1/* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Jason Ekstrand (jason@jlekstrand.net) 25 * 26 */ 27 28#include "nir.h" 29 30/* 31 * Implements a pass that lowers vector phi nodes to scalar phi nodes when 32 * we don't think it will hurt anything. 33 */ 34 35struct lower_phis_to_scalar_state { 36 void *mem_ctx; 37 void *dead_ctx; 38 39 /* Hash table marking which phi nodes are scalarizable. The key is 40 * pointers to phi instructions and the entry is either NULL for not 41 * scalarizable or non-null for scalarizable. 42 */ 43 struct hash_table *phi_table; 44}; 45 46static bool 47should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state); 48 49static bool 50is_phi_src_scalarizable(nir_phi_src *src, 51 struct lower_phis_to_scalar_state *state) 52{ 53 /* Don't know what to do with non-ssa sources */ 54 if (!src->src.is_ssa) 55 return false; 56 57 nir_instr *src_instr = src->src.ssa->parent_instr; 58 switch (src_instr->type) { 59 case nir_instr_type_alu: { 60 nir_alu_instr *src_alu = nir_instr_as_alu(src_instr); 61 62 /* ALU operations with output_size == 0 should be scalarized. We 63 * will also see a bunch of vecN operations from scalarizing ALU 64 * operations and, since they can easily be copy-propagated, they 65 * are ok too. 66 */ 67 return nir_op_infos[src_alu->op].output_size == 0 || 68 src_alu->op == nir_op_vec2 || 69 src_alu->op == nir_op_vec3 || 70 src_alu->op == nir_op_vec4; 71 } 72 73 case nir_instr_type_phi: 74 /* A phi is scalarizable if we're going to lower it */ 75 return should_lower_phi(nir_instr_as_phi(src_instr), state); 76 77 case nir_instr_type_load_const: 78 /* These are trivially scalarizable */ 79 return true; 80 81 case nir_instr_type_ssa_undef: 82 /* The caller of this function is going to OR the results and we don't 83 * want undefs to count so we return false. 84 */ 85 return false; 86 87 case nir_instr_type_intrinsic: { 88 nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr); 89 90 switch (src_intrin->intrinsic) { 91 case nir_intrinsic_load_deref: { 92 nir_deref_instr *deref = nir_src_as_deref(src_intrin->src[0]); 93 return deref->mode == nir_var_shader_in || 94 deref->mode == nir_var_uniform || 95 deref->mode == nir_var_mem_ubo || 96 deref->mode == nir_var_mem_ssbo || 97 deref->mode == nir_var_mem_global; 98 } 99 100 case nir_intrinsic_interp_deref_at_centroid: 101 case nir_intrinsic_interp_deref_at_sample: 102 case nir_intrinsic_interp_deref_at_offset: 103 case nir_intrinsic_load_uniform: 104 case nir_intrinsic_load_ubo: 105 case nir_intrinsic_load_ssbo: 106 case nir_intrinsic_load_global: 107 case nir_intrinsic_load_input: 108 return true; 109 default: 110 break; 111 } 112 } 113 114 default: 115 /* We can't scalarize this type of instruction */ 116 return false; 117 } 118} 119 120/** 121 * Determines if the given phi node should be lowered. The only phi nodes 122 * we will scalarize at the moment are those where all of the sources are 123 * scalarizable. 124 * 125 * The reason for this comes down to coalescing. Since phi sources can't 126 * swizzle, swizzles on phis have to be resolved by inserting a mov right 127 * before the phi. The choice then becomes between movs to pick off 128 * components for a scalar phi or potentially movs to recombine components 129 * for a vector phi. The problem is that the movs generated to pick off 130 * the components are almost uncoalescable. We can't coalesce them in NIR 131 * because we need them to pick off components and we can't coalesce them 132 * in the backend because the source register is a vector and the 133 * destination is a scalar that may be used at other places in the program. 134 * On the other hand, if we have a bunch of scalars going into a vector 135 * phi, the situation is much better. In this case, if the SSA def is 136 * generated in the predecessor block to the corresponding phi source, the 137 * backend code will be an ALU op into a temporary and then a mov into the 138 * given vector component; this move can almost certainly be coalesced 139 * away. 140 */ 141static bool 142should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state) 143{ 144 /* Already scalar */ 145 if (phi->dest.ssa.num_components == 1) 146 return false; 147 148 struct hash_entry *entry = _mesa_hash_table_search(state->phi_table, phi); 149 if (entry) 150 return entry->data != NULL; 151 152 /* Insert an entry and mark it as scalarizable for now. That way 153 * we don't recurse forever and a cycle in the dependence graph 154 * won't automatically make us fail to scalarize. 155 */ 156 entry = _mesa_hash_table_insert(state->phi_table, phi, (void *)(intptr_t)1); 157 158 bool scalarizable = false; 159 160 nir_foreach_phi_src(src, phi) { 161 /* This loop ignores srcs that are not scalarizable because its likely 162 * still worth copying to temps if another phi source is scalarizable. 163 * This reduces register spilling by a huge amount in the i965 driver for 164 * Deus Ex: MD. 165 */ 166 scalarizable = is_phi_src_scalarizable(src, state); 167 if (scalarizable) 168 break; 169 } 170 171 /* The hash table entry for 'phi' may have changed while recursing the 172 * dependence graph, so we need to reset it */ 173 entry = _mesa_hash_table_search(state->phi_table, phi); 174 assert(entry); 175 176 entry->data = (void *)(intptr_t)scalarizable; 177 178 return scalarizable; 179} 180 181static bool 182lower_phis_to_scalar_block(nir_block *block, 183 struct lower_phis_to_scalar_state *state) 184{ 185 bool progress = false; 186 187 /* Find the last phi node in the block */ 188 nir_phi_instr *last_phi = NULL; 189 nir_foreach_instr(instr, block) { 190 if (instr->type != nir_instr_type_phi) 191 break; 192 193 last_phi = nir_instr_as_phi(instr); 194 } 195 196 /* We have to handle the phi nodes in their own pass due to the way 197 * we're modifying the linked list of instructions. 198 */ 199 nir_foreach_instr_safe(instr, block) { 200 if (instr->type != nir_instr_type_phi) 201 break; 202 203 nir_phi_instr *phi = nir_instr_as_phi(instr); 204 205 if (!should_lower_phi(phi, state)) 206 continue; 207 208 unsigned bit_size = phi->dest.ssa.bit_size; 209 210 /* Create a vecN operation to combine the results. Most of these 211 * will be redundant, but copy propagation should clean them up for 212 * us. No need to add the complexity here. 213 */ 214 nir_op vec_op; 215 switch (phi->dest.ssa.num_components) { 216 case 2: vec_op = nir_op_vec2; break; 217 case 3: vec_op = nir_op_vec3; break; 218 case 4: vec_op = nir_op_vec4; break; 219 default: unreachable("Invalid number of components"); 220 } 221 222 nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, vec_op); 223 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, 224 phi->dest.ssa.num_components, 225 bit_size, NULL); 226 vec->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1; 227 228 for (unsigned i = 0; i < phi->dest.ssa.num_components; i++) { 229 nir_phi_instr *new_phi = nir_phi_instr_create(state->mem_ctx); 230 nir_ssa_dest_init(&new_phi->instr, &new_phi->dest, 1, 231 phi->dest.ssa.bit_size, NULL); 232 233 vec->src[i].src = nir_src_for_ssa(&new_phi->dest.ssa); 234 235 nir_foreach_phi_src(src, phi) { 236 /* We need to insert a mov to grab the i'th component of src */ 237 nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx, 238 nir_op_imov); 239 nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, bit_size, NULL); 240 mov->dest.write_mask = 1; 241 nir_src_copy(&mov->src[0].src, &src->src, state->mem_ctx); 242 mov->src[0].swizzle[0] = i; 243 244 /* Insert at the end of the predecessor but before the jump */ 245 nir_instr *pred_last_instr = nir_block_last_instr(src->pred); 246 if (pred_last_instr && pred_last_instr->type == nir_instr_type_jump) 247 nir_instr_insert_before(pred_last_instr, &mov->instr); 248 else 249 nir_instr_insert_after_block(src->pred, &mov->instr); 250 251 nir_phi_src *new_src = ralloc(new_phi, nir_phi_src); 252 new_src->pred = src->pred; 253 new_src->src = nir_src_for_ssa(&mov->dest.dest.ssa); 254 255 exec_list_push_tail(&new_phi->srcs, &new_src->node); 256 } 257 258 nir_instr_insert_before(&phi->instr, &new_phi->instr); 259 } 260 261 nir_instr_insert_after(&last_phi->instr, &vec->instr); 262 263 nir_ssa_def_rewrite_uses(&phi->dest.ssa, 264 nir_src_for_ssa(&vec->dest.dest.ssa)); 265 266 ralloc_steal(state->dead_ctx, phi); 267 nir_instr_remove(&phi->instr); 268 269 progress = true; 270 271 /* We're using the safe iterator and inserting all the newly 272 * scalarized phi nodes before their non-scalarized version so that's 273 * ok. However, we are also inserting vec operations after all of 274 * the last phi node so once we get here, we can't trust even the 275 * safe iterator to stop properly. We have to break manually. 276 */ 277 if (instr == &last_phi->instr) 278 break; 279 } 280 281 return progress; 282} 283 284static bool 285lower_phis_to_scalar_impl(nir_function_impl *impl) 286{ 287 struct lower_phis_to_scalar_state state; 288 bool progress = false; 289 290 state.mem_ctx = ralloc_parent(impl); 291 state.dead_ctx = ralloc_context(NULL); 292 state.phi_table = _mesa_pointer_hash_table_create(state.dead_ctx); 293 294 nir_foreach_block(block, impl) { 295 progress = lower_phis_to_scalar_block(block, &state) || progress; 296 } 297 298 nir_metadata_preserve(impl, nir_metadata_block_index | 299 nir_metadata_dominance); 300 301 ralloc_free(state.dead_ctx); 302 return progress; 303} 304 305/** A pass that lowers vector phi nodes to scalar 306 * 307 * This pass loops through the blocks and lowers looks for vector phi nodes 308 * it can lower to scalar phi nodes. Not all phi nodes are lowered. For 309 * instance, if one of the sources is a non-scalarizable vector, then we 310 * don't bother lowering because that would generate hard-to-coalesce movs. 311 */ 312bool 313nir_lower_phis_to_scalar(nir_shader *shader) 314{ 315 bool progress = false; 316 317 nir_foreach_function(function, shader) { 318 if (function->impl) 319 progress = lower_phis_to_scalar_impl(function->impl) || progress; 320 } 321 322 return progress; 323} 324