ffs_bswap.c revision 1.29 1 /* $NetBSD: ffs_bswap.c,v 1.29 2005/02/26 22:32:20 perry Exp $ */
2
3 /*
4 * Copyright (c) 1998 Manuel Bouyer.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Manuel Bouyer.
17 * 4. The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 */
32
33 #if HAVE_NBTOOL_CONFIG_H
34 #include "nbtool_config.h"
35 #endif
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: ffs_bswap.c,v 1.29 2005/02/26 22:32:20 perry Exp $");
39
40 #include <sys/param.h>
41 #if defined(_KERNEL)
42 #include <sys/systm.h>
43 #endif
44
45 #include <ufs/ufs/dinode.h>
46 #include <ufs/ufs/ufs_bswap.h>
47 #include <ufs/ffs/fs.h>
48 #include <ufs/ffs/ffs_extern.h>
49
50 #if !defined(_KERNEL)
51 #include <stddef.h>
52 #include <stdio.h>
53 #include <stdlib.h>
54 #include <string.h>
55 #define panic(x) printf("%s\n", (x)), abort()
56 #endif
57
58 void
59 ffs_sb_swap(struct fs *o, struct fs *n)
60 {
61 int i;
62 u_int32_t *o32, *n32;
63
64 /*
65 * In order to avoid a lot of lines, as the first N fields (52)
66 * of the superblock up to fs_fmod are u_int32_t, we just loop
67 * here to convert them.
68 */
69 o32 = (u_int32_t *)o;
70 n32 = (u_int32_t *)n;
71 for (i = 0; i < offsetof(struct fs, fs_fmod) / sizeof(u_int32_t); i++)
72 n32[i] = bswap32(o32[i]);
73
74 n->fs_swuid = bswap64(o->fs_swuid);
75 n->fs_cgrotor = bswap32(o->fs_cgrotor); /* Unused */
76 n->fs_old_cpc = bswap32(o->fs_old_cpc);
77
78 /* These fields overlap with a possible location for the
79 * historic FS_DYNAMICPOSTBLFMT postbl table, and with the
80 * first half of the historic FS_42POSTBLFMT postbl table.
81 */
82 n->fs_maxbsize = bswap32(o->fs_maxbsize);
83 n->fs_sblockloc = bswap64(o->fs_sblockloc);
84 ffs_csumtotal_swap(&o->fs_cstotal, &n->fs_cstotal);
85 n->fs_time = bswap64(o->fs_time);
86 n->fs_size = bswap64(o->fs_size);
87 n->fs_dsize = bswap64(o->fs_dsize);
88 n->fs_csaddr = bswap64(o->fs_csaddr);
89 n->fs_pendingblocks = bswap64(o->fs_pendingblocks);
90 n->fs_pendinginodes = bswap32(o->fs_pendinginodes);
91
92 /* These fields overlap with the second half of the
93 * historic FS_42POSTBLFMT postbl table
94 */
95 for (i = 0; i < FSMAXSNAP; i++)
96 n->fs_snapinum[i] = bswap32(o->fs_snapinum[i]);
97 n->fs_avgfilesize = bswap32(o->fs_avgfilesize);
98 n->fs_avgfpdir = bswap32(o->fs_avgfpdir);
99 /* fs_sparecon[28] - ignore for now */
100 n->fs_flags = bswap32(o->fs_flags);
101 n->fs_contigsumsize = bswap32(o->fs_contigsumsize);
102 n->fs_maxsymlinklen = bswap32(o->fs_maxsymlinklen);
103 n->fs_old_inodefmt = bswap32(o->fs_old_inodefmt);
104 n->fs_maxfilesize = bswap64(o->fs_maxfilesize);
105 n->fs_qbmask = bswap64(o->fs_qbmask);
106 n->fs_qfmask = bswap64(o->fs_qfmask);
107 n->fs_state = bswap32(o->fs_state);
108 n->fs_old_postblformat = bswap32(o->fs_old_postblformat);
109 n->fs_old_nrpos = bswap32(o->fs_old_nrpos);
110 n->fs_old_postbloff = bswap32(o->fs_old_postbloff);
111 n->fs_old_rotbloff = bswap32(o->fs_old_rotbloff);
112
113 n->fs_magic = bswap32(o->fs_magic);
114 }
115
116 void
117 ffs_dinode1_swap(struct ufs1_dinode *o, struct ufs1_dinode *n)
118 {
119
120 n->di_mode = bswap16(o->di_mode);
121 n->di_nlink = bswap16(o->di_nlink);
122 n->di_u.oldids[0] = bswap16(o->di_u.oldids[0]);
123 n->di_u.oldids[1] = bswap16(o->di_u.oldids[1]);
124 n->di_size = bswap64(o->di_size);
125 n->di_atime = bswap32(o->di_atime);
126 n->di_atimensec = bswap32(o->di_atimensec);
127 n->di_mtime = bswap32(o->di_mtime);
128 n->di_mtimensec = bswap32(o->di_mtimensec);
129 n->di_ctime = bswap32(o->di_ctime);
130 n->di_ctimensec = bswap32(o->di_ctimensec);
131 memcpy(n->di_db, o->di_db, (NDADDR + NIADDR) * sizeof(u_int32_t));
132 n->di_flags = bswap32(o->di_flags);
133 n->di_blocks = bswap32(o->di_blocks);
134 n->di_gen = bswap32(o->di_gen);
135 n->di_uid = bswap32(o->di_uid);
136 n->di_gid = bswap32(o->di_gid);
137 }
138
139 void
140 ffs_dinode2_swap(struct ufs2_dinode *o, struct ufs2_dinode *n)
141 {
142 n->di_mode = bswap16(o->di_mode);
143 n->di_nlink = bswap16(o->di_nlink);
144 n->di_uid = bswap32(o->di_uid);
145 n->di_gid = bswap32(o->di_gid);
146 n->di_blksize = bswap32(o->di_blksize);
147 n->di_size = bswap64(o->di_size);
148 n->di_blocks = bswap64(o->di_blocks);
149 n->di_atime = bswap64(o->di_atime);
150 n->di_atimensec = bswap32(o->di_atimensec);
151 n->di_mtime = bswap64(o->di_mtime);
152 n->di_mtimensec = bswap32(o->di_mtimensec);
153 n->di_ctime = bswap64(o->di_ctime);
154 n->di_ctimensec = bswap32(o->di_ctimensec);
155 n->di_birthtime = bswap64(o->di_ctime);
156 n->di_birthnsec = bswap32(o->di_ctimensec);
157 n->di_gen = bswap32(o->di_gen);
158 n->di_kernflags = bswap32(o->di_kernflags);
159 n->di_flags = bswap32(o->di_flags);
160 n->di_extsize = bswap32(o->di_extsize);
161 memcpy(n->di_extb, o->di_extb, (NXADDR + NDADDR + NIADDR) * 8);
162 }
163
164 void
165 ffs_csum_swap(struct csum *o, struct csum *n, int size)
166 {
167 int i;
168 u_int32_t *oint, *nint;
169
170 oint = (u_int32_t*)o;
171 nint = (u_int32_t*)n;
172
173 for (i = 0; i < size / sizeof(u_int32_t); i++)
174 nint[i] = bswap32(oint[i]);
175 }
176
177 void
178 ffs_csumtotal_swap(struct csum_total *o, struct csum_total *n)
179 {
180 n->cs_ndir = bswap64(o->cs_ndir);
181 n->cs_nbfree = bswap64(o->cs_nbfree);
182 n->cs_nifree = bswap64(o->cs_nifree);
183 n->cs_nffree = bswap64(o->cs_nffree);
184 }
185
186 /*
187 * Note that ffs_cg_swap may be called with o == n.
188 */
189 void
190 ffs_cg_swap(struct cg *o, struct cg *n, struct fs *fs)
191 {
192 int i;
193 u_int32_t *n32, *o32;
194 u_int16_t *n16, *o16;
195 int32_t btotoff, boff, clustersumoff;
196
197 n->cg_firstfield = bswap32(o->cg_firstfield);
198 n->cg_magic = bswap32(o->cg_magic);
199 n->cg_old_time = bswap32(o->cg_old_time);
200 n->cg_cgx = bswap32(o->cg_cgx);
201 n->cg_old_ncyl = bswap16(o->cg_old_ncyl);
202 n->cg_old_niblk = bswap16(o->cg_old_niblk);
203 n->cg_ndblk = bswap32(o->cg_ndblk);
204 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
205 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
206 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
207 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
208 n->cg_rotor = bswap32(o->cg_rotor);
209 n->cg_frotor = bswap32(o->cg_frotor);
210 n->cg_irotor = bswap32(o->cg_irotor);
211 for (i = 0; i < MAXFRAG; i++)
212 n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
213
214 if ((fs->fs_magic != FS_UFS2_MAGIC) &&
215 (fs->fs_old_postblformat == FS_42POSTBLFMT)) { /* old format */
216 struct ocg *on, *oo;
217 int j;
218 on = (struct ocg *)n;
219 oo = (struct ocg *)o;
220
221 for (i = 0; i < 32; i++) {
222 on->cg_btot[i] = bswap32(oo->cg_btot[i]);
223 for (j = 0; j < 8; j++)
224 on->cg_b[i][j] = bswap16(oo->cg_b[i][j]);
225 }
226 memmove(on->cg_iused, oo->cg_iused, 256);
227 on->cg_magic = bswap32(oo->cg_magic);
228 } else { /* new format */
229
230 n->cg_old_btotoff = bswap32(o->cg_old_btotoff);
231 n->cg_old_boff = bswap32(o->cg_old_boff);
232 n->cg_iusedoff = bswap32(o->cg_iusedoff);
233 n->cg_freeoff = bswap32(o->cg_freeoff);
234 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
235 n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
236 n->cg_clusteroff = bswap32(o->cg_clusteroff);
237 n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
238 n->cg_niblk = bswap32(o->cg_niblk);
239 n->cg_initediblk = bswap32(o->cg_initediblk);
240 n->cg_time = bswap64(o->cg_time);
241
242 if (fs->fs_magic == FS_UFS2_MAGIC)
243 return;
244
245 if (n->cg_magic == CG_MAGIC) {
246 btotoff = n->cg_old_btotoff;
247 boff = n->cg_old_boff;
248 clustersumoff = n->cg_clustersumoff;
249 } else {
250 btotoff = bswap32(n->cg_old_btotoff);
251 boff = bswap32(n->cg_old_boff);
252 clustersumoff = bswap32(n->cg_clustersumoff);
253 }
254 n32 = (u_int32_t *)((u_int8_t *)n + btotoff);
255 o32 = (u_int32_t *)((u_int8_t *)o + btotoff);
256 n16 = (u_int16_t *)((u_int8_t *)n + boff);
257 o16 = (u_int16_t *)((u_int8_t *)o + boff);
258
259 for (i = 0; i < fs->fs_old_cpg; i++)
260 n32[i] = bswap32(o32[i]);
261
262 for (i = 0; i < fs->fs_old_cpg * fs->fs_old_nrpos; i++)
263 n16[i] = bswap16(o16[i]);
264
265 n32 = (u_int32_t *)((u_int8_t *)n + clustersumoff);
266 o32 = (u_int32_t *)((u_int8_t *)o + clustersumoff);
267 for (i = 1; i < fs->fs_contigsumsize + 1; i++)
268 n32[i] = bswap32(o32[i]);
269 }
270 }
271