ffs_bswap.c revision 1.36 1 1.36 dholland /* $NetBSD: ffs_bswap.c,v 1.36 2013/01/22 09:39:16 dholland Exp $ */
2 1.1 bouyer
3 1.1 bouyer /*
4 1.1 bouyer * Copyright (c) 1998 Manuel Bouyer.
5 1.1 bouyer *
6 1.1 bouyer * Redistribution and use in source and binary forms, with or without
7 1.1 bouyer * modification, are permitted provided that the following conditions
8 1.1 bouyer * are met:
9 1.1 bouyer * 1. Redistributions of source code must retain the above copyright
10 1.1 bouyer * notice, this list of conditions and the following disclaimer.
11 1.1 bouyer * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 bouyer * notice, this list of conditions and the following disclaimer in the
13 1.1 bouyer * documentation and/or other materials provided with the distribution.
14 1.1 bouyer *
15 1.8 bouyer * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 1.8 bouyer * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 1.8 bouyer * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 1.8 bouyer * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 1.8 bouyer * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 1.8 bouyer * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 1.8 bouyer * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 1.8 bouyer * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 1.8 bouyer * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 1.8 bouyer * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 1.1 bouyer *
26 1.1 bouyer */
27 1.15 lukem
28 1.22 lukem #if HAVE_NBTOOL_CONFIG_H
29 1.22 lukem #include "nbtool_config.h"
30 1.17 tv #endif
31 1.17 tv
32 1.22 lukem #include <sys/cdefs.h>
33 1.36 dholland __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.36 2013/01/22 09:39:16 dholland Exp $");
34 1.1 bouyer
35 1.2 ragge #include <sys/param.h>
36 1.11 lukem #if defined(_KERNEL)
37 1.1 bouyer #include <sys/systm.h>
38 1.11 lukem #endif
39 1.9 enami
40 1.1 bouyer #include <ufs/ufs/dinode.h>
41 1.35 bouyer #include <ufs/ufs/quota.h>
42 1.1 bouyer #include <ufs/ufs/ufs_bswap.h>
43 1.1 bouyer #include <ufs/ffs/fs.h>
44 1.1 bouyer #include <ufs/ffs/ffs_extern.h>
45 1.6 thorpej
46 1.6 thorpej #if !defined(_KERNEL)
47 1.14 lukem #include <stddef.h>
48 1.11 lukem #include <stdio.h>
49 1.11 lukem #include <stdlib.h>
50 1.6 thorpej #include <string.h>
51 1.11 lukem #define panic(x) printf("%s\n", (x)), abort()
52 1.6 thorpej #endif
53 1.1 bouyer
54 1.1 bouyer void
55 1.11 lukem ffs_sb_swap(struct fs *o, struct fs *n)
56 1.1 bouyer {
57 1.33 lukem size_t i;
58 1.1 bouyer u_int32_t *o32, *n32;
59 1.11 lukem
60 1.9 enami /*
61 1.14 lukem * In order to avoid a lot of lines, as the first N fields (52)
62 1.14 lukem * of the superblock up to fs_fmod are u_int32_t, we just loop
63 1.14 lukem * here to convert them.
64 1.1 bouyer */
65 1.1 bouyer o32 = (u_int32_t *)o;
66 1.1 bouyer n32 = (u_int32_t *)n;
67 1.14 lukem for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
68 1.1 bouyer n32[i] = bswap32(o32[i]);
69 1.9 enami
70 1.18 fvdl n->fs_swuid = bswap64(o->fs_swuid);
71 1.23 dbj n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
72 1.18 fvdl n->fs_old_cpc = bswap32(o->fs_old_cpc);
73 1.25 dbj
74 1.25 dbj /* These fields overlap with a possible location for the
75 1.25 dbj * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
76 1.25 dbj * first half of the historic FS_42POSTBLFMT postbl table.
77 1.25 dbj */
78 1.18 fvdl n->fs_maxbsize = bswap32(o->fs_maxbsize);
79 1.35 bouyer /* XXX journal */
80 1.35 bouyer n->fs_quota_magic = bswap32(o->fs_quota_magic);
81 1.35 bouyer for (i = 0; i < MAXQUOTAS; i++)
82 1.35 bouyer n->fs_quotafile[i] = bswap64(o->fs_quotafile[i]);
83 1.18 fvdl n->fs_sblockloc = bswap64(o->fs_sblockloc);
84 1.18 fvdl ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
85 1.18 fvdl n->fs_time = bswap64(o->fs_time);
86 1.18 fvdl n->fs_size = bswap64(o->fs_size);
87 1.18 fvdl n->fs_dsize = bswap64(o->fs_dsize);
88 1.18 fvdl n->fs_csaddr = bswap64(o->fs_csaddr);
89 1.25 dbj n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
90 1.25 dbj n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
91 1.29 perry
92 1.25 dbj /* These fields overlap with the second half of the
93 1.25 dbj * historic FS_42POSTBLFMT postbl table
94 1.25 dbj */
95 1.28 hannken for (i = 0; i < FSMAXSNAP; i++)
96 1.28 hannken n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
97 1.13 lukem n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
98 1.13 lukem n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
99 1.25 dbj /* fs_sparecon[28] - ignore for now */
100 1.24 dbj n->fs_flags = bswap32(o->fs_flags);
101 1.1 bouyer n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
102 1.1 bouyer n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
103 1.18 fvdl n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
104 1.1 bouyer n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
105 1.1 bouyer n->fs_qbmask = bswap64(o->fs_qbmask);
106 1.1 bouyer n->fs_qfmask = bswap64(o->fs_qfmask);
107 1.1 bouyer n->fs_state = bswap32(o->fs_state);
108 1.18 fvdl n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
109 1.18 fvdl n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
110 1.18 fvdl n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
111 1.18 fvdl n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
112 1.25 dbj
113 1.1 bouyer n->fs_magic = bswap32(o->fs_magic);
114 1.1 bouyer }
115 1.1 bouyer
116 1.1 bouyer void
117 1.18 fvdl ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
118 1.1 bouyer {
119 1.9 enami
120 1.1 bouyer n->di_mode = bswap16(o->di_mode);
121 1.1 bouyer n->di_nlink = bswap16(o->di_nlink);
122 1.1 bouyer n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
123 1.1 bouyer n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
124 1.1 bouyer n->di_size = bswap64(o->di_size);
125 1.1 bouyer n->di_atime = bswap32(o->di_atime);
126 1.1 bouyer n->di_atimensec = bswap32(o->di_atimensec);
127 1.1 bouyer n->di_mtime = bswap32(o->di_mtime);
128 1.1 bouyer n->di_mtimensec = bswap32(o->di_mtimensec);
129 1.1 bouyer n->di_ctime = bswap32(o->di_ctime);
130 1.1 bouyer n->di_ctimensec = bswap32(o->di_ctimensec);
131 1.36 dholland memcpy(n->di_db, o->di_db, (UFS_NDADDR + UFS_NIADDR) * sizeof(u_int32_t));
132 1.1 bouyer n->di_flags = bswap32(o->di_flags);
133 1.1 bouyer n->di_blocks = bswap32(o->di_blocks);
134 1.1 bouyer n->di_gen = bswap32(o->di_gen);
135 1.1 bouyer n->di_uid = bswap32(o->di_uid);
136 1.1 bouyer n->di_gid = bswap32(o->di_gid);
137 1.1 bouyer }
138 1.1 bouyer
139 1.1 bouyer void
140 1.18 fvdl ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
141 1.18 fvdl {
142 1.18 fvdl n->di_mode = bswap16(o->di_mode);
143 1.18 fvdl n->di_nlink = bswap16(o->di_nlink);
144 1.18 fvdl n->di_uid = bswap32(o->di_uid);
145 1.18 fvdl n->di_gid = bswap32(o->di_gid);
146 1.18 fvdl n->di_blksize = bswap32(o->di_blksize);
147 1.18 fvdl n->di_size = bswap64(o->di_size);
148 1.18 fvdl n->di_blocks = bswap64(o->di_blocks);
149 1.18 fvdl n->di_atime = bswap64(o->di_atime);
150 1.18 fvdl n->di_atimensec = bswap32(o->di_atimensec);
151 1.18 fvdl n->di_mtime = bswap64(o->di_mtime);
152 1.18 fvdl n->di_mtimensec = bswap32(o->di_mtimensec);
153 1.18 fvdl n->di_ctime = bswap64(o->di_ctime);
154 1.18 fvdl n->di_ctimensec = bswap32(o->di_ctimensec);
155 1.30 is n->di_birthtime = bswap64(o->di_birthtime);
156 1.30 is n->di_birthnsec = bswap32(o->di_birthnsec);
157 1.18 fvdl n->di_gen = bswap32(o->di_gen);
158 1.18 fvdl n->di_kernflags = bswap32(o->di_kernflags);
159 1.18 fvdl n->di_flags = bswap32(o->di_flags);
160 1.18 fvdl n->di_extsize = bswap32(o->di_extsize);
161 1.36 dholland memcpy(n->di_extb, o->di_extb, (UFS_NXADDR + UFS_NDADDR + UFS_NIADDR) * 8);
162 1.18 fvdl }
163 1.18 fvdl
164 1.18 fvdl void
165 1.11 lukem ffs_csum_swap(struct csum *o, struct csum *n, int size)
166 1.1 bouyer {
167 1.33 lukem size_t i;
168 1.1 bouyer u_int32_t *oint, *nint;
169 1.29 perry
170 1.1 bouyer oint = (u_int32_t*)o;
171 1.1 bouyer nint = (u_int32_t*)n;
172 1.1 bouyer
173 1.1 bouyer for (i = 0; i < size / sizeof(u_int32_t); i++)
174 1.1 bouyer nint[i] = bswap32(oint[i]);
175 1.18 fvdl }
176 1.18 fvdl
177 1.18 fvdl void
178 1.18 fvdl ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
179 1.18 fvdl {
180 1.18 fvdl n->cs_ndir = bswap64(o->cs_ndir);
181 1.18 fvdl n->cs_nbfree = bswap64(o->cs_nbfree);
182 1.18 fvdl n->cs_nifree = bswap64(o->cs_nifree);
183 1.18 fvdl n->cs_nffree = bswap64(o->cs_nffree);
184 1.18 fvdl }
185 1.18 fvdl
186 1.19 enami /*
187 1.19 enami * Note that ffs_cg_swap may be called with o == n.
188 1.19 enami */
189 1.18 fvdl void
190 1.18 fvdl ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
191 1.18 fvdl {
192 1.18 fvdl int i;
193 1.18 fvdl u_int32_t *n32, *o32;
194 1.18 fvdl u_int16_t *n16, *o16;
195 1.19 enami int32_t btotoff, boff, clustersumoff;
196 1.18 fvdl
197 1.18 fvdl n->cg_firstfield = bswap32(o->cg_firstfield);
198 1.18 fvdl n->cg_magic = bswap32(o->cg_magic);
199 1.18 fvdl n->cg_old_time = bswap32(o->cg_old_time);
200 1.18 fvdl n->cg_cgx = bswap32(o->cg_cgx);
201 1.18 fvdl n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
202 1.18 fvdl n->cg_old_niblk = bswap16(o->cg_old_niblk);
203 1.18 fvdl n->cg_ndblk = bswap32(o->cg_ndblk);
204 1.18 fvdl n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
205 1.18 fvdl n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
206 1.18 fvdl n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
207 1.18 fvdl n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
208 1.18 fvdl n->cg_rotor = bswap32(o->cg_rotor);
209 1.18 fvdl n->cg_frotor = bswap32(o->cg_frotor);
210 1.18 fvdl n->cg_irotor = bswap32(o->cg_irotor);
211 1.19 enami for (i = 0; i < MAXFRAG; i++)
212 1.18 fvdl n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
213 1.29 perry
214 1.23 dbj if ((fs->fs_magic != FS_UFS2_MAGIC) &&
215 1.23 dbj (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
216 1.18 fvdl struct ocg *on, *oo;
217 1.18 fvdl int j;
218 1.18 fvdl on = (struct ocg *)n;
219 1.18 fvdl oo = (struct ocg *)o;
220 1.23 dbj
221 1.23 dbj for (i = 0; i < 32; i++) {
222 1.18 fvdl on->cg_btot[i] = bswap32(oo->cg_btot[i]);
223 1.18 fvdl for (j = 0; j < 8; j++)
224 1.18 fvdl on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
225 1.18 fvdl }
226 1.18 fvdl memmove(on->cg_iused, oo->cg_iused, 256);
227 1.18 fvdl on->cg_magic = bswap32(oo->cg_magic);
228 1.18 fvdl } else { /* new format */
229 1.23 dbj
230 1.23 dbj n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
231 1.23 dbj n->cg_old_boff = bswap32(o->cg_old_boff);
232 1.23 dbj n->cg_iusedoff = bswap32(o->cg_iusedoff);
233 1.23 dbj n->cg_freeoff = bswap32(o->cg_freeoff);
234 1.23 dbj n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
235 1.23 dbj n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
236 1.23 dbj n->cg_clusteroff = bswap32(o->cg_clusteroff);
237 1.23 dbj n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
238 1.23 dbj n->cg_niblk = bswap32(o->cg_niblk);
239 1.23 dbj n->cg_initediblk = bswap32(o->cg_initediblk);
240 1.23 dbj n->cg_time = bswap64(o->cg_time);
241 1.23 dbj
242 1.18 fvdl if (n->cg_magic == CG_MAGIC) {
243 1.19 enami btotoff = n->cg_old_btotoff;
244 1.19 enami boff = n->cg_old_boff;
245 1.19 enami clustersumoff = n->cg_clustersumoff;
246 1.18 fvdl } else {
247 1.19 enami btotoff = bswap32(n->cg_old_btotoff);
248 1.19 enami boff = bswap32(n->cg_old_boff);
249 1.19 enami clustersumoff = bswap32(n->cg_clustersumoff);
250 1.18 fvdl }
251 1.31 dbj
252 1.31 dbj n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
253 1.31 dbj o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
254 1.31 dbj for (i = 1; i < fs->fs_contigsumsize + 1; i++)
255 1.31 dbj n32[i] = bswap32(o32[i]);
256 1.31 dbj
257 1.31 dbj if (fs->fs_magic == FS_UFS2_MAGIC)
258 1.31 dbj return;
259 1.31 dbj
260 1.19 enami n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
261 1.19 enami o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
262 1.19 enami n16 = (u_int16_t *)((u_int8_t *)n + boff);
263 1.19 enami o16 = (u_int16_t *)((u_int8_t *)o + boff);
264 1.19 enami
265 1.19 enami for (i = 0; i < fs->fs_old_cpg; i++)
266 1.18 fvdl n32[i] = bswap32(o32[i]);
267 1.29 perry
268 1.19 enami for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
269 1.18 fvdl n16[i] = bswap16(o16[i]);
270 1.18 fvdl }
271 1.1 bouyer }
272