1/**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \brief  Clipping stage
30 *
31 * \author  Keith Whitwell <keithw@vmware.com>
32 */
33
34
35#include "util/u_bitcast.h"
36#include "util/u_memory.h"
37#include "util/u_math.h"
38
39#include "pipe/p_shader_tokens.h"
40
41#include "draw_vs.h"
42#include "draw_pipe.h"
43#include "draw_fs.h"
44#include "draw_gs.h"
45
46
47/** Set to 1 to enable printing of coords before/after clipping */
48#define DEBUG_CLIP 0
49
50#define MAX_CLIPPED_VERTICES ((2 * (6 + PIPE_MAX_CLIP_PLANES))+1)
51
52
53
54struct clip_stage {
55   struct draw_stage stage;      /**< base class */
56
57   unsigned pos_attr;
58   boolean have_clipdist;
59   int cv_attr;
60
61   /* List of the attributes to be constant interpolated. */
62   uint num_const_attribs;
63   uint8_t const_attribs[PIPE_MAX_SHADER_OUTPUTS];
64   /* List of the attributes to be linear interpolated. */
65   uint num_linear_attribs;
66   uint8_t linear_attribs[PIPE_MAX_SHADER_OUTPUTS];
67   /* List of the attributes to be perspective interpolated. */
68   uint num_perspect_attribs;
69   uint8_t perspect_attribs[PIPE_MAX_SHADER_OUTPUTS];
70
71   float (*plane)[4];
72};
73
74
75/** Cast wrapper */
76static inline struct clip_stage *clip_stage(struct draw_stage *stage)
77{
78   return (struct clip_stage *)stage;
79}
80
81static inline unsigned
82draw_viewport_index(struct draw_context *draw,
83                    const struct vertex_header *leading_vertex)
84{
85   if (draw_current_shader_uses_viewport_index(draw)) {
86      unsigned viewport_index_output =
87         draw_current_shader_viewport_index_output(draw);
88      unsigned viewport_index =
89         u_bitcast_f2u(leading_vertex->data[viewport_index_output][0]);
90      return draw_clamp_viewport_idx(viewport_index);
91   } else {
92      return 0;
93   }
94}
95
96
97#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
98
99
100/* All attributes are float[4], so this is easy:
101 */
102static void interp_attr(float dst[4],
103                        float t,
104                        const float in[4],
105                        const float out[4])
106{
107   dst[0] = LINTERP( t, out[0], in[0] );
108   dst[1] = LINTERP( t, out[1], in[1] );
109   dst[2] = LINTERP( t, out[2], in[2] );
110   dst[3] = LINTERP( t, out[3], in[3] );
111}
112
113
114/**
115 * Copy flat shaded attributes src vertex to dst vertex.
116 */
117static void copy_flat(struct draw_stage *stage,
118                      struct vertex_header *dst,
119                      const struct vertex_header *src)
120{
121   const struct clip_stage *clipper = clip_stage(stage);
122   uint i;
123   for (i = 0; i < clipper->num_const_attribs; i++) {
124      const uint attr = clipper->const_attribs[i];
125      COPY_4FV(dst->data[attr], src->data[attr]);
126   }
127}
128
129/* Interpolate between two vertices to produce a third.
130 */
131static void interp(const struct clip_stage *clip,
132                   struct vertex_header *dst,
133                   float t,
134                   const struct vertex_header *out,
135                   const struct vertex_header *in,
136                   unsigned viewport_index)
137{
138   const unsigned pos_attr = clip->pos_attr;
139   unsigned j;
140   float t_nopersp;
141
142   /* Vertex header.
143    */
144   dst->clipmask = 0;
145   dst->edgeflag = 0;        /* will get overwritten later */
146   dst->pad = 0;
147   dst->vertex_id = UNDEFINED_VERTEX_ID;
148
149   /* Interpolate the clip-space coords.
150    */
151   if (clip->cv_attr >= 0) {
152      interp_attr(dst->data[clip->cv_attr], t,
153                  in->data[clip->cv_attr], out->data[clip->cv_attr]);
154   }
155   /* interpolate the clip-space position */
156   interp_attr(dst->clip_pos, t, in->clip_pos, out->clip_pos);
157
158   /* Do the projective divide and viewport transformation to get
159    * new window coordinates:
160    */
161   {
162      const float *pos = dst->clip_pos;
163      const float *scale =
164         clip->stage.draw->viewports[viewport_index].scale;
165      const float *trans =
166         clip->stage.draw->viewports[viewport_index].translate;
167      const float oow = 1.0f / pos[3];
168
169      dst->data[pos_attr][0] = pos[0] * oow * scale[0] + trans[0];
170      dst->data[pos_attr][1] = pos[1] * oow * scale[1] + trans[1];
171      dst->data[pos_attr][2] = pos[2] * oow * scale[2] + trans[2];
172      dst->data[pos_attr][3] = oow;
173   }
174
175
176   /* interp perspective attribs */
177   for (j = 0; j < clip->num_perspect_attribs; j++) {
178      const unsigned attr = clip->perspect_attribs[j];
179      interp_attr(dst->data[attr], t, in->data[attr], out->data[attr]);
180   }
181
182   /**
183    * Compute the t in screen-space instead of 3d space to use
184    * for noperspective interpolation.
185    *
186    * The points can be aligned with the X axis, so in that case try
187    * the Y.  When both points are at the same screen position, we can
188    * pick whatever value (the interpolated point won't be in front
189    * anyway), so just use the 3d t.
190    */
191   if (clip->num_linear_attribs) {
192      int k;
193      t_nopersp = t;
194      /* find either in.x != out.x or in.y != out.y */
195      for (k = 0; k < 2; k++) {
196         if (in->clip_pos[k] != out->clip_pos[k]) {
197            /* do divide by W, then compute linear interpolation factor */
198            float in_coord = in->clip_pos[k] / in->clip_pos[3];
199            float out_coord = out->clip_pos[k] / out->clip_pos[3];
200            float dst_coord = dst->clip_pos[k] / dst->clip_pos[3];
201            t_nopersp = (dst_coord - out_coord) / (in_coord - out_coord);
202            break;
203         }
204      }
205      for (j = 0; j < clip->num_linear_attribs; j++) {
206         const unsigned attr = clip->linear_attribs[j];
207         interp_attr(dst->data[attr], t_nopersp, in->data[attr], out->data[attr]);
208      }
209   }
210}
211
212/**
213 * Emit a post-clip polygon to the next pipeline stage.  The polygon
214 * will be convex and the provoking vertex will always be vertex[0].
215 */
216static void emit_poly(struct draw_stage *stage,
217                      struct vertex_header **inlist,
218                      const boolean *edgeflags,
219                      unsigned n,
220                      const struct prim_header *origPrim)
221{
222   const struct clip_stage *clipper = clip_stage(stage);
223   struct prim_header header;
224   unsigned i;
225   ushort edge_first, edge_middle, edge_last;
226
227   if (stage->draw->rasterizer->flatshade_first) {
228      edge_first  = DRAW_PIPE_EDGE_FLAG_0;
229      edge_middle = DRAW_PIPE_EDGE_FLAG_1;
230      edge_last   = DRAW_PIPE_EDGE_FLAG_2;
231   }
232   else {
233      edge_first  = DRAW_PIPE_EDGE_FLAG_2;
234      edge_middle = DRAW_PIPE_EDGE_FLAG_0;
235      edge_last   = DRAW_PIPE_EDGE_FLAG_1;
236   }
237
238   if (!edgeflags[0])
239      edge_first = 0;
240
241   /* later stages may need the determinant, but only the sign matters */
242   header.det = origPrim->det;
243   header.flags = DRAW_PIPE_RESET_STIPPLE | edge_first | edge_middle;
244   header.pad = 0;
245
246   for (i = 2; i < n; i++, header.flags = edge_middle) {
247      /* order the triangle verts to respect the provoking vertex mode */
248      if (stage->draw->rasterizer->flatshade_first) {
249         header.v[0] = inlist[0];  /* the provoking vertex */
250         header.v[1] = inlist[i-1];
251         header.v[2] = inlist[i];
252      }
253      else {
254         header.v[0] = inlist[i-1];
255         header.v[1] = inlist[i];
256         header.v[2] = inlist[0];  /* the provoking vertex */
257      }
258
259      if (!edgeflags[i-1]) {
260         header.flags &= ~edge_middle;
261      }
262
263      if (i == n - 1 && edgeflags[i])
264         header.flags |= edge_last;
265
266      if (DEBUG_CLIP) {
267         uint j, k;
268         debug_printf("Clipped tri: (flat-shade-first = %d)\n",
269                      stage->draw->rasterizer->flatshade_first);
270         for (j = 0; j < 3; j++) {
271            debug_printf("  Vert %d: clip pos: %f %f %f %f\n", j,
272                         header.v[j]->clip_pos[0],
273                         header.v[j]->clip_pos[1],
274                         header.v[j]->clip_pos[2],
275                         header.v[j]->clip_pos[3]);
276            if (clipper->cv_attr >= 0) {
277               debug_printf("  Vert %d: cv: %f %f %f %f\n", j,
278                            header.v[j]->data[clipper->cv_attr][0],
279                            header.v[j]->data[clipper->cv_attr][1],
280                            header.v[j]->data[clipper->cv_attr][2],
281                            header.v[j]->data[clipper->cv_attr][3]);
282            }
283            for (k = 0; k < draw_num_shader_outputs(stage->draw); k++) {
284               debug_printf("  Vert %d: Attr %d:  %f %f %f %f\n", j, k,
285                            header.v[j]->data[k][0],
286                            header.v[j]->data[k][1],
287                            header.v[j]->data[k][2],
288                            header.v[j]->data[k][3]);
289            }
290         }
291      }
292      stage->next->tri(stage->next, &header);
293   }
294}
295
296
297static inline float
298dot4(const float *a, const float *b)
299{
300   return (a[0] * b[0] +
301           a[1] * b[1] +
302           a[2] * b[2] +
303           a[3] * b[3]);
304}
305
306/*
307 * this function extracts the clip distance for the current plane,
308 * it first checks if the shader provided a clip distance, otherwise
309 * it works out the value using the clipvertex
310 */
311static inline float getclipdist(const struct clip_stage *clipper,
312                                struct vertex_header *vert,
313                                int plane_idx)
314{
315   const float *plane;
316   float dp;
317   if (plane_idx < 6) {
318      /* ordinary xyz view volume clipping uses pos output */
319      plane = clipper->plane[plane_idx];
320      dp = dot4(vert->clip_pos, plane);
321   }
322   else if (clipper->have_clipdist) {
323      /* pick the correct clipdistance element from the output vectors */
324      int _idx = plane_idx - 6;
325      int cdi = _idx >= 4;
326      int vidx = cdi ? _idx - 4 : _idx;
327      dp = vert->data[draw_current_shader_ccdistance_output(clipper->stage.draw, cdi)][vidx];
328   } else {
329      /*
330       * legacy user clip planes or gl_ClipVertex
331       */
332      plane = clipper->plane[plane_idx];
333      if (clipper->cv_attr >= 0) {
334         dp = dot4(vert->data[clipper->cv_attr], plane);
335      }
336      else {
337         dp = dot4(vert->clip_pos, plane);
338      }
339   }
340   return dp;
341}
342
343/* Clip a triangle against the viewport and user clip planes.
344 */
345static void
346do_clip_tri(struct draw_stage *stage,
347            struct prim_header *header,
348            unsigned clipmask)
349{
350   struct clip_stage *clipper = clip_stage( stage );
351   struct vertex_header *a[MAX_CLIPPED_VERTICES];
352   struct vertex_header *b[MAX_CLIPPED_VERTICES];
353   struct vertex_header **inlist = a;
354   struct vertex_header **outlist = b;
355   struct vertex_header *prov_vertex;
356   unsigned tmpnr = 0;
357   unsigned n = 3;
358   unsigned i;
359   boolean aEdges[MAX_CLIPPED_VERTICES];
360   boolean bEdges[MAX_CLIPPED_VERTICES];
361   boolean *inEdges = aEdges;
362   boolean *outEdges = bEdges;
363   int viewport_index = 0;
364
365   inlist[0] = header->v[0];
366   inlist[1] = header->v[1];
367   inlist[2] = header->v[2];
368
369   /*
370    * For d3d10, we need to take this from the leading (first) vertex.
371    * For GL, we could do anything (as long as we advertize
372    * GL_UNDEFINED_VERTEX for the VIEWPORT_INDEX_PROVOKING_VERTEX query),
373    * but it needs to be consistent with what other parts (i.e. driver)
374    * will do, and that seems easier with GL_PROVOKING_VERTEX logic.
375    */
376   if (stage->draw->rasterizer->flatshade_first) {
377      prov_vertex = inlist[0];
378   }
379   else {
380      prov_vertex = inlist[2];
381   }
382   viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
383
384   if (DEBUG_CLIP) {
385      const float *v0 = header->v[0]->clip_pos;
386      const float *v1 = header->v[1]->clip_pos;
387      const float *v2 = header->v[2]->clip_pos;
388      debug_printf("Clip triangle pos:\n");
389      debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
390      debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
391      debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
392      if (clipper->cv_attr >= 0) {
393         const float *v0 = header->v[0]->data[clipper->cv_attr];
394         const float *v1 = header->v[1]->data[clipper->cv_attr];
395         const float *v2 = header->v[2]->data[clipper->cv_attr];
396         debug_printf("Clip triangle cv:\n");
397         debug_printf(" %f, %f, %f, %f\n", v0[0], v0[1], v0[2], v0[3]);
398         debug_printf(" %f, %f, %f, %f\n", v1[0], v1[1], v1[2], v1[3]);
399         debug_printf(" %f, %f, %f, %f\n", v2[0], v2[1], v2[2], v2[3]);
400      }
401   }
402
403   /*
404    * Note: at this point we can't just use the per-vertex edge flags.
405    * We have to observe the edge flag bits set in header->flags which
406    * were set during primitive decomposition.  Put those flags into
407    * an edge flags array which parallels the vertex array.
408    * Later, in the 'unfilled' pipeline stage we'll draw the edge if both
409    * the header.flags bit is set AND the per-vertex edgeflag field is set.
410    */
411   inEdges[0] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_0);
412   inEdges[1] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_1);
413   inEdges[2] = !!(header->flags & DRAW_PIPE_EDGE_FLAG_2);
414
415   while (clipmask && n >= 3) {
416      const unsigned plane_idx = ffs(clipmask)-1;
417      const boolean is_user_clip_plane = plane_idx >= 6;
418      struct vertex_header *vert_prev = inlist[0];
419      boolean *edge_prev = &inEdges[0];
420      float dp_prev;
421      unsigned outcount = 0;
422
423      dp_prev = getclipdist(clipper, vert_prev, plane_idx);
424      clipmask &= ~(1<<plane_idx);
425
426      if (util_is_inf_or_nan(dp_prev))
427         return; //discard nan
428
429      assert(n < MAX_CLIPPED_VERTICES);
430      if (n >= MAX_CLIPPED_VERTICES)
431         return;
432      inlist[n] = inlist[0]; /* prevent rotation of vertices */
433      inEdges[n] = inEdges[0];
434
435      for (i = 1; i <= n; i++) {
436         struct vertex_header *vert = inlist[i];
437         boolean *edge = &inEdges[i];
438         boolean different_sign;
439
440         float dp = getclipdist(clipper, vert, plane_idx);
441
442         if (util_is_inf_or_nan(dp))
443            return; //discard nan
444
445         if (dp_prev >= 0.0f) {
446            assert(outcount < MAX_CLIPPED_VERTICES);
447            if (outcount >= MAX_CLIPPED_VERTICES)
448               return;
449            outEdges[outcount] = *edge_prev;
450            outlist[outcount++] = vert_prev;
451            different_sign = dp < 0.0f;
452         } else {
453            different_sign = !(dp < 0.0f);
454         }
455
456         if (different_sign) {
457            struct vertex_header *new_vert;
458            boolean *new_edge;
459
460            assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
461            if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
462               return;
463            new_vert = clipper->stage.tmp[tmpnr++];
464
465            assert(outcount < MAX_CLIPPED_VERTICES);
466            if (outcount >= MAX_CLIPPED_VERTICES)
467               return;
468
469            new_edge = &outEdges[outcount];
470            outlist[outcount++] = new_vert;
471
472            if (dp < 0.0f) {
473               /* Going out of bounds.  Avoid division by zero as we
474                * know dp != dp_prev from different_sign, above.
475                */
476               float t = dp / (dp - dp_prev);
477               interp( clipper, new_vert, t, vert, vert_prev, viewport_index );
478
479               /* Whether or not to set edge flag for the new vert depends
480                * on whether it's a user-defined clipping plane.  We're
481                * copying NVIDIA's behaviour here.
482                */
483               if (is_user_clip_plane) {
484                  /* we want to see an edge along the clip plane */
485                  *new_edge = TRUE;
486                  new_vert->edgeflag = TRUE;
487               }
488               else {
489                  /* we don't want to see an edge along the frustum clip plane */
490                  *new_edge = *edge_prev;
491                  new_vert->edgeflag = FALSE;
492               }
493            }
494            else {
495               /* Coming back in.
496                */
497               float t = dp_prev / (dp_prev - dp);
498               interp( clipper, new_vert, t, vert_prev, vert, viewport_index );
499
500               /* Copy starting vert's edgeflag:
501                */
502               new_vert->edgeflag = vert_prev->edgeflag;
503               *new_edge = *edge_prev;
504            }
505         }
506
507         vert_prev = vert;
508         edge_prev = edge;
509         dp_prev = dp;
510      }
511
512      /* swap in/out lists */
513      {
514         struct vertex_header **tmp = inlist;
515         inlist = outlist;
516         outlist = tmp;
517         n = outcount;
518      }
519      {
520         boolean *tmp = inEdges;
521         inEdges = outEdges;
522         outEdges = tmp;
523      }
524
525   }
526
527   /* If constant interpolated, copy provoking vertex attrib to polygon vertex[0]
528    */
529   if (n >= 3) {
530      if (clipper->num_const_attribs) {
531         if (stage->draw->rasterizer->flatshade_first) {
532            if (inlist[0] != header->v[0]) {
533               assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
534               if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
535                  return;
536               inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
537               copy_flat(stage, inlist[0], header->v[0]);
538            }
539         }
540         else {
541            if (inlist[0] != header->v[2]) {
542               assert(tmpnr < MAX_CLIPPED_VERTICES + 1);
543               if (tmpnr >= MAX_CLIPPED_VERTICES + 1)
544                  return;
545               inlist[0] = dup_vert(stage, inlist[0], tmpnr++);
546               copy_flat(stage, inlist[0], header->v[2]);
547            }
548         }
549      }
550
551      /* Emit the polygon as triangles to the setup stage:
552       */
553      emit_poly(stage, inlist, inEdges, n, header);
554   }
555}
556
557
558/* Clip a line against the viewport and user clip planes.
559 */
560static void
561do_clip_line(struct draw_stage *stage,
562             struct prim_header *header,
563             unsigned clipmask)
564{
565   const struct clip_stage *clipper = clip_stage(stage);
566   struct vertex_header *v0 = header->v[0];
567   struct vertex_header *v1 = header->v[1];
568   struct vertex_header *prov_vertex;
569   float t0 = 0.0F;
570   float t1 = 0.0F;
571   struct prim_header newprim;
572   int viewport_index;
573
574   newprim.flags = header->flags;
575
576   if (stage->draw->rasterizer->flatshade_first) {
577      prov_vertex = v0;
578   }
579   else {
580      prov_vertex = v1;
581   }
582   viewport_index = draw_viewport_index(clipper->stage.draw, prov_vertex);
583
584   while (clipmask) {
585      const unsigned plane_idx = ffs(clipmask)-1;
586      const float dp0 = getclipdist(clipper, v0, plane_idx);
587      const float dp1 = getclipdist(clipper, v1, plane_idx);
588
589      if (util_is_inf_or_nan(dp0) || util_is_inf_or_nan(dp1))
590         return; //discard nan
591
592      if (dp1 < 0.0F) {
593         float t = dp1 / (dp1 - dp0);
594         t1 = MAX2(t1, t);
595      }
596
597      if (dp0 < 0.0F) {
598         float t = dp0 / (dp0 - dp1);
599         t0 = MAX2(t0, t);
600      }
601
602      if (t0 + t1 >= 1.0F)
603         return; /* discard */
604
605      clipmask &= ~(1 << plane_idx);  /* turn off this plane's bit */
606   }
607
608   if (v0->clipmask) {
609      interp( clipper, stage->tmp[0], t0, v0, v1, viewport_index );
610      if (stage->draw->rasterizer->flatshade_first) {
611         copy_flat(stage, stage->tmp[0], v0);  /* copy v0 color to tmp[0] */
612      }
613      else {
614         copy_flat(stage, stage->tmp[0], v1);  /* copy v1 color to tmp[0] */
615      }
616      newprim.v[0] = stage->tmp[0];
617   }
618   else {
619      newprim.v[0] = v0;
620   }
621
622   if (v1->clipmask) {
623      interp( clipper, stage->tmp[1], t1, v1, v0, viewport_index );
624      if (stage->draw->rasterizer->flatshade_first) {
625         copy_flat(stage, stage->tmp[1], v0);  /* copy v0 color to tmp[1] */
626      }
627      else {
628         copy_flat(stage, stage->tmp[1], v1);  /* copy v1 color to tmp[1] */
629      }
630      newprim.v[1] = stage->tmp[1];
631   }
632   else {
633      newprim.v[1] = v1;
634   }
635
636   stage->next->line( stage->next, &newprim );
637}
638
639
640static void
641clip_point(struct draw_stage *stage, struct prim_header *header)
642{
643   if (header->v[0]->clipmask == 0)
644      stage->next->point( stage->next, header );
645}
646
647
648/*
649 * Clip points but ignore the first 4 (xy) clip planes.
650 * (Because the generated clip mask is completely unaffacted by guard band,
651 * we still need to manually evaluate the x/y planes if they are outside
652 * the guard band and not just outside the vp.)
653 */
654static void
655clip_point_guard_xy(struct draw_stage *stage, struct prim_header *header)
656{
657   unsigned clipmask = header->v[0]->clipmask;
658   if ((clipmask & 0xffffffff) == 0)
659      stage->next->point(stage->next, header);
660   else if ((clipmask & 0xfffffff0) == 0) {
661      while (clipmask) {
662         const unsigned plane_idx = ffs(clipmask)-1;
663         clipmask &= ~(1 << plane_idx);  /* turn off this plane's bit */
664         /* TODO: this should really do proper guardband clipping,
665          * currently just throw out infs/nans.
666          * Also note that vertices with negative w values MUST be tossed
667          * out (not sure if proper guardband clipping would do this
668          * automatically). These would usually be captured by depth clip
669          * too but this can be disabled.
670          */
671         if (header->v[0]->clip_pos[3] <= 0.0f ||
672             util_is_inf_or_nan(header->v[0]->clip_pos[0]) ||
673             util_is_inf_or_nan(header->v[0]->clip_pos[1]))
674            return;
675      }
676      stage->next->point(stage->next, header);
677   }
678}
679
680
681static void
682clip_first_point(struct draw_stage *stage, struct prim_header *header)
683{
684   stage->point = stage->draw->guard_band_points_xy ? clip_point_guard_xy : clip_point;
685   stage->point(stage, header);
686}
687
688
689static void
690clip_line(struct draw_stage *stage, struct prim_header *header)
691{
692   unsigned clipmask = (header->v[0]->clipmask |
693                        header->v[1]->clipmask);
694
695   if (clipmask == 0) {
696      /* no clipping needed */
697      stage->next->line( stage->next, header );
698   }
699   else if ((header->v[0]->clipmask &
700             header->v[1]->clipmask) == 0) {
701      do_clip_line(stage, header, clipmask);
702   }
703   /* else, totally clipped */
704}
705
706
707static void
708clip_tri(struct draw_stage *stage, struct prim_header *header)
709{
710   unsigned clipmask = (header->v[0]->clipmask |
711                        header->v[1]->clipmask |
712                        header->v[2]->clipmask);
713
714   if (clipmask == 0) {
715      /* no clipping needed */
716      stage->next->tri( stage->next, header );
717   }
718   else if ((header->v[0]->clipmask &
719             header->v[1]->clipmask &
720             header->v[2]->clipmask) == 0) {
721      do_clip_tri(stage, header, clipmask);
722   }
723}
724
725
726static int
727find_interp(const struct draw_fragment_shader *fs, int *indexed_interp,
728            uint semantic_name, uint semantic_index)
729{
730   int interp;
731   /* If it's gl_{Front,Back}{,Secondary}Color, pick up the mode
732    * from the array we've filled before. */
733   if ((semantic_name == TGSI_SEMANTIC_COLOR ||
734        semantic_name == TGSI_SEMANTIC_BCOLOR) &&
735       semantic_index < 2) {
736      interp = indexed_interp[semantic_index];
737   } else if (semantic_name == TGSI_SEMANTIC_POSITION ||
738              semantic_name == TGSI_SEMANTIC_CLIPVERTEX) {
739      /* these inputs are handled specially always */
740      return -1;
741   } else {
742      /* Otherwise, search in the FS inputs, with a decent default
743       * if we don't find it.
744       * This probably only matters for layer, vpindex, culldist, maybe
745       * front_face.
746       */
747      uint j;
748      if (semantic_name == TGSI_SEMANTIC_LAYER ||
749          semantic_name == TGSI_SEMANTIC_VIEWPORT_INDEX) {
750         interp = TGSI_INTERPOLATE_CONSTANT;
751      }
752      else {
753         interp = TGSI_INTERPOLATE_PERSPECTIVE;
754      }
755      if (fs) {
756         for (j = 0; j < fs->info.num_inputs; j++) {
757            if (semantic_name == fs->info.input_semantic_name[j] &&
758                semantic_index == fs->info.input_semantic_index[j]) {
759               interp = fs->info.input_interpolate[j];
760               break;
761            }
762         }
763      }
764   }
765   return interp;
766}
767
768/* Update state.  Could further delay this until we hit the first
769 * primitive that really requires clipping.
770 */
771static void
772clip_init_state(struct draw_stage *stage)
773{
774   struct clip_stage *clipper = clip_stage(stage);
775   const struct draw_context *draw = stage->draw;
776   const struct draw_fragment_shader *fs = draw->fs.fragment_shader;
777   const struct tgsi_shader_info *info = draw_get_shader_info(draw);
778   uint i, j;
779   int indexed_interp[2];
780
781   clipper->pos_attr = draw_current_shader_position_output(draw);
782   clipper->have_clipdist = draw_current_shader_num_written_clipdistances(draw) > 0;
783   if (draw_current_shader_clipvertex_output(draw) != clipper->pos_attr) {
784      clipper->cv_attr = (int)draw_current_shader_clipvertex_output(draw);
785   }
786   else {
787      clipper->cv_attr = -1;
788   }
789
790   /* We need to know for each attribute what kind of interpolation is
791    * done on it (flat, smooth or noperspective).  But the information
792    * is not directly accessible for outputs, only for inputs.  So we
793    * have to match semantic name and index between the VS (or GS/ES)
794    * outputs and the FS inputs to get to the interpolation mode.
795    *
796    * The only hitch is with gl_FrontColor/gl_BackColor which map to
797    * gl_Color, and their Secondary versions.  First there are (up to)
798    * two outputs for one input, so we tuck the information in a
799    * specific array.  Second if they don't have qualifiers, the
800    * default value has to be picked from the global shade mode.
801    *
802    * Of course, if we don't have a fragment shader in the first
803    * place, defaults should be used.
804    */
805
806   /* First pick up the interpolation mode for
807    * gl_Color/gl_SecondaryColor, with the correct default.
808    */
809   indexed_interp[0] = indexed_interp[1] = draw->rasterizer->flatshade ?
810      TGSI_INTERPOLATE_CONSTANT : TGSI_INTERPOLATE_PERSPECTIVE;
811
812   if (fs) {
813      for (i = 0; i < fs->info.num_inputs; i++) {
814         if (fs->info.input_semantic_name[i] == TGSI_SEMANTIC_COLOR &&
815             fs->info.input_semantic_index[i] < 2) {
816            if (fs->info.input_interpolate[i] != TGSI_INTERPOLATE_COLOR)
817               indexed_interp[fs->info.input_semantic_index[i]] = fs->info.input_interpolate[i];
818         }
819      }
820   }
821
822   /* Then resolve the interpolation mode for every output attribute. */
823
824   clipper->num_const_attribs = 0;
825   clipper->num_linear_attribs = 0;
826   clipper->num_perspect_attribs = 0;
827   for (i = 0; i < info->num_outputs; i++) {
828      /* Find the interpolation mode for a specific attribute */
829      int interp = find_interp(fs, indexed_interp,
830                               info->output_semantic_name[i],
831                               info->output_semantic_index[i]);
832      switch (interp) {
833      case TGSI_INTERPOLATE_CONSTANT:
834         clipper->const_attribs[clipper->num_const_attribs] = i;
835         clipper->num_const_attribs++;
836         break;
837      case TGSI_INTERPOLATE_LINEAR:
838         clipper->linear_attribs[clipper->num_linear_attribs] = i;
839         clipper->num_linear_attribs++;
840         break;
841      case TGSI_INTERPOLATE_PERSPECTIVE:
842         clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
843         clipper->num_perspect_attribs++;
844         break;
845      case TGSI_INTERPOLATE_COLOR:
846         if (draw->rasterizer->flatshade) {
847            clipper->const_attribs[clipper->num_const_attribs] = i;
848            clipper->num_const_attribs++;
849         } else {
850            clipper->perspect_attribs[clipper->num_perspect_attribs] = i;
851            clipper->num_perspect_attribs++;
852         }
853         break;
854      default:
855         assert(interp == -1);
856         break;
857      }
858   }
859   /* Search the extra vertex attributes */
860   for (j = 0; j < draw->extra_shader_outputs.num; j++) {
861      /* Find the interpolation mode for a specific attribute */
862      int interp = find_interp(fs, indexed_interp,
863                               draw->extra_shader_outputs.semantic_name[j],
864                               draw->extra_shader_outputs.semantic_index[j]);
865      switch (interp) {
866      case TGSI_INTERPOLATE_CONSTANT:
867         clipper->const_attribs[clipper->num_const_attribs] = i + j;
868         clipper->num_const_attribs++;
869         break;
870      case TGSI_INTERPOLATE_LINEAR:
871         clipper->linear_attribs[clipper->num_linear_attribs] = i + j;
872         clipper->num_linear_attribs++;
873         break;
874      case TGSI_INTERPOLATE_PERSPECTIVE:
875         clipper->perspect_attribs[clipper->num_perspect_attribs] = i + j;
876         clipper->num_perspect_attribs++;
877         break;
878      default:
879         assert(interp == -1);
880         break;
881      }
882   }
883
884   stage->tri = clip_tri;
885   stage->line = clip_line;
886}
887
888
889
890static void clip_first_tri(struct draw_stage *stage,
891                           struct prim_header *header)
892{
893   clip_init_state( stage );
894   stage->tri( stage, header );
895}
896
897static void clip_first_line(struct draw_stage *stage,
898                            struct prim_header *header)
899{
900   clip_init_state( stage );
901   stage->line( stage, header );
902}
903
904
905static void clip_flush(struct draw_stage *stage, unsigned flags)
906{
907   stage->tri = clip_first_tri;
908   stage->line = clip_first_line;
909   stage->next->flush( stage->next, flags );
910}
911
912
913static void clip_reset_stipple_counter(struct draw_stage *stage)
914{
915   stage->next->reset_stipple_counter( stage->next );
916}
917
918
919static void clip_destroy(struct draw_stage *stage)
920{
921   draw_free_temp_verts( stage );
922   FREE( stage );
923}
924
925
926/**
927 * Allocate a new clipper stage.
928 * \return pointer to new stage object
929 */
930struct draw_stage *draw_clip_stage(struct draw_context *draw)
931{
932   struct clip_stage *clipper = CALLOC_STRUCT(clip_stage);
933   if (!clipper)
934      goto fail;
935
936   clipper->stage.draw = draw;
937   clipper->stage.name = "clipper";
938   clipper->stage.point = clip_first_point;
939   clipper->stage.line = clip_first_line;
940   clipper->stage.tri = clip_first_tri;
941   clipper->stage.flush = clip_flush;
942   clipper->stage.reset_stipple_counter = clip_reset_stipple_counter;
943   clipper->stage.destroy = clip_destroy;
944
945   clipper->plane = draw->plane;
946
947   if (!draw_alloc_temp_verts( &clipper->stage, MAX_CLIPPED_VERTICES+1 ))
948      goto fail;
949
950   return &clipper->stage;
951
952 fail:
953   if (clipper)
954      clipper->stage.destroy( &clipper->stage );
955
956   return NULL;
957}
958