ieee80211_crypto_tkip.c revision 1.8 1 1.1 dyoung /*-
2 1.1 dyoung * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 1.1 dyoung * All rights reserved.
4 1.1 dyoung *
5 1.1 dyoung * Redistribution and use in source and binary forms, with or without
6 1.1 dyoung * modification, are permitted provided that the following conditions
7 1.1 dyoung * are met:
8 1.1 dyoung * 1. Redistributions of source code must retain the above copyright
9 1.1 dyoung * notice, this list of conditions and the following disclaimer.
10 1.1 dyoung * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 dyoung * notice, this list of conditions and the following disclaimer in the
12 1.1 dyoung * documentation and/or other materials provided with the distribution.
13 1.1 dyoung * 3. The name of the author may not be used to endorse or promote products
14 1.1 dyoung * derived from this software without specific prior written permission.
15 1.1 dyoung *
16 1.1 dyoung * Alternatively, this software may be distributed under the terms of the
17 1.1 dyoung * GNU General Public License ("GPL") version 2 as published by the Free
18 1.1 dyoung * Software Foundation.
19 1.1 dyoung *
20 1.1 dyoung * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 1.1 dyoung * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 1.1 dyoung * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 1.1 dyoung * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 1.1 dyoung * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 1.1 dyoung * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 1.1 dyoung * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 1.1 dyoung * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 1.1 dyoung * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 1.1 dyoung * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 dyoung */
31 1.1 dyoung
32 1.1 dyoung #include <sys/cdefs.h>
33 1.2 dyoung #ifdef __FreeBSD__
34 1.4 skrll __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_tkip.c,v 1.10 2005/08/08 18:46:35 sam Exp $");
35 1.2 dyoung #endif
36 1.2 dyoung #ifdef __NetBSD__
37 1.8 drochner __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_tkip.c,v 1.8 2008/08/19 16:30:47 drochner Exp $");
38 1.2 dyoung #endif
39 1.1 dyoung
40 1.1 dyoung /*
41 1.1 dyoung * IEEE 802.11i TKIP crypto support.
42 1.1 dyoung *
43 1.1 dyoung * Part of this module is derived from similar code in the Host
44 1.1 dyoung * AP driver. The code is used with the consent of the author and
45 1.1 dyoung * it's license is included below.
46 1.1 dyoung */
47 1.1 dyoung #include <sys/param.h>
48 1.1 dyoung #include <sys/systm.h>
49 1.1 dyoung #include <sys/mbuf.h>
50 1.1 dyoung #include <sys/malloc.h>
51 1.1 dyoung #include <sys/kernel.h>
52 1.1 dyoung #include <sys/endian.h>
53 1.1 dyoung
54 1.1 dyoung #include <sys/socket.h>
55 1.1 dyoung
56 1.1 dyoung #include <net/if.h>
57 1.5 christos #include <net/if_ether.h>
58 1.1 dyoung #include <net/if_media.h>
59 1.1 dyoung
60 1.1 dyoung #include <net80211/ieee80211_var.h>
61 1.1 dyoung
62 1.1 dyoung static void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
63 1.1 dyoung static void tkip_detach(struct ieee80211_key *);
64 1.1 dyoung static int tkip_setkey(struct ieee80211_key *);
65 1.1 dyoung static int tkip_encap(struct ieee80211_key *, struct mbuf *m, u_int8_t keyid);
66 1.3 dyoung static int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
67 1.3 dyoung static int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
68 1.3 dyoung static int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
69 1.1 dyoung
70 1.2 dyoung const struct ieee80211_cipher ieee80211_cipher_tkip = {
71 1.1 dyoung .ic_name = "TKIP",
72 1.1 dyoung .ic_cipher = IEEE80211_CIPHER_TKIP,
73 1.1 dyoung .ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
74 1.1 dyoung IEEE80211_WEP_EXTIVLEN,
75 1.1 dyoung .ic_trailer = IEEE80211_WEP_CRCLEN,
76 1.1 dyoung .ic_miclen = IEEE80211_WEP_MICLEN,
77 1.1 dyoung .ic_attach = tkip_attach,
78 1.1 dyoung .ic_detach = tkip_detach,
79 1.1 dyoung .ic_setkey = tkip_setkey,
80 1.1 dyoung .ic_encap = tkip_encap,
81 1.1 dyoung .ic_decap = tkip_decap,
82 1.1 dyoung .ic_enmic = tkip_enmic,
83 1.1 dyoung .ic_demic = tkip_demic,
84 1.1 dyoung };
85 1.1 dyoung
86 1.2 dyoung #define tkip ieee80211_cipher_tkip
87 1.2 dyoung
88 1.1 dyoung typedef uint8_t u8;
89 1.1 dyoung typedef uint16_t u16;
90 1.1 dyoung typedef uint32_t __u32;
91 1.1 dyoung typedef uint32_t u32;
92 1.1 dyoung
93 1.1 dyoung struct tkip_ctx {
94 1.1 dyoung struct ieee80211com *tc_ic; /* for diagnostics */
95 1.1 dyoung
96 1.1 dyoung u16 tx_ttak[5];
97 1.1 dyoung int tx_phase1_done;
98 1.1 dyoung u8 tx_rc4key[16]; /* XXX for test module; make locals? */
99 1.1 dyoung
100 1.1 dyoung u16 rx_ttak[5];
101 1.1 dyoung int rx_phase1_done;
102 1.1 dyoung u8 rx_rc4key[16]; /* XXX for test module; make locals? */
103 1.1 dyoung uint64_t rx_rsc; /* held until MIC verified */
104 1.1 dyoung };
105 1.1 dyoung
106 1.1 dyoung static void michael_mic(struct tkip_ctx *, const u8 *key,
107 1.1 dyoung struct mbuf *m, u_int off, size_t data_len,
108 1.1 dyoung u8 mic[IEEE80211_WEP_MICLEN]);
109 1.1 dyoung static int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
110 1.1 dyoung struct mbuf *, int hdr_len);
111 1.1 dyoung static int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
112 1.1 dyoung struct mbuf *, int hdr_len);
113 1.1 dyoung
114 1.1 dyoung static void *
115 1.7 christos tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
116 1.1 dyoung {
117 1.1 dyoung struct tkip_ctx *ctx;
118 1.1 dyoung
119 1.1 dyoung MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
120 1.1 dyoung M_DEVBUF, M_NOWAIT | M_ZERO);
121 1.1 dyoung if (ctx == NULL) {
122 1.1 dyoung ic->ic_stats.is_crypto_nomem++;
123 1.1 dyoung return NULL;
124 1.1 dyoung }
125 1.1 dyoung
126 1.1 dyoung ctx->tc_ic = ic;
127 1.1 dyoung return ctx;
128 1.1 dyoung }
129 1.1 dyoung
130 1.1 dyoung static void
131 1.1 dyoung tkip_detach(struct ieee80211_key *k)
132 1.1 dyoung {
133 1.1 dyoung struct tkip_ctx *ctx = k->wk_private;
134 1.1 dyoung
135 1.1 dyoung FREE(ctx, M_DEVBUF);
136 1.1 dyoung }
137 1.1 dyoung
138 1.1 dyoung static int
139 1.1 dyoung tkip_setkey(struct ieee80211_key *k)
140 1.1 dyoung {
141 1.1 dyoung struct tkip_ctx *ctx = k->wk_private;
142 1.1 dyoung
143 1.1 dyoung if (k->wk_keylen != (128/NBBY)) {
144 1.1 dyoung (void) ctx; /* XXX */
145 1.1 dyoung IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
146 1.1 dyoung "%s: Invalid key length %u, expecting %u\n",
147 1.1 dyoung __func__, k->wk_keylen, 128/NBBY);
148 1.1 dyoung return 0;
149 1.1 dyoung }
150 1.1 dyoung k->wk_keytsc = 1; /* TSC starts at 1 */
151 1.1 dyoung return 1;
152 1.1 dyoung }
153 1.1 dyoung
154 1.1 dyoung /*
155 1.1 dyoung * Add privacy headers and do any s/w encryption required.
156 1.1 dyoung */
157 1.1 dyoung static int
158 1.1 dyoung tkip_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
159 1.1 dyoung {
160 1.1 dyoung struct tkip_ctx *ctx = k->wk_private;
161 1.1 dyoung struct ieee80211com *ic = ctx->tc_ic;
162 1.1 dyoung u_int8_t *ivp;
163 1.1 dyoung int hdrlen;
164 1.1 dyoung
165 1.1 dyoung /*
166 1.1 dyoung * Handle TKIP counter measures requirement.
167 1.1 dyoung */
168 1.1 dyoung if (ic->ic_flags & IEEE80211_F_COUNTERM) {
169 1.1 dyoung #ifdef IEEE80211_DEBUG
170 1.1 dyoung struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
171 1.1 dyoung #endif
172 1.1 dyoung
173 1.1 dyoung IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
174 1.1 dyoung "[%s] Discard frame due to countermeasures (%s)\n",
175 1.1 dyoung ether_sprintf(wh->i_addr2), __func__);
176 1.1 dyoung ic->ic_stats.is_crypto_tkipcm++;
177 1.1 dyoung return 0;
178 1.1 dyoung }
179 1.1 dyoung hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
180 1.1 dyoung
181 1.1 dyoung /*
182 1.1 dyoung * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
183 1.1 dyoung */
184 1.1 dyoung M_PREPEND(m, tkip.ic_header, M_NOWAIT);
185 1.1 dyoung if (m == NULL)
186 1.1 dyoung return 0;
187 1.1 dyoung ivp = mtod(m, u_int8_t *);
188 1.1 dyoung memmove(ivp, ivp + tkip.ic_header, hdrlen);
189 1.1 dyoung ivp += hdrlen;
190 1.1 dyoung
191 1.1 dyoung ivp[0] = k->wk_keytsc >> 8; /* TSC1 */
192 1.1 dyoung ivp[1] = (ivp[0] | 0x20) & 0x7f; /* WEP seed */
193 1.1 dyoung ivp[2] = k->wk_keytsc >> 0; /* TSC0 */
194 1.1 dyoung ivp[3] = keyid | IEEE80211_WEP_EXTIV; /* KeyID | ExtID */
195 1.1 dyoung ivp[4] = k->wk_keytsc >> 16; /* TSC2 */
196 1.1 dyoung ivp[5] = k->wk_keytsc >> 24; /* TSC3 */
197 1.1 dyoung ivp[6] = k->wk_keytsc >> 32; /* TSC4 */
198 1.1 dyoung ivp[7] = k->wk_keytsc >> 40; /* TSC5 */
199 1.1 dyoung
200 1.1 dyoung /*
201 1.1 dyoung * Finally, do software encrypt if neeed.
202 1.1 dyoung */
203 1.1 dyoung if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
204 1.1 dyoung if (!tkip_encrypt(ctx, k, m, hdrlen))
205 1.1 dyoung return 0;
206 1.1 dyoung /* NB: tkip_encrypt handles wk_keytsc */
207 1.1 dyoung } else
208 1.1 dyoung k->wk_keytsc++;
209 1.1 dyoung
210 1.1 dyoung return 1;
211 1.1 dyoung }
212 1.1 dyoung
213 1.1 dyoung /*
214 1.1 dyoung * Add MIC to the frame as needed.
215 1.1 dyoung */
216 1.1 dyoung static int
217 1.3 dyoung tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
218 1.1 dyoung {
219 1.1 dyoung struct tkip_ctx *ctx = k->wk_private;
220 1.1 dyoung
221 1.3 dyoung if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
222 1.1 dyoung struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
223 1.1 dyoung struct ieee80211com *ic = ctx->tc_ic;
224 1.1 dyoung int hdrlen;
225 1.1 dyoung uint8_t mic[IEEE80211_WEP_MICLEN];
226 1.1 dyoung
227 1.1 dyoung ic->ic_stats.is_crypto_tkipenmic++;
228 1.1 dyoung
229 1.1 dyoung hdrlen = ieee80211_hdrspace(ic, wh);
230 1.1 dyoung
231 1.1 dyoung michael_mic(ctx, k->wk_txmic,
232 1.1 dyoung m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
233 1.1 dyoung return m_append(m, tkip.ic_miclen, mic);
234 1.1 dyoung }
235 1.1 dyoung return 1;
236 1.1 dyoung }
237 1.1 dyoung
238 1.1 dyoung static __inline uint64_t
239 1.1 dyoung READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
240 1.1 dyoung {
241 1.1 dyoung uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
242 1.1 dyoung uint16_t iv16 = (b4 << 0) | (b5 << 8);
243 1.1 dyoung return (((uint64_t)iv16) << 32) | iv32;
244 1.1 dyoung }
245 1.1 dyoung
246 1.1 dyoung /*
247 1.1 dyoung * Validate and strip privacy headers (and trailer) for a
248 1.1 dyoung * received frame. If necessary, decrypt the frame using
249 1.1 dyoung * the specified key.
250 1.1 dyoung */
251 1.1 dyoung static int
252 1.3 dyoung tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
253 1.1 dyoung {
254 1.1 dyoung struct tkip_ctx *ctx = k->wk_private;
255 1.1 dyoung struct ieee80211com *ic = ctx->tc_ic;
256 1.1 dyoung struct ieee80211_frame *wh;
257 1.1 dyoung uint8_t *ivp;
258 1.1 dyoung
259 1.1 dyoung /*
260 1.1 dyoung * Header should have extended IV and sequence number;
261 1.1 dyoung * verify the former and validate the latter.
262 1.1 dyoung */
263 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
264 1.1 dyoung ivp = mtod(m, uint8_t *) + hdrlen;
265 1.1 dyoung if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
266 1.1 dyoung /*
267 1.1 dyoung * No extended IV; discard frame.
268 1.1 dyoung */
269 1.1 dyoung IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
270 1.1 dyoung "[%s] missing ExtIV for TKIP cipher\n",
271 1.1 dyoung ether_sprintf(wh->i_addr2));
272 1.1 dyoung ctx->tc_ic->ic_stats.is_rx_tkipformat++;
273 1.1 dyoung return 0;
274 1.1 dyoung }
275 1.1 dyoung /*
276 1.1 dyoung * Handle TKIP counter measures requirement.
277 1.1 dyoung */
278 1.1 dyoung if (ic->ic_flags & IEEE80211_F_COUNTERM) {
279 1.1 dyoung IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
280 1.1 dyoung "[%s] discard frame due to countermeasures (%s)\n",
281 1.1 dyoung ether_sprintf(wh->i_addr2), __func__);
282 1.1 dyoung ic->ic_stats.is_crypto_tkipcm++;
283 1.1 dyoung return 0;
284 1.1 dyoung }
285 1.1 dyoung
286 1.1 dyoung ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
287 1.1 dyoung if (ctx->rx_rsc <= k->wk_keyrsc) {
288 1.1 dyoung /*
289 1.1 dyoung * Replay violation; notify upper layer.
290 1.1 dyoung */
291 1.1 dyoung ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
292 1.1 dyoung ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
293 1.1 dyoung return 0;
294 1.1 dyoung }
295 1.1 dyoung /*
296 1.1 dyoung * NB: We can't update the rsc in the key until MIC is verified.
297 1.1 dyoung *
298 1.1 dyoung * We assume we are not preempted between doing the check above
299 1.1 dyoung * and updating wk_keyrsc when stripping the MIC in tkip_demic.
300 1.1 dyoung * Otherwise we might process another packet and discard it as
301 1.1 dyoung * a replay.
302 1.1 dyoung */
303 1.1 dyoung
304 1.1 dyoung /*
305 1.1 dyoung * Check if the device handled the decrypt in hardware.
306 1.1 dyoung * If so we just strip the header; otherwise we need to
307 1.1 dyoung * handle the decrypt in software.
308 1.1 dyoung */
309 1.1 dyoung if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
310 1.1 dyoung !tkip_decrypt(ctx, k, m, hdrlen))
311 1.1 dyoung return 0;
312 1.1 dyoung
313 1.1 dyoung /*
314 1.1 dyoung * Copy up 802.11 header and strip crypto bits.
315 1.1 dyoung */
316 1.1 dyoung memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
317 1.1 dyoung m_adj(m, tkip.ic_header);
318 1.1 dyoung m_adj(m, -tkip.ic_trailer);
319 1.1 dyoung
320 1.1 dyoung return 1;
321 1.1 dyoung }
322 1.1 dyoung
323 1.1 dyoung /*
324 1.1 dyoung * Verify and strip MIC from the frame.
325 1.1 dyoung */
326 1.1 dyoung static int
327 1.3 dyoung tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
328 1.1 dyoung {
329 1.1 dyoung struct tkip_ctx *ctx = k->wk_private;
330 1.1 dyoung
331 1.3 dyoung if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
332 1.1 dyoung struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
333 1.3 dyoung struct ieee80211com *ic = ctx->tc_ic;
334 1.3 dyoung int hdrlen = ieee80211_hdrspace(ic, wh);
335 1.1 dyoung u8 mic[IEEE80211_WEP_MICLEN];
336 1.1 dyoung u8 mic0[IEEE80211_WEP_MICLEN];
337 1.1 dyoung
338 1.3 dyoung ic->ic_stats.is_crypto_tkipdemic++;
339 1.1 dyoung
340 1.1 dyoung michael_mic(ctx, k->wk_rxmic,
341 1.1 dyoung m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
342 1.1 dyoung mic);
343 1.1 dyoung m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
344 1.1 dyoung tkip.ic_miclen, mic0);
345 1.1 dyoung if (memcmp(mic, mic0, tkip.ic_miclen)) {
346 1.1 dyoung /* NB: 802.11 layer handles statistic and debug msg */
347 1.4 skrll ieee80211_notify_michael_failure(ic, wh,
348 1.4 skrll k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
349 1.4 skrll k->wk_rxkeyix : k->wk_keyix);
350 1.1 dyoung return 0;
351 1.1 dyoung }
352 1.1 dyoung }
353 1.1 dyoung /*
354 1.1 dyoung * Strip MIC from the tail.
355 1.1 dyoung */
356 1.1 dyoung m_adj(m, -tkip.ic_miclen);
357 1.1 dyoung
358 1.1 dyoung /*
359 1.1 dyoung * Ok to update rsc now that MIC has been verified.
360 1.1 dyoung */
361 1.1 dyoung k->wk_keyrsc = ctx->rx_rsc;
362 1.1 dyoung
363 1.1 dyoung return 1;
364 1.1 dyoung }
365 1.1 dyoung
366 1.1 dyoung /*
367 1.1 dyoung * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
368 1.1 dyoung *
369 1.1 dyoung * Copyright (c) 2003-2004, Jouni Malinen <jkmaline (at) cc.hut.fi>
370 1.1 dyoung *
371 1.1 dyoung * This program is free software; you can redistribute it and/or modify
372 1.1 dyoung * it under the terms of the GNU General Public License version 2 as
373 1.1 dyoung * published by the Free Software Foundation. See README and COPYING for
374 1.1 dyoung * more details.
375 1.1 dyoung *
376 1.1 dyoung * Alternatively, this software may be distributed under the terms of BSD
377 1.1 dyoung * license.
378 1.1 dyoung */
379 1.1 dyoung
380 1.1 dyoung static const __u32 crc32_table[256] = {
381 1.1 dyoung 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
382 1.1 dyoung 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
383 1.1 dyoung 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
384 1.1 dyoung 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
385 1.1 dyoung 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
386 1.1 dyoung 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
387 1.1 dyoung 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
388 1.1 dyoung 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
389 1.1 dyoung 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
390 1.1 dyoung 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
391 1.1 dyoung 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
392 1.1 dyoung 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
393 1.1 dyoung 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
394 1.1 dyoung 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
395 1.1 dyoung 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
396 1.1 dyoung 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
397 1.1 dyoung 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
398 1.1 dyoung 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
399 1.1 dyoung 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
400 1.1 dyoung 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
401 1.1 dyoung 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
402 1.1 dyoung 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
403 1.1 dyoung 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
404 1.1 dyoung 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
405 1.1 dyoung 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
406 1.1 dyoung 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
407 1.1 dyoung 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
408 1.1 dyoung 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
409 1.1 dyoung 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
410 1.1 dyoung 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
411 1.1 dyoung 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
412 1.1 dyoung 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
413 1.1 dyoung 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
414 1.1 dyoung 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
415 1.1 dyoung 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
416 1.1 dyoung 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
417 1.1 dyoung 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
418 1.1 dyoung 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
419 1.1 dyoung 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
420 1.1 dyoung 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
421 1.1 dyoung 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
422 1.1 dyoung 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
423 1.1 dyoung 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
424 1.1 dyoung 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
425 1.1 dyoung 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
426 1.1 dyoung 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
427 1.1 dyoung 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
428 1.1 dyoung 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
429 1.1 dyoung 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
430 1.1 dyoung 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
431 1.1 dyoung 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
432 1.1 dyoung 0x2d02ef8dL
433 1.1 dyoung };
434 1.1 dyoung
435 1.1 dyoung static __inline u16 RotR1(u16 val)
436 1.1 dyoung {
437 1.1 dyoung return (val >> 1) | (val << 15);
438 1.1 dyoung }
439 1.1 dyoung
440 1.1 dyoung static __inline u8 Lo8(u16 val)
441 1.1 dyoung {
442 1.1 dyoung return val & 0xff;
443 1.1 dyoung }
444 1.1 dyoung
445 1.1 dyoung static __inline u8 Hi8(u16 val)
446 1.1 dyoung {
447 1.1 dyoung return val >> 8;
448 1.1 dyoung }
449 1.1 dyoung
450 1.1 dyoung static __inline u16 Lo16(u32 val)
451 1.1 dyoung {
452 1.1 dyoung return val & 0xffff;
453 1.1 dyoung }
454 1.1 dyoung
455 1.1 dyoung static __inline u16 Hi16(u32 val)
456 1.1 dyoung {
457 1.1 dyoung return val >> 16;
458 1.1 dyoung }
459 1.1 dyoung
460 1.1 dyoung static __inline u16 Mk16(u8 hi, u8 lo)
461 1.1 dyoung {
462 1.1 dyoung return lo | (((u16) hi) << 8);
463 1.1 dyoung }
464 1.1 dyoung
465 1.1 dyoung static __inline u16 Mk16_le(const u16 *v)
466 1.1 dyoung {
467 1.1 dyoung return le16toh(*v);
468 1.1 dyoung }
469 1.1 dyoung
470 1.1 dyoung static const u16 Sbox[256] = {
471 1.1 dyoung 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
472 1.1 dyoung 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
473 1.1 dyoung 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
474 1.1 dyoung 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
475 1.1 dyoung 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
476 1.1 dyoung 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
477 1.1 dyoung 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
478 1.1 dyoung 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
479 1.1 dyoung 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
480 1.1 dyoung 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
481 1.1 dyoung 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
482 1.1 dyoung 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
483 1.1 dyoung 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
484 1.1 dyoung 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
485 1.1 dyoung 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
486 1.1 dyoung 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
487 1.1 dyoung 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
488 1.1 dyoung 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
489 1.1 dyoung 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
490 1.1 dyoung 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
491 1.1 dyoung 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
492 1.1 dyoung 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
493 1.1 dyoung 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
494 1.1 dyoung 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
495 1.1 dyoung 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
496 1.1 dyoung 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
497 1.1 dyoung 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
498 1.1 dyoung 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
499 1.1 dyoung 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
500 1.1 dyoung 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
501 1.1 dyoung 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
502 1.1 dyoung 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
503 1.1 dyoung };
504 1.1 dyoung
505 1.1 dyoung static __inline u16 _S_(u16 v)
506 1.1 dyoung {
507 1.1 dyoung u16 t = Sbox[Hi8(v)];
508 1.1 dyoung return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
509 1.1 dyoung }
510 1.1 dyoung
511 1.1 dyoung #define PHASE1_LOOP_COUNT 8
512 1.1 dyoung
513 1.1 dyoung static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
514 1.1 dyoung {
515 1.1 dyoung int i, j;
516 1.1 dyoung
517 1.1 dyoung /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
518 1.1 dyoung TTAK[0] = Lo16(IV32);
519 1.1 dyoung TTAK[1] = Hi16(IV32);
520 1.1 dyoung TTAK[2] = Mk16(TA[1], TA[0]);
521 1.1 dyoung TTAK[3] = Mk16(TA[3], TA[2]);
522 1.1 dyoung TTAK[4] = Mk16(TA[5], TA[4]);
523 1.1 dyoung
524 1.1 dyoung for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
525 1.1 dyoung j = 2 * (i & 1);
526 1.1 dyoung TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
527 1.1 dyoung TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
528 1.1 dyoung TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
529 1.1 dyoung TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
530 1.1 dyoung TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
531 1.1 dyoung }
532 1.1 dyoung }
533 1.1 dyoung
534 1.1 dyoung #ifndef _BYTE_ORDER
535 1.1 dyoung #error "Don't know native byte order"
536 1.1 dyoung #endif
537 1.1 dyoung
538 1.1 dyoung static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
539 1.1 dyoung u16 IV16)
540 1.1 dyoung {
541 1.1 dyoung /* Make temporary area overlap WEP seed so that the final copy can be
542 1.1 dyoung * avoided on little endian hosts. */
543 1.1 dyoung u16 *PPK = (u16 *) &WEPSeed[4];
544 1.1 dyoung
545 1.1 dyoung /* Step 1 - make copy of TTAK and bring in TSC */
546 1.1 dyoung PPK[0] = TTAK[0];
547 1.1 dyoung PPK[1] = TTAK[1];
548 1.1 dyoung PPK[2] = TTAK[2];
549 1.1 dyoung PPK[3] = TTAK[3];
550 1.1 dyoung PPK[4] = TTAK[4];
551 1.1 dyoung PPK[5] = TTAK[4] + IV16;
552 1.1 dyoung
553 1.1 dyoung /* Step 2 - 96-bit bijective mixing using S-box */
554 1.1 dyoung PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
555 1.1 dyoung PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
556 1.1 dyoung PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
557 1.1 dyoung PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
558 1.1 dyoung PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
559 1.1 dyoung PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
560 1.1 dyoung
561 1.1 dyoung PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
562 1.1 dyoung PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
563 1.1 dyoung PPK[2] += RotR1(PPK[1]);
564 1.1 dyoung PPK[3] += RotR1(PPK[2]);
565 1.1 dyoung PPK[4] += RotR1(PPK[3]);
566 1.1 dyoung PPK[5] += RotR1(PPK[4]);
567 1.1 dyoung
568 1.1 dyoung /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
569 1.1 dyoung * WEPSeed[0..2] is transmitted as WEP IV */
570 1.1 dyoung WEPSeed[0] = Hi8(IV16);
571 1.1 dyoung WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
572 1.1 dyoung WEPSeed[2] = Lo8(IV16);
573 1.1 dyoung WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
574 1.1 dyoung
575 1.1 dyoung #if _BYTE_ORDER == _BIG_ENDIAN
576 1.1 dyoung {
577 1.1 dyoung int i;
578 1.1 dyoung for (i = 0; i < 6; i++)
579 1.1 dyoung PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
580 1.1 dyoung }
581 1.1 dyoung #endif
582 1.1 dyoung }
583 1.1 dyoung
584 1.1 dyoung static void
585 1.1 dyoung wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
586 1.1 dyoung uint8_t icv[IEEE80211_WEP_CRCLEN])
587 1.1 dyoung {
588 1.1 dyoung u32 i, j, k, crc;
589 1.1 dyoung size_t buflen;
590 1.1 dyoung u8 S[256];
591 1.1 dyoung u8 *pos;
592 1.1 dyoung struct mbuf *m;
593 1.1 dyoung #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
594 1.1 dyoung
595 1.1 dyoung /* Setup RC4 state */
596 1.1 dyoung for (i = 0; i < 256; i++)
597 1.1 dyoung S[i] = i;
598 1.1 dyoung j = 0;
599 1.1 dyoung for (i = 0; i < 256; i++) {
600 1.1 dyoung j = (j + S[i] + key[i & 0x0f]) & 0xff;
601 1.1 dyoung S_SWAP(i, j);
602 1.1 dyoung }
603 1.1 dyoung
604 1.1 dyoung /* Compute CRC32 over unencrypted data and apply RC4 to data */
605 1.1 dyoung crc = ~0;
606 1.1 dyoung i = j = 0;
607 1.1 dyoung m = m0;
608 1.1 dyoung pos = mtod(m, uint8_t *) + off;
609 1.1 dyoung buflen = m->m_len - off;
610 1.1 dyoung for (;;) {
611 1.1 dyoung if (buflen > data_len)
612 1.1 dyoung buflen = data_len;
613 1.1 dyoung data_len -= buflen;
614 1.1 dyoung for (k = 0; k < buflen; k++) {
615 1.1 dyoung crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
616 1.1 dyoung i = (i + 1) & 0xff;
617 1.1 dyoung j = (j + S[i]) & 0xff;
618 1.1 dyoung S_SWAP(i, j);
619 1.1 dyoung *pos++ ^= S[(S[i] + S[j]) & 0xff];
620 1.1 dyoung }
621 1.1 dyoung m = m->m_next;
622 1.1 dyoung if (m == NULL) {
623 1.2 dyoung IASSERT(data_len == 0,
624 1.1 dyoung ("out of buffers with data_len %zu\n", data_len));
625 1.1 dyoung break;
626 1.1 dyoung }
627 1.1 dyoung pos = mtod(m, uint8_t *);
628 1.1 dyoung buflen = m->m_len;
629 1.1 dyoung }
630 1.1 dyoung crc = ~crc;
631 1.1 dyoung
632 1.1 dyoung /* Append little-endian CRC32 and encrypt it to produce ICV */
633 1.1 dyoung icv[0] = crc;
634 1.1 dyoung icv[1] = crc >> 8;
635 1.1 dyoung icv[2] = crc >> 16;
636 1.1 dyoung icv[3] = crc >> 24;
637 1.1 dyoung for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
638 1.1 dyoung i = (i + 1) & 0xff;
639 1.1 dyoung j = (j + S[i]) & 0xff;
640 1.1 dyoung S_SWAP(i, j);
641 1.1 dyoung icv[k] ^= S[(S[i] + S[j]) & 0xff];
642 1.1 dyoung }
643 1.1 dyoung }
644 1.1 dyoung
645 1.1 dyoung static int
646 1.1 dyoung wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
647 1.1 dyoung {
648 1.1 dyoung u32 i, j, k, crc;
649 1.1 dyoung u8 S[256];
650 1.1 dyoung u8 *pos, icv[4];
651 1.1 dyoung size_t buflen;
652 1.1 dyoung
653 1.1 dyoung /* Setup RC4 state */
654 1.1 dyoung for (i = 0; i < 256; i++)
655 1.1 dyoung S[i] = i;
656 1.1 dyoung j = 0;
657 1.1 dyoung for (i = 0; i < 256; i++) {
658 1.1 dyoung j = (j + S[i] + key[i & 0x0f]) & 0xff;
659 1.1 dyoung S_SWAP(i, j);
660 1.1 dyoung }
661 1.1 dyoung
662 1.1 dyoung /* Apply RC4 to data and compute CRC32 over decrypted data */
663 1.1 dyoung crc = ~0;
664 1.1 dyoung i = j = 0;
665 1.1 dyoung pos = mtod(m, uint8_t *) + off;
666 1.1 dyoung buflen = m->m_len - off;
667 1.1 dyoung for (;;) {
668 1.1 dyoung if (buflen > data_len)
669 1.1 dyoung buflen = data_len;
670 1.1 dyoung data_len -= buflen;
671 1.1 dyoung for (k = 0; k < buflen; k++) {
672 1.1 dyoung i = (i + 1) & 0xff;
673 1.1 dyoung j = (j + S[i]) & 0xff;
674 1.1 dyoung S_SWAP(i, j);
675 1.1 dyoung *pos ^= S[(S[i] + S[j]) & 0xff];
676 1.1 dyoung crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
677 1.1 dyoung pos++;
678 1.1 dyoung }
679 1.1 dyoung m = m->m_next;
680 1.1 dyoung if (m == NULL) {
681 1.2 dyoung IASSERT(data_len == 0,
682 1.1 dyoung ("out of buffers with data_len %zu\n", data_len));
683 1.1 dyoung break;
684 1.1 dyoung }
685 1.1 dyoung pos = mtod(m, uint8_t *);
686 1.1 dyoung buflen = m->m_len;
687 1.1 dyoung }
688 1.1 dyoung crc = ~crc;
689 1.1 dyoung
690 1.1 dyoung /* Encrypt little-endian CRC32 and verify that it matches with the
691 1.1 dyoung * received ICV */
692 1.1 dyoung icv[0] = crc;
693 1.1 dyoung icv[1] = crc >> 8;
694 1.1 dyoung icv[2] = crc >> 16;
695 1.1 dyoung icv[3] = crc >> 24;
696 1.1 dyoung for (k = 0; k < 4; k++) {
697 1.1 dyoung i = (i + 1) & 0xff;
698 1.1 dyoung j = (j + S[i]) & 0xff;
699 1.1 dyoung S_SWAP(i, j);
700 1.1 dyoung if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
701 1.1 dyoung /* ICV mismatch - drop frame */
702 1.1 dyoung return -1;
703 1.1 dyoung }
704 1.1 dyoung }
705 1.1 dyoung
706 1.1 dyoung return 0;
707 1.1 dyoung }
708 1.1 dyoung
709 1.1 dyoung
710 1.1 dyoung static __inline u32 rotl(u32 val, int bits)
711 1.1 dyoung {
712 1.1 dyoung return (val << bits) | (val >> (32 - bits));
713 1.1 dyoung }
714 1.1 dyoung
715 1.1 dyoung
716 1.1 dyoung static __inline u32 rotr(u32 val, int bits)
717 1.1 dyoung {
718 1.1 dyoung return (val >> bits) | (val << (32 - bits));
719 1.1 dyoung }
720 1.1 dyoung
721 1.1 dyoung
722 1.1 dyoung static __inline u32 xswap(u32 val)
723 1.1 dyoung {
724 1.1 dyoung return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
725 1.1 dyoung }
726 1.1 dyoung
727 1.1 dyoung
728 1.1 dyoung #define michael_block(l, r) \
729 1.1 dyoung do { \
730 1.1 dyoung r ^= rotl(l, 17); \
731 1.1 dyoung l += r; \
732 1.1 dyoung r ^= xswap(l); \
733 1.1 dyoung l += r; \
734 1.1 dyoung r ^= rotl(l, 3); \
735 1.1 dyoung l += r; \
736 1.1 dyoung r ^= rotr(l, 2); \
737 1.1 dyoung l += r; \
738 1.1 dyoung } while (0)
739 1.1 dyoung
740 1.1 dyoung
741 1.1 dyoung static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
742 1.1 dyoung {
743 1.1 dyoung return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
744 1.1 dyoung }
745 1.1 dyoung
746 1.1 dyoung static __inline u32 get_le32(const u8 *p)
747 1.1 dyoung {
748 1.1 dyoung return get_le32_split(p[0], p[1], p[2], p[3]);
749 1.1 dyoung }
750 1.1 dyoung
751 1.1 dyoung
752 1.1 dyoung static __inline void put_le32(u8 *p, u32 v)
753 1.1 dyoung {
754 1.1 dyoung p[0] = v;
755 1.1 dyoung p[1] = v >> 8;
756 1.1 dyoung p[2] = v >> 16;
757 1.1 dyoung p[3] = v >> 24;
758 1.1 dyoung }
759 1.1 dyoung
760 1.1 dyoung /*
761 1.1 dyoung * Craft pseudo header used to calculate the MIC.
762 1.1 dyoung */
763 1.1 dyoung static void
764 1.1 dyoung michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
765 1.1 dyoung {
766 1.1 dyoung const struct ieee80211_frame_addr4 *wh =
767 1.1 dyoung (const struct ieee80211_frame_addr4 *) wh0;
768 1.1 dyoung
769 1.1 dyoung switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
770 1.1 dyoung case IEEE80211_FC1_DIR_NODS:
771 1.1 dyoung IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
772 1.1 dyoung IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
773 1.1 dyoung break;
774 1.1 dyoung case IEEE80211_FC1_DIR_TODS:
775 1.1 dyoung IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
776 1.1 dyoung IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
777 1.1 dyoung break;
778 1.1 dyoung case IEEE80211_FC1_DIR_FROMDS:
779 1.1 dyoung IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
780 1.1 dyoung IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
781 1.1 dyoung break;
782 1.1 dyoung case IEEE80211_FC1_DIR_DSTODS:
783 1.1 dyoung IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
784 1.1 dyoung IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
785 1.1 dyoung break;
786 1.1 dyoung }
787 1.1 dyoung
788 1.1 dyoung if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
789 1.1 dyoung const struct ieee80211_qosframe *qwh =
790 1.1 dyoung (const struct ieee80211_qosframe *) wh;
791 1.1 dyoung hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
792 1.1 dyoung } else
793 1.1 dyoung hdr[12] = 0;
794 1.1 dyoung hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
795 1.1 dyoung }
796 1.1 dyoung
797 1.1 dyoung static void
798 1.7 christos michael_mic(struct tkip_ctx *ctx, const u8 *key,
799 1.1 dyoung struct mbuf *m, u_int off, size_t data_len,
800 1.1 dyoung u8 mic[IEEE80211_WEP_MICLEN])
801 1.1 dyoung {
802 1.1 dyoung uint8_t hdr[16];
803 1.1 dyoung u32 l, r;
804 1.1 dyoung const uint8_t *data;
805 1.1 dyoung u_int space;
806 1.1 dyoung
807 1.1 dyoung michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
808 1.1 dyoung
809 1.1 dyoung l = get_le32(key);
810 1.1 dyoung r = get_le32(key + 4);
811 1.1 dyoung
812 1.1 dyoung /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
813 1.1 dyoung l ^= get_le32(hdr);
814 1.1 dyoung michael_block(l, r);
815 1.1 dyoung l ^= get_le32(&hdr[4]);
816 1.1 dyoung michael_block(l, r);
817 1.1 dyoung l ^= get_le32(&hdr[8]);
818 1.1 dyoung michael_block(l, r);
819 1.1 dyoung l ^= get_le32(&hdr[12]);
820 1.1 dyoung michael_block(l, r);
821 1.1 dyoung
822 1.1 dyoung /* first buffer has special handling */
823 1.1 dyoung data = mtod(m, const uint8_t *) + off;
824 1.1 dyoung space = m->m_len - off;
825 1.1 dyoung for (;;) {
826 1.1 dyoung if (space > data_len)
827 1.1 dyoung space = data_len;
828 1.1 dyoung /* collect 32-bit blocks from current buffer */
829 1.1 dyoung while (space >= sizeof(uint32_t)) {
830 1.1 dyoung l ^= get_le32(data);
831 1.1 dyoung michael_block(l, r);
832 1.8 drochner data += sizeof(uint32_t);
833 1.8 drochner space -= sizeof(uint32_t);
834 1.1 dyoung data_len -= sizeof(uint32_t);
835 1.1 dyoung }
836 1.8 drochner if (data_len < sizeof(uint32_t)) {
837 1.8 drochner if (space < data_len) {
838 1.8 drochner static uint8_t lastdata[3];
839 1.8 drochner int i;
840 1.8 drochner for (i = 0; i < space; i++)
841 1.8 drochner lastdata[i] = data[i];
842 1.8 drochner m = m->m_next;
843 1.8 drochner data = mtod(m, const uint8_t *);
844 1.8 drochner for (i = 0; i < data_len - space; i++)
845 1.8 drochner lastdata[space + i] = data[i];
846 1.8 drochner data = lastdata;
847 1.8 drochner }
848 1.1 dyoung break;
849 1.8 drochner }
850 1.1 dyoung m = m->m_next;
851 1.1 dyoung if (m == NULL) {
852 1.2 dyoung IASSERT(0, ("out of data, data_len %zu\n", data_len));
853 1.1 dyoung break;
854 1.1 dyoung }
855 1.1 dyoung if (space != 0) {
856 1.1 dyoung const uint8_t *data_next;
857 1.1 dyoung /*
858 1.1 dyoung * Block straddles buffers, split references.
859 1.1 dyoung */
860 1.1 dyoung data_next = mtod(m, const uint8_t *);
861 1.2 dyoung IASSERT(m->m_len >= sizeof(uint32_t) - space,
862 1.1 dyoung ("not enough data in following buffer, "
863 1.1 dyoung "m_len %u need %zu\n", m->m_len,
864 1.1 dyoung sizeof(uint32_t) - space));
865 1.1 dyoung switch (space) {
866 1.1 dyoung case 1:
867 1.1 dyoung l ^= get_le32_split(data[0], data_next[0],
868 1.1 dyoung data_next[1], data_next[2]);
869 1.1 dyoung data = data_next + 3;
870 1.1 dyoung space = m->m_len - 3;
871 1.1 dyoung break;
872 1.1 dyoung case 2:
873 1.1 dyoung l ^= get_le32_split(data[0], data[1],
874 1.1 dyoung data_next[0], data_next[1]);
875 1.1 dyoung data = data_next + 2;
876 1.1 dyoung space = m->m_len - 2;
877 1.1 dyoung break;
878 1.1 dyoung case 3:
879 1.1 dyoung l ^= get_le32_split(data[0], data[1],
880 1.1 dyoung data[2], data_next[0]);
881 1.1 dyoung data = data_next + 1;
882 1.1 dyoung space = m->m_len - 1;
883 1.1 dyoung break;
884 1.1 dyoung }
885 1.1 dyoung michael_block(l, r);
886 1.1 dyoung data_len -= sizeof(uint32_t);
887 1.1 dyoung } else {
888 1.1 dyoung /*
889 1.1 dyoung * Setup for next buffer.
890 1.1 dyoung */
891 1.1 dyoung data = mtod(m, const uint8_t *);
892 1.1 dyoung space = m->m_len;
893 1.1 dyoung }
894 1.1 dyoung }
895 1.1 dyoung /* Last block and padding (0x5a, 4..7 x 0) */
896 1.1 dyoung switch (data_len) {
897 1.1 dyoung case 0:
898 1.1 dyoung l ^= get_le32_split(0x5a, 0, 0, 0);
899 1.1 dyoung break;
900 1.1 dyoung case 1:
901 1.1 dyoung l ^= get_le32_split(data[0], 0x5a, 0, 0);
902 1.1 dyoung break;
903 1.1 dyoung case 2:
904 1.1 dyoung l ^= get_le32_split(data[0], data[1], 0x5a, 0);
905 1.1 dyoung break;
906 1.1 dyoung case 3:
907 1.1 dyoung l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
908 1.1 dyoung break;
909 1.1 dyoung }
910 1.1 dyoung michael_block(l, r);
911 1.1 dyoung /* l ^= 0; */
912 1.1 dyoung michael_block(l, r);
913 1.1 dyoung
914 1.1 dyoung put_le32(mic, l);
915 1.1 dyoung put_le32(mic + 4, r);
916 1.1 dyoung }
917 1.1 dyoung
918 1.1 dyoung static int
919 1.1 dyoung tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
920 1.1 dyoung struct mbuf *m, int hdrlen)
921 1.1 dyoung {
922 1.1 dyoung struct ieee80211_frame *wh;
923 1.1 dyoung uint8_t icv[IEEE80211_WEP_CRCLEN];
924 1.1 dyoung
925 1.1 dyoung ctx->tc_ic->ic_stats.is_crypto_tkip++;
926 1.1 dyoung
927 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
928 1.1 dyoung if (!ctx->tx_phase1_done) {
929 1.1 dyoung tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
930 1.1 dyoung (u32)(key->wk_keytsc >> 16));
931 1.1 dyoung ctx->tx_phase1_done = 1;
932 1.1 dyoung }
933 1.1 dyoung tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
934 1.1 dyoung (u16) key->wk_keytsc);
935 1.1 dyoung
936 1.1 dyoung wep_encrypt(ctx->tx_rc4key,
937 1.1 dyoung m, hdrlen + tkip.ic_header,
938 1.1 dyoung m->m_pkthdr.len - (hdrlen + tkip.ic_header),
939 1.1 dyoung icv);
940 1.1 dyoung (void) m_append(m, IEEE80211_WEP_CRCLEN, icv); /* XXX check return */
941 1.1 dyoung
942 1.1 dyoung key->wk_keytsc++;
943 1.1 dyoung if ((u16)(key->wk_keytsc) == 0)
944 1.1 dyoung ctx->tx_phase1_done = 0;
945 1.1 dyoung return 1;
946 1.1 dyoung }
947 1.1 dyoung
948 1.1 dyoung static int
949 1.1 dyoung tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
950 1.1 dyoung struct mbuf *m, int hdrlen)
951 1.1 dyoung {
952 1.1 dyoung struct ieee80211_frame *wh;
953 1.1 dyoung u32 iv32;
954 1.1 dyoung u16 iv16;
955 1.1 dyoung
956 1.1 dyoung ctx->tc_ic->ic_stats.is_crypto_tkip++;
957 1.1 dyoung
958 1.1 dyoung wh = mtod(m, struct ieee80211_frame *);
959 1.1 dyoung /* NB: tkip_decap already verified header and left seq in rx_rsc */
960 1.1 dyoung iv16 = (u16) ctx->rx_rsc;
961 1.1 dyoung iv32 = (u32) (ctx->rx_rsc >> 16);
962 1.1 dyoung
963 1.1 dyoung if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
964 1.1 dyoung tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
965 1.1 dyoung wh->i_addr2, iv32);
966 1.1 dyoung ctx->rx_phase1_done = 1;
967 1.1 dyoung }
968 1.1 dyoung tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
969 1.1 dyoung
970 1.1 dyoung /* NB: m is unstripped; deduct headers + ICV to get payload */
971 1.1 dyoung if (wep_decrypt(ctx->rx_rc4key,
972 1.1 dyoung m, hdrlen + tkip.ic_header,
973 1.1 dyoung m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
974 1.1 dyoung if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
975 1.1 dyoung /* Previously cached Phase1 result was already lost, so
976 1.1 dyoung * it needs to be recalculated for the next packet. */
977 1.1 dyoung ctx->rx_phase1_done = 0;
978 1.1 dyoung }
979 1.1 dyoung IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
980 1.1 dyoung "[%s] TKIP ICV mismatch on decrypt\n",
981 1.1 dyoung ether_sprintf(wh->i_addr2));
982 1.1 dyoung ctx->tc_ic->ic_stats.is_rx_tkipicv++;
983 1.1 dyoung return 0;
984 1.1 dyoung }
985 1.1 dyoung return 1;
986 1.1 dyoung }
987 1.4 skrll
988 1.4 skrll IEEE80211_CRYPTO_SETUP(tkip_register)
989 1.4 skrll {
990 1.4 skrll ieee80211_crypto_register(&tkip);
991 1.4 skrll }
992