1 /* $NetBSD: ffs_bswap.c,v 1.40 2017/02/09 04:37:35 kre Exp $ */ 2 3 /* 4 * Copyright (c) 1998 Manuel Bouyer. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 */ 27 28 #if HAVE_NBTOOL_CONFIG_H 29 #include "nbtool_config.h" 30 #endif 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.40 2017/02/09 04:37:35 kre Exp $"); 34 35 #include <sys/param.h> 36 #if defined(_KERNEL) 37 #include <sys/systm.h> 38 #endif 39 40 #include <ufs/ufs/dinode.h> 41 #include <ufs/ufs/quota.h> 42 #include <ufs/ufs/ufs_bswap.h> 43 #include <ufs/ffs/fs.h> 44 #include <ufs/ffs/ffs_extern.h> 45 46 #if !defined(_KERNEL) 47 #include <stddef.h> 48 #include <stdio.h> 49 #include <stdlib.h> 50 #include <string.h> 51 #define panic(x) printf("%s\n", (x)), abort() 52 #endif 53 54 void 55 ffs_sb_swap(const struct fs *o, struct fs *n) 56 { 57 size_t i; 58 const u_int32_t *o32; 59 u_int32_t *n32; 60 61 /* 62 * In order to avoid a lot of lines, as the first N fields (52) 63 * of the superblock up to fs_fmod are u_int32_t, we just loop 64 * here to convert them. 65 */ 66 o32 = (const u_int32_t *)o; 67 n32 = (u_int32_t *)n; 68 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++) 69 n32[i] = bswap32(o32[i]); 70 71 n->fs_swuid = bswap64(o->fs_swuid); 72 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */ 73 n->fs_old_cpc = bswap32(o->fs_old_cpc); 74 75 /* These fields overlap with a possible location for the 76 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the 77 * first half of the historic FS_42POSTBLFMT postbl table. 78 */ 79 n->fs_maxbsize = bswap32(o->fs_maxbsize); 80 /* XXX journal */ 81 n->fs_quota_magic = bswap32(o->fs_quota_magic); 82 for (i = 0; i < MAXQUOTAS; i++) 83 n->fs_quotafile[i] = bswap64(o->fs_quotafile[i]); 84 n->fs_sblockloc = bswap64(o->fs_sblockloc); 85 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal); 86 n->fs_time = bswap64(o->fs_time); 87 n->fs_size = bswap64(o->fs_size); 88 n->fs_dsize = bswap64(o->fs_dsize); 89 n->fs_csaddr = bswap64(o->fs_csaddr); 90 n->fs_pendingblocks = bswap64(o->fs_pendingblocks); 91 n->fs_pendinginodes = bswap32(o->fs_pendinginodes); 92 93 /* These fields overlap with the second half of the 94 * historic FS_42POSTBLFMT postbl table 95 */ 96 for (i = 0; i < FSMAXSNAP; i++) 97 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]); 98 n->fs_avgfilesize = bswap32(o->fs_avgfilesize); 99 n->fs_avgfpdir = bswap32(o->fs_avgfpdir); 100 /* fs_sparecon[28] - ignore for now */ 101 n->fs_flags = bswap32(o->fs_flags); 102 n->fs_contigsumsize = bswap32(o->fs_contigsumsize); 103 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen); 104 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt); 105 n->fs_maxfilesize = bswap64(o->fs_maxfilesize); 106 n->fs_qbmask = bswap64(o->fs_qbmask); 107 n->fs_qfmask = bswap64(o->fs_qfmask); 108 n->fs_state = bswap32(o->fs_state); 109 n->fs_old_postblformat = bswap32(o->fs_old_postblformat); 110 n->fs_old_nrpos = bswap32(o->fs_old_nrpos); 111 n->fs_old_postbloff = bswap32(o->fs_old_postbloff); 112 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff); 113 114 n->fs_magic = bswap32(o->fs_magic); 115 } 116 117 void 118 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n) 119 { 120 121 n->di_mode = bswap16(o->di_mode); 122 n->di_nlink = bswap16(o->di_nlink); 123 n->di_oldids[0] = bswap16(o->di_oldids[0]); 124 n->di_oldids[1] = bswap16(o->di_oldids[1]); 125 n->di_size = bswap64(o->di_size); 126 n->di_atime = bswap32(o->di_atime); 127 n->di_atimensec = bswap32(o->di_atimensec); 128 n->di_mtime = bswap32(o->di_mtime); 129 n->di_mtimensec = bswap32(o->di_mtimensec); 130 n->di_ctime = bswap32(o->di_ctime); 131 n->di_ctimensec = bswap32(o->di_ctimensec); 132 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 133 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 134 n->di_flags = bswap32(o->di_flags); 135 n->di_blocks = bswap32(o->di_blocks); 136 n->di_gen = bswap32(o->di_gen); 137 n->di_uid = bswap32(o->di_uid); 138 n->di_gid = bswap32(o->di_gid); 139 } 140 141 void 142 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n) 143 { 144 n->di_mode = bswap16(o->di_mode); 145 n->di_nlink = bswap16(o->di_nlink); 146 n->di_uid = bswap32(o->di_uid); 147 n->di_gid = bswap32(o->di_gid); 148 n->di_blksize = bswap32(o->di_blksize); 149 n->di_size = bswap64(o->di_size); 150 n->di_blocks = bswap64(o->di_blocks); 151 n->di_atime = bswap64(o->di_atime); 152 n->di_atimensec = bswap32(o->di_atimensec); 153 n->di_mtime = bswap64(o->di_mtime); 154 n->di_mtimensec = bswap32(o->di_mtimensec); 155 n->di_ctime = bswap64(o->di_ctime); 156 n->di_ctimensec = bswap32(o->di_ctimensec); 157 n->di_birthtime = bswap64(o->di_birthtime); 158 n->di_birthnsec = bswap32(o->di_birthnsec); 159 n->di_gen = bswap32(o->di_gen); 160 n->di_kernflags = bswap32(o->di_kernflags); 161 n->di_flags = bswap32(o->di_flags); 162 n->di_extsize = bswap32(o->di_extsize); 163 memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb)); 164 memcpy(n->di_db, o->di_db, sizeof(n->di_db)); 165 memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib)); 166 } 167 168 void 169 ffs_csum_swap(struct csum *o, struct csum *n, int size) 170 { 171 size_t i; 172 u_int32_t *oint, *nint; 173 174 oint = (u_int32_t*)o; 175 nint = (u_int32_t*)n; 176 177 for (i = 0; i < size / sizeof(u_int32_t); i++) 178 nint[i] = bswap32(oint[i]); 179 } 180 181 void 182 ffs_csumtotal_swap(const struct csum_total *o, struct csum_total *n) 183 { 184 n->cs_ndir = bswap64(o->cs_ndir); 185 n->cs_nbfree = bswap64(o->cs_nbfree); 186 n->cs_nifree = bswap64(o->cs_nifree); 187 n->cs_nffree = bswap64(o->cs_nffree); 188 } 189 190 /* 191 * Note that ffs_cg_swap may be called with o == n. 192 */ 193 void 194 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs) 195 { 196 int i; 197 u_int32_t *n32, *o32; 198 u_int16_t *n16, *o16; 199 int32_t btotoff, boff, clustersumoff; 200 201 n->cg_firstfield = bswap32(o->cg_firstfield); 202 n->cg_magic = bswap32(o->cg_magic); 203 n->cg_old_time = bswap32(o->cg_old_time); 204 n->cg_cgx = bswap32(o->cg_cgx); 205 n->cg_old_ncyl = bswap16(o->cg_old_ncyl); 206 n->cg_old_niblk = bswap16(o->cg_old_niblk); 207 n->cg_ndblk = bswap32(o->cg_ndblk); 208 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 209 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 210 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 211 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 212 n->cg_rotor = bswap32(o->cg_rotor); 213 n->cg_frotor = bswap32(o->cg_frotor); 214 n->cg_irotor = bswap32(o->cg_irotor); 215 for (i = 0; i < MAXFRAG; i++) 216 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 217 218 if ((fs->fs_magic != FS_UFS2_MAGIC) && 219 (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */ 220 struct ocg *on, *oo; 221 int j; 222 on = (struct ocg *)n; 223 oo = (struct ocg *)o; 224 225 for (i = 0; i < 32; i++) { 226 on->cg_btot[i] = bswap32(oo->cg_btot[i]); 227 for (j = 0; j < 8; j++) 228 on->cg_b[i][j] = bswap16(oo->cg_b[i][j]); 229 } 230 memmove(on->cg_iused, oo->cg_iused, 256); 231 on->cg_magic = bswap32(oo->cg_magic); 232 } else { /* new format */ 233 234 n->cg_old_btotoff = bswap32(o->cg_old_btotoff); 235 n->cg_old_boff = bswap32(o->cg_old_boff); 236 n->cg_iusedoff = bswap32(o->cg_iusedoff); 237 n->cg_freeoff = bswap32(o->cg_freeoff); 238 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 239 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 240 n->cg_clusteroff = bswap32(o->cg_clusteroff); 241 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 242 n->cg_niblk = bswap32(o->cg_niblk); 243 n->cg_initediblk = bswap32(o->cg_initediblk); 244 n->cg_time = bswap64(o->cg_time); 245 246 if (n->cg_magic == CG_MAGIC) { 247 btotoff = n->cg_old_btotoff; 248 boff = n->cg_old_boff; 249 clustersumoff = n->cg_clustersumoff; 250 } else { 251 btotoff = bswap32(n->cg_old_btotoff); 252 boff = bswap32(n->cg_old_boff); 253 clustersumoff = bswap32(n->cg_clustersumoff); 254 } 255 256 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff); 257 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff); 258 for (i = 1; i < fs->fs_contigsumsize + 1; i++) 259 n32[i] = bswap32(o32[i]); 260 261 if (fs->fs_magic == FS_UFS2_MAGIC) 262 return; 263 264 n32 = (u_int32_t *)((u_int8_t *)n + btotoff); 265 o32 = (u_int32_t *)((u_int8_t *)o + btotoff); 266 n16 = (u_int16_t *)((u_int8_t *)n + boff); 267 o16 = (u_int16_t *)((u_int8_t *)o + boff); 268 269 for (i = 0; i < fs->fs_old_cpg; i++) 270 n32[i] = bswap32(o32[i]); 271 272 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++) 273 n16[i] = bswap16(o16[i]); 274 } 275 } 276