radv_image.c revision b8e80941
1/*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28#include "radv_debug.h"
29#include "radv_private.h"
30#include "vk_format.h"
31#include "vk_util.h"
32#include "radv_radeon_winsys.h"
33#include "sid.h"
34#include "gfx9d.h"
35#include "util/debug.h"
36#include "util/u_atomic.h"
37static unsigned
38radv_choose_tiling(struct radv_device *device,
39		   const struct radv_image_create_info *create_info)
40{
41	const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
42
43	if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
44		assert(pCreateInfo->samples <= 1);
45		return RADEON_SURF_MODE_LINEAR_ALIGNED;
46	}
47
48	if (!vk_format_is_compressed(pCreateInfo->format) &&
49	    !vk_format_is_depth_or_stencil(pCreateInfo->format)
50	    && device->physical_device->rad_info.chip_class <= VI) {
51		/* this causes hangs in some VK CTS tests on GFX9. */
52		/* Textures with a very small height are recommended to be linear. */
53		if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
54		    /* Only very thin and long 2D textures should benefit from
55		     * linear_aligned. */
56		    (pCreateInfo->extent.width > 8 && pCreateInfo->extent.height <= 2))
57			return RADEON_SURF_MODE_LINEAR_ALIGNED;
58	}
59
60	/* MSAA resources must be 2D tiled. */
61	if (pCreateInfo->samples > 1)
62		return RADEON_SURF_MODE_2D;
63
64	return RADEON_SURF_MODE_2D;
65}
66
67static bool
68radv_use_tc_compat_htile_for_image(struct radv_device *device,
69				   const VkImageCreateInfo *pCreateInfo)
70{
71	/* TC-compat HTILE is only available for GFX8+. */
72	if (device->physical_device->rad_info.chip_class < VI)
73		return false;
74
75	if ((pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) ||
76	    (pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT))
77		return false;
78
79	if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR)
80		return false;
81
82	if (pCreateInfo->mipLevels > 1)
83		return false;
84
85	/* FIXME: for some reason TC compat with 2/4/8 samples breaks some cts
86	 * tests - disable for now */
87	if (pCreateInfo->samples >= 2 &&
88	    pCreateInfo->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
89		return false;
90
91	/* GFX9 supports both 32-bit and 16-bit depth surfaces, while GFX8 only
92	 * supports 32-bit. Though, it's possible to enable TC-compat for
93	 * 16-bit depth surfaces if no Z planes are compressed.
94	 */
95	if (pCreateInfo->format != VK_FORMAT_D32_SFLOAT_S8_UINT &&
96	    pCreateInfo->format != VK_FORMAT_D32_SFLOAT &&
97	    pCreateInfo->format != VK_FORMAT_D16_UNORM)
98		return false;
99
100	if (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
101		const struct VkImageFormatListCreateInfoKHR *format_list =
102			(const struct  VkImageFormatListCreateInfoKHR *)
103				vk_find_struct_const(pCreateInfo->pNext,
104						     IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
105
106		/* We have to ignore the existence of the list if viewFormatCount = 0 */
107		if (format_list && format_list->viewFormatCount) {
108			/* compatibility is transitive, so we only need to check
109			 * one format with everything else.
110			 */
111			for (unsigned i = 0; i < format_list->viewFormatCount; ++i) {
112				if (pCreateInfo->format != format_list->pViewFormats[i])
113					return false;
114			}
115		} else {
116			return false;
117		}
118	}
119
120	return true;
121}
122
123static bool
124radv_use_dcc_for_image(struct radv_device *device,
125		       const struct radv_image *image,
126		       const struct radv_image_create_info *create_info,
127		       const VkImageCreateInfo *pCreateInfo)
128{
129	bool dcc_compatible_formats;
130	bool blendable;
131
132	/* DCC (Delta Color Compression) is only available for GFX8+. */
133	if (device->physical_device->rad_info.chip_class < VI)
134		return false;
135
136	if (device->instance->debug_flags & RADV_DEBUG_NO_DCC)
137		return false;
138
139	/* FIXME: DCC is broken for shareable images starting with GFX9 */
140	if (device->physical_device->rad_info.chip_class >= GFX9 &&
141	    image->shareable)
142		return false;
143
144	/* TODO: Enable DCC for storage images. */
145	if ((pCreateInfo->usage & VK_IMAGE_USAGE_STORAGE_BIT) ||
146	    (pCreateInfo->flags & VK_IMAGE_CREATE_EXTENDED_USAGE_BIT))
147		return false;
148
149	if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR)
150		return false;
151
152	if (vk_format_is_subsampled(pCreateInfo->format) ||
153	    vk_format_get_plane_count(pCreateInfo->format) > 1)
154		return false;
155
156	/* TODO: Enable DCC for mipmaps and array layers. */
157	if (pCreateInfo->mipLevels > 1 || pCreateInfo->arrayLayers > 1)
158		return false;
159
160	if (create_info->scanout)
161		return false;
162
163	/* FIXME: DCC for MSAA with 4x and 8x samples doesn't work yet, while
164	 * 2x can be enabled with an option.
165	 */
166	if (pCreateInfo->samples > 2 ||
167	    (pCreateInfo->samples == 2 &&
168	     !device->physical_device->dcc_msaa_allowed))
169		return false;
170
171	/* Determine if the formats are DCC compatible. */
172	dcc_compatible_formats =
173		radv_is_colorbuffer_format_supported(pCreateInfo->format,
174						     &blendable);
175
176	if (pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) {
177		const struct VkImageFormatListCreateInfoKHR *format_list =
178			(const struct  VkImageFormatListCreateInfoKHR *)
179				vk_find_struct_const(pCreateInfo->pNext,
180						     IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
181
182		/* We have to ignore the existence of the list if viewFormatCount = 0 */
183		if (format_list && format_list->viewFormatCount) {
184			/* compatibility is transitive, so we only need to check
185			 * one format with everything else. */
186			for (unsigned i = 0; i < format_list->viewFormatCount; ++i) {
187				if (!radv_dcc_formats_compatible(pCreateInfo->format,
188				                                 format_list->pViewFormats[i]))
189					dcc_compatible_formats = false;
190			}
191		} else {
192			dcc_compatible_formats = false;
193		}
194	}
195
196	if (!dcc_compatible_formats)
197		return false;
198
199	return true;
200}
201
202static int
203radv_init_surface(struct radv_device *device,
204		  const struct radv_image *image,
205		  struct radeon_surf *surface,
206		  unsigned plane_id,
207		  const struct radv_image_create_info *create_info)
208{
209	const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
210	unsigned array_mode = radv_choose_tiling(device, create_info);
211	VkFormat format = vk_format_get_plane_format(pCreateInfo->format, plane_id);
212	const struct vk_format_description *desc = vk_format_description(format);
213	bool is_depth, is_stencil;
214
215	is_depth = vk_format_has_depth(desc);
216	is_stencil = vk_format_has_stencil(desc);
217
218	surface->blk_w = vk_format_get_blockwidth(format);
219	surface->blk_h = vk_format_get_blockheight(format);
220
221	surface->bpe = vk_format_get_blocksize(vk_format_depth_only(format));
222	/* align byte per element on dword */
223	if (surface->bpe == 3) {
224		surface->bpe = 4;
225	}
226	surface->flags = RADEON_SURF_SET(array_mode, MODE);
227
228	switch (pCreateInfo->imageType){
229	case VK_IMAGE_TYPE_1D:
230		if (pCreateInfo->arrayLayers > 1)
231			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE);
232		else
233			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE);
234		break;
235	case VK_IMAGE_TYPE_2D:
236		if (pCreateInfo->arrayLayers > 1)
237			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE);
238		else
239			surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE);
240		break;
241	case VK_IMAGE_TYPE_3D:
242		surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE);
243		break;
244	default:
245		unreachable("unhandled image type");
246	}
247
248	if (is_depth) {
249		surface->flags |= RADEON_SURF_ZBUFFER;
250		if (radv_use_tc_compat_htile_for_image(device, pCreateInfo))
251			surface->flags |= RADEON_SURF_TC_COMPATIBLE_HTILE;
252	}
253
254	if (is_stencil)
255		surface->flags |= RADEON_SURF_SBUFFER;
256
257	if (device->physical_device->rad_info.chip_class >= GFX9 &&
258	    pCreateInfo->imageType == VK_IMAGE_TYPE_3D &&
259	    vk_format_get_blocksizebits(pCreateInfo->format) == 128 &&
260	    vk_format_is_compressed(pCreateInfo->format))
261		surface->flags |= RADEON_SURF_NO_RENDER_TARGET;
262
263	surface->flags |= RADEON_SURF_OPTIMIZE_FOR_SPACE;
264
265	if (!radv_use_dcc_for_image(device, image, create_info, pCreateInfo))
266		surface->flags |= RADEON_SURF_DISABLE_DCC;
267
268	if (create_info->scanout)
269		surface->flags |= RADEON_SURF_SCANOUT;
270	return 0;
271}
272
273static uint32_t si_get_bo_metadata_word1(struct radv_device *device)
274{
275	return (ATI_VENDOR_ID << 16) | device->physical_device->rad_info.pci_id;
276}
277
278static inline unsigned
279si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
280{
281	if (stencil)
282		return plane->surface.u.legacy.stencil_tiling_index[level];
283	else
284		return plane->surface.u.legacy.tiling_index[level];
285}
286
287static unsigned radv_map_swizzle(unsigned swizzle)
288{
289	switch (swizzle) {
290	case VK_SWIZZLE_Y:
291		return V_008F0C_SQ_SEL_Y;
292	case VK_SWIZZLE_Z:
293		return V_008F0C_SQ_SEL_Z;
294	case VK_SWIZZLE_W:
295		return V_008F0C_SQ_SEL_W;
296	case VK_SWIZZLE_0:
297		return V_008F0C_SQ_SEL_0;
298	case VK_SWIZZLE_1:
299		return V_008F0C_SQ_SEL_1;
300	default: /* VK_SWIZZLE_X */
301		return V_008F0C_SQ_SEL_X;
302	}
303}
304
305static void
306radv_make_buffer_descriptor(struct radv_device *device,
307			    struct radv_buffer *buffer,
308			    VkFormat vk_format,
309			    unsigned offset,
310			    unsigned range,
311			    uint32_t *state)
312{
313	const struct vk_format_description *desc;
314	unsigned stride;
315	uint64_t gpu_address = radv_buffer_get_va(buffer->bo);
316	uint64_t va = gpu_address + buffer->offset;
317	unsigned num_format, data_format;
318	int first_non_void;
319	desc = vk_format_description(vk_format);
320	first_non_void = vk_format_get_first_non_void_channel(vk_format);
321	stride = desc->block.bits / 8;
322
323	num_format = radv_translate_buffer_numformat(desc, first_non_void);
324	data_format = radv_translate_buffer_dataformat(desc, first_non_void);
325
326	va += offset;
327	state[0] = va;
328	state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
329		S_008F04_STRIDE(stride);
330
331	if (device->physical_device->rad_info.chip_class != VI && stride) {
332		range /= stride;
333	}
334
335	state[2] = range;
336	state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) |
337		   S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) |
338		   S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) |
339		   S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) |
340		   S_008F0C_NUM_FORMAT(num_format) |
341		   S_008F0C_DATA_FORMAT(data_format);
342}
343
344static void
345si_set_mutable_tex_desc_fields(struct radv_device *device,
346			       struct radv_image *image,
347			       const struct legacy_surf_level *base_level_info,
348			       unsigned plane_id,
349			       unsigned base_level, unsigned first_level,
350			       unsigned block_width, bool is_stencil,
351			       bool is_storage_image, uint32_t *state)
352{
353	struct radv_image_plane *plane = &image->planes[plane_id];
354	uint64_t gpu_address = image->bo ? radv_buffer_get_va(image->bo) + image->offset : 0;
355	uint64_t va = gpu_address + plane->offset;
356	enum chip_class chip_class = device->physical_device->rad_info.chip_class;
357	uint64_t meta_va = 0;
358	if (chip_class >= GFX9) {
359		if (is_stencil)
360			va += plane->surface.u.gfx9.stencil_offset;
361		else
362			va += plane->surface.u.gfx9.surf_offset;
363	} else
364		va += base_level_info->offset;
365
366	state[0] = va >> 8;
367	if (chip_class >= GFX9 ||
368	    base_level_info->mode == RADEON_SURF_MODE_2D)
369		state[0] |= plane->surface.tile_swizzle;
370	state[1] &= C_008F14_BASE_ADDRESS_HI;
371	state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
372
373	if (chip_class >= VI) {
374		state[6] &= C_008F28_COMPRESSION_EN;
375		state[7] = 0;
376		if (!is_storage_image && radv_dcc_enabled(image, first_level)) {
377			meta_va = gpu_address + image->dcc_offset;
378			if (chip_class <= VI)
379				meta_va += base_level_info->dcc_offset;
380		} else if (!is_storage_image &&
381			   radv_image_is_tc_compat_htile(image)) {
382			meta_va = gpu_address + image->htile_offset;
383		}
384
385		if (meta_va) {
386			state[6] |= S_008F28_COMPRESSION_EN(1);
387			state[7] = meta_va >> 8;
388			state[7] |= plane->surface.tile_swizzle;
389		}
390	}
391
392	if (chip_class >= GFX9) {
393		state[3] &= C_008F1C_SW_MODE;
394		state[4] &= C_008F20_PITCH_GFX9;
395
396		if (is_stencil) {
397			state[3] |= S_008F1C_SW_MODE(plane->surface.u.gfx9.stencil.swizzle_mode);
398			state[4] |= S_008F20_PITCH_GFX9(plane->surface.u.gfx9.stencil.epitch);
399		} else {
400			state[3] |= S_008F1C_SW_MODE(plane->surface.u.gfx9.surf.swizzle_mode);
401			state[4] |= S_008F20_PITCH_GFX9(plane->surface.u.gfx9.surf.epitch);
402		}
403
404		state[5] &= C_008F24_META_DATA_ADDRESS &
405			    C_008F24_META_PIPE_ALIGNED &
406			    C_008F24_META_RB_ALIGNED;
407		if (meta_va) {
408			struct gfx9_surf_meta_flags meta;
409
410			if (image->dcc_offset)
411				meta = plane->surface.u.gfx9.dcc;
412			else
413				meta = plane->surface.u.gfx9.htile;
414
415			state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) |
416				    S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) |
417				    S_008F24_META_RB_ALIGNED(meta.rb_aligned);
418		}
419	} else {
420		/* SI-CI-VI */
421		unsigned pitch = base_level_info->nblk_x * block_width;
422		unsigned index = si_tile_mode_index(plane, base_level, is_stencil);
423
424		state[3] &= C_008F1C_TILING_INDEX;
425		state[3] |= S_008F1C_TILING_INDEX(index);
426		state[4] &= C_008F20_PITCH_GFX6;
427		state[4] |= S_008F20_PITCH_GFX6(pitch - 1);
428	}
429}
430
431static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type,
432			     unsigned nr_layers, unsigned nr_samples, bool is_storage_image, bool gfx9)
433{
434	if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
435		return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE;
436
437	/* GFX9 allocates 1D textures as 2D. */
438	if (gfx9 && image_type == VK_IMAGE_TYPE_1D)
439		image_type = VK_IMAGE_TYPE_2D;
440	switch (image_type) {
441	case VK_IMAGE_TYPE_1D:
442		return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D;
443	case VK_IMAGE_TYPE_2D:
444		if (nr_samples > 1)
445			return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA;
446		else
447			return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D;
448	case VK_IMAGE_TYPE_3D:
449		if (view_type == VK_IMAGE_VIEW_TYPE_3D)
450			return V_008F1C_SQ_RSRC_IMG_3D;
451		else
452			return V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
453	default:
454		unreachable("illegal image type");
455	}
456}
457
458static unsigned gfx9_border_color_swizzle(const enum vk_swizzle swizzle[4])
459{
460	unsigned bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
461
462	if (swizzle[3] == VK_SWIZZLE_X) {
463		/* For the pre-defined border color values (white, opaque
464		 * black, transparent black), the only thing that matters is
465		 * that the alpha channel winds up in the correct place
466		 * (because the RGB channels are all the same) so either of
467		 * these enumerations will work.
468		 */
469		if (swizzle[2] == VK_SWIZZLE_Y)
470			bc_swizzle = V_008F20_BC_SWIZZLE_WZYX;
471		else
472			bc_swizzle = V_008F20_BC_SWIZZLE_WXYZ;
473	} else if (swizzle[0] == VK_SWIZZLE_X) {
474		if (swizzle[1] == VK_SWIZZLE_Y)
475			bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
476		else
477			bc_swizzle = V_008F20_BC_SWIZZLE_XWYZ;
478	} else if (swizzle[1] == VK_SWIZZLE_X) {
479		bc_swizzle = V_008F20_BC_SWIZZLE_YXWZ;
480	} else if (swizzle[2] == VK_SWIZZLE_X) {
481		bc_swizzle = V_008F20_BC_SWIZZLE_ZYXW;
482	}
483
484	return bc_swizzle;
485}
486
487/**
488 * Build the sampler view descriptor for a texture.
489 */
490static void
491si_make_texture_descriptor(struct radv_device *device,
492			   struct radv_image *image,
493			   bool is_storage_image,
494			   VkImageViewType view_type,
495			   VkFormat vk_format,
496			   const VkComponentMapping *mapping,
497			   unsigned first_level, unsigned last_level,
498			   unsigned first_layer, unsigned last_layer,
499			   unsigned width, unsigned height, unsigned depth,
500			   uint32_t *state,
501			   uint32_t *fmask_state)
502{
503	const struct vk_format_description *desc;
504	enum vk_swizzle swizzle[4];
505	int first_non_void;
506	unsigned num_format, data_format, type;
507
508	desc = vk_format_description(vk_format);
509
510	if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) {
511		const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
512		vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle);
513	} else {
514		vk_format_compose_swizzles(mapping, desc->swizzle, swizzle);
515	}
516
517	first_non_void = vk_format_get_first_non_void_channel(vk_format);
518
519	num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void);
520	if (num_format == ~0) {
521		num_format = 0;
522	}
523
524	data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void);
525	if (data_format == ~0) {
526		data_format = 0;
527	}
528
529	/* S8 with either Z16 or Z32 HTILE need a special format. */
530	if (device->physical_device->rad_info.chip_class >= GFX9 &&
531	    vk_format == VK_FORMAT_S8_UINT &&
532	    radv_image_is_tc_compat_htile(image)) {
533		if (image->vk_format == VK_FORMAT_D32_SFLOAT_S8_UINT)
534			data_format = V_008F14_IMG_DATA_FORMAT_S8_32;
535		else if (image->vk_format == VK_FORMAT_D16_UNORM_S8_UINT)
536			data_format = V_008F14_IMG_DATA_FORMAT_S8_16;
537	}
538	type = radv_tex_dim(image->type, view_type, image->info.array_size, image->info.samples,
539			    is_storage_image, device->physical_device->rad_info.chip_class >= GFX9);
540	if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
541	        height = 1;
542		depth = image->info.array_size;
543	} else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
544		   type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
545		if (view_type != VK_IMAGE_VIEW_TYPE_3D)
546			depth = image->info.array_size;
547	} else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
548		depth = image->info.array_size / 6;
549
550	state[0] = 0;
551	state[1] = (S_008F14_DATA_FORMAT_GFX6(data_format) |
552		    S_008F14_NUM_FORMAT_GFX6(num_format));
553	state[2] = (S_008F18_WIDTH(width - 1) |
554		    S_008F18_HEIGHT(height - 1) |
555		    S_008F18_PERF_MOD(4));
556	state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) |
557		    S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) |
558		    S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) |
559		    S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) |
560		    S_008F1C_BASE_LEVEL(image->info.samples > 1 ?
561					0 : first_level) |
562		    S_008F1C_LAST_LEVEL(image->info.samples > 1 ?
563					util_logbase2(image->info.samples) :
564					last_level) |
565		    S_008F1C_TYPE(type));
566	state[4] = 0;
567	state[5] = S_008F24_BASE_ARRAY(first_layer);
568	state[6] = 0;
569	state[7] = 0;
570
571	if (device->physical_device->rad_info.chip_class >= GFX9) {
572		unsigned bc_swizzle = gfx9_border_color_swizzle(swizzle);
573
574		/* Depth is the last accessible layer on Gfx9.
575		 * The hw doesn't need to know the total number of layers.
576		 */
577		if (type == V_008F1C_SQ_RSRC_IMG_3D)
578			state[4] |= S_008F20_DEPTH(depth - 1);
579		else
580			state[4] |= S_008F20_DEPTH(last_layer);
581
582		state[4] |= S_008F20_BC_SWIZZLE(bc_swizzle);
583		state[5] |= S_008F24_MAX_MIP(image->info.samples > 1 ?
584					     util_logbase2(image->info.samples) :
585					     image->info.levels - 1);
586	} else {
587		state[3] |= S_008F1C_POW2_PAD(image->info.levels > 1);
588		state[4] |= S_008F20_DEPTH(depth - 1);
589		state[5] |= S_008F24_LAST_ARRAY(last_layer);
590	}
591	if (image->dcc_offset) {
592		unsigned swap = radv_translate_colorswap(vk_format, FALSE);
593
594		state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1);
595	} else {
596		/* The last dword is unused by hw. The shader uses it to clear
597		 * bits in the first dword of sampler state.
598		 */
599		if (device->physical_device->rad_info.chip_class <= CIK && image->info.samples <= 1) {
600			if (first_level == last_level)
601				state[7] = C_008F30_MAX_ANISO_RATIO;
602			else
603				state[7] = 0xffffffff;
604		}
605	}
606
607	/* Initialize the sampler view for FMASK. */
608	if (radv_image_has_fmask(image)) {
609		uint32_t fmask_format, num_format;
610		uint64_t gpu_address = radv_buffer_get_va(image->bo);
611		uint64_t va;
612
613		assert(image->plane_count == 1);
614
615		va = gpu_address + image->offset + image->fmask.offset;
616
617		if (device->physical_device->rad_info.chip_class >= GFX9) {
618			fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK;
619			switch (image->info.samples) {
620			case 2:
621				num_format = V_008F14_IMG_FMASK_8_2_2;
622				break;
623			case 4:
624				num_format = V_008F14_IMG_FMASK_8_4_4;
625				break;
626			case 8:
627				num_format = V_008F14_IMG_FMASK_32_8_8;
628				break;
629			default:
630				unreachable("invalid nr_samples");
631			}
632		} else {
633			switch (image->info.samples) {
634			case 2:
635				fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2;
636				break;
637			case 4:
638				fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4;
639				break;
640			case 8:
641				fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8;
642				break;
643			default:
644				assert(0);
645				fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID;
646			}
647			num_format = V_008F14_IMG_NUM_FORMAT_UINT;
648		}
649
650		fmask_state[0] = va >> 8;
651		fmask_state[0] |= image->fmask.tile_swizzle;
652		fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) |
653			S_008F14_DATA_FORMAT_GFX6(fmask_format) |
654			S_008F14_NUM_FORMAT_GFX6(num_format);
655		fmask_state[2] = S_008F18_WIDTH(width - 1) |
656			S_008F18_HEIGHT(height - 1);
657		fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
658			S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
659			S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
660			S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
661			S_008F1C_TYPE(radv_tex_dim(image->type, view_type, image->info.array_size, 0, false, false));
662		fmask_state[4] = 0;
663		fmask_state[5] = S_008F24_BASE_ARRAY(first_layer);
664		fmask_state[6] = 0;
665		fmask_state[7] = 0;
666
667		if (device->physical_device->rad_info.chip_class >= GFX9) {
668			fmask_state[3] |= S_008F1C_SW_MODE(image->planes[0].surface.u.gfx9.fmask.swizzle_mode);
669			fmask_state[4] |= S_008F20_DEPTH(last_layer) |
670					  S_008F20_PITCH_GFX9(image->planes[0].surface.u.gfx9.fmask.epitch);
671			fmask_state[5] |= S_008F24_META_PIPE_ALIGNED(image->planes[0].surface.u.gfx9.cmask.pipe_aligned) |
672					  S_008F24_META_RB_ALIGNED(image->planes[0].surface.u.gfx9.cmask.rb_aligned);
673		} else {
674			fmask_state[3] |= S_008F1C_TILING_INDEX(image->fmask.tile_mode_index);
675			fmask_state[4] |= S_008F20_DEPTH(depth - 1) |
676				S_008F20_PITCH_GFX6(image->fmask.pitch_in_pixels - 1);
677			fmask_state[5] |= S_008F24_LAST_ARRAY(last_layer);
678		}
679	} else if (fmask_state)
680		memset(fmask_state, 0, 8 * 4);
681}
682
683static void
684radv_query_opaque_metadata(struct radv_device *device,
685			   struct radv_image *image,
686			   struct radeon_bo_metadata *md)
687{
688	static const VkComponentMapping fixedmapping;
689	uint32_t desc[8], i;
690
691	assert(image->plane_count == 1);
692
693	/* Metadata image format format version 1:
694	 * [0] = 1 (metadata format identifier)
695	 * [1] = (VENDOR_ID << 16) | PCI_ID
696	 * [2:9] = image descriptor for the whole resource
697	 *         [2] is always 0, because the base address is cleared
698	 *         [9] is the DCC offset bits [39:8] from the beginning of
699	 *             the buffer
700	 * [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
701	 */
702	md->metadata[0] = 1; /* metadata image format version 1 */
703
704	/* TILE_MODE_INDEX is ambiguous without a PCI ID. */
705	md->metadata[1] = si_get_bo_metadata_word1(device);
706
707
708	si_make_texture_descriptor(device, image, false,
709				   (VkImageViewType)image->type, image->vk_format,
710				   &fixedmapping, 0, image->info.levels - 1, 0,
711				   image->info.array_size - 1,
712				   image->info.width, image->info.height,
713				   image->info.depth,
714				   desc, NULL);
715
716	si_set_mutable_tex_desc_fields(device, image, &image->planes[0].surface.u.legacy.level[0], 0, 0, 0,
717				       image->planes[0].surface.blk_w, false, false, desc);
718
719	/* Clear the base address and set the relative DCC offset. */
720	desc[0] = 0;
721	desc[1] &= C_008F14_BASE_ADDRESS_HI;
722	desc[7] = image->dcc_offset >> 8;
723
724	/* Dwords [2:9] contain the image descriptor. */
725	memcpy(&md->metadata[2], desc, sizeof(desc));
726
727	/* Dwords [10:..] contain the mipmap level offsets. */
728	if (device->physical_device->rad_info.chip_class <= VI) {
729		for (i = 0; i <= image->info.levels - 1; i++)
730			md->metadata[10+i] = image->planes[0].surface.u.legacy.level[i].offset >> 8;
731		md->size_metadata = (11 + image->info.levels - 1) * 4;
732	} else
733		md->size_metadata = 10 * 4;
734}
735
736void
737radv_init_metadata(struct radv_device *device,
738		   struct radv_image *image,
739		   struct radeon_bo_metadata *metadata)
740{
741	struct radeon_surf *surface = &image->planes[0].surface;
742
743	memset(metadata, 0, sizeof(*metadata));
744
745	if (device->physical_device->rad_info.chip_class >= GFX9) {
746		metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode;
747	} else {
748		metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ?
749			RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
750		metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ?
751			RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
752		metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config;
753		metadata->u.legacy.bankw = surface->u.legacy.bankw;
754		metadata->u.legacy.bankh = surface->u.legacy.bankh;
755		metadata->u.legacy.tile_split = surface->u.legacy.tile_split;
756		metadata->u.legacy.mtilea = surface->u.legacy.mtilea;
757		metadata->u.legacy.num_banks = surface->u.legacy.num_banks;
758		metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe;
759		metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
760	}
761	radv_query_opaque_metadata(device, image, metadata);
762}
763
764/* The number of samples can be specified independently of the texture. */
765static void
766radv_image_get_fmask_info(struct radv_device *device,
767			  struct radv_image *image,
768			  unsigned nr_samples,
769			  struct radv_fmask_info *out)
770{
771	if (device->physical_device->rad_info.chip_class >= GFX9) {
772		out->alignment = image->planes[0].surface.fmask_alignment;
773		out->size = image->planes[0].surface.fmask_size;
774		out->tile_swizzle = image->planes[0].surface.fmask_tile_swizzle;
775		return;
776	}
777
778	out->slice_tile_max = image->planes[0].surface.u.legacy.fmask.slice_tile_max;
779	out->tile_mode_index = image->planes[0].surface.u.legacy.fmask.tiling_index;
780	out->pitch_in_pixels = image->planes[0].surface.u.legacy.fmask.pitch_in_pixels;
781	out->bank_height = image->planes[0].surface.u.legacy.fmask.bankh;
782	out->tile_swizzle = image->planes[0].surface.fmask_tile_swizzle;
783	out->alignment = image->planes[0].surface.fmask_alignment;
784	out->size = image->planes[0].surface.fmask_size;
785
786	assert(!out->tile_swizzle || !image->shareable);
787}
788
789static void
790radv_image_alloc_fmask(struct radv_device *device,
791		       struct radv_image *image)
792{
793	radv_image_get_fmask_info(device, image, image->info.samples, &image->fmask);
794
795	image->fmask.offset = align64(image->size, image->fmask.alignment);
796	image->size = image->fmask.offset + image->fmask.size;
797	image->alignment = MAX2(image->alignment, image->fmask.alignment);
798}
799
800static void
801radv_image_get_cmask_info(struct radv_device *device,
802			  struct radv_image *image,
803			  struct radv_cmask_info *out)
804{
805	unsigned pipe_interleave_bytes = device->physical_device->rad_info.pipe_interleave_bytes;
806	unsigned num_pipes = device->physical_device->rad_info.num_tile_pipes;
807	unsigned cl_width, cl_height;
808
809	assert(image->plane_count == 1);
810
811	if (device->physical_device->rad_info.chip_class >= GFX9) {
812		out->alignment = image->planes[0].surface.cmask_alignment;
813		out->size = image->planes[0].surface.cmask_size;
814		return;
815	}
816
817	switch (num_pipes) {
818	case 2:
819		cl_width = 32;
820		cl_height = 16;
821		break;
822	case 4:
823		cl_width = 32;
824		cl_height = 32;
825		break;
826	case 8:
827		cl_width = 64;
828		cl_height = 32;
829		break;
830	case 16: /* Hawaii */
831		cl_width = 64;
832		cl_height = 64;
833		break;
834	default:
835		assert(0);
836		return;
837	}
838
839	unsigned base_align = num_pipes * pipe_interleave_bytes;
840
841	unsigned width = align(image->planes[0].surface.u.legacy.level[0].nblk_x, cl_width*8);
842	unsigned height = align(image->planes[0].surface.u.legacy.level[0].nblk_y, cl_height*8);
843	unsigned slice_elements = (width * height) / (8*8);
844
845	/* Each element of CMASK is a nibble. */
846	unsigned slice_bytes = slice_elements / 2;
847
848	out->slice_tile_max = (width * height) / (128*128);
849	if (out->slice_tile_max)
850		out->slice_tile_max -= 1;
851
852	out->alignment = MAX2(256, base_align);
853	out->size = (image->type == VK_IMAGE_TYPE_3D ? image->info.depth : image->info.array_size) *
854		    align(slice_bytes, base_align);
855}
856
857static void
858radv_image_alloc_cmask(struct radv_device *device,
859		       struct radv_image *image)
860{
861	uint32_t clear_value_size = 0;
862	radv_image_get_cmask_info(device, image, &image->cmask);
863
864	if (!image->cmask.size)
865		return;
866
867	assert(image->cmask.alignment);
868
869	image->cmask.offset = align64(image->size, image->cmask.alignment);
870	/* + 8 for storing the clear values */
871	if (!image->clear_value_offset) {
872		image->clear_value_offset = image->cmask.offset + image->cmask.size;
873		clear_value_size = 8;
874	}
875	image->size = image->cmask.offset + image->cmask.size + clear_value_size;
876	image->alignment = MAX2(image->alignment, image->cmask.alignment);
877}
878
879static void
880radv_image_alloc_dcc(struct radv_image *image)
881{
882	assert(image->plane_count == 1);
883
884	image->dcc_offset = align64(image->size, image->planes[0].surface.dcc_alignment);
885	/* + 16 for storing the clear values + dcc pred */
886	image->clear_value_offset = image->dcc_offset + image->planes[0].surface.dcc_size;
887	image->fce_pred_offset = image->clear_value_offset + 8;
888	image->dcc_pred_offset = image->clear_value_offset + 16;
889	image->size = image->dcc_offset + image->planes[0].surface.dcc_size + 24;
890	image->alignment = MAX2(image->alignment, image->planes[0].surface.dcc_alignment);
891}
892
893static void
894radv_image_alloc_htile(struct radv_image *image)
895{
896	image->htile_offset = align64(image->size, image->planes[0].surface.htile_alignment);
897
898	/* + 8 for storing the clear values */
899	image->clear_value_offset = image->htile_offset + image->planes[0].surface.htile_size;
900	image->size = image->clear_value_offset + 8;
901	if (radv_image_is_tc_compat_htile(image)) {
902		/* Metadata for the TC-compatible HTILE hardware bug which
903		 * have to be fixed by updating ZRANGE_PRECISION when doing
904		 * fast depth clears to 0.0f.
905		 */
906		image->tc_compat_zrange_offset = image->clear_value_offset + 8;
907		image->size = image->clear_value_offset + 16;
908	}
909	image->alignment = align64(image->alignment, image->planes[0].surface.htile_alignment);
910}
911
912static inline bool
913radv_image_can_enable_dcc_or_cmask(struct radv_image *image)
914{
915	if (image->info.samples <= 1 &&
916	    image->info.width * image->info.height <= 512 * 512) {
917		/* Do not enable CMASK or DCC for small surfaces where the cost
918		 * of the eliminate pass can be higher than the benefit of fast
919		 * clear. RadeonSI does this, but the image threshold is
920		 * different.
921		 */
922		return false;
923	}
924
925	return image->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT &&
926	       (image->exclusive || image->queue_family_mask == 1);
927}
928
929static inline bool
930radv_image_can_enable_dcc(struct radv_image *image)
931{
932	return radv_image_can_enable_dcc_or_cmask(image) &&
933	       radv_image_has_dcc(image);
934}
935
936static inline bool
937radv_image_can_enable_cmask(struct radv_image *image)
938{
939	if (image->planes[0].surface.bpe > 8 && image->info.samples == 1) {
940		/* Do not enable CMASK for non-MSAA images (fast color clear)
941		 * because 128 bit formats are not supported, but FMASK might
942		 * still be used.
943		 */
944		return false;
945	}
946
947	return radv_image_can_enable_dcc_or_cmask(image) &&
948	       image->info.levels == 1 &&
949	       image->info.depth == 1 &&
950	       !image->planes[0].surface.is_linear;
951}
952
953static inline bool
954radv_image_can_enable_fmask(struct radv_image *image)
955{
956	return image->info.samples > 1 && vk_format_is_color(image->vk_format);
957}
958
959static inline bool
960radv_image_can_enable_htile(struct radv_image *image)
961{
962	return radv_image_has_htile(image) &&
963	       image->info.levels == 1 &&
964	       image->info.width * image->info.height >= 8 * 8;
965}
966
967static void radv_image_disable_dcc(struct radv_image *image)
968{
969	for (unsigned i = 0; i < image->plane_count; ++i)
970		image->planes[i].surface.dcc_size = 0;
971}
972
973static void radv_image_disable_htile(struct radv_image *image)
974{
975	for (unsigned i = 0; i < image->plane_count; ++i)
976		image->planes[i].surface.htile_size = 0;
977}
978
979VkResult
980radv_image_create(VkDevice _device,
981		  const struct radv_image_create_info *create_info,
982		  const VkAllocationCallbacks* alloc,
983		  VkImage *pImage)
984{
985	RADV_FROM_HANDLE(radv_device, device, _device);
986	const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
987	struct radv_image *image = NULL;
988	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
989
990	const unsigned plane_count = vk_format_get_plane_count(pCreateInfo->format);
991	const size_t image_struct_size = sizeof(*image) + sizeof(struct radv_image_plane) * plane_count;
992
993	radv_assert(pCreateInfo->mipLevels > 0);
994	radv_assert(pCreateInfo->arrayLayers > 0);
995	radv_assert(pCreateInfo->samples > 0);
996	radv_assert(pCreateInfo->extent.width > 0);
997	radv_assert(pCreateInfo->extent.height > 0);
998	radv_assert(pCreateInfo->extent.depth > 0);
999
1000	image = vk_zalloc2(&device->alloc, alloc, image_struct_size, 8,
1001			   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1002	if (!image)
1003		return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1004
1005	image->type = pCreateInfo->imageType;
1006	image->info.width = pCreateInfo->extent.width;
1007	image->info.height = pCreateInfo->extent.height;
1008	image->info.depth = pCreateInfo->extent.depth;
1009	image->info.samples = pCreateInfo->samples;
1010	image->info.storage_samples = pCreateInfo->samples;
1011	image->info.array_size = pCreateInfo->arrayLayers;
1012	image->info.levels = pCreateInfo->mipLevels;
1013	image->info.num_channels = vk_format_get_nr_components(pCreateInfo->format);
1014
1015	image->vk_format = pCreateInfo->format;
1016	image->tiling = pCreateInfo->tiling;
1017	image->usage = pCreateInfo->usage;
1018	image->flags = pCreateInfo->flags;
1019
1020	image->exclusive = pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE;
1021	if (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) {
1022		for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; ++i)
1023			if (pCreateInfo->pQueueFamilyIndices[i] == VK_QUEUE_FAMILY_EXTERNAL)
1024				image->queue_family_mask |= (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
1025			else
1026				image->queue_family_mask |= 1u << pCreateInfo->pQueueFamilyIndices[i];
1027	}
1028
1029	image->shareable = vk_find_struct_const(pCreateInfo->pNext,
1030	                                        EXTERNAL_MEMORY_IMAGE_CREATE_INFO) != NULL;
1031	if (!vk_format_is_depth_or_stencil(pCreateInfo->format) && !create_info->scanout && !image->shareable) {
1032		image->info.surf_index = &device->image_mrt_offset_counter;
1033	}
1034
1035	image->plane_count = plane_count;
1036	image->size = 0;
1037	image->alignment = 1;
1038	for (unsigned plane = 0; plane < plane_count; ++plane) {
1039		struct ac_surf_info info = image->info;
1040		radv_init_surface(device, image, &image->planes[plane].surface, plane, create_info);
1041
1042		if (plane) {
1043			const struct vk_format_description *desc = vk_format_description(pCreateInfo->format);
1044			assert(info.width % desc->width_divisor == 0);
1045			assert(info.height % desc->height_divisor == 0);
1046
1047			info.width /= desc->width_divisor;
1048			info.height /= desc->height_divisor;
1049		}
1050
1051		device->ws->surface_init(device->ws, &info, &image->planes[plane].surface);
1052
1053		image->planes[plane].offset = align(image->size, image->planes[plane].surface.surf_alignment);
1054		image->size = image->planes[plane].offset + image->planes[plane].surface.surf_size;
1055		image->alignment = image->planes[plane].surface.surf_alignment;
1056
1057		image->planes[plane].format = vk_format_get_plane_format(image->vk_format, plane);
1058	}
1059
1060	if (!create_info->no_metadata_planes) {
1061		/* Try to enable DCC first. */
1062		if (radv_image_can_enable_dcc(image)) {
1063			radv_image_alloc_dcc(image);
1064			if (image->info.samples > 1) {
1065				/* CMASK should be enabled because DCC fast
1066				 * clear with MSAA needs it.
1067				 */
1068				assert(radv_image_can_enable_cmask(image));
1069				radv_image_alloc_cmask(device, image);
1070			}
1071		} else {
1072			/* When DCC cannot be enabled, try CMASK. */
1073			radv_image_disable_dcc(image);
1074			if (radv_image_can_enable_cmask(image)) {
1075				radv_image_alloc_cmask(device, image);
1076			}
1077		}
1078
1079		/* Try to enable FMASK for multisampled images. */
1080		if (radv_image_can_enable_fmask(image)) {
1081			radv_image_alloc_fmask(device, image);
1082		} else {
1083			/* Otherwise, try to enable HTILE for depth surfaces. */
1084			if (radv_image_can_enable_htile(image) &&
1085			    !(device->instance->debug_flags & RADV_DEBUG_NO_HIZ)) {
1086				image->tc_compatible_htile = image->planes[0].surface.flags & RADEON_SURF_TC_COMPATIBLE_HTILE;
1087				radv_image_alloc_htile(image);
1088			} else {
1089				radv_image_disable_htile(image);
1090			}
1091		}
1092	} else {
1093		radv_image_disable_dcc(image);
1094		radv_image_disable_htile(image);
1095	}
1096
1097	if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
1098		image->alignment = MAX2(image->alignment, 4096);
1099		image->size = align64(image->size, image->alignment);
1100		image->offset = 0;
1101
1102		image->bo = device->ws->buffer_create(device->ws, image->size, image->alignment,
1103		                                      0, RADEON_FLAG_VIRTUAL, RADV_BO_PRIORITY_VIRTUAL);
1104		if (!image->bo) {
1105			vk_free2(&device->alloc, alloc, image);
1106			return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1107		}
1108	}
1109
1110	*pImage = radv_image_to_handle(image);
1111
1112	return VK_SUCCESS;
1113}
1114
1115static void
1116radv_image_view_make_descriptor(struct radv_image_view *iview,
1117				struct radv_device *device,
1118				VkFormat vk_format,
1119				const VkComponentMapping *components,
1120				bool is_storage_image, unsigned plane_id,
1121				unsigned descriptor_plane_id)
1122{
1123	struct radv_image *image = iview->image;
1124	struct radv_image_plane *plane = &image->planes[plane_id];
1125	const struct vk_format_description *format_desc = vk_format_description(image->vk_format);
1126	bool is_stencil = iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT;
1127	uint32_t blk_w;
1128	union radv_descriptor *descriptor;
1129	uint32_t hw_level = 0;
1130
1131	if (is_storage_image) {
1132		descriptor = &iview->storage_descriptor;
1133	} else {
1134		descriptor = &iview->descriptor;
1135	}
1136
1137	assert(vk_format_get_plane_count(vk_format) == 1);
1138	assert(plane->surface.blk_w % vk_format_get_blockwidth(plane->format) == 0);
1139	blk_w = plane->surface.blk_w / vk_format_get_blockwidth(plane->format) * vk_format_get_blockwidth(vk_format);
1140
1141	if (device->physical_device->rad_info.chip_class >= GFX9)
1142		hw_level = iview->base_mip;
1143	si_make_texture_descriptor(device, image, is_storage_image,
1144				   iview->type,
1145				   vk_format,
1146				   components,
1147				   hw_level, hw_level + iview->level_count - 1,
1148				   iview->base_layer,
1149				   iview->base_layer + iview->layer_count - 1,
1150				   iview->extent.width  / (plane_id ? format_desc->width_divisor : 1),
1151				   iview->extent.height  / (plane_id ? format_desc->height_divisor : 1),
1152				   iview->extent.depth,
1153				   descriptor->plane_descriptors[descriptor_plane_id],
1154				   descriptor_plane_id ? NULL : descriptor->fmask_descriptor);
1155
1156	const struct legacy_surf_level *base_level_info = NULL;
1157	if (device->physical_device->rad_info.chip_class <= GFX9) {
1158		if (is_stencil)
1159			base_level_info = &plane->surface.u.legacy.stencil_level[iview->base_mip];
1160		else
1161			base_level_info = &plane->surface.u.legacy.level[iview->base_mip];
1162	}
1163	si_set_mutable_tex_desc_fields(device, image,
1164				       base_level_info,
1165				       plane_id,
1166				       iview->base_mip,
1167				       iview->base_mip,
1168				       blk_w, is_stencil, is_storage_image, descriptor->plane_descriptors[descriptor_plane_id]);
1169}
1170
1171static unsigned
1172radv_plane_from_aspect(VkImageAspectFlags mask)
1173{
1174	switch(mask) {
1175	case VK_IMAGE_ASPECT_PLANE_1_BIT:
1176		return 1;
1177	case VK_IMAGE_ASPECT_PLANE_2_BIT:
1178		return 2;
1179	default:
1180		return 0;
1181	}
1182}
1183
1184VkFormat
1185radv_get_aspect_format(struct radv_image *image, VkImageAspectFlags mask)
1186{
1187	switch(mask) {
1188	case VK_IMAGE_ASPECT_PLANE_0_BIT:
1189		return image->planes[0].format;
1190	case VK_IMAGE_ASPECT_PLANE_1_BIT:
1191		return image->planes[1].format;
1192	case VK_IMAGE_ASPECT_PLANE_2_BIT:
1193		return image->planes[2].format;
1194	case VK_IMAGE_ASPECT_STENCIL_BIT:
1195		return vk_format_stencil_only(image->vk_format);
1196	case VK_IMAGE_ASPECT_DEPTH_BIT:
1197		return vk_format_depth_only(image->vk_format);
1198	case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
1199		return vk_format_depth_only(image->vk_format);
1200	default:
1201		return image->vk_format;
1202	}
1203}
1204
1205void
1206radv_image_view_init(struct radv_image_view *iview,
1207		     struct radv_device *device,
1208		     const VkImageViewCreateInfo* pCreateInfo)
1209{
1210	RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image);
1211	const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
1212
1213	switch (image->type) {
1214	case VK_IMAGE_TYPE_1D:
1215	case VK_IMAGE_TYPE_2D:
1216		assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->info.array_size);
1217		break;
1218	case VK_IMAGE_TYPE_3D:
1219		assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1
1220		       <= radv_minify(image->info.depth, range->baseMipLevel));
1221		break;
1222	default:
1223		unreachable("bad VkImageType");
1224	}
1225	iview->image = image;
1226	iview->bo = image->bo;
1227	iview->type = pCreateInfo->viewType;
1228	iview->plane_id = radv_plane_from_aspect(pCreateInfo->subresourceRange.aspectMask);
1229	iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
1230	iview->multiple_planes = vk_format_get_plane_count(image->vk_format) > 1 && iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT;
1231	iview->vk_format = pCreateInfo->format;
1232
1233	if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) {
1234		iview->vk_format = vk_format_stencil_only(iview->vk_format);
1235	} else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) {
1236		iview->vk_format = vk_format_depth_only(iview->vk_format);
1237	}
1238
1239	if (device->physical_device->rad_info.chip_class >= GFX9) {
1240		iview->extent = (VkExtent3D) {
1241			.width = image->info.width,
1242			.height = image->info.height,
1243			.depth = image->info.depth,
1244		};
1245	} else {
1246		iview->extent = (VkExtent3D) {
1247			.width  = radv_minify(image->info.width , range->baseMipLevel),
1248			.height = radv_minify(image->info.height, range->baseMipLevel),
1249			.depth  = radv_minify(image->info.depth , range->baseMipLevel),
1250		};
1251	}
1252
1253	if (iview->vk_format != image->planes[iview->plane_id].format) {
1254		unsigned view_bw = vk_format_get_blockwidth(iview->vk_format);
1255		unsigned view_bh = vk_format_get_blockheight(iview->vk_format);
1256		unsigned img_bw = vk_format_get_blockwidth(image->vk_format);
1257		unsigned img_bh = vk_format_get_blockheight(image->vk_format);
1258
1259		iview->extent.width = round_up_u32(iview->extent.width * view_bw, img_bw);
1260		iview->extent.height = round_up_u32(iview->extent.height * view_bh, img_bh);
1261
1262		/* Comment ported from amdvlk -
1263		 * If we have the following image:
1264		 *              Uncompressed pixels   Compressed block sizes (4x4)
1265		 *      mip0:       22 x 22                   6 x 6
1266		 *      mip1:       11 x 11                   3 x 3
1267		 *      mip2:        5 x  5                   2 x 2
1268		 *      mip3:        2 x  2                   1 x 1
1269		 *      mip4:        1 x  1                   1 x 1
1270		 *
1271		 * On GFX9 the descriptor is always programmed with the WIDTH and HEIGHT of the base level and the HW is
1272		 * calculating the degradation of the block sizes down the mip-chain as follows (straight-up
1273		 * divide-by-two integer math):
1274		 *      mip0:  6x6
1275		 *      mip1:  3x3
1276		 *      mip2:  1x1
1277		 *      mip3:  1x1
1278		 *
1279		 * This means that mip2 will be missing texels.
1280		 *
1281		 * Fix this by calculating the base mip's width and height, then convert that, and round it
1282		 * back up to get the level 0 size.
1283		 * Clamp the converted size between the original values, and next power of two, which
1284		 * means we don't oversize the image.
1285		 */
1286		 if (device->physical_device->rad_info.chip_class >= GFX9 &&
1287		     vk_format_is_compressed(image->vk_format) &&
1288		     !vk_format_is_compressed(iview->vk_format)) {
1289			 unsigned lvl_width  = radv_minify(image->info.width , range->baseMipLevel);
1290			 unsigned lvl_height = radv_minify(image->info.height, range->baseMipLevel);
1291
1292			 lvl_width = round_up_u32(lvl_width * view_bw, img_bw);
1293			 lvl_height = round_up_u32(lvl_height * view_bh, img_bh);
1294
1295			 lvl_width <<= range->baseMipLevel;
1296			 lvl_height <<= range->baseMipLevel;
1297
1298			 iview->extent.width = CLAMP(lvl_width, iview->extent.width, iview->image->planes[0].surface.u.gfx9.surf_pitch);
1299			 iview->extent.height = CLAMP(lvl_height, iview->extent.height, iview->image->planes[0].surface.u.gfx9.surf_height);
1300		 }
1301	}
1302
1303	iview->base_layer = range->baseArrayLayer;
1304	iview->layer_count = radv_get_layerCount(image, range);
1305	iview->base_mip = range->baseMipLevel;
1306	iview->level_count = radv_get_levelCount(image, range);
1307
1308	for (unsigned i = 0; i < (iview->multiple_planes ? vk_format_get_plane_count(image->vk_format) : 1); ++i) {
1309		VkFormat format = vk_format_get_plane_format(iview->vk_format, i);
1310		radv_image_view_make_descriptor(iview, device, format, &pCreateInfo->components, false, iview->plane_id + i, i);
1311		radv_image_view_make_descriptor(iview, device, format, &pCreateInfo->components, true, iview->plane_id + i, i);
1312	}
1313}
1314
1315bool radv_layout_has_htile(const struct radv_image *image,
1316                           VkImageLayout layout,
1317                           unsigned queue_mask)
1318{
1319	if (radv_image_is_tc_compat_htile(image))
1320		return layout != VK_IMAGE_LAYOUT_GENERAL;
1321
1322	return radv_image_has_htile(image) &&
1323	       (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
1324	        (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
1325	         queue_mask == (1u << RADV_QUEUE_GENERAL)));
1326}
1327
1328bool radv_layout_is_htile_compressed(const struct radv_image *image,
1329                                     VkImageLayout layout,
1330                                     unsigned queue_mask)
1331{
1332	if (radv_image_is_tc_compat_htile(image))
1333		return layout != VK_IMAGE_LAYOUT_GENERAL;
1334
1335	return radv_image_has_htile(image) &&
1336	       (layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
1337	        (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
1338	         queue_mask == (1u << RADV_QUEUE_GENERAL)));
1339}
1340
1341bool radv_layout_can_fast_clear(const struct radv_image *image,
1342			        VkImageLayout layout,
1343			        unsigned queue_mask)
1344{
1345	return layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
1346}
1347
1348bool radv_layout_dcc_compressed(const struct radv_image *image,
1349			        VkImageLayout layout,
1350			        unsigned queue_mask)
1351{
1352	/* Don't compress compute transfer dst, as image stores are not supported. */
1353	if (layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
1354	    (queue_mask & (1u << RADV_QUEUE_COMPUTE)))
1355		return false;
1356
1357	return radv_image_has_dcc(image) && layout != VK_IMAGE_LAYOUT_GENERAL;
1358}
1359
1360
1361unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family)
1362{
1363	if (!image->exclusive)
1364		return image->queue_family_mask;
1365	if (family == VK_QUEUE_FAMILY_EXTERNAL)
1366		return (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
1367	if (family == VK_QUEUE_FAMILY_IGNORED)
1368		return 1u << queue_family;
1369	return 1u << family;
1370}
1371
1372VkResult
1373radv_CreateImage(VkDevice device,
1374		 const VkImageCreateInfo *pCreateInfo,
1375		 const VkAllocationCallbacks *pAllocator,
1376		 VkImage *pImage)
1377{
1378#ifdef ANDROID
1379	const VkNativeBufferANDROID *gralloc_info =
1380		vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
1381
1382	if (gralloc_info)
1383		return radv_image_from_gralloc(device, pCreateInfo, gralloc_info,
1384		                              pAllocator, pImage);
1385#endif
1386
1387	const struct wsi_image_create_info *wsi_info =
1388		vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA);
1389	bool scanout = wsi_info && wsi_info->scanout;
1390
1391	return radv_image_create(device,
1392				 &(struct radv_image_create_info) {
1393					 .vk_info = pCreateInfo,
1394					 .scanout = scanout,
1395				 },
1396				 pAllocator,
1397				 pImage);
1398}
1399
1400void
1401radv_DestroyImage(VkDevice _device, VkImage _image,
1402		  const VkAllocationCallbacks *pAllocator)
1403{
1404	RADV_FROM_HANDLE(radv_device, device, _device);
1405	RADV_FROM_HANDLE(radv_image, image, _image);
1406
1407	if (!image)
1408		return;
1409
1410	if (image->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)
1411		device->ws->buffer_destroy(image->bo);
1412
1413	if (image->owned_memory != VK_NULL_HANDLE)
1414		radv_FreeMemory(_device, image->owned_memory, pAllocator);
1415
1416	vk_free2(&device->alloc, pAllocator, image);
1417}
1418
1419void radv_GetImageSubresourceLayout(
1420	VkDevice                                    _device,
1421	VkImage                                     _image,
1422	const VkImageSubresource*                   pSubresource,
1423	VkSubresourceLayout*                        pLayout)
1424{
1425	RADV_FROM_HANDLE(radv_image, image, _image);
1426	RADV_FROM_HANDLE(radv_device, device, _device);
1427	int level = pSubresource->mipLevel;
1428	int layer = pSubresource->arrayLayer;
1429
1430	unsigned plane_id = radv_plane_from_aspect(pSubresource->aspectMask);
1431
1432	struct radv_image_plane *plane = &image->planes[plane_id];
1433	struct radeon_surf *surface = &plane->surface;
1434
1435	if (device->physical_device->rad_info.chip_class >= GFX9) {
1436		pLayout->offset = plane->offset + surface->u.gfx9.offset[level] + surface->u.gfx9.surf_slice_size * layer;
1437		pLayout->rowPitch = surface->u.gfx9.surf_pitch * surface->bpe;
1438		pLayout->arrayPitch = surface->u.gfx9.surf_slice_size;
1439		pLayout->depthPitch = surface->u.gfx9.surf_slice_size;
1440		pLayout->size = surface->u.gfx9.surf_slice_size;
1441		if (image->type == VK_IMAGE_TYPE_3D)
1442			pLayout->size *= u_minify(image->info.depth, level);
1443	} else {
1444		pLayout->offset = plane->offset + surface->u.legacy.level[level].offset + (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4 * layer;
1445		pLayout->rowPitch = surface->u.legacy.level[level].nblk_x * surface->bpe;
1446		pLayout->arrayPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1447		pLayout->depthPitch = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1448		pLayout->size = (uint64_t)surface->u.legacy.level[level].slice_size_dw * 4;
1449		if (image->type == VK_IMAGE_TYPE_3D)
1450			pLayout->size *= u_minify(image->info.depth, level);
1451	}
1452}
1453
1454
1455VkResult
1456radv_CreateImageView(VkDevice _device,
1457		     const VkImageViewCreateInfo *pCreateInfo,
1458		     const VkAllocationCallbacks *pAllocator,
1459		     VkImageView *pView)
1460{
1461	RADV_FROM_HANDLE(radv_device, device, _device);
1462	struct radv_image_view *view;
1463
1464	view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1465			   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1466	if (view == NULL)
1467		return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1468
1469	radv_image_view_init(view, device, pCreateInfo);
1470
1471	*pView = radv_image_view_to_handle(view);
1472
1473	return VK_SUCCESS;
1474}
1475
1476void
1477radv_DestroyImageView(VkDevice _device, VkImageView _iview,
1478		      const VkAllocationCallbacks *pAllocator)
1479{
1480	RADV_FROM_HANDLE(radv_device, device, _device);
1481	RADV_FROM_HANDLE(radv_image_view, iview, _iview);
1482
1483	if (!iview)
1484		return;
1485	vk_free2(&device->alloc, pAllocator, iview);
1486}
1487
1488void radv_buffer_view_init(struct radv_buffer_view *view,
1489			   struct radv_device *device,
1490			   const VkBufferViewCreateInfo* pCreateInfo)
1491{
1492	RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer);
1493
1494	view->bo = buffer->bo;
1495	view->range = pCreateInfo->range == VK_WHOLE_SIZE ?
1496		buffer->size - pCreateInfo->offset : pCreateInfo->range;
1497	view->vk_format = pCreateInfo->format;
1498
1499	radv_make_buffer_descriptor(device, buffer, view->vk_format,
1500				    pCreateInfo->offset, view->range, view->state);
1501}
1502
1503VkResult
1504radv_CreateBufferView(VkDevice _device,
1505		      const VkBufferViewCreateInfo *pCreateInfo,
1506		      const VkAllocationCallbacks *pAllocator,
1507		      VkBufferView *pView)
1508{
1509	RADV_FROM_HANDLE(radv_device, device, _device);
1510	struct radv_buffer_view *view;
1511
1512	view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
1513			   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1514	if (!view)
1515		return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1516
1517	radv_buffer_view_init(view, device, pCreateInfo);
1518
1519	*pView = radv_buffer_view_to_handle(view);
1520
1521	return VK_SUCCESS;
1522}
1523
1524void
1525radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
1526		       const VkAllocationCallbacks *pAllocator)
1527{
1528	RADV_FROM_HANDLE(radv_device, device, _device);
1529	RADV_FROM_HANDLE(radv_buffer_view, view, bufferView);
1530
1531	if (!view)
1532		return;
1533
1534	vk_free2(&device->alloc, pAllocator, view);
1535}
1536