Home | History | Annotate | Line # | Download | only in ffs
ffs_bswap.c revision 1.32.74.2
      1  1.32.74.2     yamt /*	$NetBSD: ffs_bswap.c,v 1.32.74.2 2010/03/11 15:04:44 yamt Exp $	*/
      2        1.1   bouyer 
      3        1.1   bouyer /*
      4        1.1   bouyer  * Copyright (c) 1998 Manuel Bouyer.
      5        1.1   bouyer  *
      6        1.1   bouyer  * Redistribution and use in source and binary forms, with or without
      7        1.1   bouyer  * modification, are permitted provided that the following conditions
      8        1.1   bouyer  * are met:
      9        1.1   bouyer  * 1. Redistributions of source code must retain the above copyright
     10        1.1   bouyer  *    notice, this list of conditions and the following disclaimer.
     11        1.1   bouyer  * 2. Redistributions in binary form must reproduce the above copyright
     12        1.1   bouyer  *    notice, this list of conditions and the following disclaimer in the
     13        1.1   bouyer  *    documentation and/or other materials provided with the distribution.
     14        1.1   bouyer  *
     15        1.8   bouyer  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16        1.8   bouyer  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17        1.8   bouyer  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18        1.8   bouyer  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19        1.8   bouyer  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20        1.8   bouyer  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21        1.8   bouyer  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22        1.8   bouyer  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23        1.8   bouyer  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24        1.8   bouyer  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25        1.1   bouyer  *
     26        1.1   bouyer  */
     27       1.15    lukem 
     28       1.22    lukem #if HAVE_NBTOOL_CONFIG_H
     29       1.22    lukem #include "nbtool_config.h"
     30       1.17       tv #endif
     31       1.17       tv 
     32       1.22    lukem #include <sys/cdefs.h>
     33  1.32.74.2     yamt __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.32.74.2 2010/03/11 15:04:44 yamt Exp $");
     34        1.1   bouyer 
     35        1.2    ragge #include <sys/param.h>
     36       1.11    lukem #if defined(_KERNEL)
     37        1.1   bouyer #include <sys/systm.h>
     38       1.11    lukem #endif
     39        1.9    enami 
     40        1.1   bouyer #include <ufs/ufs/dinode.h>
     41        1.1   bouyer #include <ufs/ufs/ufs_bswap.h>
     42        1.1   bouyer #include <ufs/ffs/fs.h>
     43        1.1   bouyer #include <ufs/ffs/ffs_extern.h>
     44        1.6  thorpej 
     45        1.6  thorpej #if !defined(_KERNEL)
     46       1.14    lukem #include <stddef.h>
     47       1.11    lukem #include <stdio.h>
     48       1.11    lukem #include <stdlib.h>
     49        1.6  thorpej #include <string.h>
     50       1.11    lukem #define panic(x)	printf("%s\n", (x)), abort()
     51        1.6  thorpej #endif
     52        1.1   bouyer 
     53        1.1   bouyer void
     54       1.11    lukem ffs_sb_swap(struct fs *o, struct fs *n)
     55        1.1   bouyer {
     56  1.32.74.1     yamt 	size_t i;
     57        1.1   bouyer 	u_int32_t *o32, *n32;
     58       1.11    lukem 
     59        1.9    enami 	/*
     60       1.14    lukem 	 * In order to avoid a lot of lines, as the first N fields (52)
     61       1.14    lukem 	 * of the superblock up to fs_fmod are u_int32_t, we just loop
     62       1.14    lukem 	 * here to convert them.
     63        1.1   bouyer 	 */
     64        1.1   bouyer 	o32 = (u_int32_t *)o;
     65        1.1   bouyer 	n32 = (u_int32_t *)n;
     66       1.14    lukem 	for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
     67        1.1   bouyer 		n32[i] = bswap32(o32[i]);
     68        1.9    enami 
     69       1.18     fvdl 	n->fs_swuid = bswap64(o->fs_swuid);
     70       1.23      dbj 	n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
     71       1.18     fvdl 	n->fs_old_cpc = bswap32(o->fs_old_cpc);
     72       1.25      dbj 
     73       1.25      dbj 	/* These fields overlap with a possible location for the
     74       1.25      dbj 	 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
     75       1.25      dbj 	 * first half of the historic FS_42POSTBLFMT postbl table.
     76       1.25      dbj 	 */
     77       1.18     fvdl 	n->fs_maxbsize = bswap32(o->fs_maxbsize);
     78       1.18     fvdl 	n->fs_sblockloc = bswap64(o->fs_sblockloc);
     79       1.18     fvdl 	ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
     80       1.18     fvdl 	n->fs_time = bswap64(o->fs_time);
     81       1.18     fvdl 	n->fs_size = bswap64(o->fs_size);
     82       1.18     fvdl 	n->fs_dsize = bswap64(o->fs_dsize);
     83       1.18     fvdl 	n->fs_csaddr = bswap64(o->fs_csaddr);
     84       1.25      dbj 	n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
     85       1.25      dbj 	n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
     86       1.29    perry 
     87       1.25      dbj 	/* These fields overlap with the second half of the
     88       1.25      dbj 	 * historic FS_42POSTBLFMT postbl table
     89       1.25      dbj 	 */
     90       1.28  hannken 	for (i = 0; i < FSMAXSNAP; i++)
     91       1.28  hannken 		n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
     92       1.13    lukem 	n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
     93       1.13    lukem 	n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
     94       1.25      dbj 	/* fs_sparecon[28] - ignore for now */
     95       1.24      dbj 	n->fs_flags = bswap32(o->fs_flags);
     96        1.1   bouyer 	n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
     97        1.1   bouyer 	n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
     98       1.18     fvdl 	n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
     99        1.1   bouyer 	n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
    100        1.1   bouyer 	n->fs_qbmask = bswap64(o->fs_qbmask);
    101        1.1   bouyer 	n->fs_qfmask = bswap64(o->fs_qfmask);
    102        1.1   bouyer 	n->fs_state = bswap32(o->fs_state);
    103       1.18     fvdl 	n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
    104       1.18     fvdl 	n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
    105       1.18     fvdl 	n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
    106       1.18     fvdl 	n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
    107       1.25      dbj 
    108        1.1   bouyer 	n->fs_magic = bswap32(o->fs_magic);
    109        1.1   bouyer }
    110        1.1   bouyer 
    111        1.1   bouyer void
    112       1.18     fvdl ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
    113        1.1   bouyer {
    114        1.9    enami 
    115        1.1   bouyer 	n->di_mode = bswap16(o->di_mode);
    116        1.1   bouyer 	n->di_nlink = bswap16(o->di_nlink);
    117        1.1   bouyer 	n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
    118        1.1   bouyer 	n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
    119        1.1   bouyer 	n->di_size = bswap64(o->di_size);
    120        1.1   bouyer 	n->di_atime = bswap32(o->di_atime);
    121        1.1   bouyer 	n->di_atimensec = bswap32(o->di_atimensec);
    122        1.1   bouyer 	n->di_mtime = bswap32(o->di_mtime);
    123        1.1   bouyer 	n->di_mtimensec = bswap32(o->di_mtimensec);
    124        1.1   bouyer 	n->di_ctime = bswap32(o->di_ctime);
    125        1.1   bouyer 	n->di_ctimensec = bswap32(o->di_ctimensec);
    126        1.5    perry 	memcpy(n->di_db, o->di_db, (NDADDR + NIADDR) * sizeof(u_int32_t));
    127        1.1   bouyer 	n->di_flags = bswap32(o->di_flags);
    128        1.1   bouyer 	n->di_blocks = bswap32(o->di_blocks);
    129        1.1   bouyer 	n->di_gen = bswap32(o->di_gen);
    130        1.1   bouyer 	n->di_uid = bswap32(o->di_uid);
    131        1.1   bouyer 	n->di_gid = bswap32(o->di_gid);
    132        1.1   bouyer }
    133        1.1   bouyer 
    134        1.1   bouyer void
    135       1.18     fvdl ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
    136       1.18     fvdl {
    137       1.18     fvdl 	n->di_mode = bswap16(o->di_mode);
    138       1.18     fvdl 	n->di_nlink = bswap16(o->di_nlink);
    139       1.18     fvdl 	n->di_uid = bswap32(o->di_uid);
    140       1.18     fvdl 	n->di_gid = bswap32(o->di_gid);
    141       1.18     fvdl 	n->di_blksize = bswap32(o->di_blksize);
    142       1.18     fvdl 	n->di_size = bswap64(o->di_size);
    143       1.18     fvdl 	n->di_blocks = bswap64(o->di_blocks);
    144       1.18     fvdl 	n->di_atime = bswap64(o->di_atime);
    145       1.18     fvdl 	n->di_atimensec = bswap32(o->di_atimensec);
    146       1.18     fvdl 	n->di_mtime = bswap64(o->di_mtime);
    147       1.18     fvdl 	n->di_mtimensec = bswap32(o->di_mtimensec);
    148       1.18     fvdl 	n->di_ctime = bswap64(o->di_ctime);
    149       1.18     fvdl 	n->di_ctimensec = bswap32(o->di_ctimensec);
    150       1.30       is 	n->di_birthtime = bswap64(o->di_birthtime);
    151       1.30       is 	n->di_birthnsec = bswap32(o->di_birthnsec);
    152       1.18     fvdl 	n->di_gen = bswap32(o->di_gen);
    153       1.18     fvdl 	n->di_kernflags = bswap32(o->di_kernflags);
    154       1.18     fvdl 	n->di_flags = bswap32(o->di_flags);
    155       1.18     fvdl 	n->di_extsize = bswap32(o->di_extsize);
    156       1.18     fvdl 	memcpy(n->di_extb, o->di_extb, (NXADDR + NDADDR + NIADDR) * 8);
    157       1.18     fvdl }
    158       1.18     fvdl 
    159       1.18     fvdl void
    160       1.11    lukem ffs_csum_swap(struct csum *o, struct csum *n, int size)
    161        1.1   bouyer {
    162  1.32.74.1     yamt 	size_t i;
    163        1.1   bouyer 	u_int32_t *oint, *nint;
    164       1.29    perry 
    165        1.1   bouyer 	oint = (u_int32_t*)o;
    166        1.1   bouyer 	nint = (u_int32_t*)n;
    167        1.1   bouyer 
    168        1.1   bouyer 	for (i = 0; i < size / sizeof(u_int32_t); i++)
    169        1.1   bouyer 		nint[i] = bswap32(oint[i]);
    170       1.18     fvdl }
    171       1.18     fvdl 
    172       1.18     fvdl void
    173       1.18     fvdl ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
    174       1.18     fvdl {
    175       1.18     fvdl 	n->cs_ndir = bswap64(o->cs_ndir);
    176       1.18     fvdl 	n->cs_nbfree = bswap64(o->cs_nbfree);
    177       1.18     fvdl 	n->cs_nifree = bswap64(o->cs_nifree);
    178       1.18     fvdl 	n->cs_nffree = bswap64(o->cs_nffree);
    179       1.18     fvdl }
    180       1.18     fvdl 
    181       1.19    enami /*
    182       1.19    enami  * Note that ffs_cg_swap may be called with o == n.
    183       1.19    enami  */
    184       1.18     fvdl void
    185       1.18     fvdl ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
    186       1.18     fvdl {
    187       1.18     fvdl 	int i;
    188       1.18     fvdl 	u_int32_t *n32, *o32;
    189       1.18     fvdl 	u_int16_t *n16, *o16;
    190       1.19    enami 	int32_t btotoff, boff, clustersumoff;
    191       1.18     fvdl 
    192       1.18     fvdl 	n->cg_firstfield = bswap32(o->cg_firstfield);
    193       1.18     fvdl 	n->cg_magic = bswap32(o->cg_magic);
    194       1.18     fvdl 	n->cg_old_time = bswap32(o->cg_old_time);
    195       1.18     fvdl 	n->cg_cgx = bswap32(o->cg_cgx);
    196       1.18     fvdl 	n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
    197       1.18     fvdl 	n->cg_old_niblk = bswap16(o->cg_old_niblk);
    198       1.18     fvdl 	n->cg_ndblk = bswap32(o->cg_ndblk);
    199       1.18     fvdl 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
    200       1.18     fvdl 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
    201       1.18     fvdl 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
    202       1.18     fvdl 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
    203       1.18     fvdl 	n->cg_rotor = bswap32(o->cg_rotor);
    204       1.18     fvdl 	n->cg_frotor = bswap32(o->cg_frotor);
    205       1.18     fvdl 	n->cg_irotor = bswap32(o->cg_irotor);
    206       1.19    enami 	for (i = 0; i < MAXFRAG; i++)
    207       1.18     fvdl 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
    208       1.29    perry 
    209       1.23      dbj 	if ((fs->fs_magic != FS_UFS2_MAGIC) &&
    210       1.23      dbj 			(fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
    211       1.18     fvdl 		struct ocg *on, *oo;
    212       1.18     fvdl 		int j;
    213       1.18     fvdl 		on = (struct ocg *)n;
    214       1.18     fvdl 		oo = (struct ocg *)o;
    215       1.23      dbj 
    216       1.23      dbj 		for (i = 0; i < 32; i++) {
    217       1.18     fvdl 			on->cg_btot[i] = bswap32(oo->cg_btot[i]);
    218       1.18     fvdl 			for (j = 0; j < 8; j++)
    219       1.18     fvdl 				on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
    220       1.18     fvdl 		}
    221       1.18     fvdl 		memmove(on->cg_iused, oo->cg_iused, 256);
    222       1.18     fvdl 		on->cg_magic = bswap32(oo->cg_magic);
    223       1.18     fvdl 	} else {  /* new format */
    224       1.23      dbj 
    225       1.23      dbj 		n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
    226       1.23      dbj 		n->cg_old_boff = bswap32(o->cg_old_boff);
    227       1.23      dbj 		n->cg_iusedoff = bswap32(o->cg_iusedoff);
    228       1.23      dbj 		n->cg_freeoff = bswap32(o->cg_freeoff);
    229       1.23      dbj 		n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
    230       1.23      dbj 		n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
    231       1.23      dbj 		n->cg_clusteroff = bswap32(o->cg_clusteroff);
    232       1.23      dbj 		n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
    233       1.23      dbj 		n->cg_niblk = bswap32(o->cg_niblk);
    234       1.23      dbj 		n->cg_initediblk = bswap32(o->cg_initediblk);
    235       1.23      dbj 		n->cg_time = bswap64(o->cg_time);
    236       1.23      dbj 
    237       1.18     fvdl 		if (n->cg_magic == CG_MAGIC) {
    238       1.19    enami 			btotoff = n->cg_old_btotoff;
    239       1.19    enami 			boff = n->cg_old_boff;
    240       1.19    enami 			clustersumoff = n->cg_clustersumoff;
    241       1.18     fvdl 		} else {
    242       1.19    enami 			btotoff = bswap32(n->cg_old_btotoff);
    243       1.19    enami 			boff = bswap32(n->cg_old_boff);
    244       1.19    enami 			clustersumoff = bswap32(n->cg_clustersumoff);
    245       1.18     fvdl 		}
    246       1.31      dbj 
    247       1.31      dbj 		n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
    248       1.31      dbj 		o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
    249       1.31      dbj 		for (i = 1; i < fs->fs_contigsumsize + 1; i++)
    250       1.31      dbj 			n32[i] = bswap32(o32[i]);
    251       1.31      dbj 
    252       1.31      dbj 		if (fs->fs_magic == FS_UFS2_MAGIC)
    253       1.31      dbj 			return;
    254       1.31      dbj 
    255       1.19    enami 		n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
    256       1.19    enami 		o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
    257       1.19    enami 		n16 = (u_int16_t *)((u_int8_t *)n + boff);
    258       1.19    enami 		o16 = (u_int16_t *)((u_int8_t *)o + boff);
    259       1.19    enami 
    260       1.19    enami 		for (i = 0; i < fs->fs_old_cpg; i++)
    261       1.18     fvdl 			n32[i] = bswap32(o32[i]);
    262       1.29    perry 
    263       1.19    enami 		for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
    264       1.18     fvdl 			n16[i] = bswap16(o16[i]);
    265       1.18     fvdl 	}
    266        1.1   bouyer }
    267