1/*
2 * Copyright © 2010 Luca Barbieri
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file lower_jumps.cpp
26 *
27 * This pass lowers jumps (break, continue, and return) to if/else structures.
28 *
29 * It can be asked to:
30 * 1. Pull jumps out of ifs where possible
31 * 2. Remove all "continue"s, replacing them with an "execute flag"
32 * 3. Replace all "break" with a single conditional one at the end of the loop
33 * 4. Replace all "return"s with a single return at the end of the function,
34 *    for the main function and/or other functions
35 *
36 * Applying this pass gives several benefits:
37 * 1. All functions can be inlined.
38 * 2. nv40 and other pre-DX10 chips without "continue" can be supported
39 * 3. nv30 and other pre-DX10 chips with no control flow at all are better
40 *    supported
41 *
42 * Continues are lowered by adding a per-loop "execute flag", initialized to
43 * true, that when cleared inhibits all execution until the end of the loop.
44 *
45 * Breaks are lowered to continues, plus setting a "break flag" that is checked
46 * at the end of the loop, and trigger the unique "break".
47 *
48 * Returns are lowered to breaks/continues, plus adding a "return flag" that
49 * causes loops to break again out of their enclosing loops until all the
50 * loops are exited: then the "execute flag" logic will ignore everything
51 * until the end of the function.
52 *
53 * Note that "continue" and "return" can also be implemented by adding
54 * a dummy loop and using break.
55 * However, this is bad for hardware with limited nesting depth, and
56 * prevents further optimization, and thus is not currently performed.
57 */
58
59#include "compiler/glsl_types.h"
60#include <string.h>
61#include "ir.h"
62
63/**
64 * Enum recording the result of analyzing how control flow might exit
65 * an IR node.
66 *
67 * Each possible value of jump_strength indicates a strictly stronger
68 * guarantee on control flow than the previous value.
69 *
70 * The ordering of strengths roughly reflects the way jumps are
71 * lowered: jumps with higher strength tend to be lowered to jumps of
72 * lower strength.  Accordingly, strength is used as a heuristic to
73 * determine which lowering to perform first.
74 *
75 * This enum is also used by get_jump_strength() to categorize
76 * instructions as either break, continue, return, or other.  When
77 * used in this fashion, strength_always_clears_execute_flag is not
78 * used.
79 *
80 * The control flow analysis made by this optimization pass makes two
81 * simplifying assumptions:
82 *
83 * - It ignores discard instructions, since they are lowered by a
84 *   separate pass (lower_discard.cpp).
85 *
86 * - It assumes it is always possible for control to flow from a loop
87 *   to the instruction immediately following it.  Technically, this
88 *   is not true (since all execution paths through the loop might
89 *   jump back to the top, or return from the function).
90 *
91 * Both of these simplifying assumtions are safe, since they can never
92 * cause reachable code to be incorrectly classified as unreachable;
93 * they can only do the opposite.
94 */
95enum jump_strength
96{
97   /**
98    * Analysis has produced no guarantee on how control flow might
99    * exit this IR node.  It might fall out the bottom (with or
100    * without clearing the execute flag, if present), or it might
101    * continue to the top of the innermost enclosing loop, break out
102    * of it, or return from the function.
103    */
104   strength_none,
105
106   /**
107    * The only way control can fall out the bottom of this node is
108    * through a code path that clears the execute flag.  It might also
109    * continue to the top of the innermost enclosing loop, break out
110    * of it, or return from the function.
111    */
112   strength_always_clears_execute_flag,
113
114   /**
115    * Control cannot fall out the bottom of this node.  It might
116    * continue to the top of the innermost enclosing loop, break out
117    * of it, or return from the function.
118    */
119   strength_continue,
120
121   /**
122    * Control cannot fall out the bottom of this node, or continue the
123    * top of the innermost enclosing loop.  It can only break out of
124    * it or return from the function.
125    */
126   strength_break,
127
128   /**
129    * Control cannot fall out the bottom of this node, continue to the
130    * top of the innermost enclosing loop, or break out of it.  It can
131    * only return from the function.
132    */
133   strength_return
134};
135
136namespace {
137
138struct block_record
139{
140   /* minimum jump strength (of lowered IR, not pre-lowering IR)
141    *
142    * If the block ends with a jump, must be the strength of the jump.
143    * Otherwise, the jump would be dead and have been deleted before)
144    *
145    * If the block doesn't end with a jump, it can be different than strength_none if all paths before it lead to some jump
146    * (e.g. an if with a return in one branch, and a break in the other, while not lowering them)
147    * Note that identical jumps are usually unified though.
148    */
149   jump_strength min_strength;
150
151   /* can anything clear the execute flag? */
152   bool may_clear_execute_flag;
153
154   block_record()
155   {
156      this->min_strength = strength_none;
157      this->may_clear_execute_flag = false;
158   }
159};
160
161struct loop_record
162{
163   ir_function_signature* signature;
164   ir_loop* loop;
165
166   /* used to avoid lowering the break used to represent lowered breaks */
167   unsigned nesting_depth;
168   bool in_if_at_the_end_of_the_loop;
169
170   bool may_set_return_flag;
171
172   ir_variable* break_flag;
173   ir_variable* execute_flag; /* cleared to emulate continue */
174
175   loop_record(ir_function_signature* p_signature = 0, ir_loop* p_loop = 0)
176   {
177      this->signature = p_signature;
178      this->loop = p_loop;
179      this->nesting_depth = 0;
180      this->in_if_at_the_end_of_the_loop = false;
181      this->may_set_return_flag = false;
182      this->break_flag = 0;
183      this->execute_flag = 0;
184   }
185
186   ir_variable* get_execute_flag()
187   {
188      /* also supported for the "function loop" */
189      if(!this->execute_flag) {
190         exec_list& list = this->loop ? this->loop->body_instructions : signature->body;
191         this->execute_flag = new(this->signature) ir_variable(glsl_type::bool_type, "execute_flag", ir_var_temporary);
192         list.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(execute_flag), new(this->signature) ir_constant(true)));
193         list.push_head(this->execute_flag);
194      }
195      return this->execute_flag;
196   }
197
198   ir_variable* get_break_flag()
199   {
200      assert(this->loop);
201      if(!this->break_flag) {
202         this->break_flag = new(this->signature) ir_variable(glsl_type::bool_type, "break_flag", ir_var_temporary);
203         this->loop->insert_before(this->break_flag);
204         this->loop->insert_before(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(break_flag), new(this->signature) ir_constant(false)));
205      }
206      return this->break_flag;
207   }
208};
209
210struct function_record
211{
212   ir_function_signature* signature;
213   ir_variable* return_flag; /* used to break out of all loops and then jump to the return instruction */
214   ir_variable* return_value;
215   bool lower_return;
216   unsigned nesting_depth;
217
218   function_record(ir_function_signature* p_signature = 0,
219                   bool lower_return = false)
220   {
221      this->signature = p_signature;
222      this->return_flag = 0;
223      this->return_value = 0;
224      this->nesting_depth = 0;
225      this->lower_return = lower_return;
226   }
227
228   ir_variable* get_return_flag()
229   {
230      if(!this->return_flag) {
231         this->return_flag = new(this->signature) ir_variable(glsl_type::bool_type, "return_flag", ir_var_temporary);
232         this->signature->body.push_head(new(this->signature) ir_assignment(new(this->signature) ir_dereference_variable(return_flag), new(this->signature) ir_constant(false)));
233         this->signature->body.push_head(this->return_flag);
234      }
235      return this->return_flag;
236   }
237
238   ir_variable* get_return_value()
239   {
240      if(!this->return_value) {
241         assert(!this->signature->return_type->is_void());
242         return_value = new(this->signature) ir_variable(this->signature->return_type, "return_value", ir_var_temporary);
243         this->signature->body.push_head(this->return_value);
244      }
245      return this->return_value;
246   }
247};
248
249struct ir_lower_jumps_visitor : public ir_control_flow_visitor {
250   /* Postconditions: on exit of any visit() function:
251    *
252    * ANALYSIS: this->block.min_strength,
253    * this->block.may_clear_execute_flag, and
254    * this->loop.may_set_return_flag are updated to reflect the
255    * characteristics of the visited statement.
256    *
257    * DEAD_CODE_ELIMINATION: If this->block.min_strength is not
258    * strength_none, the visited node is at the end of its exec_list.
259    * In other words, any unreachable statements that follow the
260    * visited statement in its exec_list have been removed.
261    *
262    * CONTAINED_JUMPS_LOWERED: If the visited statement contains other
263    * statements, then should_lower_jump() is false for all of the
264    * return, break, or continue statements it contains.
265    *
266    * Note that visiting a jump does not lower it.  That is the
267    * responsibility of the statement (or function signature) that
268    * contains the jump.
269    */
270
271   bool progress;
272
273   struct function_record function;
274   struct loop_record loop;
275   struct block_record block;
276
277   bool pull_out_jumps;
278   bool lower_continue;
279   bool lower_break;
280   bool lower_sub_return;
281   bool lower_main_return;
282
283   ir_lower_jumps_visitor()
284      : progress(false),
285        pull_out_jumps(false),
286        lower_continue(false),
287        lower_break(false),
288        lower_sub_return(false),
289        lower_main_return(false)
290   {
291   }
292
293   void truncate_after_instruction(exec_node *ir)
294   {
295      if (!ir)
296         return;
297
298      while (!ir->get_next()->is_tail_sentinel()) {
299         ((ir_instruction *)ir->get_next())->remove();
300         this->progress = true;
301      }
302   }
303
304   void move_outer_block_inside(ir_instruction *ir, exec_list *inner_block)
305   {
306      while (!ir->get_next()->is_tail_sentinel()) {
307         ir_instruction *move_ir = (ir_instruction *)ir->get_next();
308
309         move_ir->remove();
310         inner_block->push_tail(move_ir);
311      }
312   }
313
314   /**
315    * Insert the instructions necessary to lower a return statement,
316    * before the given return instruction.
317    */
318   void insert_lowered_return(ir_return *ir)
319   {
320      ir_variable* return_flag = this->function.get_return_flag();
321      if(!this->function.signature->return_type->is_void()) {
322         ir_variable* return_value = this->function.get_return_value();
323         ir->insert_before(
324            new(ir) ir_assignment(
325               new (ir) ir_dereference_variable(return_value),
326               ir->value));
327      }
328      ir->insert_before(
329         new(ir) ir_assignment(
330            new (ir) ir_dereference_variable(return_flag),
331            new (ir) ir_constant(true)));
332      this->loop.may_set_return_flag = true;
333   }
334
335   /**
336    * If the given instruction is a return, lower it to instructions
337    * that store the return value (if there is one), set the return
338    * flag, and then break.
339    *
340    * It is safe to pass NULL to this function.
341    */
342   void lower_return_unconditionally(ir_instruction *ir)
343   {
344      if (get_jump_strength(ir) != strength_return) {
345         return;
346      }
347      insert_lowered_return((ir_return*)ir);
348      ir->replace_with(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
349   }
350
351   /**
352    * Create the necessary instruction to replace a break instruction.
353    */
354   ir_instruction *create_lowered_break()
355   {
356      void *ctx = this->function.signature;
357      return new(ctx) ir_assignment(
358          new(ctx) ir_dereference_variable(this->loop.get_break_flag()),
359          new(ctx) ir_constant(true));
360   }
361
362   /**
363    * If the given instruction is a break, lower it to an instruction
364    * that sets the break flag, without consulting
365    * should_lower_jump().
366    *
367    * It is safe to pass NULL to this function.
368    */
369   void lower_break_unconditionally(ir_instruction *ir)
370   {
371      if (get_jump_strength(ir) != strength_break) {
372         return;
373      }
374      ir->replace_with(create_lowered_break());
375   }
376
377   /**
378    * If the block ends in a conditional or unconditional break, lower
379    * it, even though should_lower_jump() says it needn't be lowered.
380    */
381   void lower_final_breaks(exec_list *block)
382   {
383      ir_instruction *ir = (ir_instruction *) block->get_tail();
384      lower_break_unconditionally(ir);
385      ir_if *ir_if = ir->as_if();
386      if (ir_if) {
387          lower_break_unconditionally(
388              (ir_instruction *) ir_if->then_instructions.get_tail());
389          lower_break_unconditionally(
390              (ir_instruction *) ir_if->else_instructions.get_tail());
391      }
392   }
393
394   virtual void visit(class ir_loop_jump * ir)
395   {
396      /* Eliminate all instructions after each one, since they are
397       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
398       * postcondition.
399       */
400      truncate_after_instruction(ir);
401
402      /* Set this->block.min_strength based on this instruction.  This
403       * satisfies the ANALYSIS postcondition.  It is not necessary to
404       * update this->block.may_clear_execute_flag or
405       * this->loop.may_set_return_flag, because an unlowered jump
406       * instruction can't change any flags.
407       */
408      this->block.min_strength = ir->is_break() ? strength_break : strength_continue;
409
410      /* The CONTAINED_JUMPS_LOWERED postcondition is already
411       * satisfied, because jump statements can't contain other
412       * statements.
413       */
414   }
415
416   virtual void visit(class ir_return * ir)
417   {
418      /* Eliminate all instructions after each one, since they are
419       * unreachable.  This satisfies the DEAD_CODE_ELIMINATION
420       * postcondition.
421       */
422      truncate_after_instruction(ir);
423
424      /* Set this->block.min_strength based on this instruction.  This
425       * satisfies the ANALYSIS postcondition.  It is not necessary to
426       * update this->block.may_clear_execute_flag or
427       * this->loop.may_set_return_flag, because an unlowered return
428       * instruction can't change any flags.
429       */
430      this->block.min_strength = strength_return;
431
432      /* The CONTAINED_JUMPS_LOWERED postcondition is already
433       * satisfied, because jump statements can't contain other
434       * statements.
435       */
436   }
437
438   virtual void visit(class ir_discard * ir)
439   {
440      /* Nothing needs to be done.  The ANALYSIS and
441       * DEAD_CODE_ELIMINATION postconditions are already satisfied,
442       * because discard statements are ignored by this optimization
443       * pass.  The CONTAINED_JUMPS_LOWERED postcondition is already
444       * satisfied, because discard statements can't contain other
445       * statements.
446       */
447      (void) ir;
448   }
449
450   enum jump_strength get_jump_strength(ir_instruction* ir)
451   {
452      if(!ir)
453         return strength_none;
454      else if(ir->ir_type == ir_type_loop_jump) {
455         if(((ir_loop_jump*)ir)->is_break())
456            return strength_break;
457         else
458            return strength_continue;
459      } else if(ir->ir_type == ir_type_return)
460         return strength_return;
461      else
462         return strength_none;
463   }
464
465   bool should_lower_jump(ir_jump* ir)
466   {
467      unsigned strength = get_jump_strength(ir);
468      bool lower;
469      switch(strength)
470      {
471      case strength_none:
472         lower = false; /* don't change this, code relies on it */
473         break;
474      case strength_continue:
475         lower = lower_continue;
476         break;
477      case strength_break:
478         assert(this->loop.loop);
479         /* never lower "canonical break" */
480         if(ir->get_next()->is_tail_sentinel() && (this->loop.nesting_depth == 0
481               || (this->loop.nesting_depth == 1 && this->loop.in_if_at_the_end_of_the_loop)))
482            lower = false;
483         else
484            lower = lower_break;
485         break;
486      case strength_return:
487         /* never lower return at the end of a this->function */
488         if(this->function.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
489            lower = false;
490         else
491            lower = this->function.lower_return;
492         break;
493      }
494      return lower;
495   }
496
497   block_record visit_block(exec_list* list)
498   {
499      /* Note: since visiting a node may change that node's next
500       * pointer, we can't use visit_exec_list(), because
501       * visit_exec_list() caches the node's next pointer before
502       * visiting it.  So we use foreach_in_list() instead.
503       *
504       * foreach_in_list() isn't safe if the node being visited gets
505       * removed, but fortunately this visitor doesn't do that.
506       */
507
508      block_record saved_block = this->block;
509      this->block = block_record();
510      foreach_in_list(ir_instruction, node, list) {
511         node->accept(this);
512      }
513      block_record ret = this->block;
514      this->block = saved_block;
515      return ret;
516   }
517
518   virtual void visit(ir_if *ir)
519   {
520      if(this->loop.nesting_depth == 0 && ir->get_next()->is_tail_sentinel())
521         this->loop.in_if_at_the_end_of_the_loop = true;
522
523      ++this->function.nesting_depth;
524      ++this->loop.nesting_depth;
525
526      block_record block_records[2];
527      ir_jump* jumps[2];
528
529      /* Recursively lower nested jumps.  This satisfies the
530       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
531       * unconditional jumps at the end of ir->then_instructions and
532       * ir->else_instructions, which are handled below.
533       */
534      block_records[0] = visit_block(&ir->then_instructions);
535      block_records[1] = visit_block(&ir->else_instructions);
536
537retry: /* we get here if we put code after the if inside a branch */
538
539      /* Determine which of ir->then_instructions and
540       * ir->else_instructions end with an unconditional jump.
541       */
542      for(unsigned i = 0; i < 2; ++i) {
543         exec_list& list = i ? ir->else_instructions : ir->then_instructions;
544         jumps[i] = 0;
545         if(!list.is_empty() && get_jump_strength((ir_instruction*)list.get_tail()))
546            jumps[i] = (ir_jump*)list.get_tail();
547      }
548
549      /* Loop until we have satisfied the CONTAINED_JUMPS_LOWERED
550       * postcondition by lowering jumps in both then_instructions and
551       * else_instructions.
552       */
553      for(;;) {
554         /* Determine the types of the jumps that terminate
555          * ir->then_instructions and ir->else_instructions.
556          */
557         jump_strength jump_strengths[2];
558
559         for(unsigned i = 0; i < 2; ++i) {
560            if(jumps[i]) {
561               jump_strengths[i] = block_records[i].min_strength;
562               assert(jump_strengths[i] == get_jump_strength(jumps[i]));
563            } else
564               jump_strengths[i] = strength_none;
565         }
566
567         /* If both code paths end in a jump, and the jumps are the
568          * same, and we are pulling out jumps, replace them with a
569          * single jump that comes after the if instruction.  The new
570          * jump will be visited next, and it will be lowered if
571          * necessary by the loop or conditional that encloses it.
572          */
573         if(pull_out_jumps && jump_strengths[0] == jump_strengths[1]) {
574            bool unify = true;
575            if(jump_strengths[0] == strength_continue)
576               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_continue));
577            else if(jump_strengths[0] == strength_break)
578               ir->insert_after(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
579            /* FINISHME: unify returns with identical expressions */
580            else if(jump_strengths[0] == strength_return && this->function.signature->return_type->is_void())
581               ir->insert_after(new(ir) ir_return(NULL));
582	    else
583	       unify = false;
584
585            if(unify) {
586               jumps[0]->remove();
587               jumps[1]->remove();
588               this->progress = true;
589
590               /* Update jumps[] to reflect the fact that the jumps
591                * are gone, and update block_records[] to reflect the
592                * fact that control can now flow to the next
593                * instruction.
594                */
595               jumps[0] = 0;
596               jumps[1] = 0;
597               block_records[0].min_strength = strength_none;
598               block_records[1].min_strength = strength_none;
599
600               /* The CONTAINED_JUMPS_LOWERED postcondition is now
601                * satisfied, so we can break out of the loop.
602                */
603               break;
604            }
605         }
606
607         /* lower a jump: if both need to lowered, start with the strongest one, so that
608          * we might later unify the lowered version with the other one
609          */
610         bool should_lower[2];
611         for(unsigned i = 0; i < 2; ++i)
612            should_lower[i] = should_lower_jump(jumps[i]);
613
614         int lower;
615         if(should_lower[1] && should_lower[0])
616            lower = jump_strengths[1] > jump_strengths[0];
617         else if(should_lower[0])
618            lower = 0;
619         else if(should_lower[1])
620            lower = 1;
621         else
622            /* Neither code path ends in a jump that needs to be
623             * lowered, so the CONTAINED_JUMPS_LOWERED postcondition
624             * is satisfied and we can break out of the loop.
625             */
626            break;
627
628         if(jump_strengths[lower] == strength_return) {
629            /* To lower a return, we create a return flag (if the
630             * function doesn't have one already) and add instructions
631             * that: 1. store the return value (if this function has a
632             * non-void return) and 2. set the return flag
633             */
634            insert_lowered_return((ir_return*)jumps[lower]);
635            if(this->loop.loop) {
636               /* If we are in a loop, replace the return instruction
637                * with a break instruction, and then loop so that the
638                * break instruction can be lowered if necessary.
639                */
640               ir_loop_jump* lowered = 0;
641               lowered = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
642               /* Note: we must update block_records and jumps to
643                * reflect the fact that the control path has been
644                * altered from a return to a break.
645                */
646               block_records[lower].min_strength = strength_break;
647               jumps[lower]->replace_with(lowered);
648               jumps[lower] = lowered;
649            } else {
650               /* If we are not in a loop, we then proceed as we would
651                * for a continue statement (set the execute flag to
652                * false to prevent the rest of the function from
653                * executing).
654                */
655               goto lower_continue;
656            }
657            this->progress = true;
658         } else if(jump_strengths[lower] == strength_break) {
659            /* To lower a break, we create a break flag (if the loop
660             * doesn't have one already) and add an instruction that
661             * sets it.
662             *
663             * Then we proceed as we would for a continue statement
664             * (set the execute flag to false to prevent the rest of
665             * the loop body from executing).
666             *
667             * The visit() function for the loop will ensure that the
668             * break flag is checked after executing the loop body.
669             */
670            jumps[lower]->insert_before(create_lowered_break());
671            goto lower_continue;
672         } else if(jump_strengths[lower] == strength_continue) {
673lower_continue:
674            /* To lower a continue, we create an execute flag (if the
675             * loop doesn't have one already) and replace the continue
676             * with an instruction that clears it.
677             *
678             * Note that this code path gets exercised when lowering
679             * return statements that are not inside a loop, so
680             * this->loop must be initialized even outside of loops.
681             */
682            ir_variable* execute_flag = this->loop.get_execute_flag();
683            jumps[lower]->replace_with(new(ir) ir_assignment(new (ir) ir_dereference_variable(execute_flag), new (ir) ir_constant(false)));
684            /* Note: we must update block_records and jumps to reflect
685             * the fact that the control path has been altered to an
686             * instruction that clears the execute flag.
687             */
688            jumps[lower] = 0;
689            block_records[lower].min_strength = strength_always_clears_execute_flag;
690            block_records[lower].may_clear_execute_flag = true;
691            this->progress = true;
692
693            /* Let the loop run again, in case the other branch of the
694             * if needs to be lowered too.
695             */
696         }
697      }
698
699      /* move out a jump out if possible */
700      if(pull_out_jumps) {
701         /* If one of the branches ends in a jump, and control cannot
702          * fall out the bottom of the other branch, then we can move
703          * the jump after the if.
704          *
705          * Set move_out to the branch we are moving a jump out of.
706          */
707         int move_out = -1;
708         if(jumps[0] && block_records[1].min_strength >= strength_continue)
709            move_out = 0;
710         else if(jumps[1] && block_records[0].min_strength >= strength_continue)
711            move_out = 1;
712
713         if(move_out >= 0)
714         {
715            jumps[move_out]->remove();
716            ir->insert_after(jumps[move_out]);
717            /* Note: we must update block_records and jumps to reflect
718             * the fact that the jump has been moved out of the if.
719             */
720            jumps[move_out] = 0;
721            block_records[move_out].min_strength = strength_none;
722            this->progress = true;
723         }
724      }
725
726      /* Now satisfy the ANALYSIS postcondition by setting
727       * this->block.min_strength and
728       * this->block.may_clear_execute_flag based on the
729       * characteristics of the two branches.
730       */
731      if(block_records[0].min_strength < block_records[1].min_strength)
732         this->block.min_strength = block_records[0].min_strength;
733      else
734         this->block.min_strength = block_records[1].min_strength;
735      this->block.may_clear_execute_flag = this->block.may_clear_execute_flag || block_records[0].may_clear_execute_flag || block_records[1].may_clear_execute_flag;
736
737      /* Now we need to clean up the instructions that follow the
738       * if.
739       *
740       * If those instructions are unreachable, then satisfy the
741       * DEAD_CODE_ELIMINATION postcondition by eliminating them.
742       * Otherwise that postcondition is already satisfied.
743       */
744      if(this->block.min_strength)
745         truncate_after_instruction(ir);
746      else if(this->block.may_clear_execute_flag)
747      {
748         /* If the "if" instruction might clear the execute flag, then
749          * we need to guard any instructions that follow so that they
750          * are only executed if the execute flag is set.
751          *
752          * If one of the branches of the "if" always clears the
753          * execute flag, and the other branch never clears it, then
754          * this is easy: just move all the instructions following the
755          * "if" into the branch that never clears it.
756          */
757         int move_into = -1;
758         if(block_records[0].min_strength && !block_records[1].may_clear_execute_flag)
759            move_into = 1;
760         else if(block_records[1].min_strength && !block_records[0].may_clear_execute_flag)
761            move_into = 0;
762
763         if(move_into >= 0) {
764            assert(!block_records[move_into].min_strength && !block_records[move_into].may_clear_execute_flag); /* otherwise, we just truncated */
765
766            exec_list* list = move_into ? &ir->else_instructions : &ir->then_instructions;
767            exec_node* next = ir->get_next();
768            if(!next->is_tail_sentinel()) {
769               move_outer_block_inside(ir, list);
770
771               /* If any instructions moved, then we need to visit
772                * them (since they are now inside the "if").  Since
773                * block_records[move_into] is in its default state
774                * (see assertion above), we can safely replace
775                * block_records[move_into] with the result of this
776                * analysis.
777                */
778               exec_list list;
779               list.head_sentinel.next = next;
780               block_records[move_into] = visit_block(&list);
781
782               /*
783                * Then we need to re-start our jump lowering, since one
784                * of the instructions we moved might be a jump that
785                * needs to be lowered.
786                */
787               this->progress = true;
788               goto retry;
789            }
790         } else {
791            /* If we get here, then the simple case didn't apply; we
792             * need to actually guard the instructions that follow.
793             *
794             * To avoid creating unnecessarily-deep nesting, first
795             * look through the instructions that follow and unwrap
796             * any instructions that that are already wrapped in the
797             * appropriate guard.
798             */
799            ir_instruction* ir_after;
800            for(ir_after = (ir_instruction*)ir->get_next(); !ir_after->is_tail_sentinel();)
801            {
802               ir_if* ir_if = ir_after->as_if();
803               if(ir_if && ir_if->else_instructions.is_empty()) {
804                  ir_dereference_variable* ir_if_cond_deref = ir_if->condition->as_dereference_variable();
805                  if(ir_if_cond_deref && ir_if_cond_deref->var == this->loop.execute_flag) {
806                     ir_instruction* ir_next = (ir_instruction*)ir_after->get_next();
807                     ir_after->insert_before(&ir_if->then_instructions);
808                     ir_after->remove();
809                     ir_after = ir_next;
810                     continue;
811                  }
812               }
813               ir_after = (ir_instruction*)ir_after->get_next();
814
815               /* only set this if we find any unprotected instruction */
816               this->progress = true;
817            }
818
819            /* Then, wrap all the instructions that follow in a single
820             * guard.
821             */
822            if(!ir->get_next()->is_tail_sentinel()) {
823               assert(this->loop.execute_flag);
824               ir_if* if_execute = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.execute_flag));
825               move_outer_block_inside(ir, &if_execute->then_instructions);
826               ir->insert_after(if_execute);
827            }
828         }
829      }
830      --this->loop.nesting_depth;
831      --this->function.nesting_depth;
832   }
833
834   virtual void visit(ir_loop *ir)
835   {
836      /* Visit the body of the loop, with a fresh data structure in
837       * this->loop so that the analysis we do here won't bleed into
838       * enclosing loops.
839       *
840       * We assume that all code after a loop is reachable from the
841       * loop (see comments on enum jump_strength), so the
842       * DEAD_CODE_ELIMINATION postcondition is automatically
843       * satisfied, as is the block.min_strength portion of the
844       * ANALYSIS postcondition.
845       *
846       * The block.may_clear_execute_flag portion of the ANALYSIS
847       * postcondition is automatically satisfied because execute
848       * flags do not propagate outside of loops.
849       *
850       * The loop.may_set_return_flag portion of the ANALYSIS
851       * postcondition is handled below.
852       */
853      ++this->function.nesting_depth;
854      loop_record saved_loop = this->loop;
855      this->loop = loop_record(this->function.signature, ir);
856
857      /* Recursively lower nested jumps.  This satisfies the
858       * CONTAINED_JUMPS_LOWERED postcondition, except in the case of
859       * an unconditional continue or return at the bottom of the
860       * loop, which are handled below.
861       */
862      block_record body = visit_block(&ir->body_instructions);
863
864      /* If the loop ends in an unconditional continue, eliminate it
865       * because it is redundant.
866       */
867      ir_instruction *ir_last
868         = (ir_instruction *) ir->body_instructions.get_tail();
869      if (get_jump_strength(ir_last) == strength_continue) {
870         ir_last->remove();
871      }
872
873      /* If the loop ends in an unconditional return, and we are
874       * lowering returns, lower it.
875       */
876      if (this->function.lower_return)
877         lower_return_unconditionally(ir_last);
878
879      if(body.min_strength >= strength_break) {
880         /* FINISHME: If the min_strength of the loop body is
881          * strength_break or strength_return, that means that it
882          * isn't a loop at all, since control flow always leaves the
883          * body of the loop via break or return.  In principle the
884          * loop could be eliminated in this case.  This optimization
885          * is not implemented yet.
886          */
887      }
888
889      if(this->loop.break_flag) {
890         /* We only get here if we are lowering breaks */
891         assert (lower_break);
892
893         /* If a break flag was generated while visiting the body of
894          * the loop, then at least one break was lowered, so we need
895          * to generate an if statement at the end of the loop that
896          * does a "break" if the break flag is set.  The break we
897          * generate won't violate the CONTAINED_JUMPS_LOWERED
898          * postcondition, because should_lower_jump() always returns
899          * false for a break that happens at the end of a loop.
900          *
901          * However, if the loop already ends in a conditional or
902          * unconditional break, then we need to lower that break,
903          * because it won't be at the end of the loop anymore.
904          */
905         lower_final_breaks(&ir->body_instructions);
906
907         ir_if* break_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->loop.break_flag));
908         break_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
909         ir->body_instructions.push_tail(break_if);
910      }
911
912      /* If the body of the loop may set the return flag, then at
913       * least one return was lowered to a break, so we need to ensure
914       * that the return flag is checked after the body of the loop is
915       * executed.
916       */
917      if(this->loop.may_set_return_flag) {
918         assert(this->function.return_flag);
919         /* Generate the if statement to check the return flag */
920         ir_if* return_if = new(ir) ir_if(new(ir) ir_dereference_variable(this->function.return_flag));
921         /* Note: we also need to propagate the knowledge that the
922          * return flag may get set to the outer context.  This
923          * satisfies the loop.may_set_return_flag part of the
924          * ANALYSIS postcondition.
925          */
926         saved_loop.may_set_return_flag = true;
927         if(saved_loop.loop)
928            /* If this loop is nested inside another one, then the if
929             * statement that we generated should break out of that
930             * loop if the return flag is set.  Caller will lower that
931             * break statement if necessary.
932             */
933            return_if->then_instructions.push_tail(new(ir) ir_loop_jump(ir_loop_jump::jump_break));
934         else {
935            /* Otherwise, ensure that the instructions that follow are only
936             * executed if the return flag is clear.  We can do that by moving
937             * those instructions into the else clause of the generated if
938             * statement.
939             */
940            move_outer_block_inside(ir, &return_if->else_instructions);
941
942            /* In case the loop is embedded inside an if add a new return to
943             * the return flag then branch and let a future pass tidy it up.
944             */
945            if (this->function.signature->return_type->is_void())
946               return_if->then_instructions.push_tail(new(ir) ir_return(NULL));
947            else {
948               assert(this->function.return_value);
949               ir_variable* return_value = this->function.return_value;
950               return_if->then_instructions.push_tail(
951                  new(ir) ir_return(new(ir) ir_dereference_variable(return_value)));
952            }
953         }
954
955         ir->insert_after(return_if);
956      }
957
958      this->loop = saved_loop;
959      --this->function.nesting_depth;
960   }
961
962   virtual void visit(ir_function_signature *ir)
963   {
964      /* these are not strictly necessary */
965      assert(!this->function.signature);
966      assert(!this->loop.loop);
967
968      bool lower_return;
969      if (strcmp(ir->function_name(), "main") == 0)
970         lower_return = lower_main_return;
971      else
972         lower_return = lower_sub_return;
973
974      function_record saved_function = this->function;
975      loop_record saved_loop = this->loop;
976      this->function = function_record(ir, lower_return);
977      this->loop = loop_record(ir);
978
979      assert(!this->loop.loop);
980
981      /* Visit the body of the function to lower any jumps that occur
982       * in it, except possibly an unconditional return statement at
983       * the end of it.
984       */
985      visit_block(&ir->body);
986
987      /* If the body ended in an unconditional return of non-void,
988       * then we don't need to lower it because it's the one canonical
989       * return.
990       *
991       * If the body ended in a return of void, eliminate it because
992       * it is redundant.
993       */
994      if (ir->return_type->is_void() &&
995          get_jump_strength((ir_instruction *) ir->body.get_tail())) {
996         ir_jump *jump = (ir_jump *) ir->body.get_tail();
997         assert (jump->ir_type == ir_type_return);
998         jump->remove();
999      }
1000
1001      if(this->function.return_value)
1002         ir->body.push_tail(new(ir) ir_return(new (ir) ir_dereference_variable(this->function.return_value)));
1003
1004      this->loop = saved_loop;
1005      this->function = saved_function;
1006   }
1007
1008   virtual void visit(class ir_function * ir)
1009   {
1010      visit_block(&ir->signatures);
1011   }
1012};
1013
1014} /* anonymous namespace */
1015
1016bool
1017do_lower_jumps(exec_list *instructions, bool pull_out_jumps, bool lower_sub_return, bool lower_main_return, bool lower_continue, bool lower_break)
1018{
1019   ir_lower_jumps_visitor v;
1020   v.pull_out_jumps = pull_out_jumps;
1021   v.lower_continue = lower_continue;
1022   v.lower_break = lower_break;
1023   v.lower_sub_return = lower_sub_return;
1024   v.lower_main_return = lower_main_return;
1025
1026   bool progress_ever = false;
1027   do {
1028      v.progress = false;
1029      visit_exec_list(instructions, &v);
1030      progress_ever = v.progress || progress_ever;
1031   } while (v.progress);
1032
1033   return progress_ever;
1034}
1035