ffs_bswap.c revision 1.40 1 1.40 kre /* $NetBSD: ffs_bswap.c,v 1.40 2017/02/09 04:37:35 kre Exp $ */
2 1.1 bouyer
3 1.1 bouyer /*
4 1.1 bouyer * Copyright (c) 1998 Manuel Bouyer.
5 1.1 bouyer *
6 1.1 bouyer * Redistribution and use in source and binary forms, with or without
7 1.1 bouyer * modification, are permitted provided that the following conditions
8 1.1 bouyer * are met:
9 1.1 bouyer * 1. Redistributions of source code must retain the above copyright
10 1.1 bouyer * notice, this list of conditions and the following disclaimer.
11 1.1 bouyer * 2. Redistributions in binary form must reproduce the above copyright
12 1.1 bouyer * notice, this list of conditions and the following disclaimer in the
13 1.1 bouyer * documentation and/or other materials provided with the distribution.
14 1.1 bouyer *
15 1.8 bouyer * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 1.8 bouyer * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 1.8 bouyer * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 1.8 bouyer * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 1.8 bouyer * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 1.8 bouyer * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 1.8 bouyer * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 1.8 bouyer * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 1.8 bouyer * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 1.8 bouyer * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 1.1 bouyer *
26 1.1 bouyer */
27 1.15 lukem
28 1.22 lukem #if HAVE_NBTOOL_CONFIG_H
29 1.22 lukem #include "nbtool_config.h"
30 1.17 tv #endif
31 1.17 tv
32 1.22 lukem #include <sys/cdefs.h>
33 1.40 kre __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.40 2017/02/09 04:37:35 kre Exp $");
34 1.1 bouyer
35 1.2 ragge #include <sys/param.h>
36 1.11 lukem #if defined(_KERNEL)
37 1.1 bouyer #include <sys/systm.h>
38 1.11 lukem #endif
39 1.9 enami
40 1.1 bouyer #include <ufs/ufs/dinode.h>
41 1.35 bouyer #include <ufs/ufs/quota.h>
42 1.1 bouyer #include <ufs/ufs/ufs_bswap.h>
43 1.1 bouyer #include <ufs/ffs/fs.h>
44 1.1 bouyer #include <ufs/ffs/ffs_extern.h>
45 1.6 thorpej
46 1.6 thorpej #if !defined(_KERNEL)
47 1.14 lukem #include <stddef.h>
48 1.11 lukem #include <stdio.h>
49 1.11 lukem #include <stdlib.h>
50 1.6 thorpej #include <string.h>
51 1.11 lukem #define panic(x) printf("%s\n", (x)), abort()
52 1.6 thorpej #endif
53 1.1 bouyer
54 1.1 bouyer void
55 1.40 kre ffs_sb_swap(const struct fs *o, struct fs *n)
56 1.1 bouyer {
57 1.33 lukem size_t i;
58 1.40 kre const u_int32_t *o32;
59 1.40 kre u_int32_t *n32;
60 1.11 lukem
61 1.9 enami /*
62 1.14 lukem * In order to avoid a lot of lines, as the first N fields (52)
63 1.14 lukem * of the superblock up to fs_fmod are u_int32_t, we just loop
64 1.14 lukem * here to convert them.
65 1.1 bouyer */
66 1.40 kre o32 = (const u_int32_t *)o;
67 1.1 bouyer n32 = (u_int32_t *)n;
68 1.14 lukem for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
69 1.1 bouyer n32[i] = bswap32(o32[i]);
70 1.9 enami
71 1.18 fvdl n->fs_swuid = bswap64(o->fs_swuid);
72 1.23 dbj n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
73 1.18 fvdl n->fs_old_cpc = bswap32(o->fs_old_cpc);
74 1.25 dbj
75 1.25 dbj /* These fields overlap with a possible location for the
76 1.25 dbj * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
77 1.25 dbj * first half of the historic FS_42POSTBLFMT postbl table.
78 1.25 dbj */
79 1.18 fvdl n->fs_maxbsize = bswap32(o->fs_maxbsize);
80 1.35 bouyer /* XXX journal */
81 1.35 bouyer n->fs_quota_magic = bswap32(o->fs_quota_magic);
82 1.35 bouyer for (i = 0; i < MAXQUOTAS; i++)
83 1.35 bouyer n->fs_quotafile[i] = bswap64(o->fs_quotafile[i]);
84 1.18 fvdl n->fs_sblockloc = bswap64(o->fs_sblockloc);
85 1.18 fvdl ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
86 1.18 fvdl n->fs_time = bswap64(o->fs_time);
87 1.18 fvdl n->fs_size = bswap64(o->fs_size);
88 1.18 fvdl n->fs_dsize = bswap64(o->fs_dsize);
89 1.18 fvdl n->fs_csaddr = bswap64(o->fs_csaddr);
90 1.25 dbj n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
91 1.25 dbj n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
92 1.29 perry
93 1.25 dbj /* These fields overlap with the second half of the
94 1.25 dbj * historic FS_42POSTBLFMT postbl table
95 1.25 dbj */
96 1.28 hannken for (i = 0; i < FSMAXSNAP; i++)
97 1.28 hannken n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
98 1.13 lukem n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
99 1.13 lukem n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
100 1.25 dbj /* fs_sparecon[28] - ignore for now */
101 1.24 dbj n->fs_flags = bswap32(o->fs_flags);
102 1.1 bouyer n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
103 1.1 bouyer n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
104 1.18 fvdl n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
105 1.1 bouyer n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
106 1.1 bouyer n->fs_qbmask = bswap64(o->fs_qbmask);
107 1.1 bouyer n->fs_qfmask = bswap64(o->fs_qfmask);
108 1.1 bouyer n->fs_state = bswap32(o->fs_state);
109 1.18 fvdl n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
110 1.18 fvdl n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
111 1.18 fvdl n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
112 1.18 fvdl n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
113 1.25 dbj
114 1.1 bouyer n->fs_magic = bswap32(o->fs_magic);
115 1.1 bouyer }
116 1.1 bouyer
117 1.1 bouyer void
118 1.18 fvdl ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
119 1.1 bouyer {
120 1.9 enami
121 1.1 bouyer n->di_mode = bswap16(o->di_mode);
122 1.1 bouyer n->di_nlink = bswap16(o->di_nlink);
123 1.37 dholland n->di_oldids[0] = bswap16(o->di_oldids[0]);
124 1.37 dholland n->di_oldids[1] = bswap16(o->di_oldids[1]);
125 1.1 bouyer n->di_size = bswap64(o->di_size);
126 1.1 bouyer n->di_atime = bswap32(o->di_atime);
127 1.1 bouyer n->di_atimensec = bswap32(o->di_atimensec);
128 1.1 bouyer n->di_mtime = bswap32(o->di_mtime);
129 1.1 bouyer n->di_mtimensec = bswap32(o->di_mtimensec);
130 1.1 bouyer n->di_ctime = bswap32(o->di_ctime);
131 1.1 bouyer n->di_ctimensec = bswap32(o->di_ctimensec);
132 1.38 riastrad memcpy(n->di_db, o->di_db, sizeof(n->di_db));
133 1.38 riastrad memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
134 1.1 bouyer n->di_flags = bswap32(o->di_flags);
135 1.1 bouyer n->di_blocks = bswap32(o->di_blocks);
136 1.1 bouyer n->di_gen = bswap32(o->di_gen);
137 1.1 bouyer n->di_uid = bswap32(o->di_uid);
138 1.1 bouyer n->di_gid = bswap32(o->di_gid);
139 1.1 bouyer }
140 1.1 bouyer
141 1.1 bouyer void
142 1.18 fvdl ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
143 1.18 fvdl {
144 1.18 fvdl n->di_mode = bswap16(o->di_mode);
145 1.18 fvdl n->di_nlink = bswap16(o->di_nlink);
146 1.18 fvdl n->di_uid = bswap32(o->di_uid);
147 1.18 fvdl n->di_gid = bswap32(o->di_gid);
148 1.18 fvdl n->di_blksize = bswap32(o->di_blksize);
149 1.18 fvdl n->di_size = bswap64(o->di_size);
150 1.18 fvdl n->di_blocks = bswap64(o->di_blocks);
151 1.18 fvdl n->di_atime = bswap64(o->di_atime);
152 1.18 fvdl n->di_atimensec = bswap32(o->di_atimensec);
153 1.18 fvdl n->di_mtime = bswap64(o->di_mtime);
154 1.18 fvdl n->di_mtimensec = bswap32(o->di_mtimensec);
155 1.18 fvdl n->di_ctime = bswap64(o->di_ctime);
156 1.18 fvdl n->di_ctimensec = bswap32(o->di_ctimensec);
157 1.30 is n->di_birthtime = bswap64(o->di_birthtime);
158 1.30 is n->di_birthnsec = bswap32(o->di_birthnsec);
159 1.18 fvdl n->di_gen = bswap32(o->di_gen);
160 1.18 fvdl n->di_kernflags = bswap32(o->di_kernflags);
161 1.18 fvdl n->di_flags = bswap32(o->di_flags);
162 1.18 fvdl n->di_extsize = bswap32(o->di_extsize);
163 1.39 riastrad memcpy(n->di_extb, o->di_extb, sizeof(n->di_extb));
164 1.39 riastrad memcpy(n->di_db, o->di_db, sizeof(n->di_db));
165 1.39 riastrad memcpy(n->di_ib, o->di_ib, sizeof(n->di_ib));
166 1.18 fvdl }
167 1.18 fvdl
168 1.18 fvdl void
169 1.11 lukem ffs_csum_swap(struct csum *o, struct csum *n, int size)
170 1.1 bouyer {
171 1.33 lukem size_t i;
172 1.1 bouyer u_int32_t *oint, *nint;
173 1.29 perry
174 1.1 bouyer oint = (u_int32_t*)o;
175 1.1 bouyer nint = (u_int32_t*)n;
176 1.1 bouyer
177 1.1 bouyer for (i = 0; i < size / sizeof(u_int32_t); i++)
178 1.1 bouyer nint[i] = bswap32(oint[i]);
179 1.18 fvdl }
180 1.18 fvdl
181 1.18 fvdl void
182 1.40 kre ffs_csumtotal_swap(const struct csum_total *o, struct csum_total *n)
183 1.18 fvdl {
184 1.18 fvdl n->cs_ndir = bswap64(o->cs_ndir);
185 1.18 fvdl n->cs_nbfree = bswap64(o->cs_nbfree);
186 1.18 fvdl n->cs_nifree = bswap64(o->cs_nifree);
187 1.18 fvdl n->cs_nffree = bswap64(o->cs_nffree);
188 1.18 fvdl }
189 1.18 fvdl
190 1.19 enami /*
191 1.19 enami * Note that ffs_cg_swap may be called with o == n.
192 1.19 enami */
193 1.18 fvdl void
194 1.18 fvdl ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
195 1.18 fvdl {
196 1.18 fvdl int i;
197 1.18 fvdl u_int32_t *n32, *o32;
198 1.18 fvdl u_int16_t *n16, *o16;
199 1.19 enami int32_t btotoff, boff, clustersumoff;
200 1.18 fvdl
201 1.18 fvdl n->cg_firstfield = bswap32(o->cg_firstfield);
202 1.18 fvdl n->cg_magic = bswap32(o->cg_magic);
203 1.18 fvdl n->cg_old_time = bswap32(o->cg_old_time);
204 1.18 fvdl n->cg_cgx = bswap32(o->cg_cgx);
205 1.18 fvdl n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
206 1.18 fvdl n->cg_old_niblk = bswap16(o->cg_old_niblk);
207 1.18 fvdl n->cg_ndblk = bswap32(o->cg_ndblk);
208 1.18 fvdl n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
209 1.18 fvdl n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
210 1.18 fvdl n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
211 1.18 fvdl n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
212 1.18 fvdl n->cg_rotor = bswap32(o->cg_rotor);
213 1.18 fvdl n->cg_frotor = bswap32(o->cg_frotor);
214 1.18 fvdl n->cg_irotor = bswap32(o->cg_irotor);
215 1.19 enami for (i = 0; i < MAXFRAG; i++)
216 1.18 fvdl n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
217 1.29 perry
218 1.23 dbj if ((fs->fs_magic != FS_UFS2_MAGIC) &&
219 1.23 dbj (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
220 1.18 fvdl struct ocg *on, *oo;
221 1.18 fvdl int j;
222 1.18 fvdl on = (struct ocg *)n;
223 1.18 fvdl oo = (struct ocg *)o;
224 1.23 dbj
225 1.23 dbj for (i = 0; i < 32; i++) {
226 1.18 fvdl on->cg_btot[i] = bswap32(oo->cg_btot[i]);
227 1.18 fvdl for (j = 0; j < 8; j++)
228 1.18 fvdl on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
229 1.18 fvdl }
230 1.18 fvdl memmove(on->cg_iused, oo->cg_iused, 256);
231 1.18 fvdl on->cg_magic = bswap32(oo->cg_magic);
232 1.18 fvdl } else { /* new format */
233 1.23 dbj
234 1.23 dbj n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
235 1.23 dbj n->cg_old_boff = bswap32(o->cg_old_boff);
236 1.23 dbj n->cg_iusedoff = bswap32(o->cg_iusedoff);
237 1.23 dbj n->cg_freeoff = bswap32(o->cg_freeoff);
238 1.23 dbj n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
239 1.23 dbj n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
240 1.23 dbj n->cg_clusteroff = bswap32(o->cg_clusteroff);
241 1.23 dbj n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
242 1.23 dbj n->cg_niblk = bswap32(o->cg_niblk);
243 1.23 dbj n->cg_initediblk = bswap32(o->cg_initediblk);
244 1.23 dbj n->cg_time = bswap64(o->cg_time);
245 1.23 dbj
246 1.18 fvdl if (n->cg_magic == CG_MAGIC) {
247 1.19 enami btotoff = n->cg_old_btotoff;
248 1.19 enami boff = n->cg_old_boff;
249 1.19 enami clustersumoff = n->cg_clustersumoff;
250 1.18 fvdl } else {
251 1.19 enami btotoff = bswap32(n->cg_old_btotoff);
252 1.19 enami boff = bswap32(n->cg_old_boff);
253 1.19 enami clustersumoff = bswap32(n->cg_clustersumoff);
254 1.18 fvdl }
255 1.31 dbj
256 1.31 dbj n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
257 1.31 dbj o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
258 1.31 dbj for (i = 1; i < fs->fs_contigsumsize + 1; i++)
259 1.31 dbj n32[i] = bswap32(o32[i]);
260 1.31 dbj
261 1.31 dbj if (fs->fs_magic == FS_UFS2_MAGIC)
262 1.31 dbj return;
263 1.31 dbj
264 1.19 enami n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
265 1.19 enami o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
266 1.19 enami n16 = (u_int16_t *)((u_int8_t *)n + boff);
267 1.19 enami o16 = (u_int16_t *)((u_int8_t *)o + boff);
268 1.19 enami
269 1.19 enami for (i = 0; i < fs->fs_old_cpg; i++)
270 1.18 fvdl n32[i] = bswap32(o32[i]);
271 1.29 perry
272 1.19 enami for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
273 1.18 fvdl n16[i] = bswap16(o16[i]);
274 1.18 fvdl }
275 1.1 bouyer }
276