1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "nir.h"
26#include "nir_builder.h"
27#include "c99_math.h"
28
29/*
30 * Lowers some unsupported double operations, using only:
31 *
32 * - pack/unpackDouble2x32
33 * - conversion to/from single-precision
34 * - double add, mul, and fma
35 * - conditional select
36 * - 32-bit integer and floating point arithmetic
37 */
38
39/* Creates a double with the exponent bits set to a given integer value */
40static nir_ssa_def *
41set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
42{
43   /* Split into bits 0-31 and 32-63 */
44   nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src);
45   nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
46
47   /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
48    * to 1023
49    */
50   nir_ssa_def *new_hi = nir_bfi(b, nir_imm_int(b, 0x7ff00000), exp, hi);
51   /* recombine */
52   return nir_pack_64_2x32_split(b, lo, new_hi);
53}
54
55static nir_ssa_def *
56get_exponent(nir_builder *b, nir_ssa_def *src)
57{
58   /* get bits 32-63 */
59   nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
60
61   /* extract bits 20-30 of the high word */
62   return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
63}
64
65/* Return infinity with the sign of the given source which is +/-0 */
66
67static nir_ssa_def *
68get_signed_inf(nir_builder *b, nir_ssa_def *zero)
69{
70   nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero);
71
72   /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
73    * is the highest bit. Only the sign bit can be non-zero in the passed in
74    * source. So we essentially need to OR the infinity and the zero, except
75    * the low 32 bits are always 0 so we can construct the correct high 32
76    * bits and then pack it together with zero low 32 bits.
77    */
78   nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
79   return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi);
80}
81
82/*
83 * Generates the correctly-signed infinity if the source was zero, and flushes
84 * the result to 0 if the source was infinity or the calculated exponent was
85 * too small to be representable.
86 */
87
88static nir_ssa_def *
89fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
90               nir_ssa_def *exp)
91{
92   /* If the exponent is too small or the original input was infinity/NaN,
93    * force the result to 0 (flush denorms) to avoid the work of handling
94    * denorms properly. Note that this doesn't preserve positive/negative
95    * zeros, but GLSL doesn't require it.
96    */
97   res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
98                              nir_feq(b, nir_fabs(b, src),
99                                      nir_imm_double(b, INFINITY))),
100                   nir_imm_double(b, 0.0f), res);
101
102   /* If the original input was 0, generate the correctly-signed infinity */
103   res = nir_bcsel(b, nir_fne(b, src, nir_imm_double(b, 0.0f)),
104                   res, get_signed_inf(b, src));
105
106   return res;
107
108}
109
110static nir_ssa_def *
111lower_rcp(nir_builder *b, nir_ssa_def *src)
112{
113   /* normalize the input to avoid range issues */
114   nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
115
116   /* cast to float, do an rcp, and then cast back to get an approximate
117    * result
118    */
119   nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm)));
120
121   /* Fixup the exponent of the result - note that we check if this is too
122    * small below.
123    */
124   nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
125                                   nir_isub(b, get_exponent(b, src),
126                                            nir_imm_int(b, 1023)));
127
128   ra = set_exponent(b, ra, new_exp);
129
130   /* Do a few Newton-Raphson steps to improve precision.
131    *
132    * Each step doubles the precision, and we started off with around 24 bits,
133    * so we only need to do 2 steps to get to full precision. The step is:
134    *
135    * x_new = x * (2 - x*src)
136    *
137    * But we can re-arrange this to improve precision by using another fused
138    * multiply-add:
139    *
140    * x_new = x + x * (1 - x*src)
141    *
142    * See https://en.wikipedia.org/wiki/Division_algorithm for more details.
143    */
144
145   ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
146   ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
147
148   return fix_inv_result(b, ra, src, new_exp);
149}
150
151static nir_ssa_def *
152lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
153{
154   /* We want to compute:
155    *
156    * 1/sqrt(m * 2^e)
157    *
158    * When the exponent is even, this is equivalent to:
159    *
160    * 1/sqrt(m) * 2^(-e/2)
161    *
162    * and then the exponent is odd, this is equal to:
163    *
164    * 1/sqrt(m * 2) * 2^(-(e - 1)/2)
165    *
166    * where the m * 2 is absorbed into the exponent. So we want the exponent
167    * inside the square root to be 1 if e is odd and 0 if e is even, and we
168    * want to subtract off e/2 from the final exponent, rounded to negative
169    * infinity. We can do the former by first computing the unbiased exponent,
170    * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
171    * shifting right by 1.
172    */
173
174   nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
175                                        nir_imm_int(b, 1023));
176   nir_ssa_def *even = nir_iand(b, unbiased_exp, nir_imm_int(b, 1));
177   nir_ssa_def *half = nir_ishr(b, unbiased_exp, nir_imm_int(b, 1));
178
179   nir_ssa_def *src_norm = set_exponent(b, src,
180                                        nir_iadd(b, nir_imm_int(b, 1023),
181                                                 even));
182
183   nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm)));
184   nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
185   ra = set_exponent(b, ra, new_exp);
186
187   /*
188    * The following implements an iterative algorithm that's very similar
189    * between sqrt and rsqrt. We start with an iteration of Goldschmit's
190    * algorithm, which looks like:
191    *
192    * a = the source
193    * y_0 = initial (single-precision) rsqrt estimate
194    *
195    * h_0 = .5 * y_0
196    * g_0 = a * y_0
197    * r_0 = .5 - h_0 * g_0
198    * g_1 = g_0 * r_0 + g_0
199    * h_1 = h_0 * r_0 + h_0
200    *
201    * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
202    * applying another round of Goldschmit, but since we would never refer
203    * back to a (the original source), we would add too much rounding error.
204    * So instead, we do one last round of Newton-Raphson, which has better
205    * rounding characteristics, to get the final rounding correct. This is
206    * split into two cases:
207    *
208    * 1. sqrt
209    *
210    * Normally, doing a round of Newton-Raphson for sqrt involves taking a
211    * reciprocal of the original estimate, which is slow since it isn't
212    * supported in HW. But we can take advantage of the fact that we already
213    * computed a good estimate of 1/(2 * g_1) by rearranging it like so:
214    *
215    * g_2 = .5 * (g_1 + a / g_1)
216    *     = g_1 + .5 * (a / g_1 - g_1)
217    *     = g_1 + (.5 / g_1) * (a - g_1^2)
218    *     = g_1 + h_1 * (a - g_1^2)
219    *
220    * The second term represents the error, and by splitting it out we can get
221    * better precision by computing it as part of a fused multiply-add. Since
222    * both Newton-Raphson and Goldschmit approximately double the precision of
223    * the result, these two steps should be enough.
224    *
225    * 2. rsqrt
226    *
227    * First off, note that the first round of the Goldschmit algorithm is
228    * really just a Newton-Raphson step in disguise:
229    *
230    * h_1 = h_0 * (.5 - h_0 * g_0) + h_0
231    *     = h_0 * (1.5 - h_0 * g_0)
232    *     = h_0 * (1.5 - .5 * a * y_0^2)
233    *     = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
234    *
235    * which is the standard formula multiplied by .5. Unlike in the sqrt case,
236    * we don't need the inverse to do a Newton-Raphson step; we just need h_1,
237    * so we can skip the calculation of g_1. Instead, we simply do another
238    * Newton-Raphson step:
239    *
240    * y_1 = 2 * h_1
241    * r_1 = .5 - h_1 * y_1 * a
242    * y_2 = y_1 * r_1 + y_1
243    *
244    * Where the difference from Goldschmit is that we calculate y_1 * a
245    * instead of using g_1. Doing it this way should be as fast as computing
246    * y_1 up front instead of h_1, and it lets us share the code for the
247    * initial Goldschmit step with the sqrt case.
248    *
249    * Putting it together, the computations are:
250    *
251    * h_0 = .5 * y_0
252    * g_0 = a * y_0
253    * r_0 = .5 - h_0 * g_0
254    * h_1 = h_0 * r_0 + h_0
255    * if sqrt:
256    *    g_1 = g_0 * r_0 + g_0
257    *    r_1 = a - g_1 * g_1
258    *    g_2 = h_1 * r_1 + g_1
259    * else:
260    *    y_1 = 2 * h_1
261    *    r_1 = .5 - y_1 * (h_1 * a)
262    *    y_2 = y_1 * r_1 + y_1
263    *
264    * For more on the ideas behind this, see "Software Division and Square
265    * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
266    * on square roots
267    * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
268    */
269
270   nir_ssa_def *one_half = nir_imm_double(b, 0.5);
271   nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
272   nir_ssa_def *g_0 = nir_fmul(b, src, ra);
273   nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
274   nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
275   nir_ssa_def *res;
276   if (sqrt) {
277      nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
278      nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
279      res = nir_ffma(b, h_1, r_1, g_1);
280   } else {
281      nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
282      nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
283                                  one_half);
284      res = nir_ffma(b, y_1, r_1, y_1);
285   }
286
287   if (sqrt) {
288      /* Here, the special cases we need to handle are
289       * 0 -> 0 and
290       * +inf -> +inf
291       */
292      res = nir_bcsel(b, nir_ior(b, nir_feq(b, src, nir_imm_double(b, 0.0)),
293                                 nir_feq(b, src, nir_imm_double(b, INFINITY))),
294                                 src, res);
295   } else {
296      res = fix_inv_result(b, res, src, new_exp);
297   }
298
299   return res;
300}
301
302static nir_ssa_def *
303lower_trunc(nir_builder *b, nir_ssa_def *src)
304{
305   nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
306                                        nir_imm_int(b, 1023));
307
308   nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
309
310   /*
311    * Decide the operation to apply depending on the unbiased exponent:
312    *
313    * if (unbiased_exp < 0)
314    *    return 0
315    * else if (unbiased_exp > 52)
316    *    return src
317    * else
318    *    return src & (~0 << frac_bits)
319    *
320    * Notice that the else branch is a 64-bit integer operation that we need
321    * to implement in terms of 32-bit integer arithmetics (at least until we
322    * support 64-bit integer arithmetics).
323    */
324
325   /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
326   nir_ssa_def *mask_lo =
327      nir_bcsel(b,
328                nir_ige(b, frac_bits, nir_imm_int(b, 32)),
329                nir_imm_int(b, 0),
330                nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
331
332   nir_ssa_def *mask_hi =
333      nir_bcsel(b,
334                nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
335                nir_imm_int(b, ~0),
336                nir_ishl(b,
337                         nir_imm_int(b, ~0),
338                         nir_isub(b, frac_bits, nir_imm_int(b, 32))));
339
340   nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src);
341   nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src);
342
343   return
344      nir_bcsel(b,
345                nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
346                nir_imm_double(b, 0.0),
347                nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
348                          src,
349                          nir_pack_64_2x32_split(b,
350                                                 nir_iand(b, mask_lo, src_lo),
351                                                 nir_iand(b, mask_hi, src_hi))));
352}
353
354static nir_ssa_def *
355lower_floor(nir_builder *b, nir_ssa_def *src)
356{
357   /*
358    * For x >= 0, floor(x) = trunc(x)
359    * For x < 0,
360    *    - if x is integer, floor(x) = x
361    *    - otherwise, floor(x) = trunc(x) - 1
362    */
363   nir_ssa_def *tr = nir_ftrunc(b, src);
364   nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
365   return nir_bcsel(b,
366                    nir_ior(b, positive, nir_feq(b, src, tr)),
367                    tr,
368                    nir_fsub(b, tr, nir_imm_double(b, 1.0)));
369}
370
371static nir_ssa_def *
372lower_ceil(nir_builder *b, nir_ssa_def *src)
373{
374   /* if x < 0,                    ceil(x) = trunc(x)
375    * else if (x - trunc(x) == 0), ceil(x) = x
376    * else,                        ceil(x) = trunc(x) + 1
377    */
378   nir_ssa_def *tr = nir_ftrunc(b, src);
379   nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
380   return nir_bcsel(b,
381                    nir_ior(b, negative, nir_feq(b, src, tr)),
382                    tr,
383                    nir_fadd(b, tr, nir_imm_double(b, 1.0)));
384}
385
386static nir_ssa_def *
387lower_fract(nir_builder *b, nir_ssa_def *src)
388{
389   return nir_fsub(b, src, nir_ffloor(b, src));
390}
391
392static nir_ssa_def *
393lower_round_even(nir_builder *b, nir_ssa_def *src)
394{
395   /* Add and subtract 2**52 to round off any fractional bits. */
396   nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52));
397   nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src),
398                                nir_imm_int(b, 1ull << 31));
399
400   b->exact = true;
401   nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52);
402   b->exact = false;
403
404   return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52),
405                    nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res),
406                                           nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src);
407}
408
409static nir_ssa_def *
410lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
411{
412   /* mod(x,y) = x - y * floor(x/y)
413    *
414    * If the division is lowered, it could add some rounding errors that make
415    * floor() to return the quotient minus one when x = N * y. If this is the
416    * case, we return zero because mod(x, y) output value is [0, y).
417    */
418   nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1));
419   nir_ssa_def *mod = nir_fsub(b, src0, nir_fmul(b, src1, floor));
420
421   return nir_bcsel(b,
422                    nir_fne(b, mod, src1),
423                    mod,
424                    nir_imm_double(b, 0.0));
425}
426
427static bool
428lower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr,
429                            const nir_shader *softfp64,
430                            nir_lower_doubles_options options)
431{
432   if (!(options & nir_lower_fp64_full_software))
433      return false;
434
435   assert(instr->dest.dest.is_ssa);
436
437   const char *name;
438   const struct glsl_type *return_type = glsl_uint64_t_type();
439
440   switch (instr->op) {
441   case nir_op_f2i64:
442      if (instr->src[0].src.ssa->bit_size == 64)
443         name = "__fp64_to_int64";
444      else
445         name = "__fp32_to_int64";
446      return_type = glsl_int64_t_type();
447      break;
448   case nir_op_f2u64:
449      if (instr->src[0].src.ssa->bit_size == 64)
450         name = "__fp64_to_uint64";
451      else
452         name = "__fp32_to_uint64";
453      break;
454   case nir_op_f2f64:
455      name = "__fp32_to_fp64";
456      break;
457   case nir_op_f2f32:
458      name = "__fp64_to_fp32";
459      return_type = glsl_float_type();
460      break;
461   case nir_op_f2i32:
462      name = "__fp64_to_int";
463      return_type = glsl_int_type();
464      break;
465   case nir_op_f2u32:
466      name = "__fp64_to_uint";
467      return_type = glsl_uint_type();
468      break;
469   case nir_op_f2b1:
470   case nir_op_f2b32:
471      name = "__fp64_to_bool";
472      return_type = glsl_bool_type();
473      break;
474   case nir_op_b2f64:
475      name = "__bool_to_fp64";
476      break;
477   case nir_op_i2f32:
478      if (instr->src[0].src.ssa->bit_size != 64)
479         return false;
480      name = "__int64_to_fp32";
481      return_type = glsl_float_type();
482      break;
483   case nir_op_u2f32:
484      if (instr->src[0].src.ssa->bit_size != 64)
485         return false;
486      name = "__uint64_to_fp32";
487      return_type = glsl_float_type();
488      break;
489   case nir_op_i2f64:
490      if (instr->src[0].src.ssa->bit_size == 64)
491         name = "__int64_to_fp64";
492      else
493         name = "__int_to_fp64";
494      break;
495   case nir_op_u2f64:
496      if (instr->src[0].src.ssa->bit_size == 64)
497         name = "__uint64_to_fp64";
498      else
499         name = "__uint_to_fp64";
500      break;
501   case nir_op_fabs:
502      name = "__fabs64";
503      break;
504   case nir_op_fneg:
505      name = "__fneg64";
506      break;
507   case nir_op_fround_even:
508      name = "__fround64";
509      break;
510   case nir_op_ftrunc:
511      name = "__ftrunc64";
512      break;
513   case nir_op_ffloor:
514      name = "__ffloor64";
515      break;
516   case nir_op_ffract:
517      name = "__ffract64";
518      break;
519   case nir_op_fsign:
520      name = "__fsign64";
521      break;
522   case nir_op_feq:
523      name = "__feq64";
524      return_type = glsl_bool_type();
525      break;
526   case nir_op_fne:
527      name = "__fne64";
528      return_type = glsl_bool_type();
529      break;
530   case nir_op_flt:
531      name = "__flt64";
532      return_type = glsl_bool_type();
533      break;
534   case nir_op_fge:
535      name = "__fge64";
536      return_type = glsl_bool_type();
537      break;
538   case nir_op_fmin:
539      name = "__fmin64";
540      break;
541   case nir_op_fmax:
542      name = "__fmax64";
543      break;
544   case nir_op_fadd:
545      name = "__fadd64";
546      break;
547   case nir_op_fmul:
548      name = "__fmul64";
549      break;
550   case nir_op_ffma:
551      name = "__ffma64";
552      break;
553   default:
554      return false;
555   }
556
557   nir_function *func = NULL;
558   nir_foreach_function(function, softfp64) {
559      if (strcmp(function->name, name) == 0) {
560         func = function;
561         break;
562      }
563   }
564   if (!func || !func->impl) {
565      fprintf(stderr, "Cannot find function \"%s\"\n", name);
566      assert(func);
567   }
568
569   b->cursor = nir_before_instr(&instr->instr);
570
571   nir_ssa_def *params[4] = { NULL, };
572
573   nir_variable *ret_tmp =
574      nir_local_variable_create(b->impl, return_type, "return_tmp");
575   nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp);
576   params[0] = &ret_deref->dest.ssa;
577
578   assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params);
579   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
580      assert(i + 1 < ARRAY_SIZE(params));
581      params[i + 1] = nir_imov_alu(b, instr->src[i], 1);
582   }
583
584   nir_inline_function_impl(b, func->impl, params);
585
586   nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa,
587                            nir_src_for_ssa(nir_load_deref(b, ret_deref)));
588   nir_instr_remove(&instr->instr);
589   return true;
590}
591
592nir_lower_doubles_options
593nir_lower_doubles_op_to_options_mask(nir_op opcode)
594{
595   switch (opcode) {
596   case nir_op_frcp:          return nir_lower_drcp;
597   case nir_op_fsqrt:         return nir_lower_dsqrt;
598   case nir_op_frsq:          return nir_lower_drsq;
599   case nir_op_ftrunc:        return nir_lower_dtrunc;
600   case nir_op_ffloor:        return nir_lower_dfloor;
601   case nir_op_fceil:         return nir_lower_dceil;
602   case nir_op_ffract:        return nir_lower_dfract;
603   case nir_op_fround_even:   return nir_lower_dround_even;
604   case nir_op_fmod:          return nir_lower_dmod;
605   default:                   return 0;
606   }
607}
608
609static bool
610lower_doubles_instr(nir_builder *b, nir_alu_instr *instr,
611                    const nir_shader *softfp64,
612                    nir_lower_doubles_options options)
613{
614   assert(instr->dest.dest.is_ssa);
615   bool is_64 = instr->dest.dest.ssa.bit_size == 64;
616
617   unsigned num_srcs = nir_op_infos[instr->op].num_inputs;
618   for (unsigned i = 0; i < num_srcs; i++) {
619      is_64 |= (nir_src_bit_size(instr->src[i].src) == 64);
620   }
621
622   if (!is_64)
623      return false;
624
625   if (lower_doubles_instr_to_soft(b, instr, softfp64, options))
626      return true;
627
628   if (!(options & nir_lower_doubles_op_to_options_mask(instr->op)))
629      return false;
630
631   b->cursor = nir_before_instr(&instr->instr);
632
633   nir_ssa_def *src = nir_fmov_alu(b, instr->src[0],
634                                   instr->dest.dest.ssa.num_components);
635
636   nir_ssa_def *result;
637
638   switch (instr->op) {
639   case nir_op_frcp:
640      result = lower_rcp(b, src);
641      break;
642   case nir_op_fsqrt:
643      result = lower_sqrt_rsq(b, src, true);
644      break;
645   case nir_op_frsq:
646      result = lower_sqrt_rsq(b, src, false);
647      break;
648   case nir_op_ftrunc:
649      result = lower_trunc(b, src);
650      break;
651   case nir_op_ffloor:
652      result = lower_floor(b, src);
653      break;
654   case nir_op_fceil:
655      result = lower_ceil(b, src);
656      break;
657   case nir_op_ffract:
658      result = lower_fract(b, src);
659      break;
660   case nir_op_fround_even:
661      result = lower_round_even(b, src);
662      break;
663
664   case nir_op_fmod: {
665      nir_ssa_def *src1 = nir_fmov_alu(b, instr->src[1],
666                                       instr->dest.dest.ssa.num_components);
667      result = lower_mod(b, src, src1);
668   }
669      break;
670   default:
671      unreachable("unhandled opcode");
672   }
673
674   nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(result));
675   nir_instr_remove(&instr->instr);
676   return true;
677}
678
679static bool
680nir_lower_doubles_impl(nir_function_impl *impl,
681                       const nir_shader *softfp64,
682                       nir_lower_doubles_options options)
683{
684   bool progress = false;
685
686   nir_builder b;
687   nir_builder_init(&b, impl);
688
689   nir_foreach_block_safe(block, impl) {
690      nir_foreach_instr_safe(instr, block) {
691         if (instr->type == nir_instr_type_alu)
692            progress |= lower_doubles_instr(&b, nir_instr_as_alu(instr),
693                                            softfp64, options);
694      }
695   }
696
697   if (progress) {
698      if (options & nir_lower_fp64_full_software) {
699         /* SSA and register indices are completely messed up now */
700         nir_index_ssa_defs(impl);
701         nir_index_local_regs(impl);
702
703         nir_metadata_preserve(impl, nir_metadata_none);
704
705         /* And we have deref casts we need to clean up thanks to function
706          * inlining.
707          */
708         nir_opt_deref_impl(impl);
709      } else {
710         nir_metadata_preserve(impl, nir_metadata_block_index |
711                                     nir_metadata_dominance);
712      }
713    } else {
714#ifndef NDEBUG
715      impl->valid_metadata &= ~nir_metadata_not_properly_reset;
716#endif
717    }
718
719   return progress;
720}
721
722bool
723nir_lower_doubles(nir_shader *shader,
724                  const nir_shader *softfp64,
725                  nir_lower_doubles_options options)
726{
727   bool progress = false;
728
729   nir_foreach_function(function, shader) {
730      if (function->impl) {
731         progress |= nir_lower_doubles_impl(function->impl, softfp64, options);
732      }
733   }
734
735   return progress;
736}
737