1.1 riastrad * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
392 1.1 riastrad *
393 1.1 riastrad * so this can't overflow.
394 1.1 riastrad */
395 1.1 riastrad __CTASSERT(TIME_MIN <= -TIME_MAX - 1);
396 1.1 riastrad
397 1.1 riastrad /*
398 1.1 riastrad * If b < 0, then a - b >= a >= 0, so negative results
399 1.1 riastrad * and thus results below TIME_MIN are impossible; we
400 1.1 riastrad * need only avoid
401 1.1 riastrad *
402 1.1 riastrad * a - b > TIME_MAX,
403 1.1 riastrad *
404 1.1 riastrad * which we will do by rejecting if
405 1.1 riastrad *
406 1.1 riastrad * a > TIME_MAX + b.
407 1.1 riastrad *
408 1.1 riastrad * (Reminder: The borrow is subtracted afterward in
409 1.1 riastrad * timespecsub, so to avoid overflow it is not enough
410 1.1 riastrad * to merely reject a - b - borrow > TIME_MAX.)
411 1.1 riastrad *
412 1.1 riastrad * It is safe to compute the sum TIME_MAX + b because b
413 1.1 riastrad * is negative, so the result lies in [0, TIME_MAX).
414 1.1 riastrad */
415 1.1 riastrad if (b < 0 && a > TIME_MAX + b)
416 1.1 riastrad return false;
417 1.1 riastrad }
418 1.1 riastrad
419 1.1 riastrad return true;
420 1.1 riastrad }
421 1.1 riastrad
422 1.3 riastrad static bool
423 1.3 riastrad timespec2nsok(const struct timespec *ts)
424 1.3 riastrad {
425 1.3 riastrad
426 1.3 riastrad return ts->tv_sec < INT64_MAX/1000000000 ||
427 1.3 riastrad (ts->tv_sec == INT64_MAX/1000000000 &&
428 1.3 riastrad ts->tv_nsec <= INT64_MAX - (INT64_MAX/1000000000)*1000000000);
429 1.3 riastrad }
430 1.3 riastrad
431 1.1 riastrad /*
432 1.1 riastrad * itimer_transition(it, now, next, &overruns)
433 1.1 riastrad *
434 1.1 riastrad * Given:
435 1.1 riastrad *
436 1.1 riastrad * - it: the current state of an itimer (it_value = last expiry
437 1.1 riastrad * time, it_interval = periodic rescheduling interval), and
438 1.1 riastrad *
439 1.1 riastrad * - now: the current time on the itimer's clock;
440 1.1 riastrad *
441 1.1 riastrad * compute:
442 1.1 riastrad *
443 1.1 riastrad * - next: the next time the itimer should be scheduled for, and
444 1.1 riastrad * - overruns: the number of overruns if we're firing late.
445 1.1 riastrad *
446 1.1 riastrad * XXX This should maybe also say whether the itimer should expire
447 1.1 riastrad * at all.
448 1.1 riastrad */
449 1.1 riastrad void
450 1.1 riastrad itimer_transition(const struct itimerspec *restrict it,
451 1.1 riastrad const struct timespec *restrict now,
452 1.1 riastrad struct timespec *restrict next,
453 1.1 riastrad int *restrict overrunsp)
454 1.1 riastrad {
455 1.3 riastrad int64_t last_val, next_val, interval, remainder, now_ns;
456 1.1 riastrad int backwards;
457 1.1 riastrad
458 1.1 riastrad /*
459 1.1 riastrad * Zero the outputs so we can test assertions in userland
460 1.1 riastrad * without undefined behaviour.
461 1.1 riastrad */
462 1.1 riastrad timespecclear(next);
463 1.1 riastrad *overrunsp = 0;
464 1.1 riastrad
465 1.1 riastrad /*
466 1.1 riastrad * Paranoia: Caller should guarantee this.
467 1.1 riastrad */
468 1.1 riastrad if (!timespecisset(&it->it_interval)) {
469 1.1 riastrad timespecclear(next);
470 1.1 riastrad return;
471 1.1 riastrad }
472 1.1 riastrad
473 1.3 riastrad /* Did the clock wind backwards? */
474 1.1 riastrad backwards = (timespeccmp(&it->it_value, now, >));
475 1.1 riastrad
476 1.3 riastrad /* Valid value and interval guaranteed by itimerfix. */
477 1.3 riastrad KASSERT(it->it_value.tv_sec >= 0);
478 1.3 riastrad KASSERT(it->it_value.tv_nsec < 1000000000);
479 1.3 riastrad KASSERT(it->it_interval.tv_sec >= 0);
480 1.3 riastrad KASSERT(it->it_interval.tv_nsec < 1000000000);
481 1.3 riastrad
482 1.1 riastrad /* Nonnegative interval guaranteed by itimerfix. */
483 1.1 riastrad KASSERT(it->it_interval.tv_sec >= 0);
484 1.1 riastrad KASSERT(it->it_interval.tv_nsec >= 0);
485 1.1 riastrad
486 1.1 riastrad /* Handle the easy case of non-overflown timers first. */
487 1.3 riastrad if (__predict_true(!backwards)) {
488 1.3 riastrad if (__predict_false(!timespecaddok(&it->it_value,
489 1.3 riastrad &it->it_interval)))
490 1.3 riastrad goto overflow;
491 1.3 riastrad timespecadd(&it->it_value, &it->it_interval, next);
492 1.3 riastrad if (__predict_true(timespeccmp(now, next, <)))
493 1.3 riastrad return;
494 1.3 riastrad }
495 1.1 riastrad
496 1.3 riastrad /*
497 1.3 riastrad * If we can't represent the input as a number of nanoseconds,
498 1.3 riastrad * bail. This is good up to the year 2262, if we start
499 1.3 riastrad * counting from 1970 (2^63 nanoseconds ~ 292 years).
500 1.3 riastrad */
501 1.3 riastrad if (__predict_false(!timespec2nsok(now)) ||
502 1.3 riastrad __predict_false(!timespec2nsok(&it->it_value)) ||
503 1.3 riastrad __predict_false(!timespec2nsok(&it->it_interval)))
504 1.3 riastrad goto overflow;
505 1.3 riastrad
506 1.3 riastrad now_ns = timespec2ns(now);
507 1.3 riastrad last_val = timespec2ns(&it->it_value);
508 1.3 riastrad interval = timespec2ns(&it->it_interval);
509 1.3 riastrad
510 1.3 riastrad KASSERT(now_ns >= 0);
511 1.3 riastrad KASSERT(last_val >= 0);
512 1.3 riastrad KASSERT(interval >= 0);
513 1.1 riastrad
514 1.3 riastrad /*
515 1.3 riastrad * now [backwards] overruns now [forwards]
516 1.3 riastrad * | v v v |
517 1.3 riastrad * |--+----+-*--x----+----+----|----+----+----+--*-x----+-->
518 1.3 riastrad * \/ | \/
519 1.3 riastrad * remainder last_val remainder
520 1.3 riastrad * (zero or negative) (zero or positive)
521 1.3 riastrad *
522 1.3 riastrad * Set next_val to last_value + k*interval for some k.
523 1.3 riastrad *
524 1.3 riastrad * The interval is always positive, and division in C
525 1.3 riastrad * truncates, so dividing a positive duration by the interval
526 1.3 riastrad * always gives zero or a positive remainder, and dividing a
527 1.3 riastrad * negative duration by the interval always gives zero or a
528 1.3 riastrad * negative remainder. Hence:
529 1.3 riastrad *
530 1.3 riastrad * - If now_ns < last_val -- which happens iff backwards, i.e.,
531 1.3 riastrad * the clock was wound backwards -- then remainder is zero or
532 1.3 riastrad * negative, so subtracting it stays in place or moves
533 1.3 riastrad * forward in time, and thus this finds the _earliest_ value
534 1.3 riastrad * that is not earlier than now_ns. We will advance this by
535 1.3 riastrad * one more interval if we are already firing exactly on the
536 1.3 riastrad * interval to find the earliest value _after_ now_ns.
537 1.3 riastrad *
538 1.3 riastrad * - If now_ns > last_val -- which happens iff !backwards,
539 1.3 riastrad * i.e., the clock ran fast -- then remainder is zero or
540 1.3 riastrad * positive positive, so this finds the _latest_ value not
541 1.3 riastrad * later than now_ns. We will always advance this by one
542 1.3 riastrad * more interval to find the earliest value _after_ now_ns.
543 1.3 riastrad * We will also count overflows.
544 1.3 riastrad *
545 1.3 riastrad * (now_ns == last_val is not possible at this point because it
546 1.3 riastrad * only happens if the addition of struct timespec would
547 1.3 riastrad * overflow, and that is only possible when timespec2ns would
548 1.3 riastrad * also overflow for at least one of the inputs.)
549 1.3 riastrad */
550 1.3 riastrad KASSERT(last_val != now_ns);
551 1.3 riastrad remainder = (now_ns - last_val) % interval;
552 1.3 riastrad next_val = now_ns - remainder;
553 1.3 riastrad KASSERT((last_val - next_val) % interval == 0);
554 1.3 riastrad if (backwards) {
555 1.3 riastrad /*
556 1.3 riastrad * If the clock was wound back to an exact multiple of
557 1.3 riastrad * the interval, so next_val = now_ns, don't demand to
558 1.3 riastrad * fire again in the same instant -- advance to the
559 1.3 riastrad * next interval. Overflow is not possible; proof is
560 1.3 riastrad * asserted.
561 1.3 riastrad */
562 1.3 riastrad if (remainder == 0) {
563 1.3 riastrad KASSERT(now_ns < last_val);
564 1.3 riastrad KASSERT(next_val == now_ns);
565 1.3 riastrad KASSERT(last_val - next_val >= interval);
566 1.3 riastrad KASSERT(interval <= last_val - next_val);
567 1.3 riastrad KASSERT(next_val <= last_val - interval);
568 1.3 riastrad KASSERT(next_val <= INT64_MAX - interval);
569 1.1 riastrad next_val += interval;
570 1.3 riastrad }
571 1.3 riastrad } else {
572 1.3 riastrad /*
573 1.3 riastrad * next_val is the largest integer multiple of interval
574 1.3 riastrad * not later than now_ns. Count the number of full
575 1.3 riastrad * intervals that were skipped (division should be
576 1.3 riastrad * exact here), not counting any partial interval
577 1.3 riastrad * between next_val and now_ns, as the number of
578 1.3 riastrad * overruns. Advance by one interval -- unless that
579 1.3 riastrad * would overflow.
580 1.3 riastrad */
581 1.3 riastrad *overrunsp += MIN(INT_MAX - *overrunsp,
582 1.3 riastrad (next_val - last_val) / interval);
583 1.3 riastrad if (__predict_false(next_val > INT64_MAX - interval))
584 1.3 riastrad goto overflow;
585 1.3 riastrad next_val += interval;
586 1.3 riastrad }
587 1.1 riastrad
588 1.3 riastrad next->tv_sec = next_val / 1000000000;
589 1.3 riastrad next->tv_nsec = next_val % 1000000000;
590 1.3 riastrad return;
591 1.3 riastrad
592 1.3 riastrad overflow:
593 1.3 riastrad next->tv_sec = 0;
594 1.3 riastrad next->tv_nsec = 0;
595 1.1 riastrad }
596