1 1.40 kre /* $NetBSD: ffs_bswap.c,v 1.40 2017/02/09 04:37:35 kre Exp $ */ 2 1.1 bouyer 3 1.1 bouyer /* 4 1.1 bouyer * Copyright (c) 1998 Manuel Bouyer. 5 1.1 bouyer * 6 1.1 bouyer * Redistribution and use in source and binary forms, with or without 7 1.1 bouyer * modification, are permitted provided that the following conditions 8 1.1 bouyer * are met: 9 1.1 bouyer * 1. Redistributions of source code must retain the above copyright 10 1.1 bouyer * notice, this list of conditions and the following disclaimer. 11 1.1 bouyer * 2. Redistributions in binary form must reproduce the above copyright 12 1.1 bouyer * notice, this list of conditions and the following disclaimer in the 13 1.1 bouyer * documentation and/or other materials provided with the distribution. 14 1.1 bouyer * 15 1.8 bouyer * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 1.8 bouyer * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 1.8 bouyer * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 1.8 bouyer * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 1.8 bouyer * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 1.8 bouyer * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 1.8 bouyer * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 1.8 bouyer * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 1.8 bouyer * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 1.8 bouyer * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 1.1 bouyer * 26 1.1 bouyer */ 27 1.15 lukem 28 1.22 lukem #if HAVE_NBTOOL_CONFIG_H 29 1.22 lukem #include "nbtool_config.h" 30 1.17 tv #endif 31 1.17 tv 32 1.22 lukem #include <sys/cdefs.h> 33 1.40 kre __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.40 2017/02/09 04:37:35 kre Exp $"); 34 1.1 bouyer 35 1.2 ragge #include <sys/param.h> 36 1.11 lukem #if defined(_KERNEL) 37 1.1 bouyer #include <sys/systm.h> 38 1.11 lukem #endif 39 1.9 enami 40 1.1 bouyer #include <ufs/ufs/dinode.h> 41 1.35 bouyer #include <ufs/ufs/quota.h> 42 1.1 bouyer #include <ufs/ufs/ufs_bswap.h> 43 1.1 bouyer #include <ufs/ffs/fs.h> 44 1.1 bouyer #include <ufs/ffs/ffs_extern.h> 45 1.6 thorpej 46 1.6 thorpej #if !defined(_KERNEL) 47 1.14 lukem #include <stddef.h> 48 1.11 lukem #include <stdio.h> 49 1.11 lukem #include <stdlib.h> 50 1.6 thorpej #include <string.h> 51 1.11 lukem #define panic(x) printf("%s\n", (x)), abort() 52 1.6 thorpej #endif 53 1.1 bouyer 54 1.1 bouyer void 55 1.40 kre ffs_sb_swap(const struct fs *o, struct fs *n) 56 1.1 bouyer { 57 1.33 lukem size_t i; 58 1.40 kre const u_int32_t *o32; 59 1.40 kre u_int32_t *n32; 60 1.11 lukem 61 1.9 enami /* 62 1.14 lukem * In order to avoid a lot of lines, as the first N fields (52) 63 1.14 lukem * of the superblock up to fs_fmod are u_int32_t, we just loop 64 1.14 lukem * here to convert them. 65 1.1 bouyer */ 66 1.40 kre o32 = (const u_int32_t *)o; 67 1.1 bouyer n32 = (u_int32_t *)n; 68 1.14 lukem for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++) 69 1.1 bouyer n32[i] = bswap32(o32[i]); 70 1.9 enami 71 1.18 fvdl n->fs_swuid = bswap64(o->fs_swuid); 72 1.23 dbj n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */ 73 1.18 fvdl n->fs_old_cpc = bswap32(o->fs_old_cpc); 74 1.25 dbj 75 1.25 dbj /* These fields overlap with a possible location for the 76 1.25 dbj * historic FS_DYNAMICPOSTBLFMT postbl table, and with the 77 1.25 dbj * first half of the historic FS_42POSTBLFMT postbl table. 78 1.25 dbj */ 79 1.18 fvdl n->fs_maxbsize = bswap32(o->fs_maxbsize); 80 1.35 bouyer /* XXX journal */ 81 1.35 bouyer n->fs_quota_magic = bswap32(o->fs_quota_magic); 82 1.35 bouyer for (i = 0; i < MAXQUOTAS; i++) 83 1.35 bouyer n->fs_quotafile[i] = bswap64(o->fs_quotafile[i]); 84 1.18 fvdl n->fs_sblockloc = bswap64(o->fs_sblockloc); 85 1.18 fvdl ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal); 86 1.18 fvdl n->fs_time = bswap64(o->fs_time); 87 1.18 fvdl n->fs_size = bswap64(o->fs_size); 88 1.18 fvdl n->fs_dsize = bswap64(o->fs_dsize); 89 1.18 fvdl n->fs_csaddr = bswap64(o->fs_csaddr); 90 1.25 dbj n->fs_pendingblocks = bswap64(o->fs_pendingblocks); 91 1.25 dbj n->fs_pendinginodes = bswap32(o->fs_pendinginodes); 92 1.29 perry 93 1.25 dbj /* These fields overlap with the second half of the 94 1.25 dbj * historic FS_42POSTBLFMT postbl table 95 1.25 dbj */ 96 1.28 hannken for (i = 0; i < FSMAXSNAP; i++) 97 1.28 hannken n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]); 98 1.13 lukem n->fs_avgfilesize = bswap32(o->fs_avgfilesize); 99 1.13 lukem n->fs_avgfpdir = bswap32(o->fs_avgfpdir); 100 1.25 dbj /* fs_sparecon[28] - ignore for now */ 101 1.24 dbj n->fs_flags = bswap32(o->fs_flags); 102 1.1 bouyer n->fs_contigsumsize = bswap32(o->fs_contigsumsize); 103 1.1 bouyer n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen); 104 1.18 fvdl n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt); 105 1.1 bouyer n->fs_maxfilesize = bswap64(o->fs_maxfilesize); 106 1.1 bouyer n->fs_qbmask = bswap64(o->fs_qbmask); 107 1.1 bouyer n->fs_qfmask = bswap64(o->fs_qfmask); 108 1.1 bouyer n->fs_state = bswap32(o->fs_state); 109 1.18 fvdl n->fs_old_postblformat = bswap32(o->fs_old_postblformat); 110 1.18 fvdl n->fs_old_nrpos = bswap32(o->fs_old_nrpos); 111 1.18 fvdl n->fs_old_postbloff = bswap32(o->fs_old_postbloff); 112 1.18 fvdl n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff); 113 1.25 dbj 114 1.1 bouyer n->fs_magic = bswap32(o->fs_magic); 115 1.1 bouyer } 116 1.1 bouyer 117 1.1 bouyer void 118 1.18 fvdl ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n) 119 1.1 bouyer { 120 1.9 enami 121 1.1 bouyer n->di_mode = bswap16(o->di_mode); 122 1.1 bouyer n->di_nlink = bswap16(o->di_nlink); 123 1.37 dholland n->di_oldids[0] = bswap16(o->di_oldids[0]); 124 1.37 dholland n->di_oldids[1] = bswap16(o->di_oldids[1]); 125 1.1 bouyer n->di_size = bswap64(o->di_size); 126 1.1 bouyer n->di_atime = bswap32(o->di_atime); 127 1.1 bouyer n->di_atimensec = bswap32(o->di_atimensec); 128 1.1 bouyer n->di_mtime = bswap32(o->di_mtime); 129 1.1 bouyer n->di_mtimensec = bswap32(o->di_mtimensec); 130 1.1 bouyer n->di_ctime = bswap32(o->di_ctime); 131 1.1 bouyer n->di_ctimensec = bswap32(o->di_ctimensec); 132 1.38 riastrad memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 133 1.38 riastrad memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 134 1.1 bouyer n->di_flags = bswap32(o->di_flags); 135 1.1 bouyer n->di_blocks = bswap32(o->di_blocks); 136 1.1 bouyer n->di_gen = bswap32(o->di_gen); 137 1.1 bouyer n->di_uid = bswap32(o->di_uid); 138 1.1 bouyer n->di_gid = bswap32(o->di_gid); 139 1.1 bouyer } 140 1.1 bouyer 141 1.1 bouyer void 142 1.18 fvdl ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n) 143 1.18 fvdl { 144 1.18 fvdl n->di_mode = bswap16(o->di_mode); 145 1.18 fvdl n->di_nlink = bswap16(o->di_nlink); 146 1.18 fvdl n->di_uid = bswap32(o->di_uid); 147 1.18 fvdl n->di_gid = bswap32(o->di_gid); 148 1.18 fvdl n->di_blksize = bswap32(o->di_blksize); 149 1.18 fvdl n->di_size = bswap64(o->di_size); 150 1.18 fvdl n->di_blocks = bswap64(o->di_blocks); 151 1.18 fvdl n->di_atime = bswap64(o->di_atime); 152 1.18 fvdl n->di_atimensec = bswap32(o->di_atimensec); 153 1.18 fvdl n->di_mtime = bswap64(o->di_mtime); 154 1.18 fvdl n->di_mtimensec = bswap32(o->di_mtimensec); 155 1.18 fvdl n->di_ctime = bswap64(o->di_ctime); 156 1.18 fvdl n->di_ctimensec = bswap32(o->di_ctimensec); 157 1.30 is n->di_birthtime = bswap64(o->di_birthtime); 158 1.30 is n->di_birthnsec = bswap32(o->di_birthnsec); 159 1.18 fvdl n->di_gen = bswap32(o->di_gen); 160 1.18 fvdl n->di_kernflags = bswap32(o->di_kernflags); 161 1.18 fvdl n->di_flags = bswap32(o->di_flags); 162 1.18 fvdl n->di_extsize = bswap32(o->di_extsize); 163 1.39 riastrad memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb)); 164 1.39 riastrad memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 165 1.39 riastrad memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 166 1.18 fvdl } 167 1.18 fvdl 168 1.18 fvdl void 169 1.11 lukem ffs_csum_swap(struct csum *o, struct csum *n, int size) 170 1.1 bouyer { 171 1.33 lukem size_t i; 172 1.1 bouyer u_int32_t *oint, *nint; 173 1.29 perry 174 1.1 bouyer oint = (u_int32_t*)o; 175 1.1 bouyer nint = (u_int32_t*)n; 176 1.1 bouyer 177 1.1 bouyer for (i = 0; i < size / sizeof(u_int32_t); i++) 178 1.1 bouyer nint[i] = bswap32(oint[i]); 179 1.18 fvdl } 180 1.18 fvdl 181 1.18 fvdl void 182 1.40 kre ffs_csumtotal_swap(const struct csum_total *o, struct csum_total *n) 183 1.18 fvdl { 184 1.18 fvdl n->cs_ndir = bswap64(o->cs_ndir); 185 1.18 fvdl n->cs_nbfree = bswap64(o->cs_nbfree); 186 1.18 fvdl n->cs_nifree = bswap64(o->cs_nifree); 187 1.18 fvdl n->cs_nffree = bswap64(o->cs_nffree); 188 1.18 fvdl } 189 1.18 fvdl 190 1.19 enami /* 191 1.19 enami * Note that ffs_cg_swap may be called with o == n. 192 1.19 enami */ 193 1.18 fvdl void 194 1.18 fvdl ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs) 195 1.18 fvdl { 196 1.18 fvdl int i; 197 1.18 fvdl u_int32_t *n32, *o32; 198 1.18 fvdl u_int16_t *n16, *o16; 199 1.19 enami int32_t btotoff, boff, clustersumoff; 200 1.18 fvdl 201 1.18 fvdl n->cg_firstfield = bswap32(o->cg_firstfield); 202 1.18 fvdl n->cg_magic = bswap32(o->cg_magic); 203 1.18 fvdl n->cg_old_time = bswap32(o->cg_old_time); 204 1.18 fvdl n->cg_cgx = bswap32(o->cg_cgx); 205 1.18 fvdl n->cg_old_ncyl = bswap16(o->cg_old_ncyl); 206 1.18 fvdl n->cg_old_niblk = bswap16(o->cg_old_niblk); 207 1.18 fvdl n->cg_ndblk = bswap32(o->cg_ndblk); 208 1.18 fvdl n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 209 1.18 fvdl n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 210 1.18 fvdl n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 211 1.18 fvdl n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 212 1.18 fvdl n->cg_rotor = bswap32(o->cg_rotor); 213 1.18 fvdl n->cg_frotor = bswap32(o->cg_frotor); 214 1.18 fvdl n->cg_irotor = bswap32(o->cg_irotor); 215 1.19 enami for (i = 0; i < MAXFRAG; i++) 216 1.18 fvdl n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 217 1.29 perry 218 1.23 dbj if ((fs->fs_magic != FS_UFS2_MAGIC) && 219 1.23 dbj (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */ 220 1.18 fvdl struct ocg *on, *oo; 221 1.18 fvdl int j; 222 1.18 fvdl on = (struct ocg *)n; 223 1.18 fvdl oo = (struct ocg *)o; 224 1.23 dbj 225 1.23 dbj for (i = 0; i < 32; i++) { 226 1.18 fvdl on->cg_btot[i] = bswap32(oo->cg_btot[i]); 227 1.18 fvdl for (j = 0; j < 8; j++) 228 1.18 fvdl on->cg_b[i][j] = bswap16(oo->cg_b[i][j]); 229 1.18 fvdl } 230 1.18 fvdl memmove(on->cg_iused, oo->cg_iused, 256); 231 1.18 fvdl on->cg_magic = bswap32(oo->cg_magic); 232 1.18 fvdl } else { /* new format */ 233 1.23 dbj 234 1.23 dbj n->cg_old_btotoff = bswap32(o->cg_old_btotoff); 235 1.23 dbj n->cg_old_boff = bswap32(o->cg_old_boff); 236 1.23 dbj n->cg_iusedoff = bswap32(o->cg_iusedoff); 237 1.23 dbj n->cg_freeoff = bswap32(o->cg_freeoff); 238 1.23 dbj n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 239 1.23 dbj n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 240 1.23 dbj n->cg_clusteroff = bswap32(o->cg_clusteroff); 241 1.23 dbj n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 242 1.23 dbj n->cg_niblk = bswap32(o->cg_niblk); 243 1.23 dbj n->cg_initediblk = bswap32(o->cg_initediblk); 244 1.23 dbj n->cg_time = bswap64(o->cg_time); 245 1.23 dbj 246 1.18 fvdl if (n->cg_magic == CG_MAGIC) { 247 1.19 enami btotoff = n->cg_old_btotoff; 248 1.19 enami boff = n->cg_old_boff; 249 1.19 enami clustersumoff = n->cg_clustersumoff; 250 1.18 fvdl } else { 251 1.19 enami btotoff = bswap32(n->cg_old_btotoff); 252 1.19 enami boff = bswap32(n->cg_old_boff); 253 1.19 enami clustersumoff = bswap32(n->cg_clustersumoff); 254 1.18 fvdl } 255 1.31 dbj 256 1.31 dbj n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff); 257 1.31 dbj o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff); 258 1.31 dbj for (i = 1; i < fs->fs_contigsumsize + 1; i++) 259 1.31 dbj n32[i] = bswap32(o32[i]); 260 1.31 dbj 261 1.31 dbj if (fs->fs_magic == FS_UFS2_MAGIC) 262 1.31 dbj return; 263 1.31 dbj 264 1.19 enami n32 = (u_int32_t *)((u_int8_t *)n + btotoff); 265 1.19 enami o32 = (u_int32_t *)((u_int8_t *)o + btotoff); 266 1.19 enami n16 = (u_int16_t *)((u_int8_t *)n + boff); 267 1.19 enami o16 = (u_int16_t *)((u_int8_t *)o + boff); 268 1.19 enami 269 1.19 enami for (i = 0; i < fs->fs_old_cpg; i++) 270 1.18 fvdl n32[i] = bswap32(o32[i]); 271 1.29 perry 272 1.19 enami for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++) 273 1.18 fvdl n16[i] = bswap16(o16[i]); 274 1.18 fvdl } 275 1.1 bouyer } 276