1/* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Jason Ekstrand (jason@jlekstrand.net) 25 * 26 */ 27 28#include "nir.h" 29#include "nir_builder.h" 30#include "nir_vla.h" 31 32/* 33 * This file implements an out-of-SSA pass as described in "Revisiting 34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by 35 * Boissinot et al. 36 */ 37 38struct from_ssa_state { 39 nir_builder builder; 40 void *dead_ctx; 41 bool phi_webs_only; 42 struct hash_table *merge_node_table; 43 nir_instr *instr; 44 bool progress; 45}; 46 47/* Returns true if a dominates b */ 48static bool 49ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b) 50{ 51 if (a->live_index == 0) { 52 /* SSA undefs always dominate */ 53 return true; 54 } else if (b->live_index < a->live_index) { 55 return false; 56 } else if (a->parent_instr->block == b->parent_instr->block) { 57 return a->live_index <= b->live_index; 58 } else { 59 return nir_block_dominates(a->parent_instr->block, 60 b->parent_instr->block); 61 } 62} 63 64 65/* The following data structure, which I have named merge_set is a way of 66 * representing a set registers of non-interfering registers. This is 67 * based on the concept of a "dominance forest" presented in "Fast Copy 68 * Coalescing and Live-Range Identification" by Budimlic et al. but the 69 * implementation concept is taken from "Revisiting Out-of-SSA Translation 70 * for Correctness, Code Quality, and Efficiency" by Boissinot et al. 71 * 72 * Each SSA definition is associated with a merge_node and the association 73 * is represented by a combination of a hash table and the "def" parameter 74 * in the merge_node structure. The merge_set stores a linked list of 75 * merge_nodes in dominance order of the ssa definitions. (Since the 76 * liveness analysis pass indexes the SSA values in dominance order for us, 77 * this is an easy thing to keep up.) It is assumed that no pair of the 78 * nodes in a given set interfere. Merging two sets or checking for 79 * interference can be done in a single linear-time merge-sort walk of the 80 * two lists of nodes. 81 */ 82struct merge_set; 83 84typedef struct { 85 struct exec_node node; 86 struct merge_set *set; 87 nir_ssa_def *def; 88} merge_node; 89 90typedef struct merge_set { 91 struct exec_list nodes; 92 unsigned size; 93 nir_register *reg; 94} merge_set; 95 96#if 0 97static void 98merge_set_dump(merge_set *set, FILE *fp) 99{ 100 nir_ssa_def *dom[set->size]; 101 int dom_idx = -1; 102 103 foreach_list_typed(merge_node, node, node, &set->nodes) { 104 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def)) 105 dom_idx--; 106 107 for (int i = 0; i <= dom_idx; i++) 108 fprintf(fp, " "); 109 110 if (node->def->name) 111 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name); 112 else 113 fprintf(fp, "ssa_%d\n", node->def->index); 114 115 dom[++dom_idx] = node->def; 116 } 117} 118#endif 119 120static merge_node * 121get_merge_node(nir_ssa_def *def, struct from_ssa_state *state) 122{ 123 struct hash_entry *entry = 124 _mesa_hash_table_search(state->merge_node_table, def); 125 if (entry) 126 return entry->data; 127 128 merge_set *set = ralloc(state->dead_ctx, merge_set); 129 exec_list_make_empty(&set->nodes); 130 set->size = 1; 131 set->reg = NULL; 132 133 merge_node *node = ralloc(state->dead_ctx, merge_node); 134 node->set = set; 135 node->def = def; 136 exec_list_push_head(&set->nodes, &node->node); 137 138 _mesa_hash_table_insert(state->merge_node_table, def, node); 139 140 return node; 141} 142 143static bool 144merge_nodes_interfere(merge_node *a, merge_node *b) 145{ 146 return nir_ssa_defs_interfere(a->def, b->def); 147} 148 149/* Merges b into a */ 150static merge_set * 151merge_merge_sets(merge_set *a, merge_set *b) 152{ 153 struct exec_node *an = exec_list_get_head(&a->nodes); 154 struct exec_node *bn = exec_list_get_head(&b->nodes); 155 while (!exec_node_is_tail_sentinel(bn)) { 156 merge_node *a_node = exec_node_data(merge_node, an, node); 157 merge_node *b_node = exec_node_data(merge_node, bn, node); 158 159 if (exec_node_is_tail_sentinel(an) || 160 a_node->def->live_index > b_node->def->live_index) { 161 struct exec_node *next = bn->next; 162 exec_node_remove(bn); 163 exec_node_insert_node_before(an, bn); 164 exec_node_data(merge_node, bn, node)->set = a; 165 bn = next; 166 } else { 167 an = an->next; 168 } 169 } 170 171 a->size += b->size; 172 b->size = 0; 173 174 return a; 175} 176 177/* Checks for any interference between two merge sets 178 * 179 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA 180 * Translation for Correctness, Code Quality, and Efficiency" by 181 * Boissinot et al. 182 */ 183static bool 184merge_sets_interfere(merge_set *a, merge_set *b) 185{ 186 NIR_VLA(merge_node *, dom, a->size + b->size); 187 int dom_idx = -1; 188 189 struct exec_node *an = exec_list_get_head(&a->nodes); 190 struct exec_node *bn = exec_list_get_head(&b->nodes); 191 while (!exec_node_is_tail_sentinel(an) || 192 !exec_node_is_tail_sentinel(bn)) { 193 194 merge_node *current; 195 if (exec_node_is_tail_sentinel(an)) { 196 current = exec_node_data(merge_node, bn, node); 197 bn = bn->next; 198 } else if (exec_node_is_tail_sentinel(bn)) { 199 current = exec_node_data(merge_node, an, node); 200 an = an->next; 201 } else { 202 merge_node *a_node = exec_node_data(merge_node, an, node); 203 merge_node *b_node = exec_node_data(merge_node, bn, node); 204 205 if (a_node->def->live_index <= b_node->def->live_index) { 206 current = a_node; 207 an = an->next; 208 } else { 209 current = b_node; 210 bn = bn->next; 211 } 212 } 213 214 while (dom_idx >= 0 && 215 !ssa_def_dominates(dom[dom_idx]->def, current->def)) 216 dom_idx--; 217 218 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx])) 219 return true; 220 221 dom[++dom_idx] = current; 222 } 223 224 return false; 225} 226 227static bool 228add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx) 229{ 230 231 bool need_end_copy = false; 232 if (block->successors[0]) { 233 nir_instr *instr = nir_block_first_instr(block->successors[0]); 234 if (instr && instr->type == nir_instr_type_phi) 235 need_end_copy = true; 236 } 237 238 if (block->successors[1]) { 239 nir_instr *instr = nir_block_first_instr(block->successors[1]); 240 if (instr && instr->type == nir_instr_type_phi) 241 need_end_copy = true; 242 } 243 244 if (need_end_copy) { 245 /* If one of our successors has at least one phi node, we need to 246 * create a parallel copy at the end of the block but before the jump 247 * (if there is one). 248 */ 249 nir_parallel_copy_instr *pcopy = 250 nir_parallel_copy_instr_create(dead_ctx); 251 252 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr); 253 } 254 255 return true; 256} 257 258static nir_parallel_copy_instr * 259get_parallel_copy_at_end_of_block(nir_block *block) 260{ 261 nir_instr *last_instr = nir_block_last_instr(block); 262 if (last_instr == NULL) 263 return NULL; 264 265 /* The last instruction may be a jump in which case the parallel copy is 266 * right before it. 267 */ 268 if (last_instr->type == nir_instr_type_jump) 269 last_instr = nir_instr_prev(last_instr); 270 271 if (last_instr && last_instr->type == nir_instr_type_parallel_copy) 272 return nir_instr_as_parallel_copy(last_instr); 273 else 274 return NULL; 275} 276 277/** Isolate phi nodes with parallel copies 278 * 279 * In order to solve the dependency problems with the sources and 280 * destinations of phi nodes, we first isolate them by adding parallel 281 * copies to the beginnings and ends of basic blocks. For every block with 282 * phi nodes, we add a parallel copy immediately following the last phi 283 * node that copies the destinations of all of the phi nodes to new SSA 284 * values. We also add a parallel copy to the end of every block that has 285 * a successor with phi nodes that, for each phi node in each successor, 286 * copies the corresponding sorce of the phi node and adjust the phi to 287 * used the destination of the parallel copy. 288 * 289 * In SSA form, each value has exactly one definition. What this does is 290 * ensure that each value used in a phi also has exactly one use. The 291 * destinations of phis are only used by the parallel copy immediately 292 * following the phi nodes and. Thanks to the parallel copy at the end of 293 * the predecessor block, the sources of phi nodes are are the only use of 294 * that value. This allows us to immediately assign all the sources and 295 * destinations of any given phi node to the same register without worrying 296 * about interference at all. We do coalescing to get rid of the parallel 297 * copies where possible. 298 * 299 * Before this pass can be run, we have to iterate over the blocks with 300 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at 301 * the ends of blocks exist. We can create the ones at the beginnings as 302 * we go, but the ones at the ends of blocks need to be created ahead of 303 * time because of potential back-edges in the CFG. 304 */ 305static bool 306isolate_phi_nodes_block(nir_block *block, void *dead_ctx) 307{ 308 nir_instr *last_phi_instr = NULL; 309 nir_foreach_instr(instr, block) { 310 /* Phi nodes only ever come at the start of a block */ 311 if (instr->type != nir_instr_type_phi) 312 break; 313 314 last_phi_instr = instr; 315 } 316 317 /* If we don't have any phis, then there's nothing for us to do. */ 318 if (last_phi_instr == NULL) 319 return true; 320 321 /* If we have phi nodes, we need to create a parallel copy at the 322 * start of this block but after the phi nodes. 323 */ 324 nir_parallel_copy_instr *block_pcopy = 325 nir_parallel_copy_instr_create(dead_ctx); 326 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr); 327 328 nir_foreach_instr(instr, block) { 329 /* Phi nodes only ever come at the start of a block */ 330 if (instr->type != nir_instr_type_phi) 331 break; 332 333 nir_phi_instr *phi = nir_instr_as_phi(instr); 334 assert(phi->dest.is_ssa); 335 nir_foreach_phi_src(src, phi) { 336 nir_parallel_copy_instr *pcopy = 337 get_parallel_copy_at_end_of_block(src->pred); 338 assert(pcopy); 339 340 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 341 nir_parallel_copy_entry); 342 nir_ssa_dest_init(&pcopy->instr, &entry->dest, 343 phi->dest.ssa.num_components, 344 phi->dest.ssa.bit_size, src->src.ssa->name); 345 exec_list_push_tail(&pcopy->entries, &entry->node); 346 347 assert(src->src.is_ssa); 348 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src); 349 350 nir_instr_rewrite_src(&phi->instr, &src->src, 351 nir_src_for_ssa(&entry->dest.ssa)); 352 } 353 354 nir_parallel_copy_entry *entry = rzalloc(dead_ctx, 355 nir_parallel_copy_entry); 356 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest, 357 phi->dest.ssa.num_components, phi->dest.ssa.bit_size, 358 phi->dest.ssa.name); 359 exec_list_push_tail(&block_pcopy->entries, &entry->node); 360 361 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 362 nir_src_for_ssa(&entry->dest.ssa)); 363 364 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src, 365 nir_src_for_ssa(&phi->dest.ssa)); 366 } 367 368 return true; 369} 370 371static bool 372coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state) 373{ 374 nir_foreach_instr(instr, block) { 375 /* Phi nodes only ever come at the start of a block */ 376 if (instr->type != nir_instr_type_phi) 377 break; 378 379 nir_phi_instr *phi = nir_instr_as_phi(instr); 380 381 assert(phi->dest.is_ssa); 382 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state); 383 384 nir_foreach_phi_src(src, phi) { 385 assert(src->src.is_ssa); 386 merge_node *src_node = get_merge_node(src->src.ssa, state); 387 if (src_node->set != dest_node->set) 388 merge_merge_sets(dest_node->set, src_node->set); 389 } 390 } 391 392 return true; 393} 394 395static void 396aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy, 397 struct from_ssa_state *state) 398{ 399 nir_foreach_parallel_copy_entry(entry, pcopy) { 400 if (!entry->src.is_ssa) 401 continue; 402 403 /* Since load_const instructions are SSA only, we can't replace their 404 * destinations with registers and, therefore, can't coalesce them. 405 */ 406 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const) 407 continue; 408 409 /* Don't try and coalesce these */ 410 if (entry->dest.ssa.num_components != entry->src.ssa->num_components) 411 continue; 412 413 merge_node *src_node = get_merge_node(entry->src.ssa, state); 414 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state); 415 416 if (src_node->set == dest_node->set) 417 continue; 418 419 if (!merge_sets_interfere(src_node->set, dest_node->set)) 420 merge_merge_sets(src_node->set, dest_node->set); 421 } 422} 423 424static bool 425aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state) 426{ 427 nir_parallel_copy_instr *start_pcopy = NULL; 428 nir_foreach_instr(instr, block) { 429 /* Phi nodes only ever come at the start of a block */ 430 if (instr->type != nir_instr_type_phi) { 431 if (instr->type != nir_instr_type_parallel_copy) 432 break; /* The parallel copy must be right after the phis */ 433 434 start_pcopy = nir_instr_as_parallel_copy(instr); 435 436 aggressive_coalesce_parallel_copy(start_pcopy, state); 437 438 break; 439 } 440 } 441 442 nir_parallel_copy_instr *end_pcopy = 443 get_parallel_copy_at_end_of_block(block); 444 445 if (end_pcopy && end_pcopy != start_pcopy) 446 aggressive_coalesce_parallel_copy(end_pcopy, state); 447 448 return true; 449} 450 451static nir_register * 452create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl) 453{ 454 nir_register *reg = nir_local_reg_create(impl); 455 456 reg->name = def->name; 457 reg->num_components = def->num_components; 458 reg->bit_size = def->bit_size; 459 reg->num_array_elems = 0; 460 461 return reg; 462} 463 464static bool 465rewrite_ssa_def(nir_ssa_def *def, void *void_state) 466{ 467 struct from_ssa_state *state = void_state; 468 nir_register *reg; 469 470 struct hash_entry *entry = 471 _mesa_hash_table_search(state->merge_node_table, def); 472 if (entry) { 473 /* In this case, we're part of a phi web. Use the web's register. */ 474 merge_node *node = (merge_node *)entry->data; 475 476 /* If it doesn't have a register yet, create one. Note that all of 477 * the things in the merge set should be the same so it doesn't 478 * matter which node's definition we use. 479 */ 480 if (node->set->reg == NULL) 481 node->set->reg = create_reg_for_ssa_def(def, state->builder.impl); 482 483 reg = node->set->reg; 484 } else { 485 if (state->phi_webs_only) 486 return true; 487 488 /* We leave load_const SSA values alone. They act as immediates to 489 * the backend. If it got coalesced into a phi, that's ok. 490 */ 491 if (def->parent_instr->type == nir_instr_type_load_const) 492 return true; 493 494 reg = create_reg_for_ssa_def(def, state->builder.impl); 495 } 496 497 nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg)); 498 assert(list_empty(&def->uses) && list_empty(&def->if_uses)); 499 500 if (def->parent_instr->type == nir_instr_type_ssa_undef) { 501 /* If it's an ssa_undef instruction, remove it since we know we just got 502 * rid of all its uses. 503 */ 504 nir_instr *parent_instr = def->parent_instr; 505 nir_instr_remove(parent_instr); 506 ralloc_steal(state->dead_ctx, parent_instr); 507 state->progress = true; 508 return true; 509 } 510 511 assert(def->parent_instr->type != nir_instr_type_load_const); 512 513 /* At this point we know a priori that this SSA def is part of a 514 * nir_dest. We can use exec_node_data to get the dest pointer. 515 */ 516 nir_dest *dest = exec_node_data(nir_dest, def, ssa); 517 518 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg)); 519 state->progress = true; 520 return true; 521} 522 523/* Resolves ssa definitions to registers. While we're at it, we also 524 * remove phi nodes. 525 */ 526static void 527resolve_registers_block(nir_block *block, struct from_ssa_state *state) 528{ 529 nir_foreach_instr_safe(instr, block) { 530 state->instr = instr; 531 nir_foreach_ssa_def(instr, rewrite_ssa_def, state); 532 533 if (instr->type == nir_instr_type_phi) { 534 nir_instr_remove(instr); 535 ralloc_steal(state->dead_ctx, instr); 536 state->progress = true; 537 } 538 } 539 state->instr = NULL; 540} 541 542static void 543emit_copy(nir_builder *b, nir_src src, nir_src dest_src) 544{ 545 assert(!dest_src.is_ssa && 546 dest_src.reg.indirect == NULL && 547 dest_src.reg.base_offset == 0); 548 549 if (src.is_ssa) 550 assert(src.ssa->num_components >= dest_src.reg.reg->num_components); 551 else 552 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components); 553 554 nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_imov); 555 nir_src_copy(&mov->src[0].src, &src, mov); 556 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg); 557 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1; 558 559 nir_builder_instr_insert(b, &mov->instr); 560} 561 562/* Resolves a single parallel copy operation into a sequence of movs 563 * 564 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for 565 * Correctness, Code Quality, and Efficiency" by Boissinot et al. 566 * However, I never got the algorithm to work as written, so this version 567 * is slightly modified. 568 * 569 * The algorithm works by playing this little shell game with the values. 570 * We start by recording where every source value is and which source value 571 * each destination value should receive. We then grab any copy whose 572 * destination is "empty", i.e. not used as a source, and do the following: 573 * - Find where its source value currently lives 574 * - Emit the move instruction 575 * - Set the location of the source value to the destination 576 * - Mark the location containing the source value 577 * - Mark the destination as no longer needing to be copied 578 * 579 * When we run out of "empty" destinations, we have a cycle and so we 580 * create a temporary register, copy to that register, and mark the value 581 * we copied as living in that temporary. Now, the cycle is broken, so we 582 * can continue with the above steps. 583 */ 584static void 585resolve_parallel_copy(nir_parallel_copy_instr *pcopy, 586 struct from_ssa_state *state) 587{ 588 unsigned num_copies = 0; 589 nir_foreach_parallel_copy_entry(entry, pcopy) { 590 /* Sources may be SSA */ 591 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 592 continue; 593 594 num_copies++; 595 } 596 597 if (num_copies == 0) { 598 /* Hooray, we don't need any copies! */ 599 nir_instr_remove(&pcopy->instr); 600 return; 601 } 602 603 /* The register/source corresponding to the given index */ 604 NIR_VLA_ZERO(nir_src, values, num_copies * 2); 605 606 /* The current location of a given piece of data. We will use -1 for "null" */ 607 NIR_VLA_FILL(int, loc, num_copies * 2, -1); 608 609 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */ 610 NIR_VLA_FILL(int, pred, num_copies * 2, -1); 611 612 /* The destinations we have yet to properly fill */ 613 NIR_VLA(int, to_do, num_copies * 2); 614 int to_do_idx = -1; 615 616 state->builder.cursor = nir_before_instr(&pcopy->instr); 617 618 /* Now we set everything up: 619 * - All values get assigned a temporary index 620 * - Current locations are set from sources 621 * - Predicessors are recorded from sources and destinations 622 */ 623 int num_vals = 0; 624 nir_foreach_parallel_copy_entry(entry, pcopy) { 625 /* Sources may be SSA */ 626 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg) 627 continue; 628 629 int src_idx = -1; 630 for (int i = 0; i < num_vals; ++i) { 631 if (nir_srcs_equal(values[i], entry->src)) 632 src_idx = i; 633 } 634 if (src_idx < 0) { 635 src_idx = num_vals++; 636 values[src_idx] = entry->src; 637 } 638 639 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg); 640 641 int dest_idx = -1; 642 for (int i = 0; i < num_vals; ++i) { 643 if (nir_srcs_equal(values[i], dest_src)) { 644 /* Each destination of a parallel copy instruction should be 645 * unique. A destination may get used as a source, so we still 646 * have to walk the list. However, the predecessor should not, 647 * at this point, be set yet, so we should have -1 here. 648 */ 649 assert(pred[i] == -1); 650 dest_idx = i; 651 } 652 } 653 if (dest_idx < 0) { 654 dest_idx = num_vals++; 655 values[dest_idx] = dest_src; 656 } 657 658 loc[src_idx] = src_idx; 659 pred[dest_idx] = src_idx; 660 661 to_do[++to_do_idx] = dest_idx; 662 } 663 664 /* Currently empty destinations we can go ahead and fill */ 665 NIR_VLA(int, ready, num_copies * 2); 666 int ready_idx = -1; 667 668 /* Mark the ones that are ready for copying. We know an index is a 669 * destination if it has a predecessor and it's ready for copying if 670 * it's not marked as containing data. 671 */ 672 for (int i = 0; i < num_vals; i++) { 673 if (pred[i] != -1 && loc[i] == -1) 674 ready[++ready_idx] = i; 675 } 676 677 while (to_do_idx >= 0) { 678 while (ready_idx >= 0) { 679 int b = ready[ready_idx--]; 680 int a = pred[b]; 681 emit_copy(&state->builder, values[loc[a]], values[b]); 682 683 /* If any other copies want a they can find it at b */ 684 loc[a] = b; 685 686 /* b has been filled, mark it as not needing to be copied */ 687 pred[b] = -1; 688 689 /* If a needs to be filled, it's ready for copying now */ 690 if (pred[a] != -1) 691 ready[++ready_idx] = a; 692 } 693 int b = to_do[to_do_idx--]; 694 if (pred[b] == -1) 695 continue; 696 697 /* If we got here, then we don't have any more trivial copies that we 698 * can do. We have to break a cycle, so we create a new temporary 699 * register for that purpose. Normally, if going out of SSA after 700 * register allocation, you would want to avoid creating temporary 701 * registers. However, we are going out of SSA before register 702 * allocation, so we would rather not create extra register 703 * dependencies for the backend to deal with. If it wants, the 704 * backend can coalesce the (possibly multiple) temporaries. 705 */ 706 assert(num_vals < num_copies * 2); 707 nir_register *reg = nir_local_reg_create(state->builder.impl); 708 reg->name = "copy_temp"; 709 reg->num_array_elems = 0; 710 if (values[b].is_ssa) { 711 reg->num_components = values[b].ssa->num_components; 712 reg->bit_size = values[b].ssa->bit_size; 713 } else { 714 reg->num_components = values[b].reg.reg->num_components; 715 reg->bit_size = values[b].reg.reg->bit_size; 716 } 717 values[num_vals].is_ssa = false; 718 values[num_vals].reg.reg = reg; 719 720 emit_copy(&state->builder, values[b], values[num_vals]); 721 loc[b] = num_vals; 722 ready[++ready_idx] = b; 723 num_vals++; 724 } 725 726 nir_instr_remove(&pcopy->instr); 727} 728 729/* Resolves the parallel copies in a block. Each block can have at most 730 * two: One at the beginning, right after all the phi noces, and one at 731 * the end (or right before the final jump if it exists). 732 */ 733static bool 734resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state) 735{ 736 /* At this point, we have removed all of the phi nodes. If a parallel 737 * copy existed right after the phi nodes in this block, it is now the 738 * first instruction. 739 */ 740 nir_instr *first_instr = nir_block_first_instr(block); 741 if (first_instr == NULL) 742 return true; /* Empty, nothing to do. */ 743 744 if (first_instr->type == nir_instr_type_parallel_copy) { 745 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr); 746 747 resolve_parallel_copy(pcopy, state); 748 } 749 750 /* It's possible that the above code already cleaned up the end parallel 751 * copy. However, doing so removed it form the instructions list so we 752 * won't find it here. Therefore, it's safe to go ahead and just look 753 * for one and clean it up if it exists. 754 */ 755 nir_parallel_copy_instr *end_pcopy = 756 get_parallel_copy_at_end_of_block(block); 757 if (end_pcopy) 758 resolve_parallel_copy(end_pcopy, state); 759 760 return true; 761} 762 763static bool 764nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only) 765{ 766 struct from_ssa_state state; 767 768 nir_builder_init(&state.builder, impl); 769 state.dead_ctx = ralloc_context(NULL); 770 state.phi_webs_only = phi_webs_only; 771 state.merge_node_table = _mesa_pointer_hash_table_create(NULL); 772 state.progress = false; 773 774 nir_foreach_block(block, impl) { 775 add_parallel_copy_to_end_of_block(block, state.dead_ctx); 776 } 777 778 nir_foreach_block(block, impl) { 779 isolate_phi_nodes_block(block, state.dead_ctx); 780 } 781 782 /* Mark metadata as dirty before we ask for liveness analysis */ 783 nir_metadata_preserve(impl, nir_metadata_block_index | 784 nir_metadata_dominance); 785 786 nir_metadata_require(impl, nir_metadata_live_ssa_defs | 787 nir_metadata_dominance); 788 789 nir_foreach_block(block, impl) { 790 coalesce_phi_nodes_block(block, &state); 791 } 792 793 nir_foreach_block(block, impl) { 794 aggressive_coalesce_block(block, &state); 795 } 796 797 nir_foreach_block(block, impl) { 798 resolve_registers_block(block, &state); 799 } 800 801 nir_foreach_block(block, impl) { 802 resolve_parallel_copies_block(block, &state); 803 } 804 805 nir_metadata_preserve(impl, nir_metadata_block_index | 806 nir_metadata_dominance); 807 808 /* Clean up dead instructions and the hash tables */ 809 _mesa_hash_table_destroy(state.merge_node_table, NULL); 810 ralloc_free(state.dead_ctx); 811 return state.progress; 812} 813 814bool 815nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only) 816{ 817 bool progress = false; 818 819 nir_foreach_function(function, shader) { 820 if (function->impl) 821 progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only); 822 } 823 824 return progress; 825} 826 827 828static void 829place_phi_read(nir_shader *shader, nir_register *reg, 830 nir_ssa_def *def, nir_block *block, unsigned depth) 831{ 832 if (block != def->parent_instr->block) { 833 /* Try to go up the single-successor tree */ 834 bool all_single_successors = true; 835 set_foreach(block->predecessors, entry) { 836 nir_block *pred = (nir_block *)entry->key; 837 if (pred->successors[0] && pred->successors[1]) { 838 all_single_successors = false; 839 break; 840 } 841 } 842 843 if (all_single_successors && depth < 32) { 844 /* All predecessors of this block have exactly one successor and it 845 * is this block so they must eventually lead here without 846 * intersecting each other. Place the reads in the predecessors 847 * instead of this block. 848 * 849 * We only let this function recurse 32 times because it can recurse 850 * indefinitely in the presence of infinite loops. Because we're 851 * crawling a single-successor chain, it doesn't matter where we 852 * place it so it's ok to stop at an arbitrary distance. 853 * 854 * TODO: One day, we could detect back edges and avoid the recursion 855 * that way. 856 */ 857 set_foreach(block->predecessors, entry) { 858 place_phi_read(shader, reg, def, (nir_block *)entry->key, 859 depth + 1); 860 } 861 return; 862 } 863 } 864 865 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); 866 mov->src[0].src = nir_src_for_ssa(def); 867 mov->dest.dest = nir_dest_for_reg(reg); 868 mov->dest.write_mask = (1 << reg->num_components) - 1; 869 nir_instr_insert(nir_after_block_before_jump(block), &mov->instr); 870} 871 872/** Lower all of the phi nodes in a block to imovs to and from a register 873 * 874 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a 875 * single block to convert all of its phis to a register and some imovs. 876 * The code that is generated, while not optimal for actual codegen in a 877 * back-end, is easy to generate, correct, and will turn into the same set of 878 * phis after you call regs_to_ssa and do some copy propagation. 879 * 880 * The one intelligent thing this pass does is that it places the moves from 881 * the phi sources as high up the predecessor tree as possible instead of in 882 * the exact predecessor. This means that, in particular, it will crawl into 883 * the deepest nesting of any if-ladders. In order to ensure that doing so is 884 * safe, it stops as soon as one of the predecessors has multiple successors. 885 */ 886bool 887nir_lower_phis_to_regs_block(nir_block *block) 888{ 889 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); 890 nir_shader *shader = impl->function->shader; 891 892 bool progress = false; 893 nir_foreach_instr_safe(instr, block) { 894 if (instr->type != nir_instr_type_phi) 895 break; 896 897 nir_phi_instr *phi = nir_instr_as_phi(instr); 898 assert(phi->dest.is_ssa); 899 900 nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, impl); 901 902 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); 903 mov->src[0].src = nir_src_for_reg(reg); 904 mov->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1; 905 nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 906 phi->dest.ssa.num_components, phi->dest.ssa.bit_size, 907 phi->dest.ssa.name); 908 nir_instr_insert(nir_after_instr(&phi->instr), &mov->instr); 909 910 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 911 nir_src_for_ssa(&mov->dest.dest.ssa)); 912 913 nir_foreach_phi_src(src, phi) { 914 assert(src->src.is_ssa); 915 /* We don't want derefs ending up in phi sources */ 916 assert(!nir_src_as_deref(src->src)); 917 place_phi_read(shader, reg, src->src.ssa, src->pred, 0); 918 } 919 920 nir_instr_remove(&phi->instr); 921 922 progress = true; 923 } 924 925 return progress; 926} 927 928struct ssa_def_to_reg_state { 929 nir_function_impl *impl; 930 bool progress; 931}; 932 933static bool 934dest_replace_ssa_with_reg(nir_dest *dest, void *void_state) 935{ 936 struct ssa_def_to_reg_state *state = void_state; 937 938 if (!dest->is_ssa) 939 return true; 940 941 nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl); 942 943 nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg)); 944 945 nir_instr *instr = dest->ssa.parent_instr; 946 *dest = nir_dest_for_reg(reg); 947 dest->reg.parent_instr = instr; 948 list_addtail(&dest->reg.def_link, ®->defs); 949 950 state->progress = true; 951 952 return true; 953} 954 955/** Lower all of the SSA defs in a block to registers 956 * 957 * This performs the very simple operation of blindly replacing all of the SSA 958 * defs in the given block with registers. If not used carefully, this may 959 * result in phi nodes with register sources which is technically invalid. 960 * Fortunately, the register-based into-SSA pass handles them anyway. 961 */ 962bool 963nir_lower_ssa_defs_to_regs_block(nir_block *block) 964{ 965 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node); 966 nir_shader *shader = impl->function->shader; 967 968 struct ssa_def_to_reg_state state = { 969 .impl = impl, 970 .progress = false, 971 }; 972 973 nir_foreach_instr(instr, block) { 974 if (instr->type == nir_instr_type_ssa_undef) { 975 /* Undefs are just a read of something never written. */ 976 nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr); 977 nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl); 978 nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg)); 979 } else if (instr->type == nir_instr_type_load_const) { 980 /* Constant loads are SSA-only, we need to insert a move */ 981 nir_load_const_instr *load = nir_instr_as_load_const(instr); 982 nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl); 983 nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg)); 984 985 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_imov); 986 mov->src[0].src = nir_src_for_ssa(&load->def); 987 mov->dest.dest = nir_dest_for_reg(reg); 988 mov->dest.write_mask = (1 << reg->num_components) - 1; 989 nir_instr_insert(nir_after_instr(&load->instr), &mov->instr); 990 } else if (instr->type == nir_instr_type_deref) { 991 /* Derefs should always be SSA values, don't rewrite them. */ 992 nir_deref_instr *deref = nir_instr_as_deref(instr); 993 nir_foreach_use_safe(use, &deref->dest.ssa) 994 assert(use->parent_instr->block == block); 995 assert(list_empty(&deref->dest.ssa.if_uses)); 996 } else { 997 nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state); 998 } 999 } 1000 1001 return state.progress; 1002} 1003