Home | History | Annotate | Line # | Download | only in ffs
ffs_bswap.c revision 1.19
      1  1.19    enami /*	$NetBSD: ffs_bswap.c,v 1.19 2003/04/11 10:20:35 enami Exp $	*/
      2   1.1   bouyer 
      3   1.1   bouyer /*
      4   1.1   bouyer  * Copyright (c) 1998 Manuel Bouyer.
      5   1.1   bouyer  *
      6   1.1   bouyer  * Redistribution and use in source and binary forms, with or without
      7   1.1   bouyer  * modification, are permitted provided that the following conditions
      8   1.1   bouyer  * are met:
      9   1.1   bouyer  * 1. Redistributions of source code must retain the above copyright
     10   1.1   bouyer  *    notice, this list of conditions and the following disclaimer.
     11   1.1   bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     12   1.1   bouyer  *    notice, this list of conditions and the following disclaimer in the
     13   1.1   bouyer  *    documentation and/or other materials provided with the distribution.
     14   1.1   bouyer  * 3. All advertising materials mentioning features or use of this software
     15   1.1   bouyer  *    must display the following acknowledgement:
     16   1.1   bouyer  *	This product includes software developed by the University of
     17   1.1   bouyer  *	California, Berkeley and its contributors.
     18   1.1   bouyer  * 4. Neither the name of the University nor the names of its contributors
     19   1.1   bouyer  *    may be used to endorse or promote products derived from this software
     20   1.1   bouyer  *    without specific prior written permission.
     21   1.1   bouyer  *
     22   1.8   bouyer  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23   1.8   bouyer  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24   1.8   bouyer  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25   1.8   bouyer  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26   1.8   bouyer  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27   1.8   bouyer  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28   1.8   bouyer  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29   1.8   bouyer  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30   1.8   bouyer  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31   1.8   bouyer  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32   1.1   bouyer  *
     33   1.1   bouyer  */
     34  1.15    lukem 
     35  1.15    lukem #include <sys/cdefs.h>
     36  1.17       tv #if defined(__KERNEL_RCSID)
     37  1.19    enami __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.19 2003/04/11 10:20:35 enami Exp $");
     38  1.17       tv #endif
     39  1.17       tv 
     40  1.17       tv #if HAVE_CONFIG_H
     41  1.17       tv #include "config.h"
     42  1.17       tv #endif
     43   1.1   bouyer 
     44   1.2    ragge #include <sys/param.h>
     45  1.11    lukem #if defined(_KERNEL)
     46   1.1   bouyer #include <sys/systm.h>
     47  1.11    lukem #endif
     48   1.9    enami 
     49   1.1   bouyer #include <ufs/ufs/dinode.h>
     50   1.1   bouyer #include <ufs/ufs/ufs_bswap.h>
     51   1.1   bouyer #include <ufs/ffs/fs.h>
     52   1.1   bouyer #include <ufs/ffs/ffs_extern.h>
     53   1.6  thorpej 
     54   1.6  thorpej #if !defined(_KERNEL)
     55  1.14    lukem #include <stddef.h>
     56  1.11    lukem #include <stdio.h>
     57  1.11    lukem #include <stdlib.h>
     58   1.6  thorpej #include <string.h>
     59  1.11    lukem #define panic(x)	printf("%s\n", (x)), abort()
     60   1.6  thorpej #endif
     61   1.1   bouyer 
     62   1.1   bouyer void
     63  1.11    lukem ffs_sb_swap(struct fs *o, struct fs *n)
     64   1.1   bouyer {
     65  1.18     fvdl 	int i;
     66   1.1   bouyer 	u_int32_t *o32, *n32;
     67  1.11    lukem 
     68   1.9    enami 	/*
     69  1.14    lukem 	 * In order to avoid a lot of lines, as the first N fields (52)
     70  1.14    lukem 	 * of the superblock up to fs_fmod are u_int32_t, we just loop
     71  1.14    lukem 	 * here to convert them.
     72   1.1   bouyer 	 */
     73   1.1   bouyer 	o32 = (u_int32_t *)o;
     74   1.1   bouyer 	n32 = (u_int32_t *)n;
     75  1.14    lukem 	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
     76   1.1   bouyer 		n32[i] = bswap32(o32[i]);
     77   1.9    enami 
     78  1.18     fvdl 	n->fs_swuid = bswap64(o->fs_swuid);
     79  1.14    lukem 			/* fs_cgrotor is now unused */
     80  1.18     fvdl 	n->fs_old_cpc = bswap32(o->fs_old_cpc);
     81  1.14    lukem 			/* fs_snapinum[20] - ignore for now */
     82  1.18     fvdl 	n->fs_maxbsize = bswap32(o->fs_maxbsize);
     83  1.18     fvdl 	n->fs_sblockloc = bswap64(o->fs_sblockloc);
     84  1.18     fvdl 	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
     85  1.18     fvdl 	n->fs_time = bswap64(o->fs_time);
     86  1.18     fvdl 	n->fs_size = bswap64(o->fs_size);
     87  1.18     fvdl 	n->fs_dsize = bswap64(o->fs_dsize);
     88  1.18     fvdl 	n->fs_csaddr = bswap64(o->fs_csaddr);
     89  1.13    lukem 	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
     90  1.13    lukem 	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
     91  1.14    lukem 			/* fs_sparecon[28] - ignore for now */
     92  1.16     fvdl 	n->fs_pendingblocks = bswap32(o->fs_pendingblocks);
     93  1.18     fvdl 	n->fs_pendinginodes = bswap64(o->fs_pendinginodes);
     94   1.1   bouyer 	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
     95   1.1   bouyer 	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
     96  1.18     fvdl 	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
     97   1.1   bouyer 	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
     98   1.1   bouyer 	n->fs_qbmask = bswap64(o->fs_qbmask);
     99   1.1   bouyer 	n->fs_qfmask = bswap64(o->fs_qfmask);
    100   1.1   bouyer 	n->fs_state = bswap32(o->fs_state);
    101  1.18     fvdl 	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
    102  1.18     fvdl 	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
    103  1.18     fvdl 	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
    104  1.18     fvdl 	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
    105   1.1   bouyer 	n->fs_magic = bswap32(o->fs_magic);
    106   1.1   bouyer }
    107   1.1   bouyer 
    108   1.1   bouyer void
    109  1.18     fvdl ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
    110   1.1   bouyer {
    111   1.9    enami 
    112   1.1   bouyer 	n->di_mode = bswap16(o->di_mode);
    113   1.1   bouyer 	n->di_nlink = bswap16(o->di_nlink);
    114   1.1   bouyer 	n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
    115   1.1   bouyer 	n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
    116   1.1   bouyer 	n->di_size = bswap64(o->di_size);
    117   1.1   bouyer 	n->di_atime = bswap32(o->di_atime);
    118   1.1   bouyer 	n->di_atimensec = bswap32(o->di_atimensec);
    119   1.1   bouyer 	n->di_mtime = bswap32(o->di_mtime);
    120   1.1   bouyer 	n->di_mtimensec = bswap32(o->di_mtimensec);
    121   1.1   bouyer 	n->di_ctime = bswap32(o->di_ctime);
    122   1.1   bouyer 	n->di_ctimensec = bswap32(o->di_ctimensec);
    123   1.5    perry 	memcpy(n->di_db, o->di_db, (NDADDR + NIADDR) * sizeof(u_int32_t));
    124   1.1   bouyer 	n->di_flags = bswap32(o->di_flags);
    125   1.1   bouyer 	n->di_blocks = bswap32(o->di_blocks);
    126   1.1   bouyer 	n->di_gen = bswap32(o->di_gen);
    127   1.1   bouyer 	n->di_uid = bswap32(o->di_uid);
    128   1.1   bouyer 	n->di_gid = bswap32(o->di_gid);
    129   1.1   bouyer }
    130   1.1   bouyer 
    131   1.1   bouyer void
    132  1.18     fvdl ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
    133  1.18     fvdl {
    134  1.18     fvdl 	n->di_mode = bswap16(o->di_mode);
    135  1.18     fvdl 	n->di_nlink = bswap16(o->di_nlink);
    136  1.18     fvdl 	n->di_uid = bswap32(o->di_uid);
    137  1.18     fvdl 	n->di_gid = bswap32(o->di_gid);
    138  1.18     fvdl 	n->di_blksize = bswap32(o->di_blksize);
    139  1.18     fvdl 	n->di_size = bswap64(o->di_size);
    140  1.18     fvdl 	n->di_blocks = bswap64(o->di_blocks);
    141  1.18     fvdl 	n->di_atime = bswap64(o->di_atime);
    142  1.18     fvdl 	n->di_atimensec = bswap32(o->di_atimensec);
    143  1.18     fvdl 	n->di_mtime = bswap64(o->di_mtime);
    144  1.18     fvdl 	n->di_mtimensec = bswap32(o->di_mtimensec);
    145  1.18     fvdl 	n->di_ctime = bswap64(o->di_ctime);
    146  1.18     fvdl 	n->di_ctimensec = bswap32(o->di_ctimensec);
    147  1.18     fvdl 	n->di_birthtime = bswap64(o->di_ctime);
    148  1.18     fvdl 	n->di_birthnsec = bswap32(o->di_ctimensec);
    149  1.18     fvdl 	n->di_gen = bswap32(o->di_gen);
    150  1.18     fvdl 	n->di_kernflags = bswap32(o->di_kernflags);
    151  1.18     fvdl 	n->di_flags = bswap32(o->di_flags);
    152  1.18     fvdl 	n->di_extsize = bswap32(o->di_extsize);
    153  1.18     fvdl 	memcpy(n->di_extb, o->di_extb, (NXADDR + NDADDR + NIADDR) * 8);
    154  1.18     fvdl }
    155  1.18     fvdl 
    156  1.18     fvdl void
    157  1.11    lukem ffs_csum_swap(struct csum *o, struct csum *n, int size)
    158   1.1   bouyer {
    159   1.1   bouyer 	int i;
    160   1.1   bouyer 	u_int32_t *oint, *nint;
    161   1.1   bouyer 
    162   1.1   bouyer 	oint = (u_int32_t*)o;
    163   1.1   bouyer 	nint = (u_int32_t*)n;
    164   1.1   bouyer 
    165   1.1   bouyer 	for (i = 0; i < size / sizeof(u_int32_t); i++)
    166   1.1   bouyer 		nint[i] = bswap32(oint[i]);
    167  1.18     fvdl }
    168  1.18     fvdl 
    169  1.18     fvdl void
    170  1.18     fvdl ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
    171  1.18     fvdl {
    172  1.18     fvdl 	n->cs_ndir = bswap64(o->cs_ndir);
    173  1.18     fvdl 	n->cs_nbfree = bswap64(o->cs_nbfree);
    174  1.18     fvdl 	n->cs_nifree = bswap64(o->cs_nifree);
    175  1.18     fvdl 	n->cs_nffree = bswap64(o->cs_nffree);
    176  1.18     fvdl 	n->cs_numclusters = bswap64(o->cs_numclusters);
    177  1.18     fvdl }
    178  1.18     fvdl 
    179  1.19    enami /*
    180  1.19    enami  * Note that ffs_cg_swap may be called with o == n.
    181  1.19    enami  */
    182  1.18     fvdl void
    183  1.18     fvdl ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
    184  1.18     fvdl {
    185  1.18     fvdl 	int i;
    186  1.18     fvdl 	u_int32_t *n32, *o32;
    187  1.18     fvdl 	u_int16_t *n16, *o16;
    188  1.19    enami 	int32_t btotoff, boff, clustersumoff;
    189  1.18     fvdl 
    190  1.18     fvdl 	n->cg_firstfield = bswap32(o->cg_firstfield);
    191  1.18     fvdl 	n->cg_magic = bswap32(o->cg_magic);
    192  1.18     fvdl 	n->cg_old_time = bswap32(o->cg_old_time);
    193  1.18     fvdl 	n->cg_cgx = bswap32(o->cg_cgx);
    194  1.18     fvdl 	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
    195  1.18     fvdl 	n->cg_old_niblk = bswap16(o->cg_old_niblk);
    196  1.18     fvdl 	n->cg_ndblk = bswap32(o->cg_ndblk);
    197  1.18     fvdl 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
    198  1.18     fvdl 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
    199  1.18     fvdl 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
    200  1.18     fvdl 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
    201  1.18     fvdl 	n->cg_rotor = bswap32(o->cg_rotor);
    202  1.18     fvdl 	n->cg_frotor = bswap32(o->cg_frotor);
    203  1.18     fvdl 	n->cg_irotor = bswap32(o->cg_irotor);
    204  1.18     fvdl 	n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
    205  1.18     fvdl 	n->cg_old_boff = bswap32(o->cg_old_boff);
    206  1.18     fvdl 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
    207  1.18     fvdl 	n->cg_freeoff = bswap32(o->cg_freeoff);
    208  1.18     fvdl 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
    209  1.18     fvdl 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
    210  1.18     fvdl 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
    211  1.18     fvdl 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
    212  1.18     fvdl 	n->cg_niblk = bswap32(o->cg_niblk);
    213  1.18     fvdl 	n->cg_initediblk = bswap32(o->cg_initediblk);
    214  1.18     fvdl 	n->cg_time = bswap64(o->cg_time);
    215  1.19    enami 	for (i = 0; i < MAXFRAG; i++)
    216  1.18     fvdl 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
    217  1.18     fvdl 
    218  1.18     fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    219  1.18     fvdl 		return;
    220  1.18     fvdl 
    221  1.18     fvdl 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) { /* old format */
    222  1.18     fvdl 		struct ocg *on, *oo;
    223  1.18     fvdl 		int j;
    224  1.18     fvdl 		on = (struct ocg *)n;
    225  1.18     fvdl 		oo = (struct ocg *)o;
    226  1.18     fvdl 		for(i = 0; i < 8; i++) {
    227  1.18     fvdl 			on->cg_frsum[i] = bswap32(oo->cg_frsum[i]);
    228  1.18     fvdl 		}
    229  1.18     fvdl 		for(i = 0; i < 32; i++) {
    230  1.18     fvdl 			on->cg_btot[i] = bswap32(oo->cg_btot[i]);
    231  1.18     fvdl 			for (j = 0; j < 8; j++)
    232  1.18     fvdl 				on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
    233  1.18     fvdl 		}
    234  1.18     fvdl 		memmove(on->cg_iused, oo->cg_iused, 256);
    235  1.18     fvdl 		on->cg_magic = bswap32(oo->cg_magic);
    236  1.18     fvdl 	} else {  /* new format */
    237  1.18     fvdl 		if (n->cg_magic == CG_MAGIC) {
    238  1.19    enami 			btotoff = n->cg_old_btotoff;
    239  1.19    enami 			boff = n->cg_old_boff;
    240  1.19    enami 			clustersumoff = n->cg_clustersumoff;
    241  1.18     fvdl 		} else {
    242  1.19    enami 			btotoff = bswap32(n->cg_old_btotoff);
    243  1.19    enami 			boff = bswap32(n->cg_old_boff);
    244  1.19    enami 			clustersumoff = bswap32(n->cg_clustersumoff);
    245  1.18     fvdl 		}
    246  1.19    enami 		n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
    247  1.19    enami 		o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
    248  1.19    enami 		n16 = (u_int16_t *)((u_int8_t *)n + boff);
    249  1.19    enami 		o16 = (u_int16_t *)((u_int8_t *)o + boff);
    250  1.19    enami 
    251  1.19    enami 		for (i = 0; i < fs->fs_old_cpg; i++)
    252  1.18     fvdl 			n32[i] = bswap32(o32[i]);
    253  1.18     fvdl 
    254  1.19    enami 		for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
    255  1.18     fvdl 			n16[i] = bswap16(o16[i]);
    256  1.18     fvdl 
    257  1.19    enami 		n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
    258  1.19    enami 		o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
    259  1.18     fvdl 		for (i = 1; i < fs->fs_contigsumsize + 1; i++)
    260  1.18     fvdl 			n32[i] = bswap32(o32[i]);
    261  1.18     fvdl 	}
    262   1.1   bouyer }
    263