1b8e80941Smrg/* 2b8e80941Smrg * Copyright (C) 2017-2018 Rob Clark <robclark@freedesktop.org> 3b8e80941Smrg * 4b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a 5b8e80941Smrg * copy of this software and associated documentation files (the "Software"), 6b8e80941Smrg * to deal in the Software without restriction, including without limitation 7b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the 9b8e80941Smrg * Software is furnished to do so, subject to the following conditions: 10b8e80941Smrg * 11b8e80941Smrg * The above copyright notice and this permission notice (including the next 12b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the 13b8e80941Smrg * Software. 14b8e80941Smrg * 15b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20b8e80941Smrg * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21b8e80941Smrg * SOFTWARE. 22b8e80941Smrg * 23b8e80941Smrg * Authors: 24b8e80941Smrg * Rob Clark <robclark@freedesktop.org> 25b8e80941Smrg */ 26b8e80941Smrg 27b8e80941Smrg#define GPU 600 28b8e80941Smrg 29b8e80941Smrg#include "ir3_context.h" 30b8e80941Smrg#include "ir3_image.h" 31b8e80941Smrg 32b8e80941Smrg/* 33b8e80941Smrg * Handlers for instructions changed/added in a6xx: 34b8e80941Smrg * 35b8e80941Smrg * Starting with a6xx, isam and stbi is used for SSBOs as well; stbi and the 36b8e80941Smrg * atomic instructions (used for both SSBO and image) use a new instruction 37b8e80941Smrg * encoding compared to a4xx/a5xx. 38b8e80941Smrg */ 39b8e80941Smrg 40b8e80941Smrg 41b8e80941Smrg/* src[] = { buffer_index, offset }. No const_index */ 42b8e80941Smrgstatic void 43b8e80941Smrgemit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr, 44b8e80941Smrg struct ir3_instruction **dst) 45b8e80941Smrg{ 46b8e80941Smrg struct ir3_block *b = ctx->block; 47b8e80941Smrg struct ir3_instruction *offset; 48b8e80941Smrg struct ir3_instruction *ldib; 49b8e80941Smrg 50b8e80941Smrg /* can this be non-const buffer_index? how do we handle that? */ 51b8e80941Smrg int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[0])); 52b8e80941Smrg 53b8e80941Smrg offset = ir3_get_src(ctx, &intr->src[2])[0]; 54b8e80941Smrg 55b8e80941Smrg ldib = ir3_LDIB(b, create_immed(b, ibo_idx), 0, offset, 0); 56b8e80941Smrg ldib->regs[0]->wrmask = MASK(intr->num_components); 57b8e80941Smrg ldib->cat6.iim_val = intr->num_components; 58b8e80941Smrg ldib->cat6.d = 1; 59b8e80941Smrg ldib->cat6.type = TYPE_U32; 60b8e80941Smrg ldib->barrier_class = IR3_BARRIER_BUFFER_R; 61b8e80941Smrg ldib->barrier_conflict = IR3_BARRIER_BUFFER_W; 62b8e80941Smrg 63b8e80941Smrg ir3_split_dest(b, dst, ldib, 0, intr->num_components); 64b8e80941Smrg} 65b8e80941Smrg 66b8e80941Smrg/* src[] = { value, block_index, offset }. const_index[] = { write_mask } */ 67b8e80941Smrgstatic void 68b8e80941Smrgemit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr) 69b8e80941Smrg{ 70b8e80941Smrg struct ir3_block *b = ctx->block; 71b8e80941Smrg struct ir3_instruction *stib, *val, *offset; 72b8e80941Smrg /* TODO handle wrmask properly, see _store_shared().. but I think 73b8e80941Smrg * it is more a PITA than that, since blob ends up loading the 74b8e80941Smrg * masked components and writing them back out. 75b8e80941Smrg */ 76b8e80941Smrg unsigned wrmask = intr->const_index[0]; 77b8e80941Smrg unsigned ncomp = ffs(~wrmask) - 1; 78b8e80941Smrg 79b8e80941Smrg /* can this be non-const buffer_index? how do we handle that? */ 80b8e80941Smrg int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[1])); 81b8e80941Smrg 82b8e80941Smrg /* src0 is offset, src1 is value: 83b8e80941Smrg */ 84b8e80941Smrg val = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp); 85b8e80941Smrg offset = ir3_get_src(ctx, &intr->src[3])[0]; 86b8e80941Smrg 87b8e80941Smrg stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, offset, 0, val, 0); 88b8e80941Smrg stib->cat6.iim_val = ncomp; 89b8e80941Smrg stib->cat6.d = 1; 90b8e80941Smrg stib->cat6.type = TYPE_U32; 91b8e80941Smrg stib->barrier_class = IR3_BARRIER_BUFFER_W; 92b8e80941Smrg stib->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; 93b8e80941Smrg 94b8e80941Smrg array_insert(b, b->keeps, stib); 95b8e80941Smrg} 96b8e80941Smrg 97b8e80941Smrg/* 98b8e80941Smrg * SSBO atomic intrinsics 99b8e80941Smrg * 100b8e80941Smrg * All of the SSBO atomic memory operations read a value from memory, 101b8e80941Smrg * compute a new value using one of the operations below, write the new 102b8e80941Smrg * value to memory, and return the original value read. 103b8e80941Smrg * 104b8e80941Smrg * All operations take 3 sources except CompSwap that takes 4. These 105b8e80941Smrg * sources represent: 106b8e80941Smrg * 107b8e80941Smrg * 0: The SSBO buffer index. 108b8e80941Smrg * 1: The offset into the SSBO buffer of the variable that the atomic 109b8e80941Smrg * operation will operate on. 110b8e80941Smrg * 2: The data parameter to the atomic function (i.e. the value to add 111b8e80941Smrg * in ssbo_atomic_add, etc). 112b8e80941Smrg * 3: For CompSwap only: the second data parameter. 113b8e80941Smrg */ 114b8e80941Smrgstatic struct ir3_instruction * 115b8e80941Smrgemit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr) 116b8e80941Smrg{ 117b8e80941Smrg struct ir3_block *b = ctx->block; 118b8e80941Smrg struct ir3_instruction *atomic, *ibo, *src0, *src1, *data, *dummy; 119b8e80941Smrg type_t type = TYPE_U32; 120b8e80941Smrg 121b8e80941Smrg /* can this be non-const buffer_index? how do we handle that? */ 122b8e80941Smrg int ibo_idx = ir3_ssbo_to_ibo(&ctx->so->image_mapping, nir_src_as_uint(intr->src[0])); 123b8e80941Smrg ibo = create_immed(b, ibo_idx); 124b8e80941Smrg 125b8e80941Smrg data = ir3_get_src(ctx, &intr->src[2])[0]; 126b8e80941Smrg 127b8e80941Smrg /* So this gets a bit creative: 128b8e80941Smrg * 129b8e80941Smrg * src0 - vecN offset/coords 130b8e80941Smrg * src1.x - is actually destination register 131b8e80941Smrg * src1.y - is 'data' except for cmpxchg where src2.y is 'compare' 132b8e80941Smrg * src1.z - is 'data' for cmpxchg 133b8e80941Smrg * 134b8e80941Smrg * The combining src and dest kinda doesn't work out so well with how 135b8e80941Smrg * scheduling and RA work. So for now we create a dummy src2.x, and 136b8e80941Smrg * then in a later fixup path, insert an extra MOV out of src1.x. 137b8e80941Smrg * See ir3_a6xx_fixup_atomic_dests(). 138b8e80941Smrg * 139b8e80941Smrg * Note that nir already multiplies the offset by four 140b8e80941Smrg */ 141b8e80941Smrg dummy = create_immed(b, 0); 142b8e80941Smrg 143b8e80941Smrg if (intr->intrinsic == nir_intrinsic_ssbo_atomic_comp_swap_ir3) { 144b8e80941Smrg src0 = ir3_get_src(ctx, &intr->src[4])[0]; 145b8e80941Smrg struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[3])[0]; 146b8e80941Smrg src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ 147b8e80941Smrg dummy, compare, data 148b8e80941Smrg }, 3); 149b8e80941Smrg } else { 150b8e80941Smrg src0 = ir3_get_src(ctx, &intr->src[3])[0]; 151b8e80941Smrg src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ 152b8e80941Smrg dummy, data 153b8e80941Smrg }, 2); 154b8e80941Smrg } 155b8e80941Smrg 156b8e80941Smrg switch (intr->intrinsic) { 157b8e80941Smrg case nir_intrinsic_ssbo_atomic_add_ir3: 158b8e80941Smrg atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0); 159b8e80941Smrg break; 160b8e80941Smrg case nir_intrinsic_ssbo_atomic_imin_ir3: 161b8e80941Smrg atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0); 162b8e80941Smrg type = TYPE_S32; 163b8e80941Smrg break; 164b8e80941Smrg case nir_intrinsic_ssbo_atomic_umin_ir3: 165b8e80941Smrg atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0); 166b8e80941Smrg break; 167b8e80941Smrg case nir_intrinsic_ssbo_atomic_imax_ir3: 168b8e80941Smrg atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0); 169b8e80941Smrg type = TYPE_S32; 170b8e80941Smrg break; 171b8e80941Smrg case nir_intrinsic_ssbo_atomic_umax_ir3: 172b8e80941Smrg atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0); 173b8e80941Smrg break; 174b8e80941Smrg case nir_intrinsic_ssbo_atomic_and_ir3: 175b8e80941Smrg atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0); 176b8e80941Smrg break; 177b8e80941Smrg case nir_intrinsic_ssbo_atomic_or_ir3: 178b8e80941Smrg atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0); 179b8e80941Smrg break; 180b8e80941Smrg case nir_intrinsic_ssbo_atomic_xor_ir3: 181b8e80941Smrg atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0); 182b8e80941Smrg break; 183b8e80941Smrg case nir_intrinsic_ssbo_atomic_exchange_ir3: 184b8e80941Smrg atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0); 185b8e80941Smrg break; 186b8e80941Smrg case nir_intrinsic_ssbo_atomic_comp_swap_ir3: 187b8e80941Smrg atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0); 188b8e80941Smrg break; 189b8e80941Smrg default: 190b8e80941Smrg unreachable("boo"); 191b8e80941Smrg } 192b8e80941Smrg 193b8e80941Smrg atomic->cat6.iim_val = 1; 194b8e80941Smrg atomic->cat6.d = 1; 195b8e80941Smrg atomic->cat6.type = type; 196b8e80941Smrg atomic->barrier_class = IR3_BARRIER_BUFFER_W; 197b8e80941Smrg atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W; 198b8e80941Smrg 199b8e80941Smrg /* even if nothing consume the result, we can't DCE the instruction: */ 200b8e80941Smrg array_insert(b, b->keeps, atomic); 201b8e80941Smrg 202b8e80941Smrg return atomic; 203b8e80941Smrg} 204b8e80941Smrg 205b8e80941Smrg/* src[] = { deref, coord, sample_index, value }. const_index[] = {} */ 206b8e80941Smrgstatic void 207b8e80941Smrgemit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr) 208b8e80941Smrg{ 209b8e80941Smrg struct ir3_block *b = ctx->block; 210b8e80941Smrg const nir_variable *var = nir_intrinsic_get_var(intr, 0); 211b8e80941Smrg struct ir3_instruction *stib; 212b8e80941Smrg struct ir3_instruction * const *value = ir3_get_src(ctx, &intr->src[3]); 213b8e80941Smrg struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]); 214b8e80941Smrg unsigned ncoords = ir3_get_image_coords(var, NULL); 215b8e80941Smrg unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0])); 216b8e80941Smrg unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot); 217b8e80941Smrg unsigned ncomp = ir3_get_num_components_for_glformat(var->data.image.format); 218b8e80941Smrg 219b8e80941Smrg /* src0 is offset, src1 is value: 220b8e80941Smrg */ 221b8e80941Smrg stib = ir3_STIB(b, create_immed(b, ibo_idx), 0, 222b8e80941Smrg ir3_create_collect(ctx, coords, ncoords), 0, 223b8e80941Smrg ir3_create_collect(ctx, value, ncomp), 0); 224b8e80941Smrg stib->cat6.iim_val = ncomp; 225b8e80941Smrg stib->cat6.d = ncoords; 226b8e80941Smrg stib->cat6.type = ir3_get_image_type(var); 227b8e80941Smrg stib->cat6.typed = true; 228b8e80941Smrg stib->barrier_class = IR3_BARRIER_IMAGE_W; 229b8e80941Smrg stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W; 230b8e80941Smrg 231b8e80941Smrg array_insert(b, b->keeps, stib); 232b8e80941Smrg} 233b8e80941Smrg 234b8e80941Smrg/* src[] = { deref, coord, sample_index, value, compare }. const_index[] = {} */ 235b8e80941Smrgstatic struct ir3_instruction * 236b8e80941Smrgemit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr) 237b8e80941Smrg{ 238b8e80941Smrg struct ir3_block *b = ctx->block; 239b8e80941Smrg const nir_variable *var = nir_intrinsic_get_var(intr, 0); 240b8e80941Smrg struct ir3_instruction *atomic, *ibo, *src0, *src1, *dummy; 241b8e80941Smrg struct ir3_instruction * const *coords = ir3_get_src(ctx, &intr->src[1]); 242b8e80941Smrg struct ir3_instruction *value = ir3_get_src(ctx, &intr->src[3])[0]; 243b8e80941Smrg unsigned ncoords = ir3_get_image_coords(var, NULL); 244b8e80941Smrg unsigned slot = ir3_get_image_slot(nir_src_as_deref(intr->src[0])); 245b8e80941Smrg unsigned ibo_idx = ir3_image_to_ibo(&ctx->so->image_mapping, slot); 246b8e80941Smrg 247b8e80941Smrg ibo = create_immed(b, ibo_idx); 248b8e80941Smrg 249b8e80941Smrg /* So this gets a bit creative: 250b8e80941Smrg * 251b8e80941Smrg * src0 - vecN offset/coords 252b8e80941Smrg * src1.x - is actually destination register 253b8e80941Smrg * src1.y - is 'value' except for cmpxchg where src2.y is 'compare' 254b8e80941Smrg * src1.z - is 'value' for cmpxchg 255b8e80941Smrg * 256b8e80941Smrg * The combining src and dest kinda doesn't work out so well with how 257b8e80941Smrg * scheduling and RA work. So for now we create a dummy src2.x, and 258b8e80941Smrg * then in a later fixup path, insert an extra MOV out of src1.x. 259b8e80941Smrg * See ir3_a6xx_fixup_atomic_dests(). 260b8e80941Smrg */ 261b8e80941Smrg dummy = create_immed(b, 0); 262b8e80941Smrg src0 = ir3_create_collect(ctx, coords, ncoords); 263b8e80941Smrg 264b8e80941Smrg if (intr->intrinsic == nir_intrinsic_image_deref_atomic_comp_swap) { 265b8e80941Smrg struct ir3_instruction *compare = ir3_get_src(ctx, &intr->src[4])[0]; 266b8e80941Smrg src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ 267b8e80941Smrg dummy, compare, value 268b8e80941Smrg }, 3); 269b8e80941Smrg } else { 270b8e80941Smrg src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){ 271b8e80941Smrg dummy, value 272b8e80941Smrg }, 2); 273b8e80941Smrg } 274b8e80941Smrg 275b8e80941Smrg switch (intr->intrinsic) { 276b8e80941Smrg case nir_intrinsic_image_deref_atomic_add: 277b8e80941Smrg atomic = ir3_ATOMIC_ADD_G(b, ibo, 0, src0, 0, src1, 0); 278b8e80941Smrg break; 279b8e80941Smrg case nir_intrinsic_image_deref_atomic_min: 280b8e80941Smrg atomic = ir3_ATOMIC_MIN_G(b, ibo, 0, src0, 0, src1, 0); 281b8e80941Smrg break; 282b8e80941Smrg case nir_intrinsic_image_deref_atomic_max: 283b8e80941Smrg atomic = ir3_ATOMIC_MAX_G(b, ibo, 0, src0, 0, src1, 0); 284b8e80941Smrg break; 285b8e80941Smrg case nir_intrinsic_image_deref_atomic_and: 286b8e80941Smrg atomic = ir3_ATOMIC_AND_G(b, ibo, 0, src0, 0, src1, 0); 287b8e80941Smrg break; 288b8e80941Smrg case nir_intrinsic_image_deref_atomic_or: 289b8e80941Smrg atomic = ir3_ATOMIC_OR_G(b, ibo, 0, src0, 0, src1, 0); 290b8e80941Smrg break; 291b8e80941Smrg case nir_intrinsic_image_deref_atomic_xor: 292b8e80941Smrg atomic = ir3_ATOMIC_XOR_G(b, ibo, 0, src0, 0, src1, 0); 293b8e80941Smrg break; 294b8e80941Smrg case nir_intrinsic_image_deref_atomic_exchange: 295b8e80941Smrg atomic = ir3_ATOMIC_XCHG_G(b, ibo, 0, src0, 0, src1, 0); 296b8e80941Smrg break; 297b8e80941Smrg case nir_intrinsic_image_deref_atomic_comp_swap: 298b8e80941Smrg atomic = ir3_ATOMIC_CMPXCHG_G(b, ibo, 0, src0, 0, src1, 0); 299b8e80941Smrg break; 300b8e80941Smrg default: 301b8e80941Smrg unreachable("boo"); 302b8e80941Smrg } 303b8e80941Smrg 304b8e80941Smrg atomic->cat6.iim_val = 1; 305b8e80941Smrg atomic->cat6.d = ncoords; 306b8e80941Smrg atomic->cat6.type = ir3_get_image_type(var); 307b8e80941Smrg atomic->cat6.typed = true; 308b8e80941Smrg atomic->barrier_class = IR3_BARRIER_IMAGE_W; 309b8e80941Smrg atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W; 310b8e80941Smrg 311b8e80941Smrg /* even if nothing consume the result, we can't DCE the instruction: */ 312b8e80941Smrg array_insert(b, b->keeps, atomic); 313b8e80941Smrg 314b8e80941Smrg return atomic; 315b8e80941Smrg} 316b8e80941Smrg 317b8e80941Smrgconst struct ir3_context_funcs ir3_a6xx_funcs = { 318b8e80941Smrg .emit_intrinsic_load_ssbo = emit_intrinsic_load_ssbo, 319b8e80941Smrg .emit_intrinsic_store_ssbo = emit_intrinsic_store_ssbo, 320b8e80941Smrg .emit_intrinsic_atomic_ssbo = emit_intrinsic_atomic_ssbo, 321b8e80941Smrg .emit_intrinsic_store_image = emit_intrinsic_store_image, 322b8e80941Smrg .emit_intrinsic_atomic_image = emit_intrinsic_atomic_image, 323b8e80941Smrg}; 324b8e80941Smrg 325b8e80941Smrg/* 326b8e80941Smrg * Special pass to run after instruction scheduling to insert an 327b8e80941Smrg * extra mov from src1.x to dst. This way the other compiler passes 328b8e80941Smrg * can ignore this quirk of the new instruction encoding. 329b8e80941Smrg * 330b8e80941Smrg * This might cause extra complication in the future when we support 331b8e80941Smrg * spilling, as I think we'd want to re-run the scheduling pass. One 332b8e80941Smrg * possible alternative might be to do this in the RA pass after 333b8e80941Smrg * ra_allocate() but before destroying the SSA links. (Ie. we do 334b8e80941Smrg * want to know if anything consumes the result of the atomic instr, 335b8e80941Smrg * if there is no consumer then inserting the extra mov is pointless. 336b8e80941Smrg */ 337b8e80941Smrg 338b8e80941Smrgstatic struct ir3_instruction * 339b8e80941Smrgget_atomic_dest_mov(struct ir3_instruction *atomic) 340b8e80941Smrg{ 341b8e80941Smrg /* if we've already created the mov-out, then re-use it: */ 342b8e80941Smrg if (atomic->data) 343b8e80941Smrg return atomic->data; 344b8e80941Smrg 345b8e80941Smrg /* extract back out the 'dummy' which serves as stand-in for dest: */ 346b8e80941Smrg struct ir3_instruction *src = ssa(atomic->regs[3]); 347b8e80941Smrg debug_assert(src->opc == OPC_META_FI); 348b8e80941Smrg struct ir3_instruction *dummy = ssa(src->regs[1]); 349b8e80941Smrg 350b8e80941Smrg struct ir3_instruction *mov = ir3_MOV(atomic->block, dummy, TYPE_U32); 351b8e80941Smrg 352b8e80941Smrg mov->flags |= IR3_INSTR_SY; 353b8e80941Smrg 354b8e80941Smrg if (atomic->regs[0]->flags & IR3_REG_ARRAY) { 355b8e80941Smrg mov->regs[0]->flags |= IR3_REG_ARRAY; 356b8e80941Smrg mov->regs[0]->array = atomic->regs[0]->array; 357b8e80941Smrg } 358b8e80941Smrg 359b8e80941Smrg /* it will have already been appended to the end of the block, which 360b8e80941Smrg * isn't where we want it, so fix-up the location: 361b8e80941Smrg */ 362b8e80941Smrg list_delinit(&mov->node); 363b8e80941Smrg list_add(&mov->node, &atomic->node); 364b8e80941Smrg 365b8e80941Smrg /* And because this is after instruction scheduling, we don't really 366b8e80941Smrg * have a good way to know if extra delay slots are needed. For 367b8e80941Smrg * example, if the result is consumed by an stib (storeImage()) there 368b8e80941Smrg * would be no extra delay slots in place already, but 5 are needed. 369b8e80941Smrg * Just plan for the worst and hope nobody looks at the resulting 370b8e80941Smrg * code that is generated :-( 371b8e80941Smrg */ 372b8e80941Smrg struct ir3_instruction *nop = ir3_NOP(atomic->block); 373b8e80941Smrg nop->repeat = 5; 374b8e80941Smrg 375b8e80941Smrg list_delinit(&nop->node); 376b8e80941Smrg list_add(&nop->node, &mov->node); 377b8e80941Smrg 378b8e80941Smrg return atomic->data = mov; 379b8e80941Smrg} 380b8e80941Smrg 381b8e80941Smrgvoid 382b8e80941Smrgir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so) 383b8e80941Smrg{ 384b8e80941Smrg if (so->image_mapping.num_ibo == 0) 385b8e80941Smrg return; 386b8e80941Smrg 387b8e80941Smrg list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { 388b8e80941Smrg list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) { 389b8e80941Smrg instr->data = NULL; 390b8e80941Smrg } 391b8e80941Smrg } 392b8e80941Smrg 393b8e80941Smrg list_for_each_entry (struct ir3_block, block, &ir->block_list, node) { 394b8e80941Smrg list_for_each_entry_safe (struct ir3_instruction, instr, &block->instr_list, node) { 395b8e80941Smrg struct ir3_register *reg; 396b8e80941Smrg 397b8e80941Smrg foreach_src(reg, instr) { 398b8e80941Smrg struct ir3_instruction *src = ssa(reg); 399b8e80941Smrg 400b8e80941Smrg if (!src) 401b8e80941Smrg continue; 402b8e80941Smrg 403b8e80941Smrg if (is_atomic(src->opc) && (src->flags & IR3_INSTR_G)) 404b8e80941Smrg reg->instr = get_atomic_dest_mov(src); 405b8e80941Smrg } 406b8e80941Smrg } 407b8e80941Smrg 408b8e80941Smrg /* we also need to fixup shader outputs: */ 409b8e80941Smrg for (unsigned i = 0; i < ir->noutputs; i++) { 410b8e80941Smrg if (!ir->outputs[i]) 411b8e80941Smrg continue; 412b8e80941Smrg if (is_atomic(ir->outputs[i]->opc) && (ir->outputs[i]->flags & IR3_INSTR_G)) 413b8e80941Smrg ir->outputs[i] = get_atomic_dest_mov(ir->outputs[i]); 414b8e80941Smrg } 415b8e80941Smrg } 416b8e80941Smrg 417b8e80941Smrg} 418