Home | History | Annotate | Line # | Download | only in net80211
ieee80211_crypto_tkip.c revision 1.3
      1 /*-
      2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. The name of the author may not be used to endorse or promote products
     14  *    derived from this software without specific prior written permission.
     15  *
     16  * Alternatively, this software may be distributed under the terms of the
     17  * GNU General Public License ("GPL") version 2 as published by the Free
     18  * Software Foundation.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 #ifdef __FreeBSD__
     34 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_crypto_tkip.c,v 1.9 2005/06/10 16:11:24 sam Exp $");
     35 #endif
     36 #ifdef __NetBSD__
     37 __KERNEL_RCSID(0, "$NetBSD: ieee80211_crypto_tkip.c,v 1.3 2005/07/26 22:52:48 dyoung Exp $");
     38 #endif
     39 
     40 /*
     41  * IEEE 802.11i TKIP crypto support.
     42  *
     43  * Part of this module is derived from similar code in the Host
     44  * AP driver. The code is used with the consent of the author and
     45  * it's license is included below.
     46  */
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/mbuf.h>
     50 #include <sys/malloc.h>
     51 #include <sys/kernel.h>
     52 #include <sys/endian.h>
     53 
     54 #include <sys/socket.h>
     55 
     56 #include <net/if.h>
     57 #include <net/if_media.h>
     58 
     59 #include <net80211/ieee80211_var.h>
     60 
     61 static	void *tkip_attach(struct ieee80211com *, struct ieee80211_key *);
     62 static	void tkip_detach(struct ieee80211_key *);
     63 static	int tkip_setkey(struct ieee80211_key *);
     64 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, u_int8_t keyid);
     65 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
     66 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
     67 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
     68 
     69 const struct ieee80211_cipher ieee80211_cipher_tkip  = {
     70 	.ic_name	= "TKIP",
     71 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
     72 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
     73 			  IEEE80211_WEP_EXTIVLEN,
     74 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
     75 	.ic_miclen	= IEEE80211_WEP_MICLEN,
     76 	.ic_attach	= tkip_attach,
     77 	.ic_detach	= tkip_detach,
     78 	.ic_setkey	= tkip_setkey,
     79 	.ic_encap	= tkip_encap,
     80 	.ic_decap	= tkip_decap,
     81 	.ic_enmic	= tkip_enmic,
     82 	.ic_demic	= tkip_demic,
     83 };
     84 
     85 #define	tkip	ieee80211_cipher_tkip
     86 
     87 typedef	uint8_t u8;
     88 typedef	uint16_t u16;
     89 typedef	uint32_t __u32;
     90 typedef	uint32_t u32;
     91 
     92 struct tkip_ctx {
     93 	struct ieee80211com *tc_ic;	/* for diagnostics */
     94 
     95 	u16	tx_ttak[5];
     96 	int	tx_phase1_done;
     97 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
     98 
     99 	u16	rx_ttak[5];
    100 	int	rx_phase1_done;
    101 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
    102 	uint64_t rx_rsc;		/* held until MIC verified */
    103 };
    104 
    105 static	void michael_mic(struct tkip_ctx *, const u8 *key,
    106 		struct mbuf *m, u_int off, size_t data_len,
    107 		u8 mic[IEEE80211_WEP_MICLEN]);
    108 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
    109 		struct mbuf *, int hdr_len);
    110 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
    111 		struct mbuf *, int hdr_len);
    112 
    113 static void *
    114 tkip_attach(struct ieee80211com *ic, struct ieee80211_key *k)
    115 {
    116 	struct tkip_ctx *ctx;
    117 
    118 	MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
    119 		M_DEVBUF, M_NOWAIT | M_ZERO);
    120 	if (ctx == NULL) {
    121 		ic->ic_stats.is_crypto_nomem++;
    122 		return NULL;
    123 	}
    124 
    125 	ctx->tc_ic = ic;
    126 	return ctx;
    127 }
    128 
    129 static void
    130 tkip_detach(struct ieee80211_key *k)
    131 {
    132 	struct tkip_ctx *ctx = k->wk_private;
    133 
    134 	FREE(ctx, M_DEVBUF);
    135 }
    136 
    137 static int
    138 tkip_setkey(struct ieee80211_key *k)
    139 {
    140 	struct tkip_ctx *ctx = k->wk_private;
    141 
    142 	if (k->wk_keylen != (128/NBBY)) {
    143 		(void) ctx;		/* XXX */
    144 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
    145 			"%s: Invalid key length %u, expecting %u\n",
    146 			__func__, k->wk_keylen, 128/NBBY);
    147 		return 0;
    148 	}
    149 	k->wk_keytsc = 1;		/* TSC starts at 1 */
    150 	return 1;
    151 }
    152 
    153 /*
    154  * Add privacy headers and do any s/w encryption required.
    155  */
    156 static int
    157 tkip_encap(struct ieee80211_key *k, struct mbuf *m, u_int8_t keyid)
    158 {
    159 	struct tkip_ctx *ctx = k->wk_private;
    160 	struct ieee80211com *ic = ctx->tc_ic;
    161 	u_int8_t *ivp;
    162 	int hdrlen;
    163 
    164 	/*
    165 	 * Handle TKIP counter measures requirement.
    166 	 */
    167 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
    168 #ifdef IEEE80211_DEBUG
    169 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
    170 #endif
    171 
    172 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    173 			"[%s] Discard frame due to countermeasures (%s)\n",
    174 			ether_sprintf(wh->i_addr2), __func__);
    175 		ic->ic_stats.is_crypto_tkipcm++;
    176 		return 0;
    177 	}
    178 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
    179 
    180 	/*
    181 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
    182 	 */
    183 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
    184 	if (m == NULL)
    185 		return 0;
    186 	ivp = mtod(m, u_int8_t *);
    187 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
    188 	ivp += hdrlen;
    189 
    190 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
    191 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
    192 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
    193 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
    194 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
    195 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
    196 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
    197 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
    198 
    199 	/*
    200 	 * Finally, do software encrypt if neeed.
    201 	 */
    202 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
    203 		if (!tkip_encrypt(ctx, k, m, hdrlen))
    204 			return 0;
    205 		/* NB: tkip_encrypt handles wk_keytsc */
    206 	} else
    207 		k->wk_keytsc++;
    208 
    209 	return 1;
    210 }
    211 
    212 /*
    213  * Add MIC to the frame as needed.
    214  */
    215 static int
    216 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
    217 {
    218 	struct tkip_ctx *ctx = k->wk_private;
    219 
    220 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
    221 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
    222 		struct ieee80211com *ic = ctx->tc_ic;
    223 		int hdrlen;
    224 		uint8_t mic[IEEE80211_WEP_MICLEN];
    225 
    226 		ic->ic_stats.is_crypto_tkipenmic++;
    227 
    228 		hdrlen = ieee80211_hdrspace(ic, wh);
    229 
    230 		michael_mic(ctx, k->wk_txmic,
    231 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
    232 		return m_append(m, tkip.ic_miclen, mic);
    233 	}
    234 	return 1;
    235 }
    236 
    237 static __inline uint64_t
    238 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
    239 {
    240 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
    241 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
    242 	return (((uint64_t)iv16) << 32) | iv32;
    243 }
    244 
    245 /*
    246  * Validate and strip privacy headers (and trailer) for a
    247  * received frame.  If necessary, decrypt the frame using
    248  * the specified key.
    249  */
    250 static int
    251 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
    252 {
    253 	struct tkip_ctx *ctx = k->wk_private;
    254 	struct ieee80211com *ic = ctx->tc_ic;
    255 	struct ieee80211_frame *wh;
    256 	uint8_t *ivp;
    257 
    258 	/*
    259 	 * Header should have extended IV and sequence number;
    260 	 * verify the former and validate the latter.
    261 	 */
    262 	wh = mtod(m, struct ieee80211_frame *);
    263 	ivp = mtod(m, uint8_t *) + hdrlen;
    264 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
    265 		/*
    266 		 * No extended IV; discard frame.
    267 		 */
    268 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
    269 			"[%s] missing ExtIV for TKIP cipher\n",
    270 			ether_sprintf(wh->i_addr2));
    271 		ctx->tc_ic->ic_stats.is_rx_tkipformat++;
    272 		return 0;
    273 	}
    274 	/*
    275 	 * Handle TKIP counter measures requirement.
    276 	 */
    277 	if (ic->ic_flags & IEEE80211_F_COUNTERM) {
    278 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    279 			"[%s] discard frame due to countermeasures (%s)\n",
    280 			ether_sprintf(wh->i_addr2), __func__);
    281 		ic->ic_stats.is_crypto_tkipcm++;
    282 		return 0;
    283 	}
    284 
    285 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
    286 	if (ctx->rx_rsc <= k->wk_keyrsc) {
    287 		/*
    288 		 * Replay violation; notify upper layer.
    289 		 */
    290 		ieee80211_notify_replay_failure(ctx->tc_ic, wh, k, ctx->rx_rsc);
    291 		ctx->tc_ic->ic_stats.is_rx_tkipreplay++;
    292 		return 0;
    293 	}
    294 	/*
    295 	 * NB: We can't update the rsc in the key until MIC is verified.
    296 	 *
    297 	 * We assume we are not preempted between doing the check above
    298 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
    299 	 * Otherwise we might process another packet and discard it as
    300 	 * a replay.
    301 	 */
    302 
    303 	/*
    304 	 * Check if the device handled the decrypt in hardware.
    305 	 * If so we just strip the header; otherwise we need to
    306 	 * handle the decrypt in software.
    307 	 */
    308 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
    309 	    !tkip_decrypt(ctx, k, m, hdrlen))
    310 		return 0;
    311 
    312 	/*
    313 	 * Copy up 802.11 header and strip crypto bits.
    314 	 */
    315 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
    316 	m_adj(m, tkip.ic_header);
    317 	m_adj(m, -tkip.ic_trailer);
    318 
    319 	return 1;
    320 }
    321 
    322 /*
    323  * Verify and strip MIC from the frame.
    324  */
    325 static int
    326 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
    327 {
    328 	struct tkip_ctx *ctx = k->wk_private;
    329 
    330 	if (force || (k->wk_flags & IEEE80211_KEY_SWMIC)) {
    331 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
    332 		struct ieee80211com *ic = ctx->tc_ic;
    333 		int hdrlen = ieee80211_hdrspace(ic, wh);
    334 		u8 mic[IEEE80211_WEP_MICLEN];
    335 		u8 mic0[IEEE80211_WEP_MICLEN];
    336 
    337 		ic->ic_stats.is_crypto_tkipdemic++;
    338 
    339 		michael_mic(ctx, k->wk_rxmic,
    340 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
    341 			mic);
    342 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
    343 			tkip.ic_miclen, mic0);
    344 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
    345 			/* NB: 802.11 layer handles statistic and debug msg */
    346 			ieee80211_notify_michael_failure(ic, wh, k->wk_keyix);
    347 			return 0;
    348 		}
    349 	}
    350 	/*
    351 	 * Strip MIC from the tail.
    352 	 */
    353 	m_adj(m, -tkip.ic_miclen);
    354 
    355 	/*
    356 	 * Ok to update rsc now that MIC has been verified.
    357 	 */
    358 	k->wk_keyrsc = ctx->rx_rsc;
    359 
    360 	return 1;
    361 }
    362 
    363 /*
    364  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
    365  *
    366  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline (at) cc.hut.fi>
    367  *
    368  * This program is free software; you can redistribute it and/or modify
    369  * it under the terms of the GNU General Public License version 2 as
    370  * published by the Free Software Foundation. See README and COPYING for
    371  * more details.
    372  *
    373  * Alternatively, this software may be distributed under the terms of BSD
    374  * license.
    375  */
    376 
    377 static const __u32 crc32_table[256] = {
    378 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
    379 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
    380 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
    381 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
    382 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
    383 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
    384 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
    385 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
    386 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
    387 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
    388 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
    389 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
    390 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
    391 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
    392 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
    393 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
    394 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
    395 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
    396 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
    397 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
    398 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
    399 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
    400 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
    401 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
    402 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
    403 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
    404 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
    405 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
    406 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
    407 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
    408 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
    409 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
    410 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
    411 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
    412 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
    413 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
    414 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
    415 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
    416 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
    417 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
    418 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
    419 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
    420 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
    421 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
    422 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
    423 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
    424 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
    425 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
    426 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
    427 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
    428 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
    429 	0x2d02ef8dL
    430 };
    431 
    432 static __inline u16 RotR1(u16 val)
    433 {
    434 	return (val >> 1) | (val << 15);
    435 }
    436 
    437 static __inline u8 Lo8(u16 val)
    438 {
    439 	return val & 0xff;
    440 }
    441 
    442 static __inline u8 Hi8(u16 val)
    443 {
    444 	return val >> 8;
    445 }
    446 
    447 static __inline u16 Lo16(u32 val)
    448 {
    449 	return val & 0xffff;
    450 }
    451 
    452 static __inline u16 Hi16(u32 val)
    453 {
    454 	return val >> 16;
    455 }
    456 
    457 static __inline u16 Mk16(u8 hi, u8 lo)
    458 {
    459 	return lo | (((u16) hi) << 8);
    460 }
    461 
    462 static __inline u16 Mk16_le(const u16 *v)
    463 {
    464 	return le16toh(*v);
    465 }
    466 
    467 static const u16 Sbox[256] = {
    468 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
    469 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
    470 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
    471 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
    472 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
    473 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
    474 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
    475 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
    476 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
    477 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
    478 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
    479 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
    480 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
    481 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
    482 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
    483 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
    484 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
    485 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
    486 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
    487 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
    488 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
    489 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
    490 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
    491 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
    492 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
    493 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
    494 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
    495 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
    496 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
    497 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
    498 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
    499 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
    500 };
    501 
    502 static __inline u16 _S_(u16 v)
    503 {
    504 	u16 t = Sbox[Hi8(v)];
    505 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
    506 }
    507 
    508 #define PHASE1_LOOP_COUNT 8
    509 
    510 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
    511 {
    512 	int i, j;
    513 
    514 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
    515 	TTAK[0] = Lo16(IV32);
    516 	TTAK[1] = Hi16(IV32);
    517 	TTAK[2] = Mk16(TA[1], TA[0]);
    518 	TTAK[3] = Mk16(TA[3], TA[2]);
    519 	TTAK[4] = Mk16(TA[5], TA[4]);
    520 
    521 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
    522 		j = 2 * (i & 1);
    523 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
    524 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
    525 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
    526 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
    527 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
    528 	}
    529 }
    530 
    531 #ifndef _BYTE_ORDER
    532 #error "Don't know native byte order"
    533 #endif
    534 
    535 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
    536 			       u16 IV16)
    537 {
    538 	/* Make temporary area overlap WEP seed so that the final copy can be
    539 	 * avoided on little endian hosts. */
    540 	u16 *PPK = (u16 *) &WEPSeed[4];
    541 
    542 	/* Step 1 - make copy of TTAK and bring in TSC */
    543 	PPK[0] = TTAK[0];
    544 	PPK[1] = TTAK[1];
    545 	PPK[2] = TTAK[2];
    546 	PPK[3] = TTAK[3];
    547 	PPK[4] = TTAK[4];
    548 	PPK[5] = TTAK[4] + IV16;
    549 
    550 	/* Step 2 - 96-bit bijective mixing using S-box */
    551 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
    552 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
    553 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
    554 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
    555 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
    556 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
    557 
    558 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
    559 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
    560 	PPK[2] += RotR1(PPK[1]);
    561 	PPK[3] += RotR1(PPK[2]);
    562 	PPK[4] += RotR1(PPK[3]);
    563 	PPK[5] += RotR1(PPK[4]);
    564 
    565 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
    566 	 * WEPSeed[0..2] is transmitted as WEP IV */
    567 	WEPSeed[0] = Hi8(IV16);
    568 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
    569 	WEPSeed[2] = Lo8(IV16);
    570 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
    571 
    572 #if _BYTE_ORDER == _BIG_ENDIAN
    573 	{
    574 		int i;
    575 		for (i = 0; i < 6; i++)
    576 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
    577 	}
    578 #endif
    579 }
    580 
    581 static void
    582 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
    583 	uint8_t icv[IEEE80211_WEP_CRCLEN])
    584 {
    585 	u32 i, j, k, crc;
    586 	size_t buflen;
    587 	u8 S[256];
    588 	u8 *pos;
    589 	struct mbuf *m;
    590 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
    591 
    592 	/* Setup RC4 state */
    593 	for (i = 0; i < 256; i++)
    594 		S[i] = i;
    595 	j = 0;
    596 	for (i = 0; i < 256; i++) {
    597 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
    598 		S_SWAP(i, j);
    599 	}
    600 
    601 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
    602 	crc = ~0;
    603 	i = j = 0;
    604 	m = m0;
    605 	pos = mtod(m, uint8_t *) + off;
    606 	buflen = m->m_len - off;
    607 	for (;;) {
    608 		if (buflen > data_len)
    609 			buflen = data_len;
    610 		data_len -= buflen;
    611 		for (k = 0; k < buflen; k++) {
    612 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
    613 			i = (i + 1) & 0xff;
    614 			j = (j + S[i]) & 0xff;
    615 			S_SWAP(i, j);
    616 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
    617 		}
    618 		m = m->m_next;
    619 		if (m == NULL) {
    620 			IASSERT(data_len == 0,
    621 			    ("out of buffers with data_len %zu\n", data_len));
    622 			break;
    623 		}
    624 		pos = mtod(m, uint8_t *);
    625 		buflen = m->m_len;
    626 	}
    627 	crc = ~crc;
    628 
    629 	/* Append little-endian CRC32 and encrypt it to produce ICV */
    630 	icv[0] = crc;
    631 	icv[1] = crc >> 8;
    632 	icv[2] = crc >> 16;
    633 	icv[3] = crc >> 24;
    634 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
    635 		i = (i + 1) & 0xff;
    636 		j = (j + S[i]) & 0xff;
    637 		S_SWAP(i, j);
    638 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
    639 	}
    640 }
    641 
    642 static int
    643 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
    644 {
    645 	u32 i, j, k, crc;
    646 	u8 S[256];
    647 	u8 *pos, icv[4];
    648 	size_t buflen;
    649 
    650 	/* Setup RC4 state */
    651 	for (i = 0; i < 256; i++)
    652 		S[i] = i;
    653 	j = 0;
    654 	for (i = 0; i < 256; i++) {
    655 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
    656 		S_SWAP(i, j);
    657 	}
    658 
    659 	/* Apply RC4 to data and compute CRC32 over decrypted data */
    660 	crc = ~0;
    661 	i = j = 0;
    662 	pos = mtod(m, uint8_t *) + off;
    663 	buflen = m->m_len - off;
    664 	for (;;) {
    665 		if (buflen > data_len)
    666 			buflen = data_len;
    667 		data_len -= buflen;
    668 		for (k = 0; k < buflen; k++) {
    669 			i = (i + 1) & 0xff;
    670 			j = (j + S[i]) & 0xff;
    671 			S_SWAP(i, j);
    672 			*pos ^= S[(S[i] + S[j]) & 0xff];
    673 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
    674 			pos++;
    675 		}
    676 		m = m->m_next;
    677 		if (m == NULL) {
    678 			IASSERT(data_len == 0,
    679 			    ("out of buffers with data_len %zu\n", data_len));
    680 			break;
    681 		}
    682 		pos = mtod(m, uint8_t *);
    683 		buflen = m->m_len;
    684 	}
    685 	crc = ~crc;
    686 
    687 	/* Encrypt little-endian CRC32 and verify that it matches with the
    688 	 * received ICV */
    689 	icv[0] = crc;
    690 	icv[1] = crc >> 8;
    691 	icv[2] = crc >> 16;
    692 	icv[3] = crc >> 24;
    693 	for (k = 0; k < 4; k++) {
    694 		i = (i + 1) & 0xff;
    695 		j = (j + S[i]) & 0xff;
    696 		S_SWAP(i, j);
    697 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
    698 			/* ICV mismatch - drop frame */
    699 			return -1;
    700 		}
    701 	}
    702 
    703 	return 0;
    704 }
    705 
    706 
    707 static __inline u32 rotl(u32 val, int bits)
    708 {
    709 	return (val << bits) | (val >> (32 - bits));
    710 }
    711 
    712 
    713 static __inline u32 rotr(u32 val, int bits)
    714 {
    715 	return (val >> bits) | (val << (32 - bits));
    716 }
    717 
    718 
    719 static __inline u32 xswap(u32 val)
    720 {
    721 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
    722 }
    723 
    724 
    725 #define michael_block(l, r)	\
    726 do {				\
    727 	r ^= rotl(l, 17);	\
    728 	l += r;			\
    729 	r ^= xswap(l);		\
    730 	l += r;			\
    731 	r ^= rotl(l, 3);	\
    732 	l += r;			\
    733 	r ^= rotr(l, 2);	\
    734 	l += r;			\
    735 } while (0)
    736 
    737 
    738 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
    739 {
    740 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
    741 }
    742 
    743 static __inline u32 get_le32(const u8 *p)
    744 {
    745 	return get_le32_split(p[0], p[1], p[2], p[3]);
    746 }
    747 
    748 
    749 static __inline void put_le32(u8 *p, u32 v)
    750 {
    751 	p[0] = v;
    752 	p[1] = v >> 8;
    753 	p[2] = v >> 16;
    754 	p[3] = v >> 24;
    755 }
    756 
    757 /*
    758  * Craft pseudo header used to calculate the MIC.
    759  */
    760 static void
    761 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
    762 {
    763 	const struct ieee80211_frame_addr4 *wh =
    764 		(const struct ieee80211_frame_addr4 *) wh0;
    765 
    766 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
    767 	case IEEE80211_FC1_DIR_NODS:
    768 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
    769 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
    770 		break;
    771 	case IEEE80211_FC1_DIR_TODS:
    772 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
    773 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
    774 		break;
    775 	case IEEE80211_FC1_DIR_FROMDS:
    776 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
    777 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
    778 		break;
    779 	case IEEE80211_FC1_DIR_DSTODS:
    780 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
    781 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
    782 		break;
    783 	}
    784 
    785 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
    786 		const struct ieee80211_qosframe *qwh =
    787 			(const struct ieee80211_qosframe *) wh;
    788 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
    789 	} else
    790 		hdr[12] = 0;
    791 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
    792 }
    793 
    794 static void
    795 michael_mic(struct tkip_ctx *ctx, const u8 *key,
    796 	struct mbuf *m, u_int off, size_t data_len,
    797 	u8 mic[IEEE80211_WEP_MICLEN])
    798 {
    799 	uint8_t hdr[16];
    800 	u32 l, r;
    801 	const uint8_t *data;
    802 	u_int space;
    803 
    804 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
    805 
    806 	l = get_le32(key);
    807 	r = get_le32(key + 4);
    808 
    809 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
    810 	l ^= get_le32(hdr);
    811 	michael_block(l, r);
    812 	l ^= get_le32(&hdr[4]);
    813 	michael_block(l, r);
    814 	l ^= get_le32(&hdr[8]);
    815 	michael_block(l, r);
    816 	l ^= get_le32(&hdr[12]);
    817 	michael_block(l, r);
    818 
    819 	/* first buffer has special handling */
    820 	data = mtod(m, const uint8_t *) + off;
    821 	space = m->m_len - off;
    822 	for (;;) {
    823 		if (space > data_len)
    824 			space = data_len;
    825 		/* collect 32-bit blocks from current buffer */
    826 		while (space >= sizeof(uint32_t)) {
    827 			l ^= get_le32(data);
    828 			michael_block(l, r);
    829 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
    830 			data_len -= sizeof(uint32_t);
    831 		}
    832 		if (data_len < sizeof(uint32_t))
    833 			break;
    834 		m = m->m_next;
    835 		if (m == NULL) {
    836 			IASSERT(0, ("out of data, data_len %zu\n", data_len));
    837 			break;
    838 		}
    839 		if (space != 0) {
    840 			const uint8_t *data_next;
    841 			/*
    842 			 * Block straddles buffers, split references.
    843 			 */
    844 			data_next = mtod(m, const uint8_t *);
    845 			IASSERT(m->m_len >= sizeof(uint32_t) - space,
    846 				("not enough data in following buffer, "
    847 				"m_len %u need %zu\n", m->m_len,
    848 				sizeof(uint32_t) - space));
    849 			switch (space) {
    850 			case 1:
    851 				l ^= get_le32_split(data[0], data_next[0],
    852 					data_next[1], data_next[2]);
    853 				data = data_next + 3;
    854 				space = m->m_len - 3;
    855 				break;
    856 			case 2:
    857 				l ^= get_le32_split(data[0], data[1],
    858 					data_next[0], data_next[1]);
    859 				data = data_next + 2;
    860 				space = m->m_len - 2;
    861 				break;
    862 			case 3:
    863 				l ^= get_le32_split(data[0], data[1],
    864 					data[2], data_next[0]);
    865 				data = data_next + 1;
    866 				space = m->m_len - 1;
    867 				break;
    868 			}
    869 			michael_block(l, r);
    870 			data_len -= sizeof(uint32_t);
    871 		} else {
    872 			/*
    873 			 * Setup for next buffer.
    874 			 */
    875 			data = mtod(m, const uint8_t *);
    876 			space = m->m_len;
    877 		}
    878 	}
    879 	/* Last block and padding (0x5a, 4..7 x 0) */
    880 	switch (data_len) {
    881 	case 0:
    882 		l ^= get_le32_split(0x5a, 0, 0, 0);
    883 		break;
    884 	case 1:
    885 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
    886 		break;
    887 	case 2:
    888 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
    889 		break;
    890 	case 3:
    891 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
    892 		break;
    893 	}
    894 	michael_block(l, r);
    895 	/* l ^= 0; */
    896 	michael_block(l, r);
    897 
    898 	put_le32(mic, l);
    899 	put_le32(mic + 4, r);
    900 }
    901 
    902 static int
    903 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
    904 	struct mbuf *m, int hdrlen)
    905 {
    906 	struct ieee80211_frame *wh;
    907 	uint8_t icv[IEEE80211_WEP_CRCLEN];
    908 
    909 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
    910 
    911 	wh = mtod(m, struct ieee80211_frame *);
    912 	if (!ctx->tx_phase1_done) {
    913 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
    914 				   (u32)(key->wk_keytsc >> 16));
    915 		ctx->tx_phase1_done = 1;
    916 	}
    917 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
    918 		(u16) key->wk_keytsc);
    919 
    920 	wep_encrypt(ctx->tx_rc4key,
    921 		m, hdrlen + tkip.ic_header,
    922 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
    923 		icv);
    924 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
    925 
    926 	key->wk_keytsc++;
    927 	if ((u16)(key->wk_keytsc) == 0)
    928 		ctx->tx_phase1_done = 0;
    929 	return 1;
    930 }
    931 
    932 static int
    933 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
    934 	struct mbuf *m, int hdrlen)
    935 {
    936 	struct ieee80211_frame *wh;
    937 	u32 iv32;
    938 	u16 iv16;
    939 
    940 	ctx->tc_ic->ic_stats.is_crypto_tkip++;
    941 
    942 	wh = mtod(m, struct ieee80211_frame *);
    943 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
    944 	iv16 = (u16) ctx->rx_rsc;
    945 	iv32 = (u32) (ctx->rx_rsc >> 16);
    946 
    947 	if (iv32 != (u32)(key->wk_keyrsc >> 16) || !ctx->rx_phase1_done) {
    948 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
    949 			wh->i_addr2, iv32);
    950 		ctx->rx_phase1_done = 1;
    951 	}
    952 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
    953 
    954 	/* NB: m is unstripped; deduct headers + ICV to get payload */
    955 	if (wep_decrypt(ctx->rx_rc4key,
    956 		m, hdrlen + tkip.ic_header,
    957 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
    958 		if (iv32 != (u32)(key->wk_keyrsc >> 16)) {
    959 			/* Previously cached Phase1 result was already lost, so
    960 			 * it needs to be recalculated for the next packet. */
    961 			ctx->rx_phase1_done = 0;
    962 		}
    963 		IEEE80211_DPRINTF(ctx->tc_ic, IEEE80211_MSG_CRYPTO,
    964 		    "[%s] TKIP ICV mismatch on decrypt\n",
    965 		    ether_sprintf(wh->i_addr2));
    966 		ctx->tc_ic->ic_stats.is_rx_tkipicv++;
    967 		return 0;
    968 	}
    969 	return 1;
    970 }
    971